
Miroslav Kubat

An Introduction
to Machine
Learning

www.allitebooks.com

http://www.allitebooks.org

An Introduction to Machine Learning

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Miroslav Kubat

An Introduction to Machine
Learning

123

www.allitebooks.com

http://www.allitebooks.org

Miroslav Kubat
Department of Electrical and

Computer Engineering
University of Miami
Coral Gables, FL, USA

ISBN 978-3-319-20009-5 ISBN 978-3-319-20010-1 (eBook)
DOI 10.1007/978-3-319-20010-1

Library of Congress Control Number: 2015941486

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.allitebooks.com

www.springer.com
www.springer.com
http://www.allitebooks.org

To my wife, Verunka

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

1 A Simple Machine-Learning Task . 1
1.1 Training Sets and Classifiers . 1
1.2 Minor Digression: Hill-Climbing Search . 5
1.3 Hill Climbing in Machine Learning . 8
1.4 The Induced Classifier’s Performance. 11
1.5 Some Difficulties with Available Data . 13
1.6 Summary and Historical Remarks . 15
1.7 Solidify Your Knowledge . 16

2 Probabilities: Bayesian Classifiers . 19
2.1 The Single-Attribute Case . 19
2.2 Vectors of Discrete Attributes . 22
2.3 Probabilities of Rare Events: Exploiting the Expert’s Intuition 27
2.4 How to Handle Continuous Attributes . 30
2.5 Gaussian “Bell” Function: A Standard pdf . 33
2.6 Approximating PDFs with Sets of Gaussians . 34
2.7 Summary and Historical Remarks . 37
2.8 Solidify Your Knowledge . 40

3 Similarities: Nearest-Neighbor Classifiers . 43
3.1 The k-Nearest-Neighbor Rule . 43
3.2 Measuring Similarity . 46
3.3 Irrelevant Attributes and Scaling Problems . 49
3.4 Performance Considerations . 52
3.5 Weighted Nearest Neighbors . 55
3.6 Removing Dangerous Examples. 57
3.7 Removing Redundant Examples. 59
3.8 Summary and Historical Remarks . 62
3.9 Solidify Your Knowledge . 62

vii

www.allitebooks.com

http://www.allitebooks.org

viii Contents

4 Inter-Class Boundaries: Linear and Polynomial Classifiers 65
4.1 The Essence . 65
4.2 The Additive Rule: Perceptron Learning . 69
4.3 The Multiplicative Rule: WINNOW .. 73
4.4 Domains with More than Two Classes . 76
4.5 Polynomial Classifiers . 78
4.6 Specific Aspects of Polynomial Classifiers . 81
4.7 Numerical Domains and Support Vector Machines 83
4.8 Summary and Historical Remarks . 86
4.9 Solidify Your Knowledge . 87

5 Artificial Neural Networks . 91
5.1 Multilayer Perceptrons as Classifiers . 91
5.2 Neural Network’s Error . 95
5.3 Backpropagation of Error . 97
5.4 Special Aspects of Multilayer Perceptrons. 101
5.5 Architectural Issues . 104
5.6 Radial Basis Function Networks . 106
5.7 Summary and Historical Remarks . 108
5.8 Solidify Your Knowledge . 110

6 Decision Trees . 113
6.1 Decision Trees as Classifiers. 113
6.2 Induction of Decision Trees . 117
6.3 How Much Information Does an Attribute Convey? 119
6.4 Binary Split of a Numeric Attribute . 124
6.5 Pruning. 126
6.6 Converting the Decision Tree into Rules . 130
6.7 Summary and Historical Remarks . 132
6.8 Solidify Your Knowledge . 133

7 Computational Learning Theory . 137
7.1 PAC Learning. 137
7.2 Examples of PAC Learnability . 141
7.3 Some Practical and Theoretical Consequences . 143
7.4 VC-Dimension and Learnability. 145
7.5 Summary and Historical Remarks . 148
7.6 Exercises and Thought Experiments . 149

8 A Few Instructive Applications . 151
8.1 Character Recognition . 151
8.2 Oil-Spill Recognition . 155
8.3 Sleep Classification . 158
8.4 Brain-Computer Interface . 161
8.5 Medical Diagnosis. 165
8.6 Text Classification . 167
8.7 Summary and Historical Remarks . 169
8.8 Exercises and Thought Experiments . 170

www.allitebooks.com

http://www.allitebooks.org

Contents ix

9 Induction of Voting Assemblies . 173
9.1 Bagging . 173
9.2 Schapire’s Boosting . 176
9.3 Adaboost: Practical Version of Boosting . 179
9.4 Variations on the Boosting Theme. 183
9.5 Cost-Saving Benefits of the Approach . 185
9.6 Summary and Historical Remarks . 187
9.7 Solidify Your Knowledge . 188

10 Some Practical Aspects to Know About . 191
10.1 A Learner’s Bias. 191
10.2 Imbalanced Training Sets . 194
10.3 Context-Dependent Domains . 198
10.4 Unknown Attribute Values . 202
10.5 Attribute Selection . 204
10.6 Miscellaneous . 206
10.7 Summary and Historical Remarks . 209
10.8 Solidify Your Knowledge . 210

11 Performance Evaluation . 213
11.1 Basic Performance Criteria . 213
11.2 Precision and Recall. 216
11.3 Other Ways to Measure Performance . 221
11.4 Performance in Multi-label Domains. 224
11.5 Learning Curves and Computational Costs . 225
11.6 Methodologies of Experimental Evaluation . 227
11.7 Summary and Historical Remarks . 230
11.8 Solidify Your Knowledge . 231

12 Statistical Significance . 235
12.1 Sampling a Population . 235
12.2 Benefiting from the Normal Distribution . 239
12.3 Confidence Intervals . 243
12.4 Statistical Evaluation of a Classifier . 245
12.5 Another Kind of Statistical Evaluation . 248
12.6 Comparing Machine-Learning Techniques . 249
12.7 Summary and Historical Remarks . 251
12.8 Solidify Your Knowledge . 252

13 The Genetic Algorithm . 255
13.1 The Baseline Genetic Algorithm . 255
13.2 Implementing the Individual Modules . 258
13.3 Why it Works . 261
13.4 The Danger of Premature Degeneration. 264
13.5 Other Genetic Operators . 265
13.6 Some Advanced Versions . 268
13.7 Selections in k-NN Classifiers . 270

www.allitebooks.com

http://www.allitebooks.org

x Contents

13.8 Summary and Historical Remarks . 273
13.9 Solidify Your Knowledge . 274

14 Reinforcement Learning . 277
14.1 How to Choose the Most Rewarding Action . 277
14.2 States and Actions in a Game. 280
14.3 The SARSA Approach . 283
14.4 Summary and Historical Remarks . 284
14.5 Solidify Your Knowledge . 284

Bibliography . 287

Index . 291

Introduction

Machine learning has come of age. And just in case you might think this is a mere
platitude, let me clarify.

The dream that machines would one day be able to learn is as old as computers
themselves, perhaps older still. For a long time, however, it remained just that: a
dream. True, Rosenblatt’s perceptron did trigger a wave of activity, but in retrospect,
the excitement has to be deemed short-lived. As for the attempts that followed, these
fared even worse; barely noticed, often ignored, they never made a breakthrough—
no software companies, no major follow-up research, and not much support from
funding agencies. Machine learning remained an underdog, condemned to live in
the shadow of more successful disciplines. The grand ambition lay dormant.

And then it all changed.
A group of visionaries pointed out a weak spot in the knowledge-based systems

that were all the rage in the 1970s’ artificial intelligence: where was the “know-
ledge” to come from? The prevailing wisdom of the day insisted that it should
take the form of if-then rules put together by the joint effort of engineers and field
experts. Practical experience, though, was unconvincing. Experts found it difficult
to communicate what they knew to engineers. Engineers, in turn, were at a loss as
to what questions to ask, and what to make of the answers. A few widely publicized
success stories notwithstanding, most attempts to create a knowledge base of, say,
tens of thousands of such rules proved frustrating.

The proposition made by the visionaries was both simple and audacious. If it is
so hard to tell a machine exactly how to go about a certain problem, why not provide
the instruction indirectly, conveying the necessary skills by way of examples from
which the computer will—yes—learn!

Of course, this only makes sense if we can rely on the existence of algorithms to
do the learning. This was the main difficulty. As it turned out, neither Rosenblatt’s
perceptron nor the techniques developed after it were very useful. But the absence
of the requisite machine-learning techniques was not an obstacle; rather, it was a
challenge that inspired quite a few brilliant minds. The idea of endowing computers
with learning skills opened new horizons and created a large amount of excitement.
The world was beginning to take notice.

xi

xii Introduction

The bombshell exploded in 1983. Machine Learning: The AI Approach1 was
a thick volume of research papers which proposed the most diverse ways of
addressing the great mystery. Under their influence, a new scientific discipline
was born—virtually overnight. Three years later, a follow-up book appeared,
then another. A soon-to-become-prestigious scientific journal was founded. Annual
conferences of great repute were launched. And dozens, perhaps hundreds, of
doctoral dissertations were submitted and successfully defended.

In this early stage, the question was not only how to learn but also what to learn
and why. In retrospect, those were wonderful times, so creative that they deserve to
be remembered with nostalgia. It is only to be regretted that so many great thoughts
later came to be abandoned. Practical needs of realistic applications got the upper
hand, pointing to the most promising avenues for further efforts. After a period of
enchantment, concrete research strands crystallized: induction of the if-then rules for
knowledge-based systems; induction of classifiers, programs capable of improving
their skills based on experience; automatic fine-tuning of Prolog programs; and
some others. So many were the directions that some leading personalities felt
it necessary to try to steer further development by writing monographs, some
successful, others less so.

An important watershed was Tom Mitchell’s legendary textbook.2 This summa-
rized the state of the art of the field in a format appropriate for doctoral students
and scientists alike. One by one, universities started offering graduate courses that
were usually built around this book. Meanwhile, the research methodology become
more systematic, too. A rich repository of machine-leaning test-beds was created,
making it possible to compare the performance or learning algorithms. Statistical
methods of evaluation became widespread. Public-domain versions of most popular
programs were made available. The number of scientists dealing with this discipline
grew to thousands, perhaps even more.

Now we have reached the stage where a great many universities are offering
machine learning as an undergraduate class. This is quite a new situation. As a rule,
these classes call for a different kind of textbook. Apart from mastering the baseline
techniques, the future engineers need to develop a good grasp of the strengths and
weaknesses of alternative approaches; they should be aware of the peculiarities
and idiosyncrasies of different paradigms. Above all, they must understand the
circumstances under which some techniques succeed and others fail. Only then
will they be able to make the right choices when addressing concrete applications.
A textbook that is to provide all of the above should contain less mathematics, but a
lot of practical advice.

These then are the considerations that have dictated the size, structure, and style
of a teaching text meant to provide the material for a one-semester introductory
course.

1Edited by R. Michalski, J. Carbonell, and T. Mitchell.
2T. Mitchell, Machine Learning, McGraw-Hill, 1997.

Introduction xiii

The first problem is the choice of material. At a time when high-tech companies
are establishing machine-learning groups, universities have to provide the students
with such knowledge, skills, and understanding that are relevant to the current needs
of the industry. For this reason, preference has been given to Bayesian classifiers,
nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, the
fundamentals of the neural networks, and the principle of the boosting algorithms.
A significant space has been devoted to certain typical aspects of concrete engineer-
ing applications. When applied to really difficult tasks, the baseline techniques are
known to behave not exactly the same way they do in the toy domains employed by
the instructor. One has to know what to expect.

The book consists of 14 chapters, each covering one major topic. The chapters are
divided into sections, each devoted to one critical problem. The student is advised
to proceed to the next section only after having answered the set of 2–4 “control
questions” at the end of the previous section. These questions are here to help
the student decide whether he or she has mastered the given material. If not, it is
necessary to return to the previous text.

As they say, only practice makes perfect. This is why at the end of each chapter
are exercises to encourage the necessary practicing. Deeper insight into the diverse
aspects of the material will then be gained by going through the thought experiments
that follow. These are more difficult, but it is only through hard work that an
engineer develops the right kind of understanding. The acquired knowledge is then
further solidified by suggested computer projects. Programming is important, too.
Nowadays, everybody is used to downloading the requisite software from the web.
This shortcut, however, is not recommended to the student of this book. It is only
by being forced to flesh out all the details of a computer program that you learn to
appreciate all the subtle points of the machine-learning techniques presented here.

Chapter 1
A Simple Machine-Learning Task

You will find it difficult to describe your mother’s face accurately enough for your
friend to recognize her in a supermarket. But if you show him a few of her photos,
he will immediately spot the tell-tale traits he needs. As they say, a picture—an
example—is worth a thousand words.

This is what we want our technology to emulate. Unable to define certain objects
or concepts with adequate accuracy, we want to convey them to the machine by
way of examples. For this to work, however, the computer has to be able to convert
the examples into knowledge. Hence our interest in algorithms and techniques for
machine learning, the topic of this textbook.

The first chapter formulates the task as a search problem, introducing hill-
climbing search not only as our preliminary attempt to address the machine-learning
task, but also as a tool that will come handy in a few auxiliary problems to be
encountered in later chapters. Having thus established the foundation, we will
proceed to such issues as performance criteria, experimental methodology, and
certain aspects that make the learning process difficult—and interesting.

1.1 Training Sets and Classifiers

Let us introduce the problem, and certain fundamental concepts that will accompany
us throughout the rest of the book.

The set of pre-classified training examples. Figure 1.1 shows six pies that Johnny
likes, and six that he does not. These positive and negative examples of the
underlying concept constitute a training set from which the machine is to induce
a classifier—an algorithm capable of categorizing any future pie into one of the two
classes: positive and negative.

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_1

1

2 1 A Simple Machine-Learning Task

Johnny likes:

Johnny does NOT like:

Fig. 1.1 A simple machine-learning task: induce a classifier capable of labeling future pies as
positive and negative instances of “a pie that Johnny likes”

The number of classes can of course be greater. Thus a classifier that decides
whether a landscape snapshot was taken in spring, summer, fall, or
winter distinguishes four. Software that identifies characters scribbled on an
iPad needs at least 36 classes: 26 for letters and 10 for digits. And document-

1.1 Training Sets and Classifiers 3

Table 1.1 The twelve
training examples expressed
in a matrix form

crust filling

example shape size shade size shade class

ex1 circle thick gray thick dark pos

ex2 circle thick white thick dark pos

ex3 triangle thick dark thick gray pos

ex4 circle thin white thin dark pos

ex5 square thick dark thin white pos

ex6 circle thick white thin dark pos

ex7 circle thick gray thick white neg

ex8 square thick white thick gray neg

ex9 triangle thin gray thin dark neg

ex10 circle thick dark thick white neg

ex11 square thick white thick dark neg

ex12 triangle thick white thick gray neg

categorization systems are capable of identifying hundreds, even thousands of
different topics. Our only motivation for choosing a two-class domain is its
simplicity.

Attribute vectors. To be able to communicate the training examples to the
machine, we have to describe them in an appropriate way. The most common
mechanism relies on so-called attributes. In the “pies” domain, five may be
suggested: shape (circle, triangle, and square), crust-size (thin or thick),
crust-shade (white, gray, or dark), filling-size (thin or thick), and
filling-shade (white, gray, or dark). Table 1.1 specifies the values of these
attributes for the twelve examples in Fig. 1.1. For instance, the pie in the upper-
left corner of the picture (the table calls it ex1) is described by the following
conjunction:

(shape=circle) AND (crust-size=thick) AND (crust-shade=gray)
AND (filling-size=thick) AND (filling-shade=dark)

A classifier to be induced. The training set constitutes the input from which we
are to induce the classifier. But what classifier?

Suppose we want it in the form of a boolean function that is true for
positive examples and false for negative ones. Checking the expression
[(shape=circle) AND (filling-shade=dark)] against the training
set, we can see that its value is false for all negative examples: while it is possible
to find negative examples that are circular, none of these has a dark filling. As for
the positive examples, however, the expression is true for four of them and false for
the remaining two. This means that the classifier makes two errors, a transgression
we might refuse to tolerate, suspecting there is a better solution. Indeed, the reader

4 1 A Simple Machine-Learning Task

will easily verify that the following expression never goes wrong on the entire
training set:

[(shape=circle) AND (filling-shade=dark)] OR
[NOT(shape=circle) AND (crust-shade=dark)]

Problems with a brute-force approach. How does a machine find a classifier of
this kind? Brute force (something that computers are so good at) will not do here.
Just consider how many different examples can be distinguished by the given set
of attributes in the “pies” domain. For each of the three different shapes, there
are two alternative crust-sizes, the number of combinations being 3 � 2 D 6.
For each of these, the next attribute, crust-shade, can acquire three different
values, which brings the number of combinations to 3 � 2 � 3 D 18. Extending this
line of reasoning to all attributes, we realize that the size of the instance space is
3 � 2 � 3 � 2 � 3 D 108 different examples.

Each subset of these examples—and there are 2108 subsets!—may constitute the
list of positive examples of someone’s notion of a “good pie.” And each such subset
can be characterized by at least one boolean expression. Running each of these
classifiers through the training set is clearly out of the question.

Manual approach and search. Uncertain about how to invent a classifier-inducing
algorithm, we may try to glean some inspiration from an attempt to create a classifier
“manually,” by the good old-fashioned pencil-and-paper method. When doing so,
we begin with some tentative initial version, say, shape=circular. Having
checked it against the training set, we find it to be true for four positive examples, but
also for two negative ones. Apparently, the classifier needs to be “narrowed” (spe-
cialized) so as to exclude the two negative examples. One way to go about the spe-
cialization is to add a conjunction, such as when turning shape=circular into
[(shape=circular) AND (filling-shade=dark)]. This new expres-
sion, while false for all negative examples, is still imperfect because it cov-
ers only four (ex1, ex2, ex4, and ex6) of the six positive examples. The
next step should therefore attempt some generalization, perhaps by adding a
disjunction: {[(shape=circular) AND (filling-shade=dark)] OR
(crust-size=thick)}. We continue in this way until we find a hundred-
percent accurate classifier (if it exists).

The lesson from this little introspection is that the classifier can be created by
means of a sequence of specialization and generalization steps which gradually
modify a given version of the classifier until it satisfies certain predefined require-
ments. This is encouraging. Readers with background in Artificial Intelligence will
recognize this procedure as a search through the space of boolean expressions. And
Artificial Intelligence is known to have developed and explored quite a few search
algorithms. It may be an idea to take a look at least at one of them.

1.2 Minor Digression: Hill-Climbing Search 5

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What is the input and output of the learning problem we have just described?
• How do we describe the training examples? What is instance space? Can we

calculate its size?
• In the “pies” domain, find a boolean expression that correctly classifies all the

training examples from Table 1.1.

1.2 Minor Digression: Hill-Climbing Search

Let us now formalize what we mean by search, and then introduce one popular algo-
rithm, the so-called hill climbing. Artificial Intelligence defines search something
like this: starting from an initial state, find a sequence of steps which, proceeding
through a set of interim search states, lead to a pre-defined final state. The individual
steps—transitions from one search state to another—are carried out by search
operators which, too, have been pre-specified by the programmer. The order in
which the search operators are applied follows a specific search strategy. The whole
principle is depicted by Fig. 1.2.

Hill climbing—an illustration. One popular search strategy is hill climbing. Let
us illustrate its essence on a well-known brain-teaser, the sliding-tiles puzzle. The
board of a trivial version of this game consists of nine squares arranged in three
rows, eight covered by numbered tiles (integers from 1 to 8), the last left empty. We
convert one search state into another by sliding to the empty square a tile from one
of its neighbors. The goal is to achieve a pre-specified arrangement of the tiles.

The flowchart in Fig. 1.3 starts with a concrete initial state, in which we can
choose between two operators: “move tile-6 up” and “move tile-2 to the
left.” The choice is guided by an evaluation function that estimates for each state
its distance from the goal. A simple possibility is to count the squares that the tiles
have to traverse before reaching their final destinations. In the initial state, tiles 2,
4 and 5 are already in the right locations; tile 3 has to be moved by four squares;
and each of the tiles 1, 6, 7, and 8 has to be moved by two squares. This sums-up to
distance d D 4 C 4 � 2 D 12.

In Fig. 1.3, each of the two operators applicable to the initial state leads to a
state whose distance from the final state is d D 13. In the absence of any other
guidance, we choose randomly and go to the left, reaching the situation where the
empty square is in the middle of the top row. Here, three moves are possible. One of
them would only get us back to the initial state, and can thus be ignored; as for the

6 1 A Simple Machine-Learning Task

Search Strategy

Final State

Search Operators

Initial State

Search Agent

Fig. 1.2 A search problem is characterized by an initial state, final state, search operators, and a
search strategy

remaining two, one results in a state with d D 14, the other in a state with d D 12.
The latter being the lower value, this is where we go. The next step is trivial because
only one move gets us to a state that has not been visited before. After this, we again
face the choice between two alternatives . . . and this how the search continues until
it reaches the final state.

Alternative termination criteria and evaluation functions. Other termination
criteria can be considered, too. The search can be instructed to stop when the
maximum allotted time has elapsed (we do not want the computer to run forever),
when the number of visited states has exceeded a certain limit, when something
sufficiently close to the final state has been found, when we have realized that
all states have already been visited, and so on, the concrete formulation reflecting
critical aspects of the given application, sometimes combining two or more criteria
in one.

By the way, the evaluation function employed in the sliding-tiles example was
fairly simple, barely accomplishing its mission: to let the user convey some notion
of his or her understanding of the problem, to provide a hint as to which move a
human solver might prefer. To succeed in a realistic application, we would have to
come up with a more sophisticated function. Quite often, many different alternatives

www.allitebooks.com

http://www.allitebooks.org

1.2 Minor Digression: Hill-Climbing Search 7

Final State:

d = 12

1 2 3
4
567

8
1

2

d = 13

d = 14

d = 13

2
7

1
4
583

6

Hill Climbing

initial state

2
7

1
4
583

62
7

1
4
583

6

2 7 1
4
583

6

3

d = 12

2
7
1

4
583

6

4

d = 13

d = 14 d = 14

2
7
1 4

583
6

2
7

1 4

583
6

2
7
1 4

5
83

6

5

Fig. 1.3 Hill climbing. Circled integers indicate the order in which the search states are visited.
d is a state’s distance from the final state as calculated by the given evaluation function. Ties are
broken randomly

can be devised, each engendering a different sequence of steps. Some will be quick
in reaching the solution, others will follow a more circuitous path. The program’s
performance will then depend on the programmer’s ability to pick the right one.

The algorithm of hill combing. The algorithm is summarized by the pseudocode
in Table 1.2. Details will of course depend on each individual’s programming style,
but the code will almost always contain a few typical functions. One of them
compares two states and returns true if they are identical; this is how the program
ascertains that the final state has been reached. Another function takes a given search
state and applies to it all search operators, thus creating a complete set of “child
states.” To avoid infinite loops, a third function checks whether a state has already
been investigated. A fourth calculates for a given state its distance from the final

8 1 A Simple Machine-Learning Task

Table 1.2 Hill-climbing search algorithm

1. Create two lists, L and Lseen. At the beginning, L contains only the initial state, and Lseen

is empty.

2. Let n be the first element of L. Compare this state with the final state. If they are identical,
stop with success.

3. Apply to n all available search operators, thus obtaining a set of new states. Discard those
states that already exist in Lseen. As for the rest, sort them by the evaluation function and
place them at the front of L.

4. Transfer n from L into the list, Lseen, of the states that have been investigated.

5. If L D ;, stop and report failure. Otherwise, go to 2.

state, and a fifth sorts the “child” states according to the distances thus calculated
and places them at the front of the list L. And the last function checks if a termination
criterion has been satisfied.1

One last observation: at some of the states in Fig. 1.3, no “child” offers any
improvement over its “parent,” a lower d-value being achieved only after temporary
compromises. This is what a mountain climber may experience, too: sometimes,
he has to traverse a valley before being able to resume the ascent. The mountain-
climbing metaphor, by the way, is what gave this technique its name.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How does Artificial Intelligence define the search problem? What do we
understand under the terms, “search space” and “search operators”?

• What is the role of the evaluation function? How does it affect the hill-climbing
behavior?

1.3 Hill Climbing in Machine Learning

We are ready to explore the concrete ways of applying hill climbing to the needs of
machine learning.

Hill climbing and Johnny’s pies. Let us begin with the problem of how to decide
which pies Johnny likes. The input consists of a set of training examples, each
described by the available attributes. The output—the final state—is a boolean

1For simplicity, the pseudocode ignores termination criteria other than reaching, or failing to reach,
the final state.

1.3 Hill Climbing in Machine Learning 9

Fig. 1.4 Hill climbing search in the “pies” domain

expression that is true for each positive example in the training set, and false for each
negative example. The expression involves attribute-value pairs, logical operators
(conjunction, disjunction, and negation), and such combination of parentheses as
may be needed. The evaluation function measures the given expression’s error rate
on the training set. For the initial state, any randomly generated expression can be
used. In Fig. 1.4, we chose (shape=circle), on the grounds that more than a
half of the positive training examples are circular.

As for the search operator, one possibility is to add a conjunction as
illustrated in the upper part of Fig. 1.4: for instance, the root’s left-most child
is obtained by replacing (shape=circle) with [(shape=circle) AND
(filling-shade=dark)] (in the picture, logical AND is represented by the
symbol “^.”). Note how many different expressions this operator generates even
in our toy domain. To shape=circle, any other attribute-value pair can be
“ANDed.” Since the remaining four attributes (apart from shape) acquire 2, 3, 2,
and 3 different values, respectively, the total number of terms that can be added to
(shape=circle) is 2 � 2 � 3 D 36.2

Alternatively, we may choose to add a disjunction, as illustrated (in the picture)
by the three expansions of the leftmost child. Examples of other operators include
“remove a conjunct,” “remove a disjunct,” “add a negation,” “negate a term,” various
ways of manipulating parentheses, and so on. All in all, hundreds of search operators

2Of the 36 new states thus created, Fig. 1.4 shows only three.

10 1 A Simple Machine-Learning Task

Fig. 1.5 On the left: a domain with continuous attributes; on the right: some “circular” classifiers

can be applied to each state, and then again to the resulting states. This can be hard
to manage even in this very simple domain.

Numeric attributes. In the “pies” domain, each attribute acquires one out of a
few discrete values, but in realistic applications, some attributes will probably be
numeric. For instance, each pie has a price, an attribute whose values come from
a continuous domain. What will the search look like then?

To keep things simple, suppose there are only two attributes: weight and
price. This limitation makes it possible, in Fig. 1.5, to represent each training
example by a point in a plane. The reader can see that examples belonging to
the same class tend to occupy a specific region, and curves separating individual
regions can be defined—expressed mathematically as lines, circles, polynomials.
For instance, the right part of Fig. 1.5 shows three different circles, each of which
can act as a classifier: examples inside the circle are deemed positive; those outside,
negative. Again, some of these classifiers are better than others. How will hill
climbing go about finding the best ones? Here is one possibility.

Hill climbing in a domain with numeric attributes.

Initial State. A circle is defined by its center and radius. We can identify the initial
center with a randomly selected positive example, making the initial radius so small
that the circle contains only this single example.

Search Operators. Two search operators can be used: one increases the circle’s
radius, and the other shifts the center from one training example to another. In the
former, we also have to determine how much the radius should change. One idea is
to increase it only so much as to make the circle encompass one additional training
example. At the beginning, only one training example is inside. After the first step,
there will be two, then three, four, and so on.

1.4 The Induced Classifier’s Performance 11

Final State. The circle may not be an ideal figure to represent the positive region. In
this event, a hundred-percent accuracy may not be achievable, and we may prefer to
define the final state as, say, a “classifier that correctly classifies 95% of the training
examples.”

Evaluation function. As before, we choose to minimize the error rate.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What aspects of search must be specified before we can employ hill climbing in
machine learning?

• What search operators can be used in the “pies” domain and what in the “circles”
domain? How can we define the evaluation function, the initial state, and the final
state?

1.4 The Induced Classifier’s Performance

So far, we have measured the error rate by comparing the training examples’ known
classes with those recommended by the classifier. Practically speaking, though, our
goal is not to re-classify objects whose classes we already know; what we really
want is to label future examples, those of whose classes we are as yet ignorant.
The classifier’s anticipated performance on these is estimated experimentally. It is
important to know how.

Independent testing examples. The simplest scenario will divide the available
pre-classified examples into two parts: the training set, from which the classifier
is induced, and the testing set, on which it is evaluated (Fig. 1.6). Thus in the “pies”
domain, with its 12 pre-classified examples, the induction may be carried out on
randomly selected eight, and the testing on the remaining four. If the classifier then
“guesses” correctly the class of three testing examples (while going wrong on one),
its performance is estimated as 75 %.

Fig. 1.6 Pre-classified
examples are divided into the
training and testing sets

training
set

testing
set

available examples

12 1 A Simple Machine-Learning Task

Reasonable though this approach may appear, it suffers from a major drawback:
a random choice of eight training examples may not be sufficiently representative
of the underlying concept—and the same applies to the (even smaller) testing set.
If we induce the meaning of a mammal from a training set consisting of a whale,
a dolphin, and a platypus, the learner may be led to believe that mammals live in
the sea (whale, dolphin), and sometimes lay eggs (platypus), hardly an opinion a
biologist will embrace. And yet, another choice of training examples may result in a
classifier satisfying the highest standards. The point is, a different training/testing set
division gives rise to a different classifier—and also to a different estimate of future
performance. This is particularly serious if the number of pre-classified examples is
small.

Suppose we want to compare two machine learning algorithms in terms of the
quality of the products they induce. The problem of non-representative training
sets can be mitigated by so-called random subsampling.3 The idea is to repeat the
random division into the training and testing sets several times, always inducing a
classifier from the i-th training set, and then measuring the error rate, Ei, on the i-th
testing set. The algorithm that delivers classifiers with the lower average value of
Ei’s is deemed better—as far as classification performance is concerned.

The need for explanations. In some applications, establishing the class of each
example is not enough. Just as desirable is to know the reasons behind the
classification. Thus a patient is unlikely to give consent to amputation if the only
argument in support of surgery is, “this is what our computer says.” But how to find
a better explanation?

In the “pies” domain, a lot can be gleaned from the boolean expression itself. For
instance, we may notice that a pie was labeled as negative whenever its shape was
square, and its filling white. Combining this observation with alternative sources
of knowledge may offer useful insights: the dark shade of the filling may indicate
poppy, an ingredient Johnny is known to love; or the crust of circular pies turns out
to be more crispy than that of square ones; and so on. The knowledge obtained in
this manner can be more desirable than the classification itself.

By contrast, the classifier in the “circles” domain is a mathematical expression
that acts as a “black box” which accepts an example’s description and returns the
class label without telling us anything else. This is not necessarily a shortcoming.
In some applications, an explanation is nothing more than a welcome bonus; in
others, it is superfluous. Consider a classifier that accepts a digital image of a hand-
written character and returns the letter it represents. The user who expects several
pages of text to be converted into a Word document will hardly insist on a detailed
explanation for each single character.

Existence of alternative solutions. By the way, we should notice that many
apparently perfect classifiers can be induced from the given data. In the “pies”
domain, the training set contained 12 examples, and the classes of the remaining

3Later, we will describe some other methodologies.

1.5 Some Difficulties with Available Data 13

96 examples were unknown. A mathematician will inform us that there are 296

classifiers that label correctly all training examples but differ in the way they label
the unknown 96. One induced classifier may label correctly every single future
example—and another will misclassify them all.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How can we estimate the error rate on examples that have not been seen during
learning?

• Why is error rate usually higher on the testing set than on the training set?
• Give an example of a domain where the classifier also has to explain its action,

and an example of a domain where this is unnecessary.
• What do we mean by saying that, “there is a combinatorial number of classifiers

that correctly classify all training examples”?

1.5 Some Difficulties with Available Data

In some applications, the training set is created manually: an expert prepares the
examples, tags them with class labels, chooses the attributes, and specifies the value
of each attribute in each example. In other domains, the process is computerized. For
instance, a company may want to be able to anticipate an employee’s intention to
leave. Their database contains, for each person, the address, gender, marital status,
function, salary raises, promotions—as well as the information about whether the
person is still with the company or, if not, the day they left. From this, a program
can obtain the attribute vectors, labeled as positive if the given person left within a
year since the last update of the database record.

Sometimes, the attribute vectors are automatically extracted from a database, and
labeled by an expert. Alternatively, some examples can be obtained from a database,
and others added manually. Often, two or more databases are combined. The number
of such variations is virtually unlimited.

But whatever the source of the examples, they are likely to suffer from imperfec-
tions whose essence and consequences the engineer has to understand.

Irrelevant attributes. To begin with, some attributes are important, while others
are not. While Johnny may be truly fond of poppy filling, his preference for a pie
will hardly be driven by the cook’s shoe size. This is something to be concerned
about: irrelevant attributes add to computational costs; they can even mislead the
learner. Can they be avoided?

14 1 A Simple Machine-Learning Task

Usually not. True, in manually-created domains, the expert is supposed to know
which attributes really matter, but even here, things are not so simple. Thus the
author of the “pies” domain might have done her best to choose those attributes
she believed to matter. But unsure about the real reasons behind Johnny’s tastes,
she may have included attributes whose necessity she suspected—but could not
guarantee. Even more often the problems with relevance occur when the examples
are extracted from a database. Databases are developed primarily with the intention
to provide access to lots of information—of which usually only a tiny part pertains
to the learning task. As to which part this is, we usually have no idea.

Missing attributes. Conversely, some critical attributes can be missing. Mindful of
his parents’ finances, Johnny may be prejudiced against expensive pies. The absence
of attribute price will then make it impossible to induce a good classifier: two
examples, identical in terms of the available attributes, can differ in the values of
the vital “missing” attribute. No wonder that, though identically described, one is
positive and the other negative. When this happens, we say that the training set is
inconsistent. This is sometimes hard to avoid: not only may the expert be ignorant
of the relevance of price; the values of this attribute may be unknown.

Redundant attributes. Somewhat less damaging are attributes that are redundant
in the sense that their values can be obtained from other attributes. If the database
contains a patient’s date-of-birth as well as age, the latter is unnecessary
because it can be calculated by subtracting date-of-birth from today’s date.
Fortunately, redundant attributes are less dangerous than irrelevant or missing ones.

Attribute- value noise. Attribute values and class labels often cannot be trusted on
account of unreliable sources of information, poor measurement devices, typos, the
user’s confusion, and many other reasons. We say that the data suffer from various
kinds of noise.

Stochastic noise is random. For instance, since our body-weight varies during
the day, the reading we get in the morning is different from the one in the evening.
A human error can also play a part: lacking the time to take a patient’s blood
pressure, a negligent nurse simply scribbles down a modification of the previous
reading. By contrast, systematic noise drags all values in the same direction; a poorly
calibrated thermometer always gives a lower reading than it should. In the case of
arbitrary artifacts, the given value bears no relation to reality such as when an EEG
electrode gets loose and, from that moment on, all subsequent readings will be zero.

Class-label noise. Class labels suffer from similar problems. The labels recom-
mended by an expert may not have been properly recorded; alternatively, some
examples find themselves in a “gray area” between two classes, in which event the
correct labels are not certain. Both cases represent stochastic noise, of which the
latter may affect only borderline examples. Class-label noise can be systematic as
well: a physician may be reluctant to diagnose a rare disease unless the evidence
is overwhelming—his class labels are then more likely to be negative. Finally,
arbitrary artefacts in class labels are encountered in domains where the classes are
supplied by an automated process that has gone wrong.

1.6 Summary and Historical Remarks 15

Class-label noise can be more dangerous than attribute-value noise. Thus in
the “circles” domain, an example located deep inside the positive region will stay
there even if an attribute’s value is slightly modified; only the borderline example
will suffer from being “sent across the border.” By contrast, class-label noise will
invalidate any example.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the following types of attributes: irrelevant, redundant, and missing.
Illustrate each of them using the “pies” domain.

• What is meant by “inconsistent training set”? What can be the cause? How can it
affect the learning process?

• What kinds of noise do we know? What are their possible sources?

1.6 Summary and Historical Remarks

• Induction from a training set of pre-classified examples is the most deeply studied
machine-learning task.

• Historically, the task is cast as search. One can propose a mechanism that exploits
the well-established search technique of hill climbing defined by an initial state,
final state, interim states, search operators, and evaluation functions.

• Mechanical use of search is not the ultimate solution, though. The rest of the
book will explore more useful techniques.

• Classifier performance is estimated with the help of pre-classified testing data.
The simplest performance criterion is error rate, the percentage of examples
misclassified by the classifier. The baseline scenario is shown in Fig. 1.7.

• Two classifiers that both correctly classify all training examples may differ
significantly in their handling of the testing set.

• Apart from low error rate, some applications require that the classifier provides
the reasons behind the classification.

• The quality of the induced classifier depends on training examples. The quality
of the training examples depends not only on their choice, but also on the
attributes used to describe them. Some attributes are relevant, others irrelevant
or redundant. Quite often, critical attributes are missing.

• The attribute values and class labels may suffer from stochastic noise, systematic
noise, and random artefacts. The value of an attribute in a concrete example may
not be known.

16 1 A Simple Machine-Learning Task

Learning:

Application:

Training
Examples

Concept Classifier

Classifier Concept
Label

Example

Fig. 1.7 The training examples are used to induce a classifier. The classifier is then employed to
classify future examples

Historical Remarks. The idea of casting the machine learning task as search was
popular in the 1980s and 1990s. While several “founding fathers” came to see things
this way independently of each other, Mitchell [58] is often credited with being the
first to promote the search-based approach; just as influential, however, was the
family of AQ-algorithms proposed by Michalski ([50], 1969). The discipline got a
major boost by the collection of papers edited by Michalski, Carbonell, and Mitchell
[52]. They framed the mindset of a whole generation.

There is much more to search algorithms. The interested reader is referred to
textbooks of Artificial Intelligence, of which perhaps the most comprehensive is
Russell and Norvig [71] or Coppin [13].

1.7 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. In the sliding-tiles puzzle, suggest a better evaluation function than the one used
in the text.

www.allitebooks.com

http://www.allitebooks.org

1.7 Solidify Your Knowledge 17

a

l m

b c d

e f g h i j k

0.1

2.5 1.4 2.3

2.1 0.3

2.0 0.2 2.0 1.0 3.2

1.5 3.5

Fig. 1.8 Determine the order in which these search states are visited by heuristic search
algorithms. The numbers next to the “boxex” give the values of the evaluation function for the
individual search states

2. Figure 1.8 shows a search tree where each node represents one search state and
is tagged with the value of the evaluation function. In what order will these states
be visited by hill-climbing search?

3. Suppose the evaluation function in the “pies” domain calculates the percentage
of correctly classified training examples. Let the initial state be the expression
describing the second positive example in Table 1.1. Hand-simulate the hill-
climbing search that uses generalization and specialization operators.

4. What is the size of the instance space in a domain where examples are described
by ten boolean attributes? How large is then the space of classifiers?

Give It Some Thought

1. In the “pies” domain, the size of the space of all classifiers is 2108, provided that
each subset of the instance space can be represented by a distinct classifier. How
much will the search space shrink if we permit only classifiers in the form of
conjunctions of attribute-value pairs?

2. What kind of noise can you think of in the “pies” domain? What can be the source
of this noise? What other issues render the training set imperfect?

3. Some classifiers behave as black boxes that do not offer much in the way of
explanations. Such was the case of the “circles” domain. Suggest examples of
domains where black-box classifiers are impractical, and suggest domains where
this limitation does not matter.

18 1 A Simple Machine-Learning Task

4. Take a class that you think is difficult to describe—for instance, the recognition
of a complex biological object (oak tree, ostrich, etc.) or the recognition of a
music genre (rock, folk, jazz, etc.). Suggest the list of attributes to describe the
training examples. Are the values of these attributes easy to obtain? Which of the
problems discussed in this chapter do you expect will complicate the learning
process?

Computer Assignments

1. Write a program implementing hill climbing and apply it to the sliding-tiles
puzzle. Choose appropriate representation for the search states, write a module
that decides whether a state is a final state, and implement the search operators.
Define two or three alternative evaluation functions and observe how each of
them leads to a different sequence of search steps.

2. Write a program that will implement the “growing circles” algorithm from
Sect. 1.3. Create a training set of two-dimensional examples such as those in
Fig. 1.5. The learning program will use the hill-climbing search. The evaluation
function will calculate the percentage of training examples correctly classified by
the classifier. Consider the following search operators: (1) increase/decrease the
radius of the circle, (2) use a different training example as the circle’s center.

3. Write a program that will implement the search for the description of the “pies
that Johnny likes.” Define your own generalization and specialization operators.
The evaluation function will rely on the error rate observed on the training
examples.

Chapter 2
Probabilities: Bayesian Classifiers

The earliest attempts to predict an example’s class based on the known attribute
values go back to well before World War II—prehistory, by the standards of
computer science. Of course, nobody used the term “machine learning,” in those
days, but the goal was essentially the same as the one addressed in this book.

Here is the essence of the solution strategy they used: using the Bayesian
probabilistic theory, calculate for each class the probability of the given object
belonging to it, and then choose the class with the highest value.

2.1 The Single-Attribute Case

Let us start with something so simple as to be unrealistic: a domain where each
example is described with a single attribute. Once we have developed the basic
principles, we will generalize them so that they can be used in more practical
domains.

Probabilities. The basics are easily explained using the toy domain from the
previous chapter. The training set consists of twelve pies (Nall D 12), of which
six are positive examples of the given concept (Npos D 6) and six are negative
(Nneg D 6). Assuming that the examples represent faithfully the real situation, the
probability of Johnny liking a randomly picked pie is therefore 50 %:

P.pos/ D Npos

Nall
D 6

12
D 0:5 (2.1)

Let us now take into consideration one of the attributes, say, filling-size. The
training set contains eight examples with thick filling (Nthick D 8). Out of these, three
are labeled as positive (Nposjthick D 3). This means that the “conditional probability
of an example being positive given that filling-size=thick” is 37.5 %—this

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_2

19

20 2 Probabilities: Bayesian Classifiers

is what the relative frequency of positive examples among those with thick filling
implies:

P.posjthick/ D Nposjthick

Nthick
D 3

8
D 0:375 (2.2)

Applying conditional probability to classification. Importantly, the relative fre-
quency is calculated only for pies with the given attribute value. Among these same
eight pies, five represented the negative class, which means that P.negjthick/ D
5=8 D 0:625. Observing that P.negjthick/ > P.posjthick/, we conclude
that the probability of Johnny disliking a pie with thick filling is greater than the
probability of the opposite case. It thus makes sense for the classifier to label all
examples with filling-size=thick as negative instances of the “pie that
Johnny likes.”

Note that conditional probability, P.posjthick/, is more trustworthy than the
prior probability, P.pos/, because of the additional information that goes into its
calculation. This is only natural. In a DayCare center where the number of boys is
about the same as that of girls, we expect a randomly selected child to be a boy with
P.boy/ D 0:5. But the moment we hear someone call the child Johnny, we increase
this expectation, knowing that it is rare for a girl to have this name. This is why
P.boyjJohnny/ > P.boy/.

Joint probability. Conditional probability should not be confused with joint
probability of two events occurring simultaneously. Be sure to use the right notation:
in joint probability, the terms are separated by commas, P.pos;thick/; in
conditional probability, by a vertical bar, P.posjthick/. For a randomly picked
pie, P.pos;thick/ denotes the probability that the example is positive and its
filling is thick; whereas P.posjthick/ refers to the occurrence of a positive
example among those that have filling-size=thick.

A concrete example. Figure 2.1 illustrates the terms. The rectangle represents
all pies. The positive examples are contained in one circle and those with
filling-size=thick in the other; the intersection contains three instances
that satisfy both conditions; one pie satisfies neither, and is therefore left outside
both circles. The conditional probability, P.posjthick/ D 3=8, is obtained by
dividing the size of the intersection (three) by the size of the circle thick (eight).
The joint probability, P.pos;thick/ D 3=12, is obtained by dividing the size
of the intersection (three) by the size of the entire training set (twelve). The prior
probability of P.pos/ D 6=12 is obtained by dividing the size of the circle pos
(six) with that of the entire training set (twelve).

Obtaining conditional probability from joint probability. The picture convinces
us that joint probability can be obtained from prior probability and conditional
probability:

2.1 The Single-Attribute Case 21

Johnny likes Thick Filling

Fig. 2.1 The prior probabilities, P.pos/ D 6
12

and P.thick/ D 8
12

; the conditional
probabilities, P.posjthick/ D 3

8
and P.thickjpos/ D 3

6
; and the joint probability,

P.likes;thick/ D 3
12

P.pos;thick/ D P.posjthick/ � P.thick/ D 3

8
� 8

12
D 3

12

P.thick;pos/ D P.thickjpos/ � P.pos/ D 3

6
� 6

12
D 3

12

Note that joint probability can never exceed the value of the corresponding
conditional probability: P.pos;thick/ � P.posjthick/. This is because
conditional probability is multiplied by prior probability, P.thick/ or P.pos/,
which can never be greater than 1.

Another fact to notice is that P.thick;pos/ D P.pos;thick/ because
both represent the same thing: the probability of thick and pos co-occurring.
Consequently, the left-hand sides of the previous two formulas have to be equal,
which implies the following:

P.posjthick/ � P.thick/ D P.thickjpos/ � P.pos/

Dividing both sides of this last equation by P.thick/, we obtain the famous
Bayes formula, the foundation for the rest of this chapter:

22 2 Probabilities: Bayesian Classifiers

P.posjthick/ D P.thickjpos/ � P.pos/

P.thick/
(2.3)

If we derive the analogous formula for the probability that pies with
filling-size = thick will belong to the negative class, we obtain the
following:

P.negjthick/ D P.thickjneg/ � P.neg/

P.thick/
(2.4)

Comparison of the values calculated by these two formulas will tell us which
class, pos of neg, is more probable. Things are simpler than they look: since he
denominator, P.thick/, is the same for both classes, we can just as well ignore it
and simply choose the class for which the numerator is higher.

A trivial numeric example. That this formula leads to correct values is illustrated
in Table 2.1 which, for the sake of simplicity, deals with the trivial case where
the examples are described by a single boolean attribute. So simple is this single-
attribute world, actually, that we might easily have obtained P.posjthick/ and
P.negjthick/ directly from the training set, without having to resort to the mighty
Bayes formula—this makes it easy to verify the correctness of the results.

When the examples are described by two or more attributes, the way of
calculating the probabilities is essentially the same, but we need at least one more
trick. This will be introduced in the next section.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How is the Bayes formula derived from the relation between the conditional and
joint probabilities?

• What makes the Bayes formula so useful? What does it enable us to calculate?
• Can the joint probability, P.x; y/, have a greater value than the conditional

probability, P.xjy/? Under what circumstances is P.xjy/ D P.x; y/?

2.2 Vectors of Discrete Attributes

Let us now proceed to the question how to apply the Bayes formula in
domains where the examples are described by vectors of attributes such as
x D .x1; x2; : : : ; xn/.

2.2 Vectors of Discrete Attributes 23

Table 2.1 Illustrating the principle of Bayesian decision making

Let the training examples be described by a single attribute, filling-size, whose value is
either thick or thin. We want the machine to recognize the positive class (pos). Here are
the eight available training examples:

ex1 ex2 ex3 ex4 ex5 ex6 ex7 ex8
Size thick thick thin thin thin thick thick thick

Class pos pos pos pos neg neg neg neg

The probabilities of the individual attribute values and class labels are obtained by their
relative frequencies. For instance, three out of the eight examples are characterized by
filling-size=thin; therefore, P.thin/ D 3=8.

P.thin/ D 3=8

P.thick/ D 5=8

P.pos/ D 4=8

P.neg/ D 4=8

The conditional probability of a concrete attribute value within a given class is, again,
determined by relative frequency. Our training set yields the following values:

P.thinjpos/ D 2=4

P.thickjpos/ D 2=4

P.thinjneg/ D 1=4

P.thickjneg/ D 3=4

Using these values, the Bayes formula gives the following conditional probabilities:

P.posjthin/ D 2=3

P.posjthick/ D 2=5

P.negjthin/ D 1=3

P.negjthick/ D 3=5

(note that P.posjthin/ C P.negjthin/ D P.posjthick/ C P.negjthick/ D 1)

Based on these results, we conclude that an example with filling-size=thin should
be classified as positive because P.posjthin/ > P.negjthin/. Conversely, an example
with filling-size = thick should be classified as negative because P.negjthick/ >

P.posjthick/.

24 2 Probabilities: Bayesian Classifiers

Multiple classes. Many realistic applications have more than two classes, not just
the pos and neg from the “pies” domain. If ci is the label of the i-th class, and if x
is the vector describing the object we want to classify, the Bayes formula acquires
the following form:

P.cijx/ D P.xjci/P.ci/

P.x/

The denominator being the same for each class, we choose the class that
maximizes the numerator, P.xjci/P.ci/. Here, P.ci/ is easy to estimate by the relative
frequency of ci in the training set. As for P.xjci/, however, things are not so simple.

A vector’s probability. P.xjci/ is the probability that a randomly selected repre-
sentative of class ci is described by vector x. Can its value be estimated by relative
frequency? Not really. In the “pies” domain, the size of the instance space was 108
different examples, of which the training set contained twelve. These twelve vectors
were each represented by one training example, while none of the other vectors (the
vast majority!) was represented at all. The relative frequency of x among the six
positive examples was thus either P.xjpos/ D 1=6, when x was among them, or
P.xjpos/ D 0, when it was not. Any x identical to a training example “inherits”
this example’s class label; if the vector is not found in the training set, we have
P.xjci/ D 0 for any ci. The numerator in the Bayes formula thus being always
P.xjci/P.ci/ D 0, we are unable to choose the most probable class. Evidently, we
will not get very far calculating the probability of an event that occurs only once or
not at all.

This, fortunately, is not the case with the individual attributes. For
instance, shape=circle occurs four times among the positive examples
and twice among the negative, the corresponding probabilities thus being
P.shape D circlejpos/ D 4=6 and P.shape D circlejneg/ D 2=6. If
an attribute can acquire only two or three values, chances are high that each of these
values is represented in the training set more than once, thus offering better grounds
for probability estimates.

Mutually independent attributes. What is needed is a formula that combines
probabilities of individual attribute values into the probability of the given attribute
vector in the given class: P.xjci/. As long as the attributes are independent of
each other, this is simple. If P.xijcj/ is the probability that the value of the i-th
attribute of an example from class cj is xi, then the probability, P.xjcj/, that a random
representative of cj is described by x D .x1; x2; : : : ; xn/, is calculated as follows:

P.xjcj/ D
nY

iD1

P.xijcj/ (2.5)

An object will be labeled with cj if this class maximizes the following version of
the Bayes formula’s numerator:

2.2 Vectors of Discrete Attributes 25

P.cj/ �
nY

iD1

P.xijcj/ (2.6)

The Naive Bayes assumption. The reader may complain that the assumption of
mutually independent attributes is rarely justified. Indeed, can the interrelation of
diverse variables ever be avoided? An object’s weight grows with its size, the quality
of health care may be traced to an individual’s income, an object’s color can be
derived from its physical properties. In short, domains where no two attributes are in
any way related to each other are rare. No wonder that the above-described approach
is known under the unflattering name, Naive Bayes.

Yet practical experience is not bad at all. True, the violation of the “independence
requirement” renders the probability estimates inaccurate. However, this does not
necessarily make them point to the wrong classes. Remember? x is labeled with
the class that maximizes Pxjci/ � P.ci/. If the product’s value is 0.8 for one class and
0.2 for the other, then the classifier’s behavior will not change even if the probability
estimates miss the accuracy mark by ten or twenty percent. And so, while requesting
that the attributes in principle be independent, we will do reasonably well even if
they are not.

When mutual independence cannot be assumed. This said, we have to ask
how to handle the case where attribute interdependence cannot be ignored. A
mathematician’s first instinct is to suggest more sophisticated ways of estimating
P.xjci/. These do indeed exist, but their complexity grows with the number
of attributes, and they contain terms whose values are hard to determine. The
practically-minded engineer doubts that the trouble is justified by the benefits it
brings.

A more pragmatic approach will therefore seek to reduce the attribute depen-
dence by appropriate data pre-processing. A good way to start is to get rid
of redundant attributes, those whose values are known to depend on others.
For instance, if the set of attributes contains age, date-of-birth, and
current-date, chances are that Naive Bayes will do better if we use only age.

We can also try to replace two or three attributes by an artificially created
one that combines them. Thus in the “pies” domain, a baker might have
told us that filling-size is not quite independent of crust-size: if
one is thick, the other is thin and vice versa. In this event, we may
benefit from replacing the two attributes with a new one, say, CF-size,
that acquires only two values: thick-crust-and-thin-filling or
thin-crust-and-thick-filling.

In the last resort, if we are prejudiced against advanced methods of multivariate
probability estimates, and if we want to avoid data pre-processing, these is always
the possibility of giving up on Bayesian classifiers altogether, preferring some of the
machine-learning paradigms from the later chapters of this book.

A numeric example. To get used to the mechanism in which Naive Bayes is
used for classification purposes, the reader may want to go through the example

26 2 Probabilities: Bayesian Classifiers

Table 2.2 Bayesian classification: examples described by vectors of independent attributes

Suppose we want to apply the Bayesian formula to the training set from Table 1.1 in order to
determine the class of the following object:

x = [shape=square, crust-size=thick, crust-shade=gray
filling-size=thin, filling-shade=white]

There are two classes, pos and neg. The procedure is to calculate the numerator of the Bayes
formula separately for each of them, and then choose the class with the higher value. In the
training set, each class has the same number of representatives: P.pos/ D P.neg/ D 0:5.
The remaining terms,

Qn
iD1 P.xijpos/ and

Qn
iD1 P.xijneg/, are calculated from the following

conditional probabilities:

P(shape=square|pos) D 1=6 P(shape=square|neg) D 2=6

P(crust-size=thick|pos) D 5=6 P(crust-size=thick|neg) D 5=6

P(crust-shade=gray|pos) D 1=6 P(crust-shade=gray|neg) D 2=6

P(filling-size=thin|pos) D 3=6 P(filling-size=thin|neg) D 1=6

P(filling-shade=white|pos) D 1=6 P(filling-shade=white|neg) D 2=6

Based on these values, we obtain the following probabilities:

P.xjpos/ D
nY

iD1

P.xijpos/ D 1

6
� 5

6
� 1

6
� 3

6
� 1

6
D 15

65

P.xjneg/ D
nY

iD1

P.xijneg/ D 2

6
� 5

6
� 2

6
� 1

6
� 2

6
D 40

65

Since P.xjpos/ < P.xjneg/, we label x with the negative class.

in Table 2.2. Here the class of a previously unseen pie is established based on
the training set from Table 1.1. The Bayes formula is used, and the attributes are
assumed to be mutually independent.

The procedure is summarized by the pseudocode in Table 2.3.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Under what circumstances shall we assume that the individual attributes are
mutually independent? What benefit does this assumption bring for the estimates
of P.xjci/?

• Discuss the conflicting aspects of this assumption.

www.allitebooks.com

http://www.allitebooks.org

2.3 Probabilities of Rare Events: Exploiting the Expert’s Intuition 27

Table 2.3 Classification with the Naive-Bayes principle

The example to be classified is described by x D .x1; : : : ; xn/.

1. For each xi, and for each class cj, calculate the conditional probability, P.xijcj/, as the relative
frequency of xi among those training examples that belong to cj.

2. For each class, cj, carry out the following two steps:

(i) estimate P.cj/ as the relative frequency of this class in the training set;
(ii) calculate the conditional probability, P.xjcj/, using the “naive” assumption of mutually

independent attributes:

P.xjcj/ D
nY

iD1

P.xijcj/

3. Choose the class with the highest value of P.cj/ �Qn
iD1 P.xijcj/.

2.3 Probabilities of Rare Events: Exploiting
the Expert’s Intuition

In the first approximation, probability is almost identified with relative frequency:
having observed x thirty times in one hundred trials, we assume that P.x/ D 0:3.
This is how we did it in the previous sections.

To be fair, though, such estimates can be trusted only when supported by a great
many observations. It is conceivable that a coin flipped four times comes up heads
three times, and yet it will be overhasty to interpret this observation as meaning that
P.heads/ D 0:75; the physics of the experiment suggests that a fair coin should
come up heads fifty percent of the time. Can this prior expectation help us improve
probability estimates in domains with insufficient numbers of observations?

The answer is, “Yes, we can use the m-estimate.”

The essence of an m-estimate. Let us illustrate the principle using the case of an
unfair coin where one side comes up somewhat more frequently than the other. In
the absence of any better guidance, the prior expectation of heads is �head D 0:5.
An auxiliary parameter, m, helps the engineer tell the class-predicting program how
confident he is in this value, how much the prior expectation can be trusted (higher
m indicating higher confidence).

Let us denote by Nall the number of times the coin was flipped, and by Nheads the
number of times the coin came up heads. The way to combine these values with the
prior expectation and confidence is summarized by the following formula:

Pheads D Nheads C m�heads

Nall C m
(2.7)

28 2 Probabilities: Bayesian Classifiers

Table 2.4 For each successive trial, the second row gives the
observed outcome; the third, the relative frequency of heads; the
last, the m-estimate of the probability, assuming �heads D 0:5

and m D 2

Toss number 1 2 3 4 5

Outcome Heads Heads Tails Heads Tails

Relative frequency 1.00 1.00 0.67 0.75 0.60

m-estimate 0.67 0.75 0.60 0.67 0.57

Note that the formula degenerates to the prior expectation, �heads, if Nall D
Nheads D 0. Conversely, it converges to that of relative frequency if Nall and Nheads

are so large as to render the terms m�heads and m negligible. Using the values
�heads D 0:5 and m D 2, we obtain the following:

Pheads D Nheads C 2 � 0:5

Nall C 2
D Nheads C 1

Nall C 2

Illustrating probability estimates. Table 2.4 shows how the values thus calculated
gradually evolve in the course of five trials. The reader can see that the m-estimate
is for small numbers of experiments more in line with common sense than relative
frequency. Thus after two trials, m-estimate suggests a 0.75 chance of heads,
whereas anybody espousing relative frequency will have to concede that, based on
the two experiments, there is a zero chance that the coin will come up tails. As the
number of trials increases, though, the values returned by m-estimate and relative
frequence tend to converge.

The impact of the user’s confidence. Let us take a closer look at the effect of
m, the user’s confidence. A lot is revealed if we compare the two different settings
below: m D 100 on the left and m D 1 on the right (in both cases, �heads D 0:5).

Nheads C 50

Nall C 100

Nheads C 0:5

Nall C 1

The version with m D 100 allows the prior estimate to be modified only if really
substantial evidence is available (Nheads � 50; Nall � 100). By contrast, the version
with m D 1 allows the user’s opinion to be controverted with just a few experimental
trials.

Domains with more than two outcomes. Although we have used a two-outcome
domain, the formula is applicable also in multi-outcome domains. Rolling a fair die
can result in six different outcomes, and we expect that the probability of seeing,
say, three points is �three D 1=6. Using m D 6, we obtain the following:

Pthree D Nthree C m�three

Nall C m
D Nthree C 6 � 1

6

Nall C 6
D Nthree C 1

Nall C 6

2.3 Probabilities of Rare Events: Exploiting the Expert’s Intuition 29

Again, if Nall is so high that m D 6 and m�three D 1 can be neglected, the formula
converges to relative frequency: Pthree D Nthree

Nall
. If we do not want this to happen

prematurely (perhaps because we have high confidence in the prior estimate, �three),
we prevent it by choosing a higher m.

The limits of m-estimates. We should not forget that the m-estimate is only as
good as the parameters it relies on. If we start from an unrealistic prior estimate, the
result can be disappointing. Suppose that �heads D 0:9 and m D 10. Equation 2.7
then turns into the following:

Pheads D Nheads C 9

Nall C 10

When we use this formula to recalculate the values from Table 2.4, we will realize
that, after five trials, the probability is estimated as Pheads D 3C9

5C10
D 12

15
D 0:8,

surely a less plausible value than the one obtained in the case of �heads D 0:5 where
we got Pheads D 0:57. The reader is encouraged to verify that the situation will
somewhat improve if we reduce m.

Mathematical soundness. Let us make one last comment. Mathematicians insist
that the probabilities of all possible events should sum up to 1: if an experiment
can have N different outcomes, and if Pi is the probability of the i-th outcome, thenPN

iD1 Pi D 1. It is easy to verify that Eq. 2.7 satisfies this condition for any value
of m. Suppose we are dealing with the coin-tossing domain where there are only
two possible outcomes. If the prior estimates sum up to 1 (�heads C �tails D 1), then,
given that Nheads C Ntails D Nall, we derive the following:

Pheads C Ptails =
NheadsCm�heads

NallCm C NtailsCm�tails
NallCm

=
NheadsCNtailsCm.�headsC�tails/

NallCm D 1

The interested reader will easily generalize this to any finite number of classes.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Under what circumstances is relative frequency ill-suited for estimates of discrete
probabilities?

30 2 Probabilities: Bayesian Classifiers

• What is the impact of parameter m in Eq. 2.7? Under what circumstances will
you prefer large m, and when will you rather go for small m?

• What is the impact of the prior estimate, �heads, in Eq. 2.7? How is the credibility
of m-estimates affected by unrealistic values of �heads?

2.4 How to Handle Continuous Attributes

Up till now, we limited our considerations to attributes that assume discrete values,
estimating their probabilities either by relative frequency or by the m-estimate. This,
however, is not enough. In many applications, we encounter attributes (such as
age, price or weight) that acquire values from continuous domains.

Relative frequency is then impractical. While it is easy to establish that the
probability of an engineering student being male is Pmale D 0:7, the probability
that this student’s body weight is 184.5 pounds cannot be specified so readily: the
number of different weight values being infinite, the probability of any one of
them is infinitesimally small. What to do in this case?

Discretizing continuous attributes. One possibility is to discretize. The simplest
“trick” will split the attribute’s original domain in two; for instance, by replacing
age with the boolean attribute old that is true for age > 60 and false otherwise.
However, at least part of the available information then gets lost: a person may be
old, but we no longer know how old; nor do we know whether one old person is
older than another old person.

The loss will be mitigated if we divide the original domain into not two, but
several intervals, say, .0; 10�; : : : .90; 100�.1 Suppose we get ourselves a separate
bin for each of these, and place a little black ball into the i-th bin for each training
example whose value of age falls into the i-th interval.

Having done so, we may reach the situation depicted in Fig. 2.2. The upper
part shows the bins, side by side, and the bottom part shows a piecewise constant
function created in the following manner: if N is the size of the training set, and Ni

is the number of balls in the i-th bin, then the function’s value in the i-th interval
is Ni=N—the relative frequency of the balls in the i-th bin. Since the area under
the function is †Ni

N D 1, we have a mechanism to estimate the probability not of a
concrete value of age, but rather of this value falling into the given interval.

Probability density function. If the step-function thus constructed seems too
crude, we may fine-tune it by dividing the original domain into shorter—and thus
more numerous—intervals, provided that the number of balls in each bin is sufficient
for reliable probability estimates. If the training set is infinitely large, we can,
theoretically speaking, keep reducing the lengths of the intervals until they become

1We assume here that 100 is the maximum value observed in the training set. Alternatively, our
background knowledge may inform us that the given attribute’s value cannot exceed 100.

2.4 How to Handle Continuous Attributes 31

........
..........

...

x

p(x)

x
b1 b2 b3 b4 b5 b6 b7 b8

Fig. 2.2 A simple discretization method that represents each subinterval by a separate bin. The
bottom chart plots the histogram over the individual subintervals

p

p(x)

a b

Gaussian "bell" function

age

Fig. 2.3 When using the pdf, we identify the probability of x 2 Œa; b� with the relative size of the
area below the corresponding section of the pdf

infinitesimally small. The result of the bin-filling exercise will then no longer be a
step-function, but rather a continuous function, p.x/, such as the one in Fig. 2.3. Its
interpretation follows from the way it has been created: a high value of p.x/ indicates
that there are many examples with age close to x; conversely, a low value of p.x/

tells us that age in the vicinity of x is rare. This is why we call p.x/ a probability
density function, often avoiding this mouthful by preferring the acronym pdf.

Let us be careful about notation. The discrete probability of x is indicated by an
upper-case letter, P.x/. The pdf at x is denoted by a lower-case letter, p.x/. And
if we want to point out that the pdf has been created exclusively from examples
belonging to class ci, we do so by using a subscript, pci.x/.

32 2 Probabilities: Bayesian Classifiers

Bayes formula for continuous attributes. The good thing about the pdf is that
it makes it possible to employ the Bayes formula even in the case of continuous
attributes. We only replace the conditional probability P.xjci/ with pci.x/, and P.x/

with p.x/. Let us begin with the trivial case where the object to be classified is
described by a single continuous attribute, x. The Bayes formula then assumes the
following form:

P.ci j x/ D pci.x/ � P.ci/

p.x/
(2.8)

Here, P.ci/ is estimated by the relative frequency of ci in the training set, p.x/ is
the pdf created from all training examples, and pci.x/ is the pdf created from those
training examples that belong to ci.

Again, the denominator can be ignored because it has the same value for any
class. The classifier simply calculates, separately for each class, the value of the
numerator, pci.x/ � P.ci/, and then labels the object with the class for which the
product is maximized.

Naive Bayes revisited. When facing the more realistic case where the examples
are described by vectors of attributes, we will avail ourselves of the same “trick”
as before: the assumption that all attributes are mutually independent. Suppose we
encounter an example described by x D .x1; : : : ; xn/. The pdf at x is approximated
by the product along the individual attributes:

pcj.x/ D …n
iD1pcj.xi/ (2.9)

A statistician will be able to suggest formulas that are theoretically sounder;
however, higher sophistication often fails to give satisfaction. For one thing, we
may commit the sin of accurate calculations with imprecise numbers. Besides, the
more complicated the technique, the higher the danger it will be applied incorrectly.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What is the probability density function, pdf, and how does it help us in the
context of Bayesian classification?

• Explain the discretization mechanism that helped us arrive at an informal
definition of a pdf.

• How does the Bayes formula change in domains with continuous attributes? How
do we estimate the values of the individual terms?

2.5 Gaussian “Bell” Function: A Standard pdf 33

2.5 Gaussian “Bell” Function: A Standard pdf

One way to approximate a pdf is to employ the discretization technique from the
previous section. Alternatively, we can capitalize on standardized models known to
be applicable to many realistic situations. Perhaps the most popular among them is
the gaussian function, named after the great German mathematician.

The shape and the formula describing it. The curve in Fig. 2.3 is an example; its
shape betrays why many people call it a “bell function.” The maximum is reached
at the mean, x D �, and the curve slopes down gracefully with the growing distance
of x from �. It is reasonable to expect that this is a good model of the pdf of such
variables as the body temperature where the density peaks around x D 99:7 ıF.

Expressed mathematically, the gaussian function is defined by the following
formula where e is the base of the natural logarithm:

p.x/ D k � e� .x��/2

2�2 (2.10)

Parameters. Note that the greater the difference between x and �, the greater the
exponent’s numerator, and thus the smaller the value of p.x/ because the exponent
is negative. The reason the numerator is squared, .x � �/2, is to make sure that the
value slopes down with the same angle on both sides of the mean, �; the curve
is symmetric. How steep the slope is depends on �2, a parameter called variance.
Greater variance means smaller sensitivity to the difference between x and �, and
thus a “flatter” bell curve; conversely, smaller variance defines a narrower bell curve.

The task for the coefficient k is to make the area under the bell function equal to
1 as required by the theory of probability. It would be relatively easy to prove that
this happens when k is determined by the following formula:

k D 1p
2��2

(2.11)

Setting the parameter values. To be able to use this model when approximating
pci.x/ in a concrete application, we only need to estimate the values of its parame-
ters, � and �2. This is easy. Suppose that class ci has m representatives among the
training examples. If xi is the value of the given attribute in the i-th example, then
the mean and variance, respectively, are calculated using the following formulas:

� D 1

m

mX

iD1

xi (2.12)

�2 D 1

m � 1

mX

iD1

.xi � �/2 (2.13)

34 2 Probabilities: Bayesian Classifiers

In plain English, the gaussian center, �, is obtained as the arithmetic average of
the values observed in the training examples, and the variance is obtained as the
average of the squared differences between xi and �. Note that, when calculating
variance, we divide the sum by m � 1, and not by m, as we might expect. The
intention is to compensate for the fact that � itself is only an estimate. The variance
should therefore be somewhat higher than what it would be if we divided by m.
Of course, this matters only if the training set is small: for large m, the difference
between m and m � 1 is negligible.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Give an example of a continuous variable whose pdf can be expected to follow
the gaussian distribution.

• What parameters define the bell function? How can we establish their values
using the training set?

• How—and why—do we normalize the bell function?

2.6 Approximating PDFs with Sets of Gaussians

While the bell function represents a good mechanism to approximate the pdf in
many realistic domains, it is not a panacea. Some variables simply do not behave
that way. Just consider the distribution of body-weight in a group that mixes
grade-school children with their parents. If we create the pdf using the discretization
method, we will observe two peaks: one for the kids, and the other for the grown-
ups. There may be three peaks if it turns out that body-weight of fathers is
distributed around a higher mean than that of the mothers. And the number of peaks
can be higher still if the families come from diverse ethnic groups.

Combining gaussian functions. No doubt, a single bell function would misrep-
resent the situation. But what if we combine two or more of them? If we knew
the diverse sources of the examples, we might create a separate gaussian for each
source, and then superimpose the bell functions on each other. Would this solve our
problem?

The honest answer is, “yes, in this ideal case.” In reality, though, prior know-
ledge about diverse sources is rarely available. A better solution will divide the
body-weight values into great many random groups. In the extreme, we may
even go as far as to make each example a “group” of its own, and then identify a
gaussian center with this example’s body-weight, thus obtaining m bell functions
(for m examples).

2.6 Approximating PDFs with Sets of Gaussians 35

The formula to combine them. Suppose we want to approximate the pdf of a
continuous attribute, x. If we denote by �i the value of x in the i-th example, then
the pdf is approximated by the following sum of m functions:

p.x/ D k � †m
iD1e� .x��i/

2

2�2 (2.14)

As before, the normalization constant, k, is here to make sure that the area under
the curve is 1. This is achieved when k is calculated as follows:

k D 1

.2�/m=2�m
(2.15)

Mathematicians tell us that if m is sufficiently high, Eq. 2.14 approximates the
pdf with almost arbitrary accuracy.

Illustrating the point. Figure 2.4 illustrates the approach using a training set
consisting of m D 3 examples, the values of attribute x being x1 D 0:4; x2 D 0:5

and x3 D 0:7. The upper three charts show three bell functions, each centered at
one of these points, the variance always being �2 D 1. The bottom chart shows
the composed pdf created by putting together Eqs. 2.14 and 2.15, using the means,
�1 D 0:4; �2 D 0:5, and �3 D 0:7, and �2 D 1:

p.x/ D 1
p

.2�/3
� Œ e� .x�0:4/2

2 C e� .x�0:5/2

2 C e� .x�0:7/2

2 �

The impact of concrete parameter values. The practical utility of the pdf thus
obtained (its success when used in the Bayes formula) depends on the choice of �2.
In Fig. 2.4, we used �2 D 1, but there is no guarantee that this will work in any
future application. To be able to adjust it properly, we need to understand how it
affects the shape of the composite pdf.

Inspecting the gaussian formula, we realize that the choice of a very small value
of �2 causes great sensitivity to the difference between x and �i; the individual bell
functions will be “narrow,” and the resulting pdf will be marked by steep peaks
separated by extended “valleys.” Conversely, the consequence of a high �2 will be
an almost flat pdf. Seeking a compromise between the two extremes, we will do well
if we make �2 dependent on the distances between examples.

The simplest solution will use �2 D �max � �min, where �max and �min

are the maximum and minimum values of �i, respectively. If you think this too
crude, you may consider normalizing the difference by the number of examples:
�2 D .�max � �min/=m. Large training sets (with high m) will then lead to smaller
variations that will narrow the contributing gaussians. Finally, in some domains we
might argue that each of the contributing bell functions should have a variance of its
own, proportional to the distance from the center of the nearest other bell function.
In this case, however, we are no longer allowed to set the value of k by Eq. 2.15.

36 2 Probabilities: Bayesian Classifiers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 2.4 Composing the pdf from three examples with the following values of attribute x: �1 D
0:4; �2 D 0:5 and �3 D 0:7. The upper three charts show the contributing gaussians; the bottom
chart, the composition. The variance is �2 D 1

www.allitebooks.com

http://www.allitebooks.org

2.7 Summary and Historical Remarks 37

A numeric example. The example in Table 2.5 illustrates the whole procedure on
a concrete case of a small training set and a vector to be classified. The reader is
encouraged to go through all its details to get used to the way the formulas are put
together. See also the illustration in Fig. 2.5.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Under what circumstances is the gaussian function a poor model of the pdf ?
• Why does the composite pdf have to be normalized by k?
• How do we establish the centers and variances of the individual bell functions?

2.7 Summary and Historical Remarks

• Bayesian classifiers calculate the product P.xjci/P.ci/ separately for each class,
ci, and then label the example, x, with the class where this product has the highest
value.

• The main problem is how to calculate the probability, P.xjci/. Most of the time,
the job is simplified by making the assumption that the individual attributes are
mutually independent, in which case P.xjci/ D Qn

jD1 P.xjjci/, where n is the
number of attributes.

• The so-called m-estimate makes it possible to take advantage of a user’s
estimate of an event’s probability. This comes handy in domains with insufficient
experimental evidence, where relative frequency cannot be relied on.

• In domains with continuous attributes, the role of the discrete probability, P.xjci/,
is taken over by pci.x/, the probability density function, pdf, but otherwise the
procedure is the same: the example is labeled with the class that maximizes the
product, pci.x/P.ci/.

• The concrete shape of the pdf is approximated by discretization, by the use of
standardized pdf s, or by the sum of gaussians.

• The estimates of probabilities are far from perfect, but the results are often
satisfactory even when rigorous theoretical assumptions are not satisfied.

Historical Remarks. The first papers to use Bayesian decision theory for classifi-
cation purposes were Neyman and Pearson [61] and Fisher [21], but the paradigm
gained momentum only with the advent of the computer, when it was advocated
by Chow [12]. The first to use the assumption of independent attributes was Good
[28]. The idea of approximating pdf ’s by the sum of bell functions comes from
Parzen [66].

38 2 Probabilities: Bayesian Classifiers

Table 2.5 Using Naive Bayes in domains with three continuous attributes

Suppose we are given a training set that consists of the following six examples, ex1, : : :, ex6,
each described by three continuous attributes, at1, at2, . . . at3:

Example at1 at2 at3 Class
ex1 3.2 2.1 2.1 pos
ex2 5.2 6.1 7.5 pos
ex3 8.5 1.3 0.5 pos

ex4 2.3 5.4 2.45 neg
ex5 6.2 3.1 4.4 neg
ex6 1.3 6.0 3.35 neg

Using the Bayes formula, we are to find the most probable class of x D .9; 2:6; 3:3/.

Our strategy is to evaluate ppos.x/ � P.pos/ and pneg.x/ � P.neg/. Observing that P.pos/ D
P.neg/, we simply label x with pos if ppos.x/ > pneg.x/ and with neg otherwise. When
constructing the pdf, we rely on the independent-attributes assumption. In accordance with
Sect. 2.2, we have:

ppos.x/ D ppos.at1/ � ppos.at2/ � ppos.at3/ and

pneg.x/ D pneg.at1/ � pneg.at2/ � pneg.at3/

The terms on the right-hand sides are obtained by Eq. 2.14, in which we use �2 D 1; m D 3,
and, therefore, k D 1=

p
.2�/3. Thus for the first of these terms, we get the following:

ppos.at1/ D 1p
.2�/3

Œe�0:5.at1�3:2/2 C e�0:5.at1�5:2/2 C e�0:5.at1�8:5/2

�

Note that the values of at1 in the positive examples are �1 D 3:2; �2 D 5:2, and �3 D 8:5,
respectively—see the exponents in the expression. The functions for the remaining five terms,
obtained similarly, are plotted in the right-most column of Fig. 2.5.
Substituting into these equations the coordinates of x, namely at1 D 9; at2 D 3:6, and at3 D 3:3,
will give us the following:

ppos.x/ D 0:0561 � 0:0835 � 0:0322 D 0:00015

pneg.x/ D 0:0023 � 0:0575 � 0:1423 D 0:00001

Observing that ppos.x/ > pneg.x/, we label x with the class pos.

2.7 Summary and Historical Remarks 39

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

u = 3.2
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 5.2
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 8.5
0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

X: 9
Y: 0.05608

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

u = 2.1
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 6.1
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 1.3
0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.1

0.12

X: 2.6
Y: 0.08345

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

u = 2.1
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 7.5
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 0.5
0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.1

X: 3.3
Y: 0.03217

Example 1 Example 2 Example 3

Attribute 1

Attribute 2

Attribute 3

Attribute 1 Super Imposed

Attribute 2 Super Imposed

Attribute 3 Super Imposed

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

u = 2.3
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 6.2
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 1.3
0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.1

0.12

X: 9
Y: 0.00126

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

u = 5.4
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 3.1
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 6
0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

X: 2.6
Y: 0.05749

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

u = 2.45
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 4.4
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

u = 3.35

0 2 4 6 8 10
0

0.05

0.1

0.15

X: 3.3
Y: 0.1423

Example 3Example 2Example 1

Attribute 1

Attribute 2

Attribute 3

Attribute 1 Super Imposed

Attribute 2 Super Imposed

Attribute 3 Super Imposed

Fig. 2.5 Composing the pdf ’s separately for the positive and negative class (with �2 D 1). Each
row represents one attribute, and each of the left three columns represents one example. The right-
most column shows the composed pdf ’s

When provided with perfect information about the probabilities, the Bayesian
classifier is guaranteed to provide the best possible classification accuracy. This
is why it is sometimes used as a reference to which the performance of other
approaches is compared.

40 2 Probabilities: Bayesian Classifiers

2.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. A coin tossed three times came up heads, tails, and tails, respectively. Calculate
the m-estimate for these outcomes, using m D 3 and �heads D �tails D 0:5.

2. Suppose you have the following training examples, described by three attributes,
x1; x2; x3, and labeled by classes c1 and c2.

x1 x2 x3 Class

2:1 0:2 3:0 c1

3:3 1:0 2:9 c1

2:7 1:2 3:4 c1

0:5 5:3 0:0 c2

1:5 4:7 0:5 c2

Using these data, do the following:

(a) Assuming that the attributes are mutually independent, approximate the
following probability density functions: pc1 .x/; pc2 .x/; p.x/. Hint: use the
idea of superimposed bell functions.

(b) Using the pdf ’s from the previous step, decide whether x D Œ1:4; 3:3; 3:0�

should belong to c1 or c2.

3. Returning to the “pies” domain from Chap. 1, remove from the training set one
of the positive examples, say, the one in the upper left corner (the first row in
Table 1.1). Assuming that the attributes are mutually independent, calculate the
probability of this particular example being positive.

Give It Some Thought

1. How would you apply the m-estimate in a domain with three possible outcomes,
ŒA; B; C�, each with the same prior probability estimate, �A D �B D �C D 1=3?
What if you trust your expectations of A but are not so sure about B and C? Is
there a way to reflect this circumstance in the value of the parameter m?

2.8 Solidify Your Knowledge 41

2. Suggest the circumstances under which the accuracy of probability estimates will
benefit from the assumption that attributes are mutually independent. Explain the
advantages and disadvantages.

3. How would you calculate the probabilities of the output classes in a domain
where some attributes are boolean, others discrete, and yet others continuous?
Discuss the possibilities of combining different approaches.

Computer Assignments

1. Machine learning researchers often test their algorithms using publicly available
benchmark domains. A large repository of such domains can be found at the
following address: www.ics.uci.edu/~mlearn/MLRepository.html. Take a look at
these data and see how they differ in the numbers of attributes, types of attributes,
sizes and so on.

2. Write a computer program that will use the Bayes formula to calculate the class
probabilities in a domain where all attributes are discrete. Apply this program to
our “pies” domain.

3. For the case of continuous attributes, write a computer program that accepts the
training examples in the form of a table such as the one in Exercise 3 above.
Based on these, the program approximates the pdf s, and then uses them to
determine the class labels of future examples.

4. Apply this program to a few benchmark domains from the UCI repository
(choose from those where all attributes are continuous) and observe that the
program succeeds in some domains better that in others.

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 3
Similarities: Nearest-Neighbor Classifiers

Two plants that look very much alike probably represent the same species; likewise,
it is quite common that patients complaining of similar symptoms suffer from
the same disease. In short, similar objects often belong to the same class—an
observation that forms the basis of a popular approach to classification: when asked
to determine the class of object x, find the training example most similar to it. Then
label x with this example’s class.

The chapter explains how to evaluate example-to-example similarities, presents
concrete mechanisms that use these similarities for classification purposes, com-
pares the performance of this approach with that of the Bayesian classifier, and
introduces methods to overcome some inherent weaknesses.

3.1 The k-Nearest-Neighbor Rule

How do we establish that an object is more similar to x than to y? Some may doubt
that this is at all possible. Is a giraffe more similar to a horse than to a zebra?
Questions of this kind raise suspicion. Too many arbitrary and subjective factors
are involved in answering them.

Similarity of attribute vectors. The machine-learning task, as formulated in this
book, reduces these objections to a minimum. Rather than real objects, the classifier
will compare their attribute-based descriptions—hardly an insurmountable problem.
Thus in the toy domain from Chap. 1, the similarity of two pies can be established
by counting the attributes in which they differ: the fewer the differences, the greater
the similarity. The first row in Table 3.1 gives the attribute values of object x. For
each of the twelve training examples that follow, the right-most column specifies the
number of differences between the given example and x. The smallest value being
found in the case of ex5, we conclude that this is the training example most similar
to x, and this suggests that we should label x with pos, the class of ex5.

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_3

43

44 3 Similarities: Nearest-Neighbor Classifiers

Table 3.1 Counting the numbers of differences between pairs of discrete-
attribute vectors. Of the twelve training examples, ex5 is the one most similar
to x

Crust Filling

Example Shape Size Shade Size Shade Class # differences

x Square Thick Gray Thin White ? —

ex1 Circle Thick Gray Thick Dark pos 3

ex2 Circle Thick White Thick Dark pos 4

ex3 Triangle Thick Dark Thick Gray pos 4

ex4 Circle Thin White Thin Dark pos 4

ex5 Square Thick Dark Thin White pos 1

ex6 Circle Thick White Thin Dark pos 3

ex7 Circle Thick Gray Thick White neg 2

ex8 Square Thick White Thick Gray neg 3

ex9 Triangle Thin Gray Thin Dark neg 3

ex10 Circle Thick Dark Thick White neg 3

ex11 Square Thick White Thick Dark neg 3

ex12 Triangle Thick White Thick Gray neg 4

Dealing with continuous attributes is just as simple. The fact that each example
can be represented by a point in an n-dimensional space makes it possible to
calculate the geometric distance between any pair of examples, for instance, by
the Euclidean distance (Sect. 3.2 will have more to say about how to measure
distance between vectors). And again, the closer to each other the examples are
in the instance space, the greater their mutual similarity. This, by the way, is
how the nearest-neighbor classifier got its name: the training example with the
smallest distance from x in the instance space is, geometrically speaking, x’s nearest
neighbor.

From a single neighbor to k neighbors. In noisy domains, the testimony of the
nearest neighbor cannot be trusted. What if this single specimen’s class label is
incorrect? A more robust approach identifies not one, but several nearest neighbors,
and then lets them vote. This is the essence of the so-called k-NN classifier, where
k is the number of the voting neighbors—usually a user-specified parameter. The
pseudocode in Table 3.2 summarizes the algorithm.

Note that, in a two-class domain, k should be an odd number so as to prevent ties.
For instance, a 4-NN classifier might face a situation where the number of positive
neighbors is the same as the number of negative neighbors. This will not happen to
a 5-NN classifier.

As for domains that have more than two classes, using an odd number of nearest
neighbors does not prevent ties. For instance, the 7-NN classifier can realize that
three neighbors belong to class C1, three neighbors belong to class C2, and one
neighbor belongs to class C3. The engineer designing the classifier then needs to
define a mechanism to choose between C1 and C2.

3.1 The k-Nearest-Neighbor Rule 45

Table 3.2 The simplest version of the k-NN classifier

Suppose we have a mechanism to evaluate the similarly between attribute vectors. Let x denote
the object whose class we want to determine.

1. Among the training examples, identify the k nearest neighbors of x (examples most similar
to x).

2. Let ci be the class most frequently found among these k nearest neighbors.
3. Label x with ci.

+

__

_

_

_

_
_

__

+

+
+

+

+

++ +

x

y

1 3 2

+

__

_

_

_

_
_

__

+
+

+

+

++ +

x

y

4_
+

Fig. 3.1 Object 3, finding itself in the borderline region, is hard to classify. In the noisy domain
shown in the right-hand part, the 1-NN classifier will misclassify object 4, but the mistake is
corrected if the 3-NN classifier is used

An illustration. Certain “behavioral aspects” of this paradigm can be made
obvious with the help of a fictitious domain where the examples are described by two
numeric attributes, a situation easy to visualize. Figure 3.1 shows several positive
and negative training examples, and also some objects (the big black dots) whose
classes the k-NN classifier is to determine. The reader can see that objects 1 and 2
are surrounded by examples from the same class, and their classification is therefore
straightforward. On the other hand, object 3 is located in the “no man’s land”
between the positive and negative regions, so that even a small amount of attribute
noise can send it to either side. The classification of such borderline examples is
unreliable.

In the right-hand part of the picture, object 4 finds itself deep in the positive
region, but class noise has mislabeled its nearest neighbor in the training set as
negative. Whereas the 1-NN classifier will go wrong, here, the 3-NN classifier will
give the correct answer because the other two neighbors, which are positive, will
outvote the single negative neighbor.

46 3 Similarities: Nearest-Neighbor Classifiers

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How can we measure example-to-example similarity in domains where all
attributes are discrete, and how in domains where they are all continuous?

• Under what circumstances will the k-NN classifier (with k > 1) outperform the
1-NN classifier and why?

• Explain why, in 2-class domains, the k in the k-NN classifier should be an odd
number.

• How does attribute noise affect the classification of a “borderline example”?
What is the impact of class-label noise?

3.2 Measuring Similarity

As indicated, a natural way to find the nearest neighbors of object x is to compare
the geometrical distances of the individual training examples from x. Figure 3.1
illustrated this principle using a domain so simple that the distances could be
measured by a ruler. Yet the ruler will hardly be our tool of choice if the examples are
described by more than two attributes. What we need is an expression to calculate
the similarity based on attribute values.

Euclidean distance. In a plane, the geometric distance between two points, x D
.x1; x2/ and y D .y1; y2/, is obtained with the help of the pythagorean theorem as
indicated in Fig. 3.2: d.x; y/ D p

.x1 � y1/2 C .x2 � y2/2. This formula is easy to
generalize to a domain with n continuous attributes where the Euclidean distance
between x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ is defined as follows:

dE.x; y/ D
q

†n
iD1.xi � yi/2 (3.1)

Fig. 3.2 The Euclidean
distance between two points
in a two-dimensional space is
equal to the length of the
triangle’s hypotenuse

x1

y2

x2

y1

3.2 Measuring Similarity 47

Table 3.3 Using the nearest-neighbor principle in a 3-dimensional Euclidean space

Using the following training set of four examples described by three numeric attributes,
determine the class of object x D Œ2; 4; 2�.

Distance between
exi and [2,4,2]

ex1 {[1,3,1],pos}
p

.2 � 1/2 C .4 � 3/2 C .2 � 1/2 D p
3

ex2 {[3,5,2],pos}
p

.2 � 3/2 C .4 � 5/2 C .2 � 2/2 D p
2

ex3 {[3,2,2],neg}
p

.2 � 3/2 C .4 � 2/2 C .2 � 2/2 D p
5

ex4 {[5,2,3],neg}
p

.2 � 5/2 C .4 � 2/2 C .2 � 3/2 D p
4

Calculating the Euclidean distances between x and the training examples, we realize that x’s
nearest neighbor is ex2. Its label being pos, the 1-NN classifier returns the positive label.
The same result is obtained by the 3-NN classifier because two of x’s three nearest neighbors
(ex1 and ex2) are positive, and only one (ex4), is negative.

The way this metric is used in the context of k-NN classifiers is illustrated
by Table 3.3 where the training set consists of four examples described by three
numeric attributes.

A more general formulation. The reader can see that the term under the square-
root symbol is a sum of the squared distances along corresponding attributes.1 This
observation is mathematically expressed as follows:

dM.x; y/ D
q

†n
iD1d.xi; yi/ (3.2)

This is how the distance is usually calculated in the case of vectors in which
discrete and continuous attributes are mixed (in the symbol, dM.x; y/, this is
indicated by the subscript, M). For instance, we can use d.xi; yi/ D .xi � yi/

2 for
continuous attributes, whereas for discrete attributes, we put d.xi; yi/ D 0 if xi D yi

and d.xi; yi/ D 1 if xi ¤ yi.
Note that if all attributes are continuous, the formula is identical to Euclidean

distance; and if the attributes are all discrete, the formula simply specifies the
number of attributes in which the two vectors differ. In purely Boolean domains,
where for any attribute only the values true or false are permitted (let us abbreviate
these values as t and f , respectively), this latter case is called Hamming distance,
dH . For instance, the Hamming distance between the vectors x D .t; t; f ; f / and
y D .t; f ; t; f / is dH.x; y/ D 2. In general, however, Eq. 3.2 is meant to be
employed in domains where the examples are described by a mixture of discrete
and continuous attributes.

1One benefit of these differences being squared, and thus guaranteed to be positive, is that this
prevents negative differences, xi � yi < 0, to be subtracted from positive differences, xi � yi > 0.

www.allitebooks.com

http://www.allitebooks.org

48 3 Similarities: Nearest-Neighbor Classifiers

Attribute-to-attribute distances can be misleading. We must be careful not to
apply Formula 3.2 mechanically, ignoring the specific aspects of the given domain.
Let us briefly discuss two circumstances that make it is easy to go wrong.

Suppose our examples are described by three attributes, size, price, and
season. Of these, the first two are obviously continuous, and the last, discrete. If
x D .2; 1:5;summer/ and y D .1; 0:5;winter/, then Eq. 3.2 gives the following
distance between the two:

dM.x; y/ D
p

.2 � 1/2 C .1:5 � 0:5/2 C 1 D p
3

Let us first consider the third attribute: summer being different from winter,
our earlier considerations lead us to establish that d.summer;winter/ D 1.
In reality, though, the difference between summer and winter is sometimes
deemed greater than the difference between, say, summer and fall which are
“neighboring seasons.” Another line of reasoning, however, may convince us that
spring and fall are more similar to each other than summer and winter—
at least as far as weather is concerned. We can see that the two values, 0 and 1,
will clearly not suffice, here. Intermediate values should perhaps be considered,
the concrete choice depending on the specific needs of the given application. The
engineer who does not pay attention to factors of this kind may fail to achieve good
results.

Mixing continuous and discrete attributes can be risky in another way. A thought-
less application of Eq. 3.2 can result in a situation where the difference between two
sizes (e.g., size1 D 1 and size1 D 12, which means that d.size1;size2/ D
112 D 121) can totally dominate the difference between two seasons (which, in
the baseline version, could not exceed 1). This observation is closely related to the
problem of scaling—discussed in the next section.

Distances in general. The reader is beginning to understand that the issue of
similarity is far from trivial. Apart from Eq. 3.2, quite a few other formulas have
been suggested, some of them fairly sophisticated.2 While it is good to know they
exist, we will not examine them here because we do not want to digress too far from
our main topic. Suffice it so say that any distance metric has to satisfy the following
requirements:

1. the distance must never be negative;
2. the distance between two identical vectors, x and y, is zero;
3. the distance from x to y is the same as the distance from y to x;
4. the metric must satisfy the triangular inequality: d.x; y/ C d.y; z/ � d.x; z/.

2Among these, perhaps the best-known are the polar distance, the Minkowski metric, and the
Mahalanobis distance.

3.3 Irrelevant Attributes and Scaling Problems 49

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is Euclidean distance, and what is Hamming distance? In what domains
can they be used? How is distance related to similarity?

• Write down the distance formula for domains where examples are described
by a mixture of continuous and discrete attributes. Discuss the difficulties that
complicate its straightforward application in practice.

• What fundamental properties have to be satisfied by any distance metric?

3.3 Irrelevant Attributes and Scaling Problems

By now, the reader understands the principles of the k-NN classifier well enough
to be able to write a computer program implementing the tool. This is not enough,
though. If applied mechanically, the software may disappoint. It is necessary to
understand why.

The rock-bottom of the nearest-neighbor paradigm is that, “objects are similar
if the geometric distance between the vectors describing them is small.” This
said, we must be careful not to let this principle degenerate into a dogma. In
certain situations, the geometric distance can be misleading. Two of them are quite
common.

Irrelevant attributes. It would be a mistake to think that all attributes are created
equal. They are not. In the context of machine learning, some are irrelevant in the
sense that their values have nothing to do with the given example’s class. But they
do affect the geometric distance between vectors.

A simple illustration will clarify the point. In the training set from Fig. 3.3,
the examples are characterized by two numeric attributes: body-temperature
(the horizontal axis) and shoe-size (the vertical axis). The black dot stands
for the object that the k-NN classifier is expected to label as healthy (pos) or
sick (neg).

As expected, all positive examples find themselves in the shaded area delimited
by two critical points along the “horizontal” attribute: temperatures exceeding
the maximum indicate fever; those below the minimum, hypothermia. As for the
“vertical” attribute, though, we see that the positive and negative examples alike
are distributed along the entire range, show-size being unable to betray anything
about a person’s health. The object we want to classify is in the highlighted region,
and common sense requires that it should be labeled as positive—despite the fact
that its nearest neighbor happens to be negative.

50 3 Similarities: Nearest-Neighbor Classifiers

Fig. 3.3 The “vertical”
attribute is irrelevant for
classification, and yet it
affects the geometric
distances between examples.
Object 1 is positive, even
though its nearest neighbor in
the 2-dimensional space is
negative

.1

body-temperature

shoe
size _

__
+

+

__

+

_
_

_
_

_

The lesson. If only the first attribute is used, the Euclidean distance between the
two examples is dE.x; y/ D p

.x1 � y1/2 D jx1 � y1j. If both attributes are used,
the Euclidean distance will be dE.x; y/ D p

.x1 � y1/2 C .x2 � y2/2: If the second
attribute is irrelevant, then the term .x2 � y2/2 is superfluous—and yet it affects,
adversely, k-NN’s notion of similarity! This is what occurred in Fig. 3.3, and this is
why object 1 was misclassified.

How much damage is caused by irrelevant attributes depends on how many of
them are used to describe the examples. In a domain with hundreds of attributes, of
which only one is irrelevant, there is no need to panic: one lonely culprit is unlikely
to distort the value of dE.x; y/ in any meaningful way. But things will change as the
percentage of irrelevant attributes grows. If the vast majority of the attributes have
nothing to do with the class we want to recognize, then the geometric distance will
become almost meaningless, and the classifier’s performance will be dismal.

The scales of attribute values. Suppose we want to evaluate the similarity of two
examples, x D .t; 0:2; 254/ and y D .f ; 0:1; 194/, described by three attributes,
of which the first is boolean, the second is continuous with values from interval
Œ0I 1�, and the third is continuous with values from interval Œ0I 1;000�. Using Eq. 3.2,
the reader will find it easy to calculate the distance between x and y, obtaining the
following:

dM.x; y/ D
p

.1 � 0/2 C .0:2 � 0:1/2 C .254 � 194/2

Inspecting this expression, we notice that the third attribute completely domi-
nates, reducing the other two to virtual insignificance. No matter how we modify
their values within their ranges, the distance, dM.x; y/, will hardly change. Fortu-
nately, the situation is easy to rectify. If we divide, in the training set, all values of
the third attribute by 1;000, thus “squeezing” its range to Œ0I 1�, the impacts of the
attributes will become more balanced. We can see that the scales of the attribute
values can radically affect the k-NN classifier’s behavior.

3.3 Irrelevant Attributes and Scaling Problems 51

Another aspect of attribute scaling. There is more to it. Consider the following
two training examples, ex1 and ex2, and the object x whose class we want to
determine:

ex1 D Œ.10; 10/;pos/�

ex2 D Œ.20; 0/;neg/�

x D .32; 20/

The distances are dM.x;ex1/ D p
584 and dM.x;ex2/ D p

544. The latter
being smaller, the 1-NN classifier will label x as neg. Suppose, however, that the
second attribute expresses temperature, and does so in centigrades. If we decide
to use Fahrenheits instead, the three vectors will change as follows:

ex1 D Œ.10; 50/;pos/�

ex2 D Œ.20; 32/;neg/�

x D .32; 68/

Recalculating the distances, we obtain dM.x;ex1/ D p
808 and dM.x;ex2/ Dp

1;440. This time, it is the first distance that is smaller, and 1-NN will therefore
classify x as positive. This seems a bit silly. The examples are still the same, except
that we chose different units for temperature; and yet the classifier’s verdict has
changed.

Normalizing attribute scales. One way out of this trouble is to normalize the
attributes: to re-scale them in a way that makes all values fall into the same interval,
Œ0I 1�. From the several mechanisms that have been used to this end, perhaps the
simplest is the one that first identifies, for the given attribute, its maximum (MAX)
and minimum (MIN), and then replaces each value, x, of this attribute using the
following formula:

x D x � MIN

MAX � MIN
(3.3)

A simple illustration will show us how this works. Suppose that, in the training
set consisting of five examples, a given attribute acquires the following values,
respectively:

Œ7; 4; 25; �5; 10�

We see that MIN D �5 and MAX D 25. Subtracting MIN from each of the
values, we obtain the following:

Œ12; 9; 30; 0; 15�

The reader can see that the “new minimum” is 0, and the “new maximum” is
MAX � MIN D 25 � .�5/ D 30. Dividing the obtained values by MAX � MIN, we
obtain a situation where all the values fall into Œ0I 1�:

Œ0:4; 0:3; 1; 0; 0:5�

52 3 Similarities: Nearest-Neighbor Classifiers

One potential weakness of normalization. Normalization reduces error rate in
many practical applications, especially if the scales of the original attributes vary
significantly. The downside is that the description of the examples thus becomes
distorted. Moreover, the pragmatic decision to make all values fall between 0 and 1
may not be justified. For instance, if the difference between summer and fall is
1, it will always be bigger than, say, the difference between two normalized body
temperatures. Whether this matters or not is up to the engineer’s common sense—
assisted by his or her experience and perhaps a little experimentation.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Why do irrelevant attributes impair the k-NN classifier’s performance? How does
the performance depend on the number of irrelevant attributes?

• Explain the basic problems pertaining to attribute scaling. Describe a simple
approach to normalization.

3.4 Performance Considerations

Having spent all this time exploring various aspects of the k-NN classifier, the
reader is bound to ask: should I really care? Sure enough, the technique is easy
to implement in a computer program, and its function is easy to grasp. But is there
a reason to believe that its classification performance is good enough?

The 1-NN classifier versus Ideal Bayes. Let us give the question some thought.
The ultimate yardstick by which to measure k-NN’s potential, is the bayesian
approach. We will recall that if the probabilities and pdf ’s employed by the bayesian
formula are known with absolute accuracy, then this classifier—let us call it Ideal
Bayes—exhibits the lowest error rate theoretically achievable on the given (noisy)
data. It would be reassuring to know that the k-NN paradigm does not trail too far
behind.

The question has been subjected to rigorous mathematical analysis, and here
are the results. Figure 3.4 shows what the comparison will look like under certain
ideal circumstances such as an infinitely large training set which fills the instance
space with infinite density. The solid curve represents the two-class case where each

3.4 Performance Considerations 53

example is either positive or negative. We can see that if the error rate of the Ideal
Bayes is 5 %, the error rate of the 1-NN classifier (vertical axis) is 10 %. With the
growing amount of noise, the difference between the two approaches decreases,
only to disappear when the Ideal Bayes suffers 50 % error rate—in which event, of
course, the labels of the training examples are virtually random, and any attempt at
automated classification is doomed anyway. The situation is not any better in multi-
class domains, represented in the graph by the dotted curve. Again, the Ideal Bayes
outperforms the 1-NN classifier by a comfortable margin.

Increasing the number of neighbors. From the perspective of the 1-NN classifier,
the results from Fig. 3.4 are rather discouraging. On the other hand, we know that
the classifier’s performance might improve when we use the more general k-NN (for
k > 1), where some of the noisy nearest neighbors get outvoted by better-behaved
ones. Does mathematics lend some support to this expectation?

Yes it does. Under the above-mentioned ideal circumstances, the error rate has
been proven to decrease with the growing value of k, until it converges to that of
Ideal Bayes for k ! 1. At least in theory, then, the performance of the nearest-
neighbor classifier is able to reach the absolute maximum.

Practical limitations of theories. The engineer’s world is indifferent to theoretical
requirements. In a realistic application, the training examples will but sparsely
populate the instance space, and increasing the number of voting neighbors can
be counterproductive. More often than not, the error rate does improve with the
growing k, but only up to a certain point from which it starts growing again—as
illustrated by Fig. 3.5 where the horizontal axis represents the values of k, and the
vertical axis represents the error rate that is measured on an independent testing set.

The explanation is simple: the more distant “nearest neighbors” may find
themselves in regions (in the instance space) that are already occupied by other
classes; as such, they only mislead the classifier. Consider the extreme: if the training
set contains 25 training examples, then the 25-NN classifier is useless because it
simply labels any object with the class that has the highest number of representatives
in the training data.3

The curse of dimensionality. Obviously, when classifying object x, some of its
nearest neighbors may not be similar enough to x to deserve to participate in the
vote. This often happens in domains marked by many attributes. Suppose that
the values of each attribute are confined to the unit-length interval, Œ0I 1�. Using
the pythagorean theorem, it would be easy to show that the maximum Euclidean
distance in the n-dimensional space defined by these attributes is dMAX D p

n. For
n D 104 (quite reasonable in such domains as, say, text categorization), this means
dMAX D 100. In view of the fact that no attribute value can exceed 1, this is perhaps
surprising. No wonder that examples then tend to be sparse—unless the training set
is really very large.

3The optimal value of k (the one with the minimum error rate) is usually established experimentally.

54 3 Similarities: Nearest-Neighbor Classifiers

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BAYESIAN ERROR RATE

E
R

R
O

R
 R

A
T

E
 O

F
 N

E
A

R
E

S
T

 N
E

IG
H

B
O

R
S

Fig. 3.4 The theoretical error rate of the 1-NN rule compared to that of the Ideal Bayes. Two
classes: the solid curve; many classes: the dotted curve

k

error rate

Fig. 3.5 With the growing number of voting neighbors (k), the error rate of the k-NN classifier
decreases until it reaches a level from which it starts growing again

The term sometimes mentioned, in this context, is the curse of dimensionality:
as we increase the number of attributes, the number of training examples needed to
fill the instance space with adequate density grows very fast, perhaps so fast as to
render the nearest-neighbor paradigm impractical.

3.5 Weighted Nearest Neighbors 55

To conclude. Although the ideal k-NN classifier is capable of reaching the
performance of the Ideal Bayes, the engineer has to be aware of the practical
limitations of both approaches. Being able to use the Ideal Bayes is unrealistic in the
absence of the perfect knowledge of the probabilities and pdf ’s. On the other hand,
the k-NN classifier is prone to suffer from sparse data, from irrelevant attributes, and
from scaling-related problems. The concrete choice has to be based on the specific
requirements of the given application.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How does the performance of the k-NN classifier compare to that of the Ideal
Bayes? Summarize this separately for k D 1 and k > 1. What theoretical
assumptions do these two paradigms rely on?

• How will the performance of a k-NN classifier depend on the growing values of
k in theory and in a realistic application?

• What is understood by the curse of dimensionality?

3.5 Weighted Nearest Neighbors

So far, the voting mechanism was assumed to be democratic, each nearest neighbor
having the same vote. This seems to be a fair enough arrangement, but from the
perspective of classification performance, we can do better.

In Fig. 3.6, the task is to determine the class of object x, represented by a black
dot. Since three of the nearest neighbors are negative, and only two are positive, the
5-NN classifier will label x as negative. And yet, something seems to be wrong, here:
the three negative neighbors are quite distant from x; as such, they may not deserve
to have the same say as the two positive examples in the object’s immediate vicinity.

Weighted nearest neighbors. Situations of this kind motivate the introduction of
weighted voting, in which the weight of each of the nearest neighbors is made
proportional to its distance from x: the closer the neighbor, the greater its impact.

Let us denote the weights as w1; : : : wk. The weighted k-NN classifier sums up
the weights of those neighbors that recommend the positive class (let the result be
denoted by †C) and then sums up the weights of the those neighbors that support
the negative class (†�). The final verdict is based on which is higher: if †C > †�,
then x is deemed positive, otherwise it is deemed negative. Generalization to the
case with n > 2 classes is straightforward.

56 3 Similarities: Nearest-Neighbor Classifiers

Fig. 3.6 The testimony of
the two “positive” neighbors
should outweigh that of the
three more distant “negative”
neighbors

+

+ +
-

5-NN classifier

-

+

-

-

For the sake of illustration, suppose the positive label is found in neigh-
bors with weights 0:6 and 0:7, respectively, and the negative label is found in
neighbors with weights 0:1; 0:2; and 0:3. The weighted k-NN classifier will choose
the positive class because the combined weight of the positive neighbors, †C D
0:6 C 0:7 D 1:3, is greater than that of the negative neighbors, †� D 0:1 C 0:2 C
0:3 D 0:6. Just as in Fig. 3.6, the more frequent negative label is outvoted by the
positive neighbors because the latter are closer to x.

A concrete formula. Let us introduce a simple formula to calculate the weights.
Suppose the k neighbors are ordered according to their distances, d1; : : : ; dk, from x
so that d1 is the smallest distance and dk is the greatest distance. The weight of the
i-th closest neighbor is calculated as follows:

wi D
(

dk�di
dk�d1

; dk ¤ d1

1 dk D d1

(3.4)

Obviously, the weights thus obtained will range from 0 for the most distant
neighbor to 1 for the closest one. This means that the approach actually considers
only k�1 neighbors (because wk D 0). Of course, this makes sense only for k > 3. If
we used k D 3, then only two neighbors would really participate, and the weighted
3-NN classifier would degenerate into the 1-NN classifier.

Table 3.4 illustrates the procedure on a simple toy domain.
Another important thing to observe is that if all nearest neighbors have the same

distance from x, then they all get the same weight, wi D 1, on account of the bottom
part of the formula in Eq. 3.4. The reader will easily verify that dk D d1 if and only
if all the k nearest neighbors have the same distance from x.

3.6 Removing Dangerous Examples 57

Table 3.4 Illustration of the weighted nearest neighbor rule

The task is to use the weighted 5-NN classifier to determine the class of object x. Let the
distances between x and the five nearest neighbors be d1 D 1; d2 D 3; d3 D 4; d4 D 5; d5 D 8.
Since the minimum is d1 D 1 and the maximum is d5 D 8, the individual weights are calculated
as follows:

wi D d5 � di

d5 � d1

D 8 � di

8 � 1
D 8 � di

7

This gives the following values:

w1 D 8�1
7

D 1, w2 D 8�3
7

D 5
7
, w3 D 8�4

7
D 4

7
, w4 D 8�5

7
D 3

7
, w5 D 8�8

7
D 0.

If the two nearest neighbors are positive and the remaining three are negative, then x is classified
as positive because †C D 1 C 5

7
> †� D 4

7
C 3

7
C 0.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Why did we argue that each of the voting nearest neighbors should sometimes
have a different weight?

• Discuss the behavior of the formula recommended in the text for the calculation
of the individual weights.

3.6 Removing Dangerous Examples

As far as the classification procedure is concerned, the value of each individual
training example can be different. Some are typical of the classes they represent,
others less so, and yet others are outright misleading. This is why it is often a good
thing to pre-process the training set before using it: to remove examples suspected
of being less then useful.

The concrete method to pre-process the training set is guided by two essential
observations that are illustrated by Fig. 3.7. First, an example labeled with one
class but surrounded by examples of another class is likely to be the result of class-
label noise. Second, examples from the borderline region between two classes are
unreliable because even small amount of noise in their attribute values can shift
their locations in the wrong directions, thus affecting classification. In both cases,
the examples better be removed.

The technique of Tomek Links. Before the culprit can be removed, however, it has
to be detected. One way to do so is by the technique of Tomek Links, named so after

www.allitebooks.com

http://www.allitebooks.org

58 3 Similarities: Nearest-Neighbor Classifiers

Fig. 3.7 Illustration of two
potentially harmful types of
examples: those surrounded
by examples of a different
class, and those in the
“borderline region”

−
−−−−

−
−
−
− −−−
−−

−

+
+

+ +
+
+

+
+

+
+

++

−
−

−−

2nd attribute

1st attribute

suspected class−label noise

borderline region

Table 3.5 The algorithm to identify (and remove) Tomek Links

Input: the training set of N examples

1. Let i D 1 and let T be an empty set.
2. Let x be the i-th training example and let y be the nearest neighbor of x.
3. If x and y belong to the same class, go to 5.
4. If x is the nearest neighbor of y, let T D T [fx; yg.
5. Let i D i C 1. If i � N, goto 2.
6. Remove from the training set all examples that are now in T .

the mathematician who first used them a few decades ago.4 A pair of examples, x
and y, are said to form a Tomek Link if the following three requirements are satisfied
at the same time:

1. x is the nearest neighbor of y
2. y is the nearest neighbor of x
3. the class of x is not the same as the class of y.

These conditions being characteristic of borderline examples, and also of exam-
ples surrounded by examples of another class, it makes sense to remove from the
training set all such pairs. Even this may not be enough. Sometimes, the removal of
existing Tomek Links only creates new ones so that the procedure has to be repeated.

The algorithm is summarized by the pseudocode in Table 3.5, and a few instances
of Tomek Links are shown in Fig. 3.8. Note that there are only these three; no other
pair of examples satisfies here the criteria for being called a Tomek Link.

One side-effect perhaps deserves to be mentioned: once the training set has been
cleaned, the number (k) of the voting nearest neighbors can be reduced because the
main reason for using a k > 1 is to mitigate the negative impact of noise—which

4It is fair to mention that he used them for somewhat different purposes.

3.7 Removing Redundant Examples 59

Fig. 3.8 Dotted lines connect
all Tomek links. Each
participant in a Tomek Link is
its partner’s nearest neighbor,
and each of the two examples
has a different class

+

__

_

_

_

_
_

__

+

+
+

+

+
+

x

y

+

+

the removal of Tomek Links has reduced. It can even happen that the 1-NN classifier
will now be able to achieve the performance of a k-NN classifier that uses the entire
original training set.

A limitation. Nothing is perfect. The technique of Tomek Links does not identify all
misleading examples; and, conversely, some of the removed examples might have
been “innocent,” and thus deserved to be retained. Still, experience has shown that
the removal of Tomek Links usually does improve the overall quality of the data.
The engineer only has to be careful in two specific situations. (1) When the training
set is very small, and (2) when one of the classes significantly outnumbers the other.
The latter case will be discussed in Sect. 10.2.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What motivates the attempts to “clean” the training set?
• What are Tomek Links, are how do we identify them in the training set? Why

does the procedure sometimes have to be repeated?
• How does the removal of Tomek Links affect the k-NN classifier?

3.7 Removing Redundant Examples

Some training examples do not negatively affect classification performance, and yet
we want to get rid of them. Thing is, they do not reduce the error rate, either; they
only add to computational costs.

60 3 Similarities: Nearest-Neighbor Classifiers

Redundant examples. To find the nearest neighbor in a domain with 106 training
examples described by 104 attributes (and such domains are not rare), the program
relying on the Euclidean distance has to carry out 106 � 104 D 1010 arithmetic
operations. When the task is to classify thousands of objects at a time (which, again,
is not impossible), the number of arithmetic operations is 1010 � 103 D 1013. This
is a lot.

Fortunately, training sets are often redundant in the sense that the k-NN clas-
sifier’s behavior will not change even if some of the training examples are deleted.
Sometimes, a great majority of the examples can be removed with impunity because
they add to classification costs without affecting classification performance. This is
the case of the domain shown in the upper-left corner of Fig. 3.9.

+
++

++
+

+

+ +

+
+

+++
+

+
+

+
+
+ + + +

+

+

+ +

+
++

++
+

+

+

+++
+

+
+

+
+
+ + + +

+

++
+
+

+

+
+

+ + + +

2: borderline and noisy
examples removed

1: original training set

3: redundant examples
removed

1 2

3

Fig. 3.9 An illustration of what happens when the borderline, noisy, and redundant examples are
removed from the training set

Consistent subset. In an attempt to reduce redundancy, we want to replace the
training set, T , with its consistent subset, S. In our context, S is said to be a consistent
subset of T if replacing T with S does not affect what class labels are returned by

3.7 Removing Redundant Examples 61

Table 3.6 Algorithm to create a consistent training subset by the removal of (some) redundant
examples

1. Let S contain one positive and one negative example from the training set, T .
2. Using examples from S, re-classify the examples in T with the 1-NN classifier. Let M be the

set of those examples that have in this manner received the wrong class.
3. Copy to S all examples from M.
4. If the contents of S have not changed, in the previous step, then stop; otherwise go to step 1.

the k-NN classifier. Such definition, however, is not very practical because we have
no idea of how the k-NN classifier will behave—using either T or S—on future
examples. Let us therefore modify the criterion: S will be regarded as a consistent
subset of T if any ex 2 T receives the same label no mater whether the k-NN
classifier has employed T � fexg or S � fexg.

It is in the nature of things that a realistic training set will have many consistent
subsets to choose from. Of course, the smaller the subset, the better. But a
perfectionist who insists on always finding the smallest one should be warned: this
ideal can often be achieved only at the price of enormous computational costs.
The practically-minded engineer doubts that these costs are justified, and will be
content with a computationally efficient algorithm that downsizes the original set to
a “reasonable size,” unscientific though such formulation may appear to be.

Creating a consistent subset. One such pragmatic technique is presented in
Table 3.6. The algorithm starts by choosing one random example from each class.
This initial subset, S, is then used by the 1-NN classifier to suggest the labels of all
training examples. At this stage, it is more than likely that some training examples
will thus be misclassified. These misclassified examples are added to S, and the
whole procedure is repeated using this larger set. This is then repeated again and
again until, at a certain moment, S becomes representative enough to allow the 1-NN
classifier to label all training examples correctly. This is when the search stops.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the benefit of removing redundant examples from the training set?
• What do we mean by the term, “consistent subset of the training set”? Why is it

not necessary always to look for the smallest consistent subset?
• Explain the principle of the simple algorithm that creates a reasonably-sized

consistent subset.

62 3 Similarities: Nearest-Neighbor Classifiers

3.8 Summary and Historical Remarks

• When classifying object x, the k-NN classifier finds, in the training set, k
examples most similar to x, and then chooses the class label most common among
these examples.

• Classification behavior of the k-NN classifier depends to a great extent on how
similarities between attribute vectors are calculated. Perhaps the simplest way to
establish the similarity between vectors x and y is to use their geometric distance
obtained by the following formula:

dM.x; y/ D
q

†n
iD1d.xi; yi/ (3.5)

Essentially, we use d.xi; yi/ D .xi � yi/
2 for continuous attributes, whereas for

discrete attributes, we put d.xi; yi/ D 0 if xi D yi and d.xi; yi/ D 1 if xi ¤ yi.
• The performance of the k-NN classifier is poor if many of the attributes

describing the examples are irrelevant. Another issue is the scaling of the attribute
values. The latter problem can be mitigated by normalizing the attribute values
to unit intervals.

• Some examples are harmful in the sense that their presence in the training set
increases error rate. Others are redundant in that they only add to the computation
costs without improving classification performance. Harmful and redundant
examples should be removed.

• In some applications, each of the nearest neighbors can have the same vote. In
others, the votes are weighted based on the distance of the examples from the
classified object.

Historical Remarks. The idea of the nearest-neighbor classifier was originally
proposed by Fix and Hodges [23], but the first systematic analysis was offered
by Cover and Hart [16] and Cover [15]. Exhaustive treatment was then provided
by the book by Dasarathy [17]. The weighted k-NN classifier described here was
proposed by Dudani [19]. The oldest technique to find a consistent subset of the
training set was described by Hart [30]—the one introduced in this chapter is its
minor modification. The notion of Tomek Links is due to Tomek [76].

3.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

3.9 Solidify Your Knowledge 63

Exercises

1. Determine the class of y D Œ1; 22� using the 1-NN classifier and the 3-NN
classifier, both using the training examples from Table 3.7. Explain why the two
classifiers differ in their classification behavior.

2. Use the examples from Table 3.7 to classify object y D Œ3; 3� with the 5-NN
classifier. Note that 2 nearest neighbors are positive and 3 nearest neighbors are
negative. Will weighted 5-NN classifier change anything? To see what is going
on, plot the locations of the examples in a graph.

3. Again, use the training examples from Table 3.7. (a) Are there any Tomek links?
(b) can you find a consistent subset of the training set by the removal of at least
one redundant training example?

Give It Some Thought

1. Discuss the possibility of applying the k-NN classifier to the “pies” domain. Give
some thought to how many nearest neighbors to use, and what distance metric
to employ, whether to make the nearest neighbors’ vote depend on distance, and
so on.

2. Suggest other variations on the nearest-neighbor principle. Use the following
hints:

(a) Introduce alternative distance metrics. Do not forget that they have to satisfy
the axioms mentioned at the end of Sect. 3.2.

(b) Modify the voting scheme by assuming that some examples have been
created by a knowledgeable “teacher,” whereas others have been obtained
from a database without any consideration given to their representativeness.
The teacher’s examples should obviously carry more weight.

3. Design an algorithm that uses hill-climbing search to remove redundant exam-
ples. Hint: the initial state will contain the entire training set, the search operator
will remove a single training example at a time (this removal must not affect
behavior).

4. Describe an algorithm that uses hill-climbing search to remove irrelevant
attributes. Hint: withhold some training examples on which you will test 1-NN’s
classifier’s performance for different subsets of attributes.

Table 3.7 A simple set of
training examples for the
exercises

x1 1 1 1 2 3 3 3 4 5

x2 1 2 4 3 0 2 5 4 3

Class + – – + + + – – –

64 3 Similarities: Nearest-Neighbor Classifiers

Computer Assignments

1. Write a program whose input is the training set, a user-specified value of k, and
an object, x. The output is the class label of x.

2. Apply the program implemented in the previous assignment to some of the
benchmark domains from the UCI repository.5 Always take 40 % of the examples
out and reclassify them with the 1-NN classifier that uses the remaining 60 %.

3. Create a synthetic toy domain consisting of 1,000 examples described by a pair
of attributes, each from the interval [0,1]. In the square defined by these attribute
values, Œ0; 1� � Œ0; 1�, define a geometric figure of your own choice and label all
examples inside it as positive and all other examples as negative. From this initial
noise-free data set, create 5 files, each obtained by changing p percent of the class
labels, using p 2 f5; 10; 15; 20; 25g (thus obtaining different levels of class-label
noise).

Divide each data file into two parts, the first to be reclassified by the k-NN
classifier that uses the second part. Observe how different values of k result in
different behaviors under different levels of class-label noise.

4. Implement the Tomek-link method for the removal of harmful examples. Repeat
the experiments above for the case where the k-NN classifier uses only examples
that survived this removal. Compare the results, observing how the removal
affected the classification behavior of the k-NN classifier for different values of
k and for different levels of noise.

5www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 4
Inter-Class Boundaries: Linear
and Polynomial Classifiers

When representing the training examples with points in an n-dimensional instance
space, we may realize that positive examples tend to be clustered in regions different
from those occupied by negative examples. This observation motivates yet another
approach to classification. Instead of the probabilities and similarities employed by
the earlier paradigms, we can try to identify the decision surface that separates the
two classes. A very simple possibility is to use to this end a linear function. More
flexible are high-order polynomials which are capable of defining very complicated
inter-class boundaries. These, however, have to be handled with care.

The chapter introduces two simple mechanisms for induction of linear classifiers
from examples described by boolean attributes, and then discusses how to use them
in more general domains such as those with numeric attributes and more than just
two classes. The whole idea is then extended to polynomial classifiers.

4.1 The Essence

To begin with, let us constrain ourselves to boolean domains where each attribute is
either true or false. To make it possible for these attributes to participate in algebraic
functions, we will represent them by integers: true by 1, and false by 0.

The linear classifier. In Fig. 4.1, one example is labeled as positive and the
remaining three as negative. In this particular case, the two classes can be separated
by the linear function defined by the following equation:

� 1:2 C 0:5x1 C x2 D 0 (4.1)

In the expression on the left-hand side, x1 and x2 represent attributes. If we
substitute for x1 and x2 the concrete values of a given example, the expression,
�1:2C0:5x1 Cx2, will become either positive or negative. This sign then determines

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_4

65

66 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

−

−

−

+

x1

x2

1

1

0

0

1.2
−1.2 + 0.5 x1 + x2 = 0

x1 x2 −1.2 + 0.5x1 + x2 class
1 1 pos
1 0 neg
0 1 neg
0 0

0.3
−0.7
−0.2
−1.2 neg

Fig. 4.1 A linear classifier in a domain with two classes and two boolean attributes (using 1 instead
of true and 0 instead of false)

the example’s class. The table on the right shows how the four examples from the
left have thus been classified.

Equation 4.1 is not the only one capable of doing the job. Other expressions, say,
�1:5 C x1 C x2, will label the four examples in exactly the same way. As a matter
of fact, the same can be accomplished by infinitely many different classifiers of the
following generic form:

w0 C w1x1 C w2x2 D 0

This is easy to generalize to domains with n attributes:

w0 C w1x1 C : : : C wnxn D 0 (4.2)

If n D 2, Eq. 4.2 defines a line; if n D 3, a plane; and if n > 3, a hyperplane. By
the way, if we artificially introduce a “zeroth” attribute, x0, whose value is always
fixed at x0 D 1, the equation can be re-written in the following, more compact,
form:

nX

iD0

wixi D 0 (4.3)

Some practical issues. When writing a computer program implementing the
classifier, the engineer must not forget to decide how to label the rare example that
finds itself exactly on the hyperplane—which happens when the expression equals 0.
Common practice either chooses the class randomly or gives preference to the one
that has more representatives in the training set.

Also, we must not forget that no linear classifier can ever separate the positive
and the negative examples if the two classes are not linearly separable. Thus if we
change in Fig. 4.1 the class label of x D .x1; x2/ D .0; 0/ from minus to plus,
no straight line will ever succeed. Let us defer further discussion of this issue till
Sect. 4.5. For the time being, we will consider only domains where the classes are
linearly separable.

4.1 The Essence 67

The parameters. The classifier’s behavior is determined by the coefficients, wi.
These are usually called weights. The task for machine learning is to find their
appropriate values.

Not all the weights play the same role. Geometrically speaking, the coefficients
w1; : : : wn define the angle of the hyperplane with respect to the system of
coordinates; and the last, w0, called bias, determines the offset, the hyperplane’s
distance from the origin of the system of coordinates.

The bias and the threshold. In the case depicted in Fig. 4.1, the bias was w0 D
�1:2. A higher value would “shift” the classifier further from the origin, Œ0; 0�,
whereas w0 D 0 would make the classifier intersect the origin. Our intuitive grasp of
the role played by bias in the classifier’s behavior will improve if we rewrite Eq. 4.2
as follows:

w1x1 C : : : wnxn D � (4.4)

The term on the right-hand side, � D �w0, is the threshold that the weighted
sum has to exceed if the example is to be deemed positive. Note that the threshold
equals the negatively taken bias.

Simple logical functions. Let us simplify our considerations by the (somewhat
extreme) requirement that all attributes should have the same weight, wi D 1. Even
under this constraint, careful choice of the threshold will implement some useful
functions. For instance, the reader will easily verify that the following classifier
returns the positive class if and only if every single attribute has xi D 1, a situation
known as logical AND.

x1 C : : : C nn D n � 0:5 (4.5)

By constrast, the next classifier returns the positive class if at least one attribute
is xi D 1, a situation known as logical OR.

x1 C : : : C nn D 0:5 (4.6)

Finally, the classifier below returns the positive class if at least k attributes (out
of the total of n attributes) are xi D 1. This represents the so-called k-of-n function,
of which AND and OR are special cases: AND is n-of-n, whereas OR is 1-of-n.

x1 C : : : C xn D k � 0:5 (4.7)

Weights. Now that we understand the impact of bias, let us abandon the restriction
that all weights be equal, and take a look at the consequences of their concrete
values. Consider the linear classifier defined by the following function:

2 C 3x1 � 2x2 C 0:1x4 � 0:5x6 D 0 (4.8)

68 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

The first thing to notice in the expression on the left side is the absence
of attributes x3 and x5. These are rendered irrelevant by their zero weights,
w3 D w5 D 0. As for the other attributes, their impacts depend on their weights’
absolute values as well as on the signs: if wi > 0, then xi D 1 increases the
chances of the above expression being positive; and if wi < 0, then xi D 1

increases the chances of the expression being negative. Note that, in the case of
the classifier defined by Eq. 4.8, x1 supports the positive class more strongly than x4

because w1 > w4. Likewise, the influence of x2 is stronger than that of x6—only in
the opposite direction: reducing the value of the overall sum, this weight makes it
more likely that an example with x2 D 1 will be deemed negative. Finally, the very
small value of w4 renders attribute x4 almost irrelevant.

As another example, consider the classifier defined by the following function:

2x1 C x2 C x3 D 1:5 (4.9)

Here the threshold 1:5 is exceeded either by the sole presence of x1 D 1 (because
then 2x1 D 2 � 1 > 1:5) or by the combined contributions of x2 D 1 and x3 D 1.
This means that x1 will “outvote” the other two attributes even when x2 and x3 join
their forces in the support of the negative class.

Low computational costs. Note the relatively low computational costs of this
approach. Whereas the 1-NN classifier had to evaluate many geometric distances,
and then search for the smallest among them, the linear classifier only has to
determine the sign of a relatively simple expression.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If you
have problems, return to the corresponding place in the preceding text.

• Write the general expression defining the linear classifier in a domain with four
boolean attributes. Why do we prefer to represent the true and false values by 1
and 0, respectively? How does the classifier determine an example’s class?

• How can a linear classifier implement functions AND, OR, and k-of-n?
• Explain and discuss the behavior of the linear classifier defined by the expression,

�2:5 C x2 C 2x3 D 0. What do the weights tell us about the role of the individual
attributes?

• Compare the computational costs of the linear classifier with those of the nearest-
neighbor classifier.

4.2 The Additive Rule: Perceptron Learning 69

4.2 The Additive Rule: Perceptron Learning

Having developed some understanding of how the linear classifier works, we are
ready to take a closer look at how to induce the tool from training data.

The learning task. We will assume that each training example, x, is described by
n binary attributes whose values are either xi D 1 or xi D 0. A positive example
is labeled with c.x/ D 1, and a negative with c.x/ D 0. To make sure we never
confuse an example’s real class with the one returned by the classifier, we will
denote the latter by h.x/ where h indicates that this is the classifier’s hypothesis.
If
Pn

iD0 wixi > 0, the classifier “hypothesizes” that the example is positive, and
therefore returns h.x/ D 1. Conversely, if

Pn
iD0 wixi � 0, the classifier returns

h.x/ D 0. Figure 4.2 serves as a reminder that the classifier labels x as positive only
if the cumulative evidence in favor of this class exceeds 0.

Finally, we will suppose that examples with c.x/ D 1 are linearly separable from
those with c.x/ D 0. This means that there exists a linear classifier that will label
correctly all training examples, h.x/ D c.x/. The task for machine learning is to
find weights, wi, that will make this happen.

Learning from mistakes. Here is the essence of the most common approach to
the induction of linear classifiers. Suppose we already have an interim (even if
imperfect) version of the classifier. When presented with a training example, x, the
classifier returns its label, h.x/. If this differs from the true class, h.x/ ¤ c.x/, it is
because the weights are less than perfect; they thus have to be modified in a way
likely to correct this error.

Here is how to go about the weight modification. Let the true class be c.x/ D 1.
In this event, h.x/ D 0 will only happen if

Pn
iD0 wixi < 0, an indication that the

weights are too small. If we increase the weights, then the sum,
Pn

iD0 wixi, may
exceed zero, making the returned label positive, and thus correct. Note that it is
enough to increase only the weights of attributes with xi D 1; when xi D 0, then
the value of wi does not matter because anything multiplied by zero is still zero:
0 � wi D 0.

Similarly, if c.x/ D 0 and h.x/ D 1, then the weights of all attributes such that
xi D 1 should be decreased so as to give the sum the chance to drop below zero,Pn

iD0 wixi < 0.

Fig. 4.2 The linear classifier
outputs h.x/ D 1 whenPn

iD0 wixi > 0 and h.x/ D 0

when
Pn

iD0 wixi � 0,
signaling the example is
positive or negative,
respectively

ih(Σwi x)

Σwi xi

1

0

70 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

The weight-adjusting formula. In summary, the presentation of a training
example, x, can result in three different situations. The technique based on “learning
from mistakes” responds to them according to the following table:

Situation Action
c.x/ D 1 while h.x/ D 0 Increase wi for each attribute with xi D 1

c.x/ D 0 while h.x/ D 1 Decrease wi for each attribute with xi D 1

c.x/ D h.x/ Do nothing

Interestingly, all these actions are carried out by a single formula:

wi D wi C � � Œc.x/ � h.x/� � xi (4.10)

Let us take a look at the basic aspects of this weight-adjusting formula.

1. Correct action. If c.x/ D h.x/ the term in the brackets is Œc.x/ � h.x/� D 0,
which leaves wi unchanged. If c.x/ D 1 and h.x/ D 0, the term in the brackets is
1, and the weights are thus increased. And if c.x/ D 0 and h.x/ D 1, the term in
the brackets is negative, and the weights are reduced.

2. Affecting only relevant weights. If xi D 0, the term to be added to the i-th weight,
� � Œc.x/ � h.x/� � 0, is zero. This means that the formula will affect wi only when
xi D 1.

3. Amount of change. This is controlled by the learning rate, �, whose user-set value
is chosen from the interval � 2 .0; 1�.

Note that the modification of the weights is additive in the sense that a term is
added to the previous value of the weight. In Sect. 4.3, we will discuss the other
possibility: a multiplicative formula.

The perceptron learning algorithm. Equation 4.10 forms the core of the Per-
ceptron Learning Algorithm.1 The procedure is summarized by the pseudocode
in Table 4.1. The principle is simple. Once the weights have been initialized to

Table 4.1 The perceptron learning algorithm

Assumption: the two classes, c.x/ D 1 and c.x/ D 0, are linearly separable.

1. Initialize all weights, wi, to small random numbers.
Choose an appropriate learning rate, � 2 .0; 1�.

2. For each training example, x D .x1; : : : ; xn/, whose class is c.x/:

(i) Let h.x/ D 1 if
Pn

iD0 wixi > 0, and h.x/ D 0 otherwise.
(ii) Update each weight using the formula, wi D wi C �Œc.x/ � h.x/� � xi

3. If c.x/ D h.x/ for all training examples, stop; otherwise, return to step 2.

1Its author, M. Rosenblatt, originally employed this learning technique in a device he called a
Perceptron.

4.2 The Additive Rule: Perceptron Learning 71

small random values, the training examples are presented, one at a time. After each
example presentation, every weight of the classifier is subjected to Eq. 4.10. The
last training example signals that one training epoch has been completed. Unless
the classifier now labels correctly the entire training set, the learner returns to the
first example, thus beginning the second epoch, then the third, and so on. Typically,
several epochs are needed to reach the goal.

A numeric example. Table 4.2 illustrates the procedure on a toy domain where
the three training examples, e1, e2, and e3, are described by two binary attributes.
After the presentation of e1, the weights (originally random) are reduced on account
of h.e1/ D 1 and c.e1/ D 0; however, this happens only to w0 and w1 because
x2 D 0. In response to e2, all weights of the classifier’s new version are increased
because h.e2/ D 0 and c.e2/ D 1, and all attributes have xi D 1. And after e3,
the fact that h.e3/ D 1 and c.e1/ D 0 results in the reduction of w0, but not of the
other weights because x1 D x2 D 0. From now on, the classifier correctly labels all
training examples, and the process can thus be terminated.

Initial weights and the number of attributes. The training converged to the
separating line in a single epoch, but this was only thanks to a few lucky choices
that may have played quite a critical role. Let us discuss them briefly.

First of them is the set of (random) initial weights. Different initialization may
result in a different number of epochs. Most of the time, the classifier’s initial version
will be almost useless, and a lot of training is needed before the process converges
to something useful. Sometimes, however, the first version may be fairly good, and
a single epoch will do the trick. And at the extreme case, there exists the possibility,
however remote, that the random-number generator will create a classifier that labels
all training examples without a single error, and no training is thus needed.

Another factor is the length of the attribute vector. As a rule of thumb, the number
of the necessary epochs tends to grow linearly in the number of attributes (assuming
the same learning rate, �, is used). For instance, the number of epochs needed in a
domain with 3 � n attributes is likely to be about three times the number of epochs
that would be needed in a domain with n attributes.

Learning rate. A critical role is played by the learning rate, �. Returning to the
example from Table 4.2, the reader will note the rapid weight changes. Thus w0

“jumped” from 0:1 to �0:4 after e1, then back to 0.1 after e2, only to return to �0:4

after e3. Similar changes were experienced by w1 and w2. Figure 4.3 visualizes the
phenomenon. The reader will easily verify that the four lines represent the four
successive versions of the classifier. Note how dramatic, for instance, is the change
from classifier 1 to classifier 2, and then from classifier 2 to classifier 3.

This remarkable sensitivity is explained by the high learning rate, � D 0:5.
A smaller value, such as � D 0:1, would moderate the changes, thus “smoothing

72 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Table 4.2 Illustration of perceptron learning

Let the learning rate be � D 0:5, and let the (randomly generated) initial weights be w0 D
0:1; w1 D 0:3, and w3 D 0:4. Set x0 D 1.

Task: Using the following training set, the perceptron learning algorithm is to learn how to
separate the negative examples, e1 and e3, from the positive example, e2.

Example x1 x2 c.x/

e1 1 0 0

e2 1 1 1

e3 0 1 0

The linear classifier’s hypothesis about x’s class is h.x/ D 1 if
Pn

iD0 wixi > 0 and h.x/ D 0

otherwise. After each example presentation, all weights are subjected to the same formula: wi D
wi C 0:5 � Œc.x/ � h.x/� � xi.

The table below shows, step by step, what happens to the weights in the course of learning.

x1 x2 w0 w1 w2 h.x/ c.x/ c.x/ � h.x/

Random classifier 0.1 0.3 0.4

Example e1 1 0 1 0 �1

new classifier �0.4 �0.2 0.4

Example e2 1 1 0 1 1

new classifier 0.1 0.3 0.9

Example e3 0 0 1 0 �1

final classifier �0.4 0.3 0.9

The final version of the classifier, �0:4C0:3x1 C0:9x2 D 0, no longer misclassifies any training
example. The training has thus been completed in a single epoch.

Fig. 4.3 The four classifiers
from Table 4.2. The classifier
defined by the initial weights
is denoted by 1; numbers 2
and 3 represent the two
intermediate stages; and 4,
the final solution. The arrows
indicate the half-space of
positive examples

1

2

3

x1

x2

4

+−

−
−

out” the learning. But if we overdo it by choosing, say, � D 0:001, the training
process will become way too slow, and a great many epochs will have to pass before
all training examples are correctly classified.

4.3 The Multiplicative Rule: WINNOW 73

If the solution exists, it will be found. But whatever the initial weights, the number
of attributes, and the learning rate, the perceptron learning algorithm is guaranted to
find a class-separating hyperplane in a finite number of steps—provided, let us not
forget, that such class-separating hyperplane exists.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Under what circumstances is perceptron learning guaranteed to find a clasifier
that perfectly labels all training examples?

• When does the algorithm reduce the classifier’s weights, when does it increase
them, and when does it leave them unchanged? Why does it modify wi only if
the corresponding attribute’s value is xi D 1?

• What circumstances influence the number of epochs needed by the algorithm to
converge to a solution?

4.3 The Multiplicative Rule: WINNOW

Perceptron learning responds to the classifier’s error by applying the additive rule
that added to the weights a positive or negative term. An obvious alternative is
the multiplicative rule where the weights are multiplied instead of being added to.
Such approach has been adopted by WINNOW, an algorithm summarized by the
pseudocode in Table 4.3.

The principle and the formula. The general scenario is the same as in the previous
section. A training example, x, is presented, and the classifier returns its hypothesis
about the example’s label, h.x/. The learner compares this hypothesis with the
known label, c.x/. If the two differ, c.x/ ¤ h.x/, the weights of the attributes with
xi D 1 are modified in the following manner (where ˛ > 1 is a user-set parameter):

Situation Action
c.x/ D 1 while h.x/ D 0 wi D ˛wi

c.x/ D 0 while h.x/ D 1 wi D wi=˛

c.x/ D h.x/ Do nothing

The reader is encouraged to verify that all these three actions can be carried out by
the same formula:

wi D wi � ˛c.x/�h.x/ (4.11)

74 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Table 4.3 The WINNOW algorithm

Assumption: the two classes, c.x/ D 1 and c.x/ D 0, are linearly separable.

1. Initialize the classifier’s weights to wi D 1.
2. Set the threshold to � D n�0:1 (n being the number of attributes) and choose an appropriate

value for parameter ˛ > 1 (usually ˛ D 2).
3. Present a training example, x, whose class is c.x/. The classifier returns h.x/.
4. If c.x/ ¤ h.x/, update the weights of each attribute whose value is xi D 1:

if c.x/ D 1 and h.x/ D 0, then wi D ˛wi

if c.x/ D 0 and h.x/ D 1, then wi D wi=˛

5. If c.x/ D h.x/ for all training examples, stop; otherwise, return to step 3.

Table 4.4 Illustration of the WINNOW’s behavior

Task. Using the training examples from the table on the left (below), induce the linear classifier.
Let ˛ D 2, and let � D 2:9. Note that the training is here accomplished in two learning

steps: presentation of e5 (false negative), and of e3 (false positive). After these two weight
modifications, the resulting classifier correctly classifies all training examples.

x1 x2 x3 c.x/

e1 1 1 1 1

e2 1 1 0 0

e3 1 0 1 0

e4 1 0 0 0

e5 0 1 1 1

e6 0 1 0 0

e7 0 0 1 0

e8 0 0 0 0

x1 x2 x3 w1 w2 w3 h.x/ c.x/

init. class. 1 1 1

Example e5 0 1 1 0 1

new weights 1 2 2

Example e3 1 0 1 1 0

new weights 0:5 2 1

A numeric example. Table 4.4 illustrates the principle using a simple toy domain.
The training set consists of all possible examples that can be described by three
binary attributes. Those with x2 D x3 D 1 are labeled as positive and all others as
negative, regardless of the value of the (irrelevant) attribute x1.

In perceptron learning, the weights were initialized to small random values. In
the case of WINNOW, however, they are all initially set to 1. As for the threshold,
� D n � 0:1 is used, slightly less than the number of attributes. In the toy domain
from Table 4.4, this means � D 3 � 0:1 D 2:9 because WINNOW of course has no
a priori knowledge of one of the attributes being irrelevant.

When the first four examples are presented, the classifier’s initial version labels
them all correctly. The first mistake is made in the case of e5: for this positive
example, the classifier incorrectly returns the negative label. The learner therefore
increases the weights of attributes with xi D 1 (that is, w2 and w3). This new
classifier then classifies correctly all the remaining examples, e6 through e8. In the
second epoch, the classifier errs on e3, causing a false positive. In response to this

4.3 The Multiplicative Rule: WINNOW 75

error, the algorithm reduces weights w1 and w3 (but not w2 because x2 D 0). After
this last weight modification, the classifier labels correctly the entire training set.2

Note that the weight of the irrelevant attribute, x1, is now smaller than the weights
of the relevant attributes. Indeed, the ability to penalize irrelevant attributes by
significantly reducing their weights, thus “winnowing them out,” is one of the main
advantages of this technique.

The “alpha” parameter. Parameter ˛ controls the learner’s sensitivity to errors
in a manner reminiscent of the learning rate in perceptron learning. The main
difference is the requirement that ˛ > 1. This guarantees an increase in weight
wi in the case of a false negative, and a decrease in wi in the case of a false positive.
The parameter’s concrete value is not completely arbitrary. If it exceeds 1 by just a
little (say, if ˛ D 1:1), then the weight-updates will be very small, resulting in slow
convergence. Increasing ˛’s value accelerates convergence, but risks overshooting
the solution. The ideal value is best established experimentally; good results are
often achieved with ˛ D 2.

No negative weights? Let us point out one fundamental difference between
WINNOW and perceptron learning. Since the (originally positive) weights are
always multiplied by ˛ or 1=˛, none of them can ever drop to zero, let alone
become negative. This means that, unless appropriate measures have been taken,
a whole class of linear classifiers will thus be eliminitated: those with negative or
zero coefficients.

The shortcoming is removed if we represent each of the original attributes by a
pair of “new” attributes: one copying the original attribute’s value, the other having
the opposite value. In a domain that originally had n attributes, the total number
of attributes will then be 2n, the value of the .n C i/th attribute, xnCi, being the
opposite of xi. For instance, suppose that an example is described by the following
three attribute values:

x1 D 1; x2 D 0; x3 D 1

In the new representation, the same example will be described by six attributes:

x1 D 1; x2 D 0; x3 D 1; x4 D 0; x5 D 1; x6 D 0;

For these, WINNOW will have to find six weights, w1; : : : ; w6, or perhaps seven,
if w0 is used.

Comparing it with perceptron. In comparison with perceptron learning, WIN-
NOW appears to converge faster in domains with irrelevant attributes whose weights
are quickly reduced to small values. However, neither WINNOW nor perceptron
learning is able to recognize (and eliminate) redundant attributes. In the event of
two attributes always having the same value, xi D xj, the learning process will
converge to the same weight for both, making them look equally important even
though it is clear that only one of them is strictly needed.

2Similarly as in the case of perceptron learning, we could have considered the 0-th attribute, x0 D
1, whose initial weight is w0 D 1.

76 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If you
have problems, return to the corresponding place in the preceding text.

• What formula is used by the weight-updating mechanism in WINNOW? Why is
the formula called multiplicative?

• What is the shortcoming of multiplying or dividing the weights by ˛ > 1? How
is the situation remedied?

• Summarize the differences between WINNOW and perceptron learning.

4.4 Domains with More than Two Classes

Having only two sides, a hyperplane may separate the positive examples from
the negative—and that’s it; when it comes to multi-class domains, the tool seems
helpless. Or is it?

Groups of binary classifiers. What is beyond the powers of an individual can
be solved by a team. One approach that is sometimes employed, in this context,
is illustrated by Fig. 4.4. The “team” consists of four binary classifiers, each
specializing on one of the four classes, C1 through C4. Ideally, the presentation
of an example from Ci results in the i-th classifier returning hi.x/ D 1, and all the
other classifiers returning hj.x/ D 0, assuming, again, that each class can be linearly
separated from the other classes.

Modifying the training data. To exhibit this commendable behavior, however,
the individual classifiers need to be properly trained. Here, one can rely on the
algorithms that have been described in the previous sections. The only additional
“trick” is that the engineer needs to modify the training data accordingly.

Table 4.5 illustrates the principle. On the left is the original training set, T , where
each example is labeled with one of the four classes. On the right are four “derived”
sets, T1 through T4, each consisting of the same six examples which, however, have

Fig. 4.4 Converting a 4-class
problem into four 2-class
problems

attribute vector

C2 C3 C4C1

4.4 Domains with More than Two Classes 77

Table 4.5 A 4-class training set, T , converted to 4 binary training sets, T1 : : : T4

T T1 T2 T3 T4

e1 C2 e1 0 e1 1 e1 0 e1 0

e2 C1 e2 1 e2 0 e2 0 e2 0

e3 C3 e3 0 e3 0 e3 1 e3 0

e4 C4 e4 0 e4 0 e4 0 e4 1

e5 C2 e5 0 e5 1 e5 0 e5 0

e6 C4 e6 0 e6 0 e6 0 e6 1

been re-labeled so that an example that in the original set, T , represents class Ci is
labeled with c.x/ D 1 in Ti and with c.x/ D 0 in all other sets.

The need for a master classifier. The training sets, Ti, are presented to a learner
which induces from each of them a linear classifier dedicated to the corresponding
class. This is not the end of the story, though. The training examples may poorly
represent the classes, they may be corrupted by noise, and even the requirement
of linear separability may not be satisfied. As a result of these complications, the
induced classifiers may “overlap” each other in the sense that two or more of them
will respond to the same example, x, with hi.x/ D 1, leaving the wrong impression
that x belongs to more than one class. This is why a “master classifier” is needed,
its task being to choose from the returned classes the one most likely to be correct.

This is not difficult. The reader will recall that a linear classifier labels x as
positive if the weighted sum of x’s attribute values exceeds zero: †n

iD0wixi > 0. This
sum (usually different in each of the classifiers that have returned hi.x/ D 1) can
be interpreted as the amount of evidence in support of the corresponding class. The
master classifier then simply gives preference to the class whose binary classifier
delivered the highest †n

iD0wixi. The principle is illustrated in Table 4.6 where two
classifiers, C2 and C3, return h.x/ D 1. From these, the master classifier chooses C2

because its weighted sum is greater than that of C3.

A practical limitation. A little disclaimer is in place here. This method of
employing linear classifiers in multi-class domains is reliable only if the number of
classes is moderate, say, 3–5. In domains with many classes, the “derived” training
sets, Ti, will be imbalanced in the sense that most examples will have c.x/ D 0 and
only a few c.x/ D 1. As we will learn in Sect. 10.2, imbalanced training sets tend to
cause difficulties in noisy domains unless appropriate measures have been taken.

78 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Table 4.6 Illustration of the
master classifier’s behavior:
choosing the example’s class
from several candidates

Suppose we have four binary classifiers (the i-th classifier
used for the i-th class) defined by the weights listed in the
table below. How shall the master classifier label example
x D .x1; x2; x3; x4/ D .1; 1; 1; 0/?

Classifier

Class w0 w1 w2 w3 w4 †n
iD0wixi h.x/

C1 �0:5 2 0.5 �1 �5 1 0

C2 0.5 1.5 �1 3 1 4 1

C3 1 �2 4 �1 0.5 2 1

C4 �2 1 1 �3 �1 �3 0

The right-most column tells us that two classifiers, C2 and
C3, return h.x/ D 1. From these, C2 is supported by the
higher value of †n

iD0wixi. Therefore, the master classifier
labels x with C2.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• When trying to use N linear classifiers in an N-class domain, how will you create
the training sets, Ti, for the induction of the individual binary classifiers?

• How can an example’s class be decided upon in a situation where two or more
binary classifiers return h.x/ D 1?

4.5 Polynomial Classifiers

It is now time to abandon the requirement that the positive examples be linearly
separable from the negative; because fairly often, they are not. Not only can the
linear separability be destroyed by noise. The very shape of the region occupied
by one of the classes can make it impossible to separate it by a linear decision
surface. Thus in the training set shown in Fig. 4.5, no linear classifier ever succeeds
in separating the two classes, a feat that can only be accomplished by a non-linear
curve such as the parabola shown in the picture.

Non-linear classifiers. The point having been made, we have to ask how to
induce the more sophisticated non-linear classifiers. There is no doubt that they
exist. For instance, mathematicians tell us that any n-dimensional function can be
approximated to arbitrary precision with a polynomial of a sufficiently high order.
Let us therefore take a look at how to use—and induce—the polynomials for our
classification purposes.

4.5 Polynomial Classifiers 79

Fig. 4.5 In some domains,
no linear classifier can
separate the positive
examples from the negative.
Only a non-linear classifier
can do so

x2

x1

−

− +

+

Polynomials of the second order. The good news is that the coefficients of
polynomials can be induced by the same techniques that we have used for linear
classifiers. Let us explain how.

For the sake of clarity, we will begin by constraining ourselves to simple domains
with only two boolean attributes, x1 and x2. The second-order polynomial function
is then defined as follows:

w0 C w1x1 C w2x2 C w3x2
1 C w4x1x2 C w5x2

2 D 0 (4.12)

The expression on the left is a sum of terms that all have one thing in common:
a weight, wi, that multiplies a product xk

1xl
2. In the first term, we have k C l D 0,

because w0x0
1x0

2 D w0; next come the terms with k C l D 1, concretely, w1x1
1x0

2 D
w1x1 and w2x0

1x1
2 D w1x2; and the sequence ends with the three terms that have

k C l D 2: specifically, w3x2
1, w4x1

1x1
2, and w5x2

2. The thing to remember is that the
expansion of the second-order polynomial stops when the sum of the exponents
reaches 2.

Of course, some of the weights can be wi D 0, rendering the corresponding terms
“invisible” such as in 7 C 2x1x2 C 3x2

2 where the coefficients of x1; x2; and x2
1 are

zero.

Polynomials of the r-th order. More generally, the r-th order polynomial (still in
a two-dimensional domain) will consist of a sum of weighted terms, wixk

1xl
2, such

that k C l D j, where j D 0; 1; : : : r.
The reader will easily make the next step and write down the general formula

that defines the r-th order polynomial for domains with more than two attributes.
A hint: the sum of the exponents in any single term never exceeds r.

Converting them to linear classifiers. Whatever the polynomial’s order, and what-
ever the number of attributes, the task for machine learning is to find weights that
make it possible to separate the positive examples from the negative. The seemingly
unfortunate circumstance that the terms are non-linear (the sum of the exponents
sometimes exceeds 1) is easily removed by multipliers, devices that return the

80 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

logical conjunction of inputs: 1 if all inputs are 1; and 0 if at least one input is
0. With their help, we can replace each product of attributes with a new attribute,

The second-order polynomial function over three attributes is defined by the
following function:

0 D w0 C w1x1 C w2x2 C w3x3 C w4x2
1 C w5x1x2 C w6x1x3

Cw7x2
2 C w8x2x3 C w9x2

3

Using the multipliers, we obtain the following:

0 D w0 C w1z1 C w2z2 C w3z3 C w4z4 C w5z5 C w6z6 C w7z7 C w8z8 C w9z9

Below is the schema of the whole “device” with multipliers. Before reaching the
linear classifier, each signal zi is multiplied by the corresponding weight, wi.

1

z1
z2
z3

z4

z5

z6

z7

z8

z9

linear classifier

h

x3

x2

x1

x3

x1
x1

x1
x2

x1

x2
x2

x2
x3

x3
x3

Fig. 4.6 A polynomial classifier can be converted into a linear classifier with the help of
multipliers that pre-process the data

zi, and thus re-write Eq. 4.12 in the following way:

w0 C w1z1 C w2z2 C w3z3 C w4z4 C w5z5 D 0 (4.13)

4.6 Specific Aspects of Polynomial Classifiers 81

This means, for instance, that z3 D x2
1 and z4 D x1 � x2. Note that this “trick” has

transformed the originally nonlinear problem with two attributes, x1 and x2, into a
linear problem with five newly created attributes, z1 through z5.

Figure 4.6 illustrates the situation where a second-order polynomial is used in a
domain with three attributes.

Since the values of zi in each example are known, the weights can be obtained
without any difficulties using perceptron learning or WINNOW. Of course, we must
not forget that these techniques will find the solution only if the polynomial of the
chosen order is indeed capable of separating the two classes.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• When do we need non-linear classifiers? Specifically, what speaks in favor of
polynomial classifiers?

• Write down the mathematical expression that defines a polynomial classifier.
What “trick” allows us to use here the same learning techniques that were used
in the case of linear classifiers?

4.6 Specific Aspects of Polynomial Classifiers

To be able to use a machine-learning technique with success, the engineer must
understand not only its strengths, but also its limitations, shortcomings, and pitfalls.
In the case of polynomial classifiers, there are a few that deserve our attention. Let
us briefly discuss them.

Overfitting. Polynomial classifiers tend to overfit noisy training data. Since the
problem of overfitting is encountered also in other machine-learning paradigms, we
have to discuss its essence in some detail. For the sake of clarity, we will abandon
the requirement that all attributes should be boolean; instead, we will rely on two-
dimensional continuous domains that are easy to visualize.

The eight training examples in Fig. 4.7 fall into two groups. In one of them,
all examples are positive; in the other, all save one are negative. Two attempts at
separating the two classes are made. The one on the left is content with a linear
classifier, shrugging off the minor inconvenience that one training example remains
misclassified. The one on the right resorts to a polynomial classifier in an attempt to
avoid any error being make on the training set.

An inevitable trade-off. Which of the two is to be preferred? This is not an easy
question. On the one hand, the two classes may be linearly separable, and the only
cause for one positive example to be found in the negative region is class-label noise.
If this is the case, the single error made by the linear classifier on the training set is

82 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

x1

x2

x1

x2

Fig. 4.7 The two classes are linearly separable, but noise has caused one negative example to
be mislabeled as positive. The high-order polynomial on the right overfits the data, ignoring the
possibility of noise

inconsequential, whereas the polynomial, cutting deep into the negative area, will
misclassify examples that find themselves on the wrong side of the curve. On the
other hand, there is also the chance that the outlier does represent some legitimate,
even if rare, aspect of the positive class. In this event, using the polynomial will be
justified. On the whole, however, the assumption that the single outlier is nothing
but noise is more likely to be correct than the “special-aspect” alternative.

A realistic training set will contain not one, but quite a few, perhaps many
examples that seem to find themselves in the wrong part of the instance space. And
the inter-class boundary that our classifier attempts to model may indeed be curved,
though how much curved is anybody’s guess. The engineer may lay aside the linear
classifier as too crude an approximation, and opt instead for the greater flexibility
offered by the polynomials. This said, a very-high-order polynomial will avoid any
error even in a very noisy training set—and then fail miserably on future data. The
ideal solution is often somewhere between the extremes of linear classifiers and
high-order polynomials. The best choice can be determined experimentally.

The number of weights. The total number of the weights to be trained depends
on the length of the attribute vector, and on the order of the polynomial. A simple
analysis reveals that, in the case of n attributes and the r-th order polynomial, the
number is determined by the following combinatorial expression:

NW D
�

n C r
r

�
(4.14)

Of course, NW will be impractically high for large values of n. For instance, even
for the relatively modest case of n D 100 attributes and a polynomial’s order r D 3,
the number of weights to be trained is NW D 161;700. The computational costs thus
incurred are not insurmountable for today’s computers. What is worse is the danger

4.7 Numerical Domains and Support Vector Machines 83

of overfitting noisy training data; the polynomial is simply too flexible. The next
paragraphs will tell us how much flexible.

Capacity. The trivial domain in Fig. 4.1 consisted of four examples. Given that
each of them can be labeled as either positive or negative, we have 24 D 16 different
ways of assigning labels to this training set. Of these sixteen, only two represent a
situation where the two classes cannot be linearly separated—in this domain, linear
inseparability is a rare event. But how typical is this situation in the more general
case of m examples described by n attributes’? What are the chances that a random
labeling of the examples will result in linearly separable classes?

Mathematicians have found a simple guideline to be used in domains where n
is “reasonably high” (say, ten or more attributes): if the number of examples, m, is
less than twice the number of attributes (m < 2n), the probability that a random
distribution of the two labels will result in linear separability is close to 100 %.
Conversely, this probability is almost zero when m > 2n. In this sense, “the capacity
of a linear classifier is twice the number of attributes.”

This result applies also to polynomial classifiers. The role of attributes is here
played by the terms, zi, obtained by the multipliers. Their number, NW , is obtained
by Eq. 4.14. We have seen that NW can be quite high—and this makes the capacity
high, too. In the case of n D 100 and r D 3, the number of weights is 161;700.
This means that the 3rd-order polynomial can separate the two classes (regardless
of noise) as long as the number of examples is less than 323;400.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Elaborate on the term, “overfitting” and explain why this phenomenon (and its
consequences) is in polynomial classifiers difficult to avoid.

• What is the upper bound on the number of weights to be trained in a polynomial
of the r-th order in a domain that has n attributes?

• What is the capacity of the linear or polynomial classifier? What does capacity
tell us about linear separability?

4.7 Numerical Domains and Support Vector Machines

Now that we have realized that polynomials do not call for new machine-learning
algorithms, we can return to linear classifiers, a topic we have not yet exhausted.
Time has come to abandon our self-imposed restriction to boolean attributes, and to
start considering also the possibility of the attributes being continuous. Can we then
still rely on the two training algorithms described above?

84 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Fig. 4.8 Linearly separable
classes can be separated in
infinitely many different
ways. Question is, which of
the classifiers that are perfect
on the training set will do best
on future data

x1

x2

Perceptron in numeric domains. In the case of perceptron learning, the answer is
easy: yes, the same weight-modification formula can be used. Practical experience
shows, however, that it is good to make all attribute values fall into the unit interval,
xi 2 Œ0; 1�.

Let us repeat here, for the reader’s convenience, the weight-adjusting formula:

wi D wi C �Œc.x/ � h.x/�xi (4.15)

While the learning rate, �, and the difference between the real and the hypothe-
sized class label, Œc.x/ � h.x/�, have the same meaning and impact as before, what
has changed is the role of xi. In the case of boolean attributes, the value of xi decided
whether or not the weight should change. Here, however, it rather says how much
the weight should be affected: more in the case of higher attribute values.

The multiplicative rule. In the case of WINNOW, too, essentially the same
learning formula can be used as in the binary-attributes case:

wi D wi˛
c.x/�h.x/ (4.16)

This said, one has to be careful about when to apply the formula. Previously, one
modified only the weights of attributes with xi D 1. Now that the attribute values
come from a continuous domain, some modification is needed. One possibility is
the following rule:

Update weight wi only if the value of the i-th attribute is xi � 0:5.

Let us remark that both of these algorithms (perceptron learning and WINNOW)
usually find a relatively low-error solution even if the two classes are not linearly
separable—for instance, in the presence of noise.

Which linear classifier is better? At this point, however, another important
question needs to be discussed. Figure 4.8 shows three linear classifiers, each

4.7 Numerical Domains and Support Vector Machines 85

Fig. 4.9 The technique of the
support vector machine looks
for a separating hyperplane
that has the maximum margin

x1

x2

margin

perfectly separating the positive training examples from the negative. Knowing that
“good behavior” on the training set does not guarantee high performance in the
future, we have to ask: which of the three is likely to score best on future examples?

The support vector machine. Mathematicians who studied this problem found an
answer. When we take a look at Fig. 4.8, we can see that the dotted-line classifier
all but touches the nearest examples on either side; we say that its margin is small.
Conversely, the margin is greater in the case of the solid-line classifier: the nearest
positive example on one side of the line, and the nearest example on the other of
the line are much farther than in the case of the other classifier. As it turns out, the
greater the margin, the higher the chances that the classifier will do well on future
data.

The technique of the support vector machines is illustrated by Fig. 4.9. The
solid line is the best classifier, The graph shows also two thinner lines, parallel
to the classifier, each at the same distance. The reader can see they pass through
the examples nearest to the classifier. These examples are called support vectors
(because, after all, each example is a vector of attributes).

The task for machine learning is to identify the support vectors that maximize the
margin. The concrete mechanisms for finding the optimum set of support vectors
exceed the ambition of an introductory text. The simplest technique would simply
try all possible n-tuples of examples, and measure the margin implied by each such
choice. This, however, is unrealistic in domains with many examples. Most of the
time, therefore, engineers rely on some of the many software packages available for
free on the internet.

86 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Can perceptron learning and WINNOW be used in numeric domains? How?
• Given that there are infinitely many linear classifiers capable of separating the

positive examples from the negative (assuming such separation exists), which of
them can be expected to give the best results on future data?

• What is a support vector? What is meant by the margin to be maximized?

4.8 Summary and Historical Remarks

• Linear and polynomial classifiers define a decision surface that separates the
positive examples from the negative. Specifically, linear classifiers label the
examples according to the sign of the following expression:

w0 C w1x1 C : : : wnxn

The concrete behavior is determined by the weights, wi. The task for machine
learning is to find appropriate values for these weights.

• The learning techniques from this chapter rely on the principle of “learning from
mistakes.” The training examples are presented, one by one, to the learner. Each
time the learner misclassifies an example, the weights are modified. When the
entire training set has been presented, one epoch has been completed. Usually,
several epochs are needed.

• Two weight-modification techniques were considered here: the additive rule of
perceptron learning, and the multiplicative rule of WINNOW.

• In domains with more than two classes, one can consider the use of a specialized
classifier for each class. A “master classifier” then chooses the class whose
classifier had the highest value of †n

iD0wixi.
• In domains with non-linear class boundaries, polynomial classifiers can some-

times be used. A second-order polynomial in a two-dimensional domain is
defined by the following expression:

w0 C w1x1 C w2x2 C w3x2
1 C w4x1x2 C w5x2

2

• The weights of the polynomial can be found by the same learning algorithms as
in the case of linear classifiers, provided that the nonlinear terms (e.g., x1x2) have
been replaced (with the help of multipliers) by newly created attributes such as
z3 D x2

1 or z4 D x1x2.
• Polynomial classifiers are prone to overfit noisy training data. This is mainly due

to the high flexibility caused by the very high number of trainable weights which.

4.9 Solidify Your Knowledge 87

• The potentially best class-separating hyperplane (among the infinitely many
candidates) is identified by the technique of the support vector machines (SVM)
that seek to maximize the distance of the nearest positive and the nearest negative
example from the hyperplane.

Historical Remarks. The principle of perceptron learning was developed by
Rosenblatt ([68], 1958), whereas WINNOW was proposed and analyzed by
Littlestone [47]. The question of the capacity of linear and polynomial classifiers
was analyzed by Cover [14]. The principle of Support Vector Machines was invented
by Vapnik [80] as one of the consequences of the Computational Learning Theory
which will be the subject of Chap. 7.

4.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. Write down equations for linear classifiers to implement the following
functions:

• At least two out of the boolean attributes x1; : : : ; x5 are true
• At least three out of the boolean attributes x1; : : : ; x6 are true, and at least one

of them is false.

2. Return to the examples from Table 4.2. Hand-simulate the perceptron learning
algorithm’s procedure, starting from a different initial set of weights than the one
used in the table. Try also a different learning rate.

3. Repeat the same exercise, this time using WINNOW. Do not forget to introduce
the additional “attributes” for what in perceptrons were the negative weights.

4. Write down the equation that defines a third-order polynomial in two dimensions.
How many multipliers (each with up to three inputs) would be needed if we
wanted to train the weights using the perceptron learning algorithm?

88 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Give it Some Thought

1. How can induction of linear classifiers be used to identify irrelevant attributes?
Hint: try to run the learning algorithm on different subsets of the attributes, and
then observe the error rate achieved after a fixed number of epochs.

2. Explain in what way it is true that the 1-NN classifier applied to a pair of
examples (one positive, the other negative) in a plane defines a linear classifier.
Invent a machine learning algorithm that uses this observation for the induction
of linear classifiers. Generalize the procedure to n-dimensional domains.

3. When is a linear classifier likely to lead to better classification performance on
independent testing examples than a polynomial classifier?

4. Sometimes, a linearly separable domain becomes linearly non-separable on
account of the class-label noise. Think of a technique capable of removing such
noisy examples. Hint: you may rely on an idea we have already encountered in
the field of k-NN classifiers.

Computer Assignments

1. Implement the perceptron learning algorithm and run it on the following training
set where 6 examples (three positive and three negative) are described by 4
attributes:

x1 x2 x3 x4 Class

1 1 1 0 pos
0 0 0 0 pos
1 1 0 1 pos
1 1 0 0 neg
0 1 0 1 neg
0 0 0 1 neg

Observe that the linear classifier fails to reach zero error rate because the two
classes are not linearly separable.

2. Create a training set consisting of 20 examples described by five binary
attributes, x1; : : : ; x5. Examples in which at least three attributes have values
xi D 1 are labeled as positive, all other examples are labeled as negative. Using
this training set as input, induce a linear classifier using perceptron learning.
Experiment with different values of the learning rate, �. Plot a function where
the horizontal axis represents �, and the vertical axis represents the number of
example-presentations needed for the classifier to correctly classify all training
examples. Discuss the results.

4.9 Solidify Your Knowledge 89

3. Use the same domain as in the previous assignment (five boolean attributes, and
the same definition of the positive class). Add to each example N additional
boolean attributes whose values are determined by a random-number generator.
Vary N from 1 through 20. Observe how the number of example-presentations
needed to achieve the zero error rate depends on N.

4. Again, use the same domain, but add attribute noise by changing the values of
randomly selected examples (while leaving class labels unchanged). Observe
what minimum error rate can then be achieved.

5. Repeat the last three assignments for different sizes of the training set, evaluat-
ing the results on (always the same) testing set of examples that have not been
seen during learning.

6. Repeat the last four assignments, using WINNOW instead of the perceptron
learning. Compare the results in terms of the incurred computational costs.
These costs can be measured by the number of epochs needed to converge to
the zero error rate on the training set.

7. Define a domain with three numeric attributes with values from the unit interval,
Œ0; 1�. Generate 100 training examples, labeling as positive those for which the
expression 1� x1 C x2C x3 is positive. Use the “perceptron learning algorithm”
modified so that the following versions of the weight-updating rule are used:

(a) wi D wi C �Œc.x/ � h.x/�xi

(b) wi D wi C �Œc.x/ � h.x/�

(c) wi D wi C �Œc.x/ �P
wixi�xi

(d) wi D wi C �Œc.x/ �P
wixi�

Will all of them converge to zero error rate on the training set? Compare the
speed of conversion.

8. Create a training set where each example is described by six boolean attributes,
xi; : : : ; x6. Label each example with one of the four classes defined as follows:

(a) C1: at least five attributes have xi D 1.
(b) C2: three or four attributes have xi D 1.
(c) C3: two attributes have xi D 1.
(d) C4: one attribute has xi D 1.

Use perceptron learning, applied in parallel to each of the four classes.
As a variation, use different numbers of irrelevant attributes, varying their

number from 0 to 20. See if the zero error rate on the training set can be
achieved.

Record the number of false positives and the number of false negatives
observed on an independent testing set.

9. Design an experiment showing that the performance of K binary classifiers,
connected in parallel as in Fig. 4.4, will decrease if we increase the number of
classes. How much is this observation pronounced in the presence of noise?

90 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

10. Run induction of linear classifiers on selected boolean domains from the UCI
repository3 and compare the results.

11. Experimenting with selected domains from the UCI repository, observe the
impact of the learning rate, �, on the convergence speed of the perceptron
learning algorithm.

12. Compare the behavior of linear and polynomial classifiers. Observe how the
former wins in simple domains, and the latter in highly non-linear domains.

3www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 5
Artificial Neural Networks

Polynomial classifiers can model decision surfaces of any shape; and yet their
practical utility is limited because of the easiness with which they overfit noisy
training data, and because of the sometimes impractically high number of trainable
parameters. Much more popular are artificial neural networks where many simple
units, called neurons, are interconnected by weighted links into larger structures of
remarkably high performance.

The field of neural networks is too rich to be covered in the space we have
at our disposal. We will therefore provide only the basic information about two
popular types: multilayer perceptrons and radial-basis function networks. The
chapter describes how each of them classifies examples, and then describes some
elementary mechanisms to induce them from training data.

5.1 Multilayer Perceptrons as Classifiers

Throughout this chapter, we will suppose that all attributes are continuous. More-
over, it is practical (though not strictly necessary) to assume that they have been
normalized so that their values always fall in the interval Œ�1; 1�.

Neurons. The function of a neuron, the basic unit of a multilayer perceptron, is
quite simple. A weighted sum of signals arriving at the input is subjected to a
transfer function. Several different transfer functions can be used; the one that is
preferred in this chapter is the so-called sigmoid, defined by the following formula
where † is the weighted sum of inputs:

f .†/ D 1

1 C e�†
(5.1)

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_5

91

92 5 Artificial Neural Networks

Fig. 5.1 A popular transfer
function: the sigmoid

1

0.5

Σ

 w x Σ ii

i if(w x)

Figure 5.1 shows the curve representing the transfer function. The reader can
see that f .†/ grows monotonically with the increasing value of † but is destined
never to leave the open interval .0; 1/ because f .�1/ D 0, and f .1/ D 1. The
vertical axis is intersected at f(0) = 0.5. We will assume that each neuron has the
same transfer function.

Multilayer perceptron. The neural network in Fig. 5.2 is known as the multilayer
perceptron. The neurons, represented by ovals, are arranged in the output layer
and the hidden layer.1 For simplicity, we will consider only networks with a single
hidden layer while remembering that it is quite common to employ two such layers,
even three, though rarely more than that.

While there is no communication between neurons of the same layer, adjacent
layers are fully interconnected. Importantly, each neuron-to-neuron link is associ-
ated with a weight. The weight of the link from the j-th hidden neuron to the i-th
output neuron is denoted as w.1/

ji , and the weight of the link from the k-th attribute

to the j-th hidden neuron as w.2/
kj . Note that the first index always refers to the link’s

“beginning”; the second, to its “end.”

Forward propagation. When we present the network with an example, x D
.x1; : : : ; xn/, its attribute values are passed along the links to the neurons. The values
xk being multiplied by the weights associated with the links, the j-th hidden neuron
receives as input the weighted sum,

P
k w.2/

kj xk, and subjects this sum to the sigmoid,

f .
P

k w.2/
kj xk/. The i-th output neuron then receives the weighted sum of the values

coming from the hidden neurons and, again, subjects it to the transfer function. This
is how the i-th output is obtained. The process of propagating in this manner the
attribute values from the network’s input to its output is called forward propagation.

Each class is assigned its own output neuron, and the value returned by the i-th
output neuron is interpreted as the amount of evidence in support of the i-th class.
For instance, if the values obtained at three output neurons are y D .0:2; 0:6; 0:1/,
the classifier will label the given example with the second class because 0.6 is
greater than both 0.2 and 0.1.

1When we view the network from above, the hidden layer is obscured by the output layer.

5.1 Multilayer Perceptrons as Classifiers 93

x x x x

y y

. . .

. . .

1

1

2 3 4

n

output neurons

input signals

hidden neurons

output signals

Fig. 5.2 An example neural network consisting of two interconnected layers

In essence, this kind of two-layer perceptron calculates the following formula
where f is the sigmoid transfer function (see Eq. 5.1) employed by the neurons; w.2/

kj

and w.1/
ji are the links leading to the hidden and output layers, respectively, and xk

are the attribute values of the presented example:

yi D f .
X

j

w.1/
ji f .

X

k

w.2/
kj xk// (5.2)

A numeric example. The principle of forward propagation is illustrated by the
numeric example in Table 5.1. At the beginning, the attribute vector x is presented.
Before reaching the neurons in the hidden layer, the attribute values are multiplied
by the corresponding weights, and the weighted sums are passed on to the sigmoid
functions. The results (h1 D 0:32 and h2 D 0:54) are then multiplied by the next
layer of weights, and forwarded to the output neurons where they are again subjected
to the sigmoid function. This is how the two output values, y1 D 0:66 and y2 D 0:45,
have been obtained. The evidence supporting the class of the “left” output neuron
is higher than the evidence supporting the class of the “right” output neuron. The
classifier therefore chooses the left neuron’s class.

Universal classifier. Mathematicians have been able to prove that, with the right
choice of weights, and with the right number of the hidden neurons, Eq. 5.2 can
approximate with arbitrary accuracy any realistic function. The consequence of this
so-called universality theorem is that the multilayer perceptron can in principle be
used to address just about any classification problem. What the theorem does not
tell us, though, is how many hidden neurons are needed, and what the individual
weight values should be. In other words, we know that the solution exists, yet there
is no guarantee we will ever find it.

94 5 Artificial Neural Networks

Table 5.1 Example of forward propagation in a multilayer perceptron

Task. Forward-propagate x D .x1; x2/ D .0:8; 0:1/ through the network below.

0.7
0.5

1.0
0.1

x2=0.1

0.9
0.3 0.5

0.1

y1=0.66 y2=0.45

h1=0.32 h2=0.54

x1=0.8

Solution.

inputs of hidden-layer neurons:

z.2/
1 D 0:8 � .�1:0/ C 0:1 � 0:5 D �0:75

z.2/
2 D 0:8 � 0:1 C 0:1 � 0:7 D 0:15

outputs of hidden-layer neurons:

h1 D f .z.2/
1 / D 1

1Ce�.�0:75/ D 0:32

h2 D f .z.2/
2 / D 1

1Ce�0:15 D 0:54

inputs of output-layer neurons:

z.1/
1 D 0:54 � 0:9 C 0:32 � 0:5 D 0:65

z.1/
2 D 0:54 � .�0:3/ C 0:32 � .�0:1/ D �0:19

outputs of output-layer neurons:

y1 D f .z.1/
1 / D 1

1Ce�0:65 D 0:66

y2 D f .z.1/
2 / D 1

1Ce�.�0:19/ D 0:45

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

5.2 Neural Network’s Error 95

• Explain how the example described by a vector of continuous attributes is
forward-propagated through the multilayer perceptron. How is the network’s
output interpreted?

• What is the transfer function? Write down the formula defining the sigmoid
transfer function, and describe its shape.

• What is the universality theorem? What does it tell us, and what does it not
tell us?

5.2 Neural Network’s Error

Let us defer to a later chapter the explanation of a technique to train the multilayer
perceptron (to find its weights). Before we can address this issue, it is necessary to
prepare the soil by taking a closer look at the method of classification, and at the
way the accuracy of this classification is evaluated.

Error rate. Suppose a training example, x, with known class, c.x/, has been pre-
sented to an existing version of the multilayer perceptron. The forward-propagation
step establishes the label, h.x/. If h.x/ ¤ c.x/, an error has been made. This may
happen to some other examples, too, and we want to know how often this happens.
We want to know the error rate—which is for a given set of examples obtained
by dividing the number of errors by the number of examples. For instance, if the
classifier misclassifies 30 out of 200 examples, the error rate is 30=200 D 0:15.

This, however, fails to give the full picture of the network’s classification
performance. What the error rate neglects to reflect is the sigmoid function’s ability
to measure the size of each error.

An example will clarify the point. Suppose we have two different networks to
choose from, each with three output neurons corresponding to classes denoted by
C1; C2; and C3. Let us assume that, for some example x, the first network outputs
y1.x/ D .0:5; 0:2; 0:9/ and the second, y2.x/ D .0:6; 0:6; 0:7/. This means that
both will label x with the third class, h1.x/ D h2.x/ D C3. If the correct answer
is c.x/ D C2, both have erred, but the error does not appear to be the same. The
reader will have noticed that the first network was “very sure” about the class being
C3 (because 0.9 is clearly greater than the other two outputs, 0.5 and 0.2), whereas
the second network was less certain, the differences of the output values (0.6, 0.6,
and 0.7) being so small as to give rise to the suspicion that C3 has won merely by
chance. Due to its weaker commitment to the incorrect class, the second network is
somehow less wrong than the first.

This is the circumstance that can be captured by a more appropriate error
function, the mean square error (MSE).

Target vector. Before proceeding to the definition of the mean square error,
however, we must introduce yet another important concept, the target vector which,
too, depends on the concrete example, x. Let us denote it by t.x/. In a domain with
m classes, the target vector, t.x/ D .t1.x/; : : : ; tm.x//, consists of m binary numbers.

96 5 Artificial Neural Networks

If the example belongs to the i-th class, then ti.x/ D 1 and all other elements in
this vector are tj.x/ D 0 (where j ¤ i). For instance, suppose the existence of three
different classes, C1; C2; and C3, and let x be known to belong to C2. In the ideal
case, the second neuron should output 1, and the two other neurons should output
0.2 The target is therefore t.x/ D .t1; t2; t3/ D .0; 1; 0/.

Mean square error. The mean square error is defined using the differences
between the elements of the output vector and the target vector:

MSE D 1

m

mX

iD1

.ti � yi/
2 (5.3)

When calculating the network’s MSE, we have to establish for each output neuron
the difference between its output and the corresponding element of the target vector.
Note that the terms in the parentheses, .ti�yi/, are squared to make sure that negative
differences are not subtracted from positive ones.

Returning to the example of the two networks mentioned above, if the target
vector is t.x/ D .0; 1; 0/, then these are the mean square errors:

MSE1 D 1
3
Œ.0 � 0:5/2 C .1 � 0:2/2 C .0 � 0:9/2� D 0:57

MSE2 D 1
3
Œ.0 � 0:6/2 C .1 � 0:6/2 C .0 � 0:7/2� D 0:34

As expected, MSE2 < MSE1, which is in line with our intuition that the second
network is “less wrong” on x than the first network.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what sense do we say that the traditional error rate does not provide enough
information about a neural network’s classification accuracy?

• Explain the difference between a neural network’s output, the example’s class,
and the target vector.

• Write down the formulas defining the error rate and the mean square error.

2More precisely, the outputs will only approach 1 and 0 because the sigmoid function is bounded
by the open interval, .0; 1/.

5.3 Backpropagation of Error 97

0
5

10
15

20
25

0

5

10

15

20

25
−8

−6

−4

−2

0

2

4

6

8

1st weight

mean squared error

2nd weight

Fig. 5.3 For a given example, each set of weights implies a certain mean square error. Training
should reduce this error as quickly as possible

5.3 Backpropagation of Error

In the multilayer perceptron, the parameters to affect the network’s behavior are the
sets of weights, w.1/

ji and w.2/
kj . The task for machine learning is to find for these

weights such values that will optimize the network’s classification performance.
Just like in the case of linear classifiers, this is achieved by training. This section is
devoted to one popular technique capable of accomplishing this task.

The general scenario. In principle, the procedure is the same as in the previous
chapter. At the beginning, the weights are initialized to small random numbers, typ-
ically from the interval .�0:1; 0:1/. After this, the training examples are presented,
one by one, and each of them is forward-propagated to the network’s output. The
discrepancy between this output and the example’s target vector then tells us how
to modify the weights (see below). After the weight modification, the next example
is presented. When the last training example has been reached, one epoch has been
completed. In multilayer perceptrons, the number of epochs needed for successful
training is much greater than in the case of linear classifiers: it can be thousands,
tens of thousands, even more.

98 5 Artificial Neural Networks

The gradient descent. Before we proceed to the concrete formulas for weight
adjustment, we need to develop a better understanding of the problem’s nature.
Figure 5.3 will help us. The vertical axis represents the mean square error, expressed
as a function of the network’s weights (plotted along the horizontal axes). For
graphical convenience, we assume that there are only two weights. This, of course,
is unrealistic to say the least. But if we want an instructive example, we simply
cannot afford more dimensions—we can hardly visualize ten dimensions, can we?
The message we want to drive home at this point is that the error function can be
imagined as a kind of a “landscape” whose “valleys” represent the function’s local
minima. The deepest of them is the global minimum, and this is what the training
procedure is, in the ideal case, expected to reach; more specifically, it should find
the set of weights corresponding to the global minimum.

A quick glance at Fig. 5.3 tells us that any pair of weights defines for the given
training example a concrete location on the landscape, typically somewhere on one
of the slopes. Any weight change will then result in different coordinates along the
horizontal axes, and thus a different location on the error function. Where exactly
this new location is, whether “up” or “down” the slope, will depend on how much,
and in what direction, each of the weights has changed. For instance, it may be that
increasing both w1 and w2 by 0.1 will lead only to a minor reduction of the mean
square error; whereas increasing w1 by 0.3 and w2 by 0.1 will reduce it considerably.

In the technique discussed here, we want weight-changes that will bring about the
steepest descent along the error function. Recalling the terminology from Chap. 1,
this is a job for hill-climbing search. The best-known technique used to this end in
multilayer perceptrons is backpropagation of error.

Backpropation of error. The specific weight-adjusting formulas can be derived
from Eq. 5.2 by finding the function’s gradient. However, as this book is meant for
practitioners, and not for mathematicians, we will skip the derivation, and focus
instead on explaining the learning procedure’s behavior.

To begin with, it is reasonable to assume that the individual neurons differ in
their contributions to the overall error. Some of them “spoil the game” more than the
others. If this is the case, the reader will agree that the links leading to these neurons
should undergo greater weight changes than the links leading to less offending
neurons.

Fortunately, each neuron’s amount of “responsibility” for the overall error can
be easily obtained. Generally speaking, the concrete choice of formulas depends on
what transfer function has been used. In the case of the sigmoid (see Eq. 5.1), the
responsibility is calculated as follows:

Output-layer neurons: ı
.1/
i D yi.1 � yi/.ti � yi/

Here, .ti � yi/ is the difference between the i-th output and the corresponding target
value. This difference is multiplied by yi.1 � yi/, a term whose minimum value is
reached when y1 D 0 or yi D 1 (a “strong opinion” as to whether x should or should
not be labeled with the i-th class); the term is maximized when yi D 0:5, in which
case the “opinion” can be deemed neutral. Note that the sign of ı

.1/
i depends only

on .ti � yi/ because yi.1 � yi/ is always positive.

5.3 Backpropagation of Error 99

Table 5.2 Backpropagation of error in a neural network with one hidden layer

1. Present example x to the input layer and propagate it through the network.
2. Let y D .y1; : : : ym/ be the output vector, and let t.x/ D .t1; : : : tm/ be the target vector.
3. For each output neuron, calculate its responsibility, ı

.1/
i , for the network’s error:

ı
.1/
i D yi.1 � yi/.ti � yi/

4. For each hidden neuron, calculate its responsibility, ı
.2/
j , for the network’s error. While doing

so, use the responsibilities, ı
.1/
i , of the output neurons as obtained in the previous step.

ı
.2/
j D hj.1 � hj/

P
i ı

.1/
i wji

5. Update the weights using the following formulas, where � is the learning rate:

output layer: w.1/
ji WD w.1/

ji C �ı
.1/
i hj; hj: the output of the j-th hidden neuron

hidden layer: w.2/
kj WD w.2/

kj C �ı
.2/
j xk; xk: the value of the k-th attribute

6. Unless a termination criterion has been satisfied, return to step 1.

Hidden-layer neurons: ı
.2/
j D hj.1 � hj/

P
i ı

.1/
i wji

The responsibilities of the hidden neurons are calculated by “backpropagating” the
output-neurons’ responsibilities obtained in the previous step. This is the role of the
term

P
i ı

.1/
i wji. Note that each ı

.1/
i (the responsibility of the i-th output neuron) is

multiplied by the weight of the link connecting the i-th output neurons to the j-th
hidden neuron. The weighted sum is multiplied by, hj.1 � hj/, essentially the same
term as the one used in the previous step, except that hj has taken the place of yi.

Weight updates. Now that we know the responsibilities of the individual neurons,
we are ready to update the weights of the links leading to them. Similarly to
perceptron learning, an additive rule is used:

output-layer neurons: w.1/
ji WD w.1/

ji C �ı
.1/
i hj

hidden-layer neurons: w.2/
kj WD w.2/

kj C �ı
.2/
j xk

The extent of weight correction is therefore determined by �ı
.1/
i hj or �ı

.2/
j xk.

Two observations can be made. First, the neurons’ responsibilities, ı
.1/
i or ı

.2/
j , are

multiplied by �, the learning rate which, theoretically speaking, should be selected
from the unit interval, � 2 .0; 1/; however, practical implementations usually rely
on smaller values, typically less then 0:1. Second, the terms are also multiplied by
hj 2 .0; 1/ and xk 2 Œ0; 1�, respectively. The correction is therefore quite small, but
its effect is relative. If the added term’s value is, say, 0.02, then smaller weights,
such as w.1/

ij D 0:01, will be affected more significantly than greater weights such

as w.1/
ij D 1:8.

The whole training procedure is summarized by the pseudocode in Table 5.2. The
reader will benefit also from taking a closer look at the example given in Table 5.3
that provides all the necessary details of how the weights are updated in response to
one training example.

100 5 Artificial Neural Networks

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Why is the training technique called “backpropagation of error”? What is the
rationale behind the need to establish the “neurons’ responsibilities”?

• Discuss the behaviors of the formulas for the calculation of the responsibilities
of the neurons in the individual layers.

• Explain the behaviors of the formulas used to update the weights. Mention some
critical aspects of these formulas.

Table 5.3 Illustration of the backropagation of error

Task. In the neural network below, let the transfer function be f .†/ D 1
1Ce�† . Using

backpropagation of error (with � D 0:1), show how the weights are modified after the
presentation of the following example: Œx; t.x/� D Œ.1; �1/; .1; 0/�

x1 x2

δ δ

δ δ

y1 = 0.65 y2 = 0.59

h2 = 0.5h1 = 0.12

1 11

1
− 1

1

1

− 1

1

1 2

2

(1) (1)

(2)
(2)

1

1

2

2

Forward propagation.

The picture shows the state after forward propagation when the signals leaving the hidden and
the output neurons have been calculated as follows:

• h1 D 1
1Ce�.�2/ D 0:12

h2 D 1
1Ce0 D 0:5

y1 D 1
1Ce�.0:12C0:5/ D 0:65

y2 D 1
1Ce�.�0:12C0:5/ D 0:59

(the solution continues on the next page)

5.4 Special Aspects of Multilayer Perceptrons 101

Backpropagation of error (cont. from the previous page)

The target vector being t.x/ D .1; 0/, and the output vector y D .0:65; 0:59/, the task is to
establish each neuron’s responsibility for the output error. Here are the calculations for the output
neurons:

• ı
.1/
1 D y1.1 � y1/.t1 � y1/ D 0:65.1 � 0:65/.1 � 0:65/ D 0:0796

ı
.1/
2 D y2.1 � y2/.t2 � y2/ D 0:59.1 � 0:59/.0 � 0:59/ D �0:1427

Using these values, we calculate the responsibilities of the hidden neurons. Note that we will
first calculate (and denote by �1 and �2) the weighted sums,

P
i ı

.1/
i w.1/

ij , for each of the two
hidden neurons.

• �1 D ı
.1/
1 w.1/

11 C ı
.1/
2 w.1/

12 D 0:0796 � 1 C .�0:1427/ � .�1/ D 0:2223

�2 D ı
.1/
1 w.1/

21 C ı
.1/
2 w.1/

22 D 0:0796 � 1 C .�0:1427/ � 1 D �0:0631

ı
.2/
1 D h1.1 � h1/�1 D 0:12.1 � 0:12/ � 0:2223 D �0:0235

ı
.2/
2 D h2.1 � h2/�2 D 0:5.1 � 0:5/ � .�0:0631/ D 0:0158

Once the responsibilities are known, the weight modifications are straightforward:

• w.1/
11 D w.1/

11 C �ı
.1/
1 h1 D 1 C 0:1 � 0:0796 � 0:12 D 1:00096

w.1/
21 D w.1/

21 C �ı
.1/
1 h2 D 1 C 0:1 � 0:0796 � 0:5 D 1:00398

w.1/
12 D w.1/

12 C �ı
.1/
2 h1 D �1 C 0:1 � .�0:1427/ � 0:12 D �1:0017

w.1/
22 D w.1/

22 C �ı
.1/
2 h2 D 1 C 0:1 � .�0:1427/ � 0:5 D 0:9929

• w.2/
11 D w.2/

11 C �ı
.2/
1 x1 D �1 C 0:1 � .�0:0235/ � 1 D �1:0024

w.2/
21 D w.2/

21 C �ı
.2/
1 x2 D 1 C 0:1 � .�0:0235/ � .�1/ D 1:0024

w.2/
12 D w.2/

12 C �ı
.2/
2 x1 D 1 C 0:1 � 0:0158 � 1 D 1:0016

w.2/
22 D w.2/

22 C �ı
.2/
2 x2 D 1 C 0:1 � 0:0158 � .�1/ D 0:9984

The weights having been updated, the network is ready for the next example.

5.4 Special Aspects of Multilayer Perceptrons

Limited space prevents us from the detailed investigation of the many features that
make the training of multilayer perceptrons more art than science. To do justice to
all of them, another chapter at least the size of this one would be needed. Still, the
knowledge of certain critical aspects is vital if the training is ever to succeed. Let us
therefore briefly survey some of the more important ones.

Computational costs. Backpropagation of error is computationally expensive.
Upon the presentation of an example, the responsibility of each individual neuron
has to be calculated, and the weights then modified accordingly. This has to be
repeated for all training examples, usually for many epochs. To get an idea of the
real costs of all this, consider a network that is to classify examples described
by 100 attributes, a fairly realistic case. If there are 100 hidden neurons, then the
number of weights in this lower layer is 100 � 100 D 104. This then is the number
of weight-changes after each training example. Note that the upper-layer weights

102 5 Artificial Neural Networks

can be neglected, in these calculations, as long as the number of classes is small.
For instance, in a domain with three classes, the number of upper-layer weights is
100 � 3 D 300 which is much less than 104.

Suppose the training set consists of 105 examples, and suppose that the training
will continue for 104 epochs. In this event, the number of weight-updates will be
104�105�104 D 1013. This looks like a whole lot, but many applications are even
more demanding. Some fairly ingenious methods to make the training more efficient
have therefore been developed. These, however, are outside the scope of our interest
here.

Target values revisited. For simplicity, we have so far assumed that each target
value is either 1 or 0. This may not be the best choice. For one thing, these values
can never be reached by a neuron’s output, yi. Moreover, the weight changes in the
vicinity of these two extremes are miniscule because the calculation of the output-
neuron’s responsibility, ı

.1/
i D yi.1 � yi/.ti � yi/, returns a value very close zero

whenever yi approaches 0 or 1. Finally, we know that the classifier chooses the class
whose output neuron has returned the highest value. The individual neuron’s output
precision therefore does not matter much; more important is the comparison with
the other outputs. If the forward propagation results in y D .0:9; 0:1; 0:2/, then the
example is bound to be labeled with the first class (the one supported by yi D 0:9),
and this decision will not be swayed by minor weight changes.

In view of these arguments, more appropriate values for the target are recom-
mended: for instance, ti.x/ D 0:8 if the example belongs to the i-th class, and ti.x/ D
0:2 if it does not. Suppose there are three classes, C1; C2, and C3, and suppose
c.x/ D C1. In this case, the target vector will be defined as t.x/ D .0:8; 0:2; 0:2/.
Both 0.8 and 0.2 find themselves in regions of relatively high sensitivity of the
sigmoid function, and as such will eliminate most of the concerns raised in the
previous paragraph.

Local minima. Figure 5.3 illustrated the main drawback of the gradient-descent
approach when adopted by multilayer perceptron training. The weights are changed
in a way that guarantees descent along the steepest slope. But once the bottom of a
local minimum has been reached, there is nowhere else to go—which is awkward:
after all, the ultimate goal is to reach the global minimum. Two things are needed
here: first, a mechanism to recognize the local minimum; second, a method to
recover from having fallen into one.

One possibility of timely identification of local minima during training is to keep
track of the mean square error, and to sum it up over the entire training set at the end
of each epoch. Under normal circumstances, this sum tends to go down from one
epoch to another. Once it seems to have reached a plateau where hardly any error
reduction can be observed, the learning process is suspected of being trapped in a
local minimum.

Techniques to overcome this difficulty usually rely on adaptive learning rates (see
below), and on adding new hidden neurons (see Sect. 5.5). Generally speaking, the
problem is less critical in networks with many hidden neurons. Also, local minima
tend to be shallower, and less frequent, if all weights are very small, say, from the
interval .�0:01; 0:01/.

5.4 Special Aspects of Multilayer Perceptrons 103

Adaptive learning rate. While describing backpropagation of error, we assumed
that the user-set learning rate, �, was a constant. This, however, is rarely the case
in realistic applications. Very often, the training starts with a large � which then
gradually decreases in time. The motivation is easy to guess. At the beginning,
greater weight-changes reduce the number of epochs, and they may even help the
learner to “jump over” some local minima. Later on, however, this large � might
lead to “overshooting” the global minimum, and this is why its value should be
decreased. If we express the learning rate as a function of time, �.t/, where t tells
us which epoch the training is now going through, then the following negative-
exponential formula will gradually reduce the learning rate (˛ is the slope of the
negative exponential, and �.0/ is the learning rate’s initial value):

�.t/ D �.0/e�˛t (5.4)

It should perhaps be noted that some advanced weight-changing formulas are
capable of reflecting “current tendencies.” For instance, it is quite popular to
implement “momentum”: if the last two weight changes were both positive (or
both negative), it makes sense to increase the weight-changing step; if, conversely,
a positive change was followed by a negative change (of vice versa), the step should
be reduced so as to prevent overshooting.

Overtraining. Multilayer perceptrons share with polynomial classifiers one
unpleasant property. Theoretically speaking, they are capable of modeling any
decision surface, and this makes them prone to overfitting the training data. The
reader remembers that overfitting typically means perfect classification of noisy
training examples, which is inevitably followed by disappointing performance in
the future.

For small multilayer perceptrons, this problem is not as painful; they are not
flexible enough to overfit. But as the number of hidden neurons increases, the
network gains in flexibility, and overfitting can become a real concern. However,
as we will learn in the next section, this does not mean that we should always prefer
small networks!

There is a simple way to discover whether the training process has reached the
“overfitting” stage. If the training set is big enough, we can afford to leave aside
some 10–20 % examples. These will never be used for backpropation of error; rather,
after each epoch, the sum of mean square errors on these withheld examples is
calculated. At the beginning, the sum will tend to go down, but only up to a certain
moment; then it starts growing again, alerting the engineer that the training has
begun to overfit the data.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

104 5 Artificial Neural Networks

• What do you know about the computational costs of the technique of backprop-
agation of error?

• Explain why this section recommended the values of the target vector to be
chosen from {0.8, 0.2} instead of from {1,0}.

• Discuss the problem of local minima. Why do they represent such a problem for
training? How can we reduce the danger of getting trapped in one?

• What are the benefits of an adaptive learning rate? What formula has been
recommended for it?

• What do you know about the danger that the training of a neural network might
result in overfitting the training data?

5.5 Architectural Issues

So far, one important question has been neglected: how many hidden neurons to
use? If there are only one or two, the network will lack flexibility; not only will it
be unable to model a complicated decision surface; the training of this network will
be prone to get stuck in a local minimum. At the other extreme, using thousands of
neurons will not only increase computational costs because of the need to train so
many neurons. The network will be more flexible than needed. As a result, it will
easily overfit the data. As usual, in situations of this kind, some compromise has to
be found.

Performance versus size. Suppose you decide to run the following experiment.
The available set of preclassified examples is divided into two parts, one for training,
the other for testing. Training is applied to several neural networks, each with a
different number of hidden neurons. The networks are trained until no reduction of
the training-set error rate is observed. After this, the error rate on the testing data is
measured.

Optimum number of neurons. When plotted in a graph, the results will typically
look something like the situation depicted in Fig. 5.4. Here, the horizontal axis
represents the number of hidden neurons; the vertical axis, the error rate measured
on the testing set. Typically, the error rate will be high in the case of very small
networks because these lack adequate flexibility, and also suffer from the danger
of getting stuck in local minima. These two weaknesses can be mitigated if we
increase the number of hidden neurons. As shown in the graph, the larger networks
then exhibit lower error rates. But then, networks that are too large are vulnerable
to overfitting. This is why, after a certain point, the testing-set error starts growing
again (the right tail of the graph).

The precise shape of the curve depends on the complexity of the training data.
Sometimes, the error rate is minimized when the network contains no more than
3–5 hidden neurons. In other domains, however, the minimum is reached only when
hundreds of hidden neurons are used. Yet another case worth mentioning is the situa-
tion where the training examples are completely noise-free. In a domain of this kind,
overfitting may never become an issue, and the curve’s right tail may not grow at all.

5.5 Architectural Issues 105

number of hidden neurons

error rate on testing data

0.4

0.3

0.2

0.1

Fig. 5.4 The error rate measured on testing examples depends on the number of neurons in the
hidden layer

Table 5.4 Gradual search for a good size of the hidden layer

1. At the beginning, use only a few hidden neurons, say, five.
2. Train the network until the mean square error no longer seems to improve.
3. At this moment, add a few (say, three) neurons to the hidden layer, each with randomly

initialized weights, and resume training.
4. Repeat the previous two steps until a termination criterion has been satisfied. For instance,

this can be the case when the new addition does not result in a significant error reduction, or
when the hidden layer exceeds a user-set maximum size.

Search for appropriate size. The scenario described above is too expensive to be
employed in practical applications. After all, we have no idea whether we will need
just a few neurons, or dozens of them, or hundreds, and we may have to re-run the
computationally intensive training algorithm a great many times before being able
to establish the ideal size. Instead, we would like to have at our disposal a technique
capable of finding the appropriate size more efficiently.

One such technique is summarized by the pseudocode in Table 5.4. The idea is to
start with a very small network that only has a few hidden neurons. After each epoch,
the learning algorithm checks the sum of the mean square errors observed on the
training set. This sum of errors is likely to keep decreasing with the growing number
of epochs—but only up to a certain point. When this is reached, the network’s
performance no longer improves, either because of its insufficient flexibility that
makes correct classification impossible, or because it “fell” into a local minimum.
When this is observed, a few more neurons with randomly initialized weights are
added, and the training is resumed.

Usually, the added flexibility makes further error-reduction possible. In the
illustration from Fig. 5.5, the error rate “stalled” on two occasions; adding new
hidden neurons then provided the necessary new flexibility.

106 5 Artificial Neural Networks

number of epochs

MSE

Fig. 5.5 When the training-set mean square error (MSE) does not seem to go down, further
improvement can be achieved by adding new hidden neurons. In this particular case, this has been
done twice

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Discuss the shape of the curve from Fig. 5.4. What are the shortcomings of very
small and very large networks?

• Explain the algorithm that searches for a reasonable size of the hidden layer.
What main difficulties does it face?

5.6 Radial Basis Function Networks

The behavior of an output neuron in multilayer perceptrons is similar to that of
a linear classifier. As such, it may be expected to fare poorly in domains with
classes that are not linearly separable. In the context of the neural networks,
however, this limitation is not necessarily hurtful. Thing is, the original examples
have been transformed by the sigmoid functions in the hidden layer. Consequently,
the neurons in the output layer deal with new “attributes,” those obtained by this
transformation. In the process of training, these transformed examples (the outputs
of the hidden neurons) may become linearly separable so that the output-layer
neurons can separate the two classes without difficulties.

The alternative. There is another way of transforming the attribute values; by
using the so-called radial-basis function, RBR, as the transfer function employed

5.6 Radial Basis Function Networks 107

output layer

y y1 K

gaussian functions

ϕ1
ϕ

ϕ2
m

. . .
1

. . .

x x1 2

Fig. 5.6 Radial-basis function network

by the hidden-layer neurons. This is the case of the network depicted in Fig. 5.6. An
example presented to the input is passed through a set of neurons that each return a
value denoted as 'j.

Radial-basis function, RBF. In essence, this is based on the normal distribution
that we already know from Chap. 2. Suppose that the attributes describing the
examples all fall into some reasonably-sized interval, say Œ�1; 1�. For a given
variance, �2, the following equation defines the n-dimensional gaussian surface
centered at �j D Œ�j1; : : : �jn�:

'j.x/ D expf�†n
iD1.xi � �ji/

2

2�2
g (5.5)

In a sense, 'j.x/ measures similarity between the example vector, x, and the
gaussian center, �j: the larger the distance between the two, the smaller the value
of 'j.x/. If x is to be classified, the network first redescribes it as '.x/ D
Œ'1.x/; : : : ; 'm.x/�. The output signal of the i-th output neuron is then calculated
as yi D Pm

jD0 wji'j.x/, where wji is the weight of the link from the j-th hidden
neuron to the i-th output neuron (the weights w0i are connected to a fixed '0 D 1).
This output signal being interpreted as the amount of evidence supporting the i-th
class, the example is labeled with the i-th class if yi D maxk.yk/.

Output-layer weights. It is relatively simple to establish the output-layer weights,
wij. Since there is only one layer of weights to be trained, we can just as well rely
on the perceptron learning algorithm described in Chap. 4, applying it to examples
whose descriptions have been transformed by the RBF functions in the hidden-layer
neurons.

108 5 Artificial Neural Networks

Gaussian centers. It is a common practice to identify the gaussian centers, �j,
with the individual training examples. If the training set is small, we can simply
use one hidden neuron per training example. In many realistic applications, though,
the training sets are much bigger, which can mean thousands of hidden neurons,
or even more. Realizing that such large networks are unwieldy, many engineers
prefer to select for the centers only a small subset of the training examples. Very
often, a random choice is enough. Another possibility to identify groups of “similar”
vectors, and then use for each RBF neuron the center of one group.

RBF-based support vector machines. The RBF neurons transform the original
example description into a new vector that consists of the values, 	1; : : : 	m. Most
of the time, this transformation increases the chances that the examples thus
transformed will be linearly separable. This makes it possible to subject them to
a linear classifier whose weights are trained by perceptron learning.

This is perhaps an appropriate place to mention that it is also quite popular to
apply to the transformed examples the idea of the support vector machine introduced
in Sect. 4.7. In this event, the resulting machine-learning tool is usually referred to
as RBF-based SVM. Especially in domains where the boundary between the classes
is highly non-linear, this classifier is more powerful than the plain (linear) SVM.

Computational costs. RBF-network training consists of two steps. First, the
centers of the radial-basis functions (the gaussians) are selected. Second, the output-
neurons’ weights are obtained by training. Since there is only one layer to train,
the process is computationally much less intensive than the training in multilayer
perceptrons.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of the radial-basis function network. In what aspects does
it differ from the multilayer perceptron?

• How many weights need to be trained in a radial-basis function network? How
can the training be accomplished?

• What are the possibilities for the construction of the gaussian hidden layer?

5.7 Summary and Historical Remarks

• The basic unit of a multilayer perceptron is a neuron. The neuron accepts a
weighted sum of inputs, and subjects this sum to a transfer function. Several
different transfer functions can be used. The one chosen in this chapter is

5.7 Summary and Historical Remarks 109

the sigmoid defined by the following equation where † is the weighted sum
of inputs:

f .†/ D 1

1 C e�†

Usually, all neurons use the same transfer function.
• The simple version of the multilayer perceptron described in this chapter consists

of one output layer and one hidden layer of neurons. Neurons in adjacent layers
are fully interconnected; but there are no connections between neurons in the
same layer. An example presented to the network’s input is forward-propagated
to its output, implementing, in principle, the following function:

yi D f .
X

j

w.1/
ji f .

X

k

w.2/
kj xk//

Here, w.1/
ji and w.2/

kj are the weights of the output and the hidden neurons,
respectively, and f is the sigmoid function.

• The training of multilayer perceptron is accomplished by a technique known
as backpropagation of error. For each training example, the technique first
establishes each neuron’s individual responsibility for the network’s overall error,
and then updates the weights according to these responsibilities.

Here is how the responsibilities are calculated:

output neurons: ı
.1/
i D yi.1 � yi/.ti � yi/

hidden neurons: ı
.2/
j D hj.1 � hj/

P
i ı

.1/
i wij

Here is how the weights are updated:

output layer: w.1/
ji WD w.1/

ji C �ı
.1/
i hj

hidden layer: w.2/
kj WD w.2/

kj C �ı
.2/
j xk

• Certain aspects of backpropagation by error have been discussed here. Among
these, the most important are computational costs, the existence of local minima,
adaptive learning rate, the danger of overfitting, and the problems of how to
determine the size of the hidden layer.

• An alternative is the radial-basis function (RBF) network. For the transfer
function at the hidden-layer neurons, the gaussian function is used. The output-
layer neurons often use the step function (in principle, the linear classifier), or
simply a linear function of the inputs.

• In RBF networks, each gaussian center is identified with one training example. If
there are too many such examples, a random choice can be made. The gaussian’s
standard deviation is in this simple version set to �2 D 1,

• The output-layer neurons in RBF networks can be trained by perceptrons
learning. Only one layer of weights needs to be trained.

• Sometimes, the idea of support vector machine (SVM) is applied to the outputs
of hidden neurons. The resulting tool is then called the RBF-based SVM.

110 5 Artificial Neural Networks

Historical Remarks. Research of neural networks was famously delayed by the
sceptical views formulated by Minsky and Papert [56]. The pessimism expressed by
such famous authors was probably the main reason why an early version of neural-
network training by Bryson and Ho [11] was largely overlooked, a fate soon to
be shared by an independent successful attempt by Werbos [82]. It was only after
the publication of the groundbreaking volumes by Rumelhart and McClelland [70],
where the algorithm was independently re-invented, that the field of artificial neural
networks became established as a respectable scientific discipline. The gradual
growth of the multilayer perceptron was proposed by Ash [1]. The idea of radial-
basis functions was first cast in the neural-network setting by Broomhead and
Lowe [10].

5.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. Return to the illustration of backpropagation of error in Table 5.3. Using only a
pen, paper, and calculator, repeat the calculations for a slightly different training
example: x D .�1; �1/; t.x/ D .0; 1/.

2. Hand-simulating backpropation of error as in the previous example, repeat the
calculation for the following two cases:

High output-layer weights: w.1/
11 D 3:0; w.1/

12 D �3:0; w.1/
21 D 3:0; w.1/

22 D 3:0

Small output-layer weights: w.1/
11 D 0:3; w.1/

12 D �0:3; w.1/
21 D 0:3; w.1/

22 D 0:3

Observe the relative changes in the weights in each case.
3. Consider a training set containing of 105 examples described by 1,000 attributes.

What will be the computational costs of training a multilayer perceptron with
1,000 hidden neurons and 10 output neurons for 105 epochs?

Give it Some Thought

1. How will you generalize the technique of backpropagation of error so that it can
be used in a multilayer perceptron with more that one hidden layer?

5.8 Solidify Your Knowledge 111

2. Section 5.1 suggested that all attributes should be normalized here to the interval
Œ�1:0; 1:0�. How will the network’s classification and training be affected if the
attributes are not so normalized? (hint: this has something to do with the sigmoid
function)

3. Discuss the similarities and differences of the classification procedures used in
radial-basis functions and in multilayer perceptrons.

4. Compare the advantages and disadvantages of radial-basis function networks in
comparison with multilayer perceptrons.

Computer Assignments

1. Write a program that implements backpropagation of error for a predefined
number of output and hidden neurons. Use a fixed learning rate, �.

2. Apply the program implemented in the previous task to some benchmark
domains from the UCI repository.3 Experiment with different values of �, and
see how they affect the speed of convergence.

3. For a given data set, experiment with different numbers of hidden neurons in the
multilayer perceptron, and observe how they affect the network’s ability to learn.

4. Again, experiment with different numbers of hidden neurons. This time, focus
on computational costs. How many epochs are needed before the network
converges? Look also at the evolution of the error rate.

5. Write a program that will, for a given training set, create a radial-basis function
network. For large training sets, select randomly the examples that will define
the gaussian centers.

6. Apply the program implemented in the previous task to some benchmark
domains from the UCI repository.

3www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 6
Decision Trees

The classifiers discussed in the previous chapters expect all attribute values to be
presented at the same time. Such a scenario, however, has its flaws. Thus a physician
seeking to come to grips with the nature of her patient’s condition often has nothing
to begin with save a few subjective symptoms. And so, to narrow the field of
diagnoses, she prescribes lab tests, and, based on the results, perhaps other tests
still. At any given moment, then, the doctor considers only “attributes” that promis
to add meaningfully to her current information or understanding. It would be absurd
to ask for all possible lab tests (thousands and thousands of them) right from the
start.

The lesson is, exhaustive information often is not immediately available; it may
not even be needed. The classifier may do better choosing the attributes one at a
time, according to the demands of the situation. The most popular tool targetting
this scenario is a decision tree. The chapter explains its classification behavior, and
then presents a simple technique that induces a decision tree from data. The reader
will learn how to benefit from tree-pruning, and how to convert the induced tree to
a set of rules.

6.1 Decision Trees as Classifiers

The training set shown in Table 6.1 consists of eight examples described by three
attributes and labeled as positive or negative instances of a given class. To simplify
the explanation of the basic concepts, we will assume that all attributes are discrete.
Later, when the underlying principles become clear, we will slightly generalize the
approach to make it usable also in domains with continuous attributes or with mixed
sets of continuous and discrete attributes.

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_6

113

114 6 Decision Trees

Table 6.1 Eight training
examples described by three
symbolic attributes and
classified as positive and
negative examples of a given
class

crust filling
Example size shape size Class

e1 big circle small pos
e2 small circle small pos
e3 big square small neg
e4 big triangle small neg
e5 big square big pos
e6 small square small neg
e7 small square big pos
e8 big circle big pos

Decision tree. Figure 6.1 shows a few example decision trees that are capable of
dealing with the data from Table 6.1. The internal nodes represent attribute-value
tests, the edges indicate how to proceed in the case of diverse test results, and the
leafs1 contain class labels. An example to be classified is first subjected to the test
prescribed at the top-most node, the root. The result of this test then decides along
which edge the example is to be sent down, and the process continues until a leaf
node is reached. Once this happens, the example is labeled with the class associated
with this leaf.

Let us illustrate the process using the tree from Fig. 6.1b. The root asks about
the shape, each of whose three values is represented by one edge. In examples
e1; e2, and e8, the value shape=circle which corresponds to the left edge.
The example is sent down along this edge, ending in a leaf that labeled pos. This
indeed is the class common to all these three examples. In e4, shape=triangle,
and the corresponding edge ends in a leaf labeled neg—again, the correct class.
Somewhat more complicated is the situation with examples e3; e5; e6, and e7 where
shape=square. For this particular value, the edge ends not in a leaf, but only
at a test-containing node, this one inquiring about the value of filling-size.
In the case of e5 and e7, the value is big, which leads to a leaf labeled with
pos. In the other two examples, e3 and e6, the value is small, and this sends
them to a leaf labeled with neg.

We have shown that the decision tree from Fig. 6.1b identifies the correct class
for all training examples. By way of a little exercise, the reader is encouraged to
verify that the other trees shown in the picture are just as successful.2

Interpretability. Comparing this classifier with those introduced earlier, we can
see one striking advantage: interpretability. If anybody asks why example e1 is
deemed positive, the answer is, “because its shape is circle.” Other classifiers

1Both spellings are used: leaves and leafs. The latter is probably more appropriate because the
“leaf” in question is supposed to be a data abstraction that has nothing to do with the original
physical object.
2In as sense, the decision tree can be seen as a simple mechanism for data compression.

6.1 Decision Trees as Classifiers 115

do not offer explanations of this kind. Especially the neural network is a real black
box: when presented with an example, it simply returns the class and never offers
any insight as to why this particular label has been given preference over other
labels. The situation is not much better in the case of Bayesian and linear classifiers.
Only the k-NN classifier offers a semblance of a—rather rudimentary—argument.
For instance, one can say that, “x should be labeled with pos because this is the
class of the training example most similar to x.” Such as statement, however, is a far
cry from the explicit attribute-based explanation made possible by the decision tree.

One can go one step further and interpret a decision tree as a set of rules such
as “if shape=square and filling-size=big, then the example belongs
to class pos.” A domain expert inspecting these rules may then decide whether
they are intuitively appealing, and whether they agree with his or her “human
understanding” of the problem at hand. The expert may even be willing to suggest
improvements to the tree; for instance, by pointing out spurious tests that have found
their way into the data structure only on account of some random regularity in the
data.

Missing edge. The reader will recall that, in linear classifiers, an example may find
itself exactly on the class-separating hyperplane, in which case the class is selected
more or less randomly. Something similar occasionally happens in decision trees,
too. Suppose the tree from Fig. 6.1a is used to determine the class of the following
example:

(crust-size=small) AND (shape=triangle) AND (filling-size=small)

Let us follow the procedure step by step. The root inquires about crust-size.
Realizing that the value is small, the classifier sends the example down the right
edge, to the test on shape. Here, only two outcomes appear to be possible: circle
or square, but not triangle. The reason is, whoever created the tree had no idea
that an object with crust-size=small could be triangular: nothing of that kind
could be found in the training set. Therefore, there did not seem to be any reason for
creating the corresponding edge. And even if the edge were created, it would not be
clear where it should lead to.

The engineer implementing this classifier in a computer program must make sure
the program “knows” what to do in the case of “missing edges.” Choosing the class
randomly or preferring the most frequent class are the most obvious possibilities.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

116 6 Decision Trees

+

+

filling
size

shape

big small

−

tri
sq

circle

c

c

− +

sqc

shape

−+

c tri
sq

shape

small big

crust
size

small

+

big

filling
size

d

shape

filling
size −

−

+

+

circle sq

smallbig

triangle

b

big

crust
size

small

filling
size

big

+

small

shape

tri

shape

circle

+ filling
size

big

−+
sq

circle

+ −

small

a

sq

Fig. 6.1 Example decision trees for the “pies” domain. Note how they differ in size and in the
order of tests. Each of them classifies correctly all training examples listed in Table 6.1

• Describe the mechanism that uses a decision tree to classify examples. Illustrate
the procedure using the decision trees from Fig. 6.1 and the training examples
from Table 6.1.

• What is meant by the statement that, “the decision tree’s choice of a concrete
class can be explained to the user”? Is something similar possible in the case of
the classifiers discussed in the previous chapters?

• Under what circumstances can a decision tree find itself unable to determine
an example’s class? How would you handle the situation if you were the
programmer?

6.2 Induction of Decision Trees 117

6.2 Induction of Decision Trees

We will begin with a very crude induction algorithm. Applying it to a training set, we
will realize that a great variety of alternative decision trees can be obtained. A brief
discussion will convince us that, among these, the smaller ones are to be preferred.
This observation will motivate an improved version of the technique, thus preparing
the soil for the following sections.

Divide and conquer. Let us try our hand at creating a decision tree manually.
Suppose we decide that the root node should test the value of shape. In the training
set, three different outcomes are found: circle, triangle, and square. For
each, the classifier will need a separate edge leading from the root. The first, defined
by shape=circle, will be followed by examples TC D fe1; e2; e8g; the second,
defined by shape=triangle, will be followed by TT D fe4g; and the last,
defined by shape=square, will be followed by TS D fe3; e5; e6; e7g. Each of
the three edges will begin at the root and end in another node, either an attribute test
or a leaf containing a class label.

Seeing that all examples in TC are positive, we will let this edge point at a
leaf labeled with pos. Similarly, the edge followed by the examples from TT will
point at a leaf labeled with neg. Certain difficulties will arise only in the case
of the last edge because TS is a mixture of both classes. To separate them, we
need another test, say, filling-size, to be placed at the end of the edge. This
attribute can acquire two values, small and big, dividing TS into two subsets. Of
these, TS�S D fe3; e6g is characterized by filling-size=small; the other,
TS�B D fe5; e7g, is characterized by filling-size=big. All examples in TS�S

are positive, and all examples in TS�B are negative. This allows us to let both edges
end in leafs, the former labeled with pos, the latter with neg. At this moment,
the tree-building process can stop because each training example presented to the
classifier thus created will reach a leaf.

The reader will have noticed that each node of the tree can be associated with
a set of examples that pass through it or end in it. Starting with the root, each test
divides the training set into disjoint subsets, and these into further subsets, and so
on until each subset is “pure” in the sense that all its examples belong to the same
class. This is why the approach is sometimes referred to as the divide-and-conquer
technique.

Alternative trees. In the process thus described, the (rather arbitrary) choice of
shape and filling-size resulted in the decision tree shown in Fig. 6.1b. To
get used to the mechanism, the student is encouraged to experiment with alternatives
such as placing at the root the test on crust-size or filling-size, and
considering different options for the tests at the lower level(s). Quite a few other
decision trees will thus be created—some of them depicted in Fig. 6.1.

118 6 Decision Trees

That so many solutions can be found even in this very simple toy domain is a
food for thought. Is there a way to decide which trees are better? so, an improved
version of the divide-and-conquer technique should be able to arrive at a “good”
tree by design, and not by mere chance.

The size of the tree. The smallest of the data structures in Fig. 6.1 consists of
two attribute tests; the largest, of five. Differences of this kind may have a strong
impact on the classifier’s behavior. Before proceeding to the various aspects of this
phenomenon, however, let us emphasize that the number of nodes in the tree is not
the only criterion of size. Just as important is the number of tests that have to be
carried out when classifying an average example.

For instance, in a domain where shape is almost always circle or
triangle (and only very rarely square), the average number of tests prescribed
by the tree from Fig. 6.1b will only slightly exceed 1 because both shape=circle
and shape=triangle immediately point at leafs with class labels. But if the
prevailing shape is square, the average number tests approaches 2. Quite often,
then, a bigger tree may result in fewer tests than a smaller one.

Small trees versus big trees. There are several reasons why small decision trees
are preferred. One of them is interpretability. A human expert finds it easy to
analyze, explain, and perhaps even correct, a decision tree that consists of no more
than a few tests. The larger the tree, the more difficult this is.

Another advantage of small decision trees is their tendency to dispose of
irrelevant and redundant information. Whereas the relatively large tree from
Fig. 6.1a employs all three attributes, the smaller one from Fig. 6.1b is just as
good at classifying the training set—without ever considering crust-size. Such
economy will come handy in domains where certain attribute values are expensive
or time-consumining to obtain.

Finally, larger trees are prone to overfit the training examples. This is because the
divide-and-conquer method keeps splitting the training set into smaller and smaller
subsets, the number of these splits being equal to the number of attribute tests in the
tree. Ultimately, the resulting training subsets can become so small that the classes
may get separated by an attribute that only by chance—or noise—has a different
value in the remaining positive and negative examples.

Induction of small decision trees. When illustrating the behavior of the divide-
and-conquer technique on the manual tree-building procedure, we picked the
attributes at random. When doing so, we observed that some choices led to smaller
trees than others. Apparently, the attributes differ in how much information they
convey. For instance, shape is capable of immediately labeling some examples
as positive (if the value is circle) or negative (if the value is triangle); but
crust-size cannot do so unless assisted by some other attribute.

Assuming that there is a way to measure the amount of information provided by
each attribute (and such a mechanism indeed exists, see Sect. 6.3), we are ready to
formalize the technique for induction of decision trees by a pseudocode. The reader
will find it in Table 6.2.

6.3 How Much Information Does an Attribute Convey? 119

Table 6.2 Induction of decision trees

Let T be the training set.

grow(T):

(1) Find the attribute, at, that contributes the maximum information about the class labels.
(2) Divide T into subsets, Ti, each characterized by a different value of at.
(3) For each Ti:

If all examples in Ti belong to the same class, then create a leaf labeled with this class;
otherwise, apply the same procedure recursively to each training subset: grow(Ti).

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of the divide-and-conquer technique for induction of
decision trees.

• What are the advantages of small decision trees in comparison to larger ones?
• What determines the size of the decision tree obtained by the divide-and-conquer

technique?

6.3 How Much Information Does an Attribute Convey?

To create a relatively small decision tree, the divide-and-conquer technique relies on
one critical component: the ability to decide how much information about the class
labels is conveyed by the individual attributes. This section introduces a mechanism
to calculate this quantity.

Information contents of a message. Suppose we know that the training examples
are labeled as pos or neg, the relative frequencies of these two classes being
ppos and pneg, respectively.3 Let us select a random training example. How much
information is conveyed by the message, “this example’s class is pos”?

The answer depends on ppos. In the extreme case where all example are known
to be positive, ppos D 1, the message does not tell us anything new. The reader
knows the example is positive even without being told so. The situation changes if
both classes are known to be equally represented so that ppos D 0:5. Here, the guess
is no better than a flipped coin, so the message does offer some information. And
if a great majority of examples are known to be negative so that, say, ppos D 0:01,

3Recall that the relative frequency of pos is the percentage (in the training set) of examples labeled
with pos; this represents the probability that a randomly drawn example will be positive.

120 6 Decision Trees

Table 6.3 Some val-
ues of the information
contents (measured in
bits) of the message,
“this randomly drawn
example is positive.”
Note that the mes-
sage is impossible for
ppos D 0

ppos � log2 ppos
1.00 0 bits

0.50 1 bit

0.25 2 bits

0.125 3 bits

then the reader is all but certain that the chosen example is going to be negative as
well; the message telling him that this is not the case is unexpected. And the lower
the value of ppos, the more information the message offers.

When quantifying the information contents of such a message, the following
formula has been found convenient:

Ipos D � log2 ppos (6.1)

The negative sign compensates for the fact that the logarithm of ppos 2 .0; 1/ is
always negative. Table 6.3 shows the information contents for some typical values
of ppos. Note that the unit for the amount of information is 1 bit. Another comment:
the base of the logarithm being 2, it is fairly common to write log ppos instead of
the more meticulous log2 ppos.

Entropy (average information contents). So much for the information contents
of a single message. Suppose, however, that the experiment is repeated many
times. Both messages will occur, “the example is positive,” and “the example is
negative,” the first with probability ppos, the second with probability pneg. The
average information contents of all these messages is then obtained by the following
formulas where the information contents of either message is weighted by its
probability (the T in the argument refers to the training set):

H.T/ D �ppos log2 ppos � pneg log2 pneg (6.2)

The attentive reader will protest that the logarithm of zero probability is not
defined, and Eq. 6.2 may thus be useless if ppos D 0 or pneg D 0. Fortunately,
a simple analysis (using limits and l’Hopital’s rule) will convince us that, for p
converging to zero, the expression p log p converges to zero, too, which means that
0 � log 0 D 0.

6.3 How Much Information Does an Attribute Convey? 121

H.T/ is called entropy of T. Its value reaches its maximum, H.T/ D 1, when
ppos D pneg D 0:5 (because 0:5 � log 0:5 C 0:5 � log 0:5 D 1); and it drops to its
minimum, H.T/ D 0, when either ppos D 1 or pneg D 1 (because 0 � log 0 C 1 �
log 1 D 0). By the way, the case with ppos D 1 or pneg D 1 is regarded as perfect
regularity because all examples belong to the same class; conversely, the case with
ppos D pneg D 0:5 is seen as a total lack of regularity.

Amount of information contributed by an attribute. The concept of entropy
(lack of regularity) will help us deal with the main question: how much does the
knowledge of the value of a discrete attribute, at, tell us about an example’s class?

Let us remind ourselves that at divides the training set, T , into subsets, Ti, each
characterized by a different value of at. Quite naturally, each subset will be marked
by its own probabilities (estimated by relative frequencies) of the two classes, pipos

and pineg. Based on the knowledge of these, Eq. 6.2 will give us the corresponding
entropies, H.Ti/.

Now let jTij be the number of examples in Ti, and let jTj be the number of
examples in the whole training set, T . The probability that a randomly drawn
training example will be in Ti is estimated as follows:

Pi D jTij
jTj (6.3)

We are ready to calculate the weighted average of the entropies of the subsets.

H.T; at/ D †iPi � H.Ti/ (6.4)

The obtained result, H.T; at/, is the entropy of a system where not only the class
labels, but also the values of at are known for each training example. The amount
of information contributed by at is then the difference between the entropy before
at has been considered and the entropy after this attribute has been considered:

I.T; at/ D H.T/ � H.T; at/ (6.5)

A mathematician will easily prove that this difference cannot be negative;
information can only be gained, never lost, by considering at. In certain rare cases,
however, I.T; at/ D 0, which means that no information has been gained, either.

Applying Eq. 6.5 separately to each attribute, we can find out which of them
provides the maximum amount of information, and as such is the best choice for the
“root” test in the first step of the algorithm from Table 6.2.

The procedure just described is summarized by the pseudocode in Table 6.4.
The process starts by the calculation of the entropy of the system where only
class percentages are known. Next, the algorithm calculates the information gain
conveyed by each attribute. The attribute that offers the highest information gain is
deemed best.

122 6 Decision Trees

Table 6.4 The algorithm to find the most informational attribute

1. Calculate the entropy of the training set, T , using the percentages, ppos and pneg, of the
positive and negative examples:

H.T/ D �ppos log2 ppos � pneg log2 pneg

2. For each attribute, at, that divides T into subsets, Ti, with relative sizes Pi, do the following:

(i) calculate the entropy of each subset, Ti;
(ii) calculate the average entropy: H.T; at/ D †iPi � H.Ti/;

(iii) calculate information gain: I.T; at/ D H.T/ � H.T; at/

3. Choose the attribute with the highest value of information gain.

Illustration. Table 6.5 shows how to use the mechanism for the selection of the
most informative attribute in the domain from Table 6.1. At the beginning, the
entropy, H.T/, of the system without attributes is established. Then, we observe
that for instance the attribute shape divides the training set into three subsets. The
average of their entropies, H.T;shape/, is calculated, and the difference between
H.T/ and H.T;shape/ gives the amount of information conveyed by this attribute.
Repeating the procedure for crust-size and filling-size, and comparing
the results, we realize the shape contributes more information than the other two
attributes, and this is why we choose shape for the root test.

This, by the way, is how the decision tree from Fig. 6.1b was obtained.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What do we mean when we talk about the “amount of information conveyed by
a message”? How is this amount determined, and what units are used?

• What is entropy and how does it relate to the frequency of the positive and
negative examples in the training set?

• How do we use entropy when assessing the amount of information contributed
by an attribute?

6.3 How Much Information Does an Attribute Convey? 123

Table 6.5 Illustration of the search for the most informative attribute

Example crust shape filling Class
size size

e1 big circle small pos
e2 small circle small pos
e3 big square small neg
e4 big triangle small neg
e5 big square big pos
e6 small square small neg
e7 small square big pos
e8 big circle big pos

Here is the entropy of the training set where only class labels are known:

H.T/ D �ppos log2 ppos � pneg log2 pneg

D �.5=8/ log.5=8/ � .3=8/ log.3=8/ D 0:954

Next, we calculate the entropies of the subsets defined by the values of shape:

H.shape=square/ D �.2=4/ � log.2=4/ � .2=4/ � log.2=4/ D 1

H.shape=circle/ D �.3=3/ � log.3=3/ � .0=3/ � log.0=3/ D 0

H.shape=triangle/ D �.0=1/ � log.0=1/ � .1=1/ � log.1=1/ D 0

From these, we obtain the average entropy of the system where the class labels and
the value of shape is known:

H.T;shape/ D .4=8/ � 1 C .3=8/ � 0 C .1=8/ � 0 D 0:5

Repeating the same procedure for the other two attributes, we obtain the following:

H.T;crust-size/ D 0:951

H.T;filling-size/ D 0:607

These values give the following information gains:

I.T;shape/ D H.T/ � H.T;shape/ D 0:954 � 0:5 D 0:454

I.T;crust-size/ D H.T/ � H.T;crust-size/ D 0:954 � 0:951 D 0:003

I.T;filling-size/ D H.T/ � H.T;filling-size/ D 0:954 � 0:607 D 0:347

We conclude that maximum information is contributed by shape.

124 6 Decision Trees

6.4 Binary Split of a Numeric Attribute

The entropy-based mechanism from the previous section requested that all attributes
should be discrete. With a little modification, however, the same approach can be
applied to continuous attributes as well. All we need is to convert them to boolean
attributes.

Converting a continuous attribute to a boolean one. Let us denote the continu-
ous attribute by x. The trick is to choose a threshold, � , and then decide that if x < � ,
then the value of the newly created boolean attribute is true, and otherwise it is false
(or vice versa).

Simple enough. But what concrete � to choose? Surely there are many of them?
Here is one possibility.

Suppose that x has a different value in each of the N training examples. Let us
sort these values in ascending order, denoting by x1 the smallest, and by xN the
highest. Any pair of neighboring values, xi and xiC1, then defines a threshold, �i D
.xi C xiC1/=2. For instance, a four-example training set where x has values 3, 4,
6, and 9 leads us to consider �1 D 3:5; �2 D 5:0, and �3 D 7:5. For each of these
N �1 thresholds, we calculate the amount of information contributed by the boolean
attribute thus defined, and then choose the threshold where the information gain is
maximized.

Candidate thresholds. The approach just described deserves to be criticized for its
high computational costs. Indeed, in a domain with a hundred thousand examples
described by a hundred attributes (nothing extraordinary), the information contents
of 105 � 102 D 107 different thresholds would have to be calculated. Fortunately,
mathematicians have been able to prove that a great majority of these thresholds can
just as well be ignored. This reduces the costs to a mere fraction.

The principle is illustrated by Table 6.6. In the upper part, 13 values of x are
ordered from left to right, each labeled with the class (positive or negative) of
the training example in which the value was found. And here is the rule: the best
threshold never finds itself between values that are labeled with the same class. This
means that it is enough to investigate the contributed information only for locations
between values with opposite class labels. In the specific case shown in Table 6.6,
only three candidate thresholds, �1; �2, and �3, need to be investigated (among the
three, �1 is shown to be best).

The root of a numeric decision tree. The algorithm summarized by the pseu-
docode in Table 6.7 determines the best attribute test for the root of a decision tree
in a domain where all attributes are continuous. Note that the test consists of a pair,
[ati, �ij], where ati is the selected attribute and �ij is the best threshold found for this
attribute. If an example’s value of the i-th attribute is below the threshold, ati < �ij,
the left branch of the decision tree is followed; otherwise, the right branch is chosen.

6.4 Binary Split of a Numeric Attribute 125

Table 6.6 Illustration of the search for the best threshold

The values of attribute x are sorted in ascending order. The candidate thresholds are located
between values labeled with opposite class labels.

θ1

x

_ _ _ _ _ _

θ2 θ3

+ + + + + + +

Here is the entropy of the training set, ignoring attribute values:

H.T/ D �p
C

log p
C

� p
�

log p
�

D �.7=13/ log.7=13/ � .6=13/ log.6=13/ D 0:9957

Here are the entropies of the training subsets defined by the three candidate thresholds:

H.x < �1/ D �.5=5/ log.5=5/ � .0=5/ log.0=5/ D 0

H.x > �1/ D �.2=8/ log.2=8/ � .6=8/ log.6=8/ D 0:8113

H.x < �2/ D �.5=10/ log.5=10/ � .5=10/ log.5=10/ D 1

H.x > �2/ D �.2=3/ log.2=3/ � .1=3/ log.1=3/ D 0:9183

H.x < �3/ D �.7=12/ log.7=12/ � .5=12/ log.5=12/ D 0:9799

H.x > �3/ D �.0=1/ log.0=1/ � .1=1/ log.1=1/ D 0

Average entropies associated with the individual thresholds:

H.T; �1/ D .5=13/:0 C .8=13/:0:8113 D 0:4993

H.T; �2/ D .10=13/:1 C .3=13/:0:9183 D 0:9811

H.T; �3/ D .12=13/:0:9799 C .1=13/:0 D 0:9045

Information gains entailed by the individual candidate thresholds:

I.T; �1/ D H.T/ � H.T; �1/ D 0:9957 � 0:4993 D 0:4964

I.T; �2/ D H.T/ � H.T; �2/ D 0:9957 � 0:9811 D 0:0146

I.T; �3/ D H.T/ � H.T; �3/ D 0:9957 � 0:9045 D 0:0912

Threshold �1 gives the highest information gain.

Table 6.7 Algorithm to find the best numeric-attribute test

1. For each attribute ati:

(i) Sort the training examples by the values of ati;
(ii) Determine the candidate thresholds, �ij, as those lying between examples with opposite

labels;
(iii) For each �ij, determine the amount of information contributed by the boolean attribute

thus created.

2. Choose the pair Œati; �ij� that offers the highest information gain.

126 6 Decision Trees

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain why this section suggested to divide the domain of a continuous attribute
into two subdomains.

• What mathematical finding has reduced the number of thresholds that need to be
investigated?

6.5 Pruning

Section 6.2 extolled the virtues of small decision trees: interpretability, removal of
irrelevant and redundant attributes, reduced danger of overfitting. These were the
arguments that motivated the use of information theory in the course of decision-
tree induction; they also motivate the step that follows: pruning.

t4

+ -

01

1
t2

0

t3
1 0

t6

t1
1 0

- +

1

-

0

1
t5

-

0
t2

t1
1

+ -

01

0

t5

+

1 0

-+

replacing a test with a leaf

Fig. 6.2 A simple approach to pruning will replace a subtree with a leaf

The essence. Figure 6.2 will help us explain the principle. On the left is the original
decision tree whose six attribute tests are named t1; : : : t6. On the right is a pruned
version. Note that the subtree rooted in test t3 in the original tree is in the pruned tree
replaced with a leaf labeled with the negative class; and the subtree rooted in test t6
is replaced with a leaf labeled with the positive class. The reader can see the point:
pruning consists of replacing one or more subtrees with leafs, each labeled with
the class most common among the training examples that reach—in the original
classifier—the removed subtree.

A purist may protest: the induction mechanism seeks to create a decision tree that
scores zero errors on the training examples, but this perfection may be lost in the

6.5 Pruning 127

pruned tree! But the practically-minded engineer is not alarmed. The ultimate goal
is not to classify the training examples (their classes are known anyway). Rather,
we want a tool capable of labeling future examples. And experience shows that this
kind of performance is often improved by reasonable pruning.

Error estimate. Pruning is typically carried out in a sequence of steps: first replace
with a leaf one subtree, then another, and so on, as long as the replacements appear
to be beneficial according to some reasonable criterion. The term “beneficial” is
meant to warn us that small-tree advantages should not be outbalanced by reduced
classification performance.

Which brings us to the issue of error estimate. The principle is illustrated by
Fig. 6.2. Let m be the number of training examples that reach test t3 in the decision
tree on the left. If we replace the subtree rooted in t3 by a leaf (as happened
in the tree on the right), some of these m examples may become misclassified.
Denoting the number of these misclassified examples by e, we may be tempted
to estimate the probability that an example will be misclassified at this leaf by
the relative frequency: e=m. But admitting that small values of m may render this
estimate problematic, we prefer the following formula where N is the total number
of training examples:

Eestimate D e C 1

N C m
(6.6)

The attentive reader may want to recall (or re-read) what Sect. 2.3 had to say
about the difficulties of probability estimates of rare events.

Error estimates for the whole tree. Once again, let us return to Fig. 6.2. The tree
on the left has two subtrees, one rooted at t2, the other at t5. Let m2 and m5 be the
numbers of the training examples reaching t2 and t5, respectively; and let E2 and
E5 be the error estimates of the two subtrees, obtained by Eq. 6.6. For the total of
N D m2 C m5 training examples, the error rate of the whole subtree is estimated as
the weighted average of the two subtrees:

ER D m2

N
E2 C m5

N
E5 (6.7)

Of course, in a situation with more than just two subtrees, the weighted average
has to be taken over all of them. This should present no major difficulties.

As for the values of E2 and E5, these are obtained from the error rates of the
specific subtrees, and these again from the error rates of their sub-subtrees, and so
on, all the way down to the lowest level tests. The error-estimating procedure is a
recursive undertaking.

Suppose that the tree to be pruned is the one rooted at t3, which happens to be one
of the two children of test t2. The error estimate for t2 is calculated as the weighted
average of E3 and the error estimate for the other child of t2 (the leaf labeled with
the positive class). The resulting estimate would then be combined with E5 as shown
above.

128 6 Decision Trees

Post-pruning. The term refers to the circumstance that the decision tree is pruned
after it has been fully induced from data (an alternative is the subject of the next
subsection). We already know that the essence is to replace a subtree with a leaf
labeled with the class most frequent among the training examples reaching that leaf.
Since there are usually several (or many) subtrees that can thus be replaced, a choice
has to be made; and the existence of a choice means we need a criterion to guide
our decision.

Here is one possibility. We know that pruning is likely to change the classifier’s
performance. One way to assess this change is to compare the error estimate of the
decision tree after the pruning with that of the tree before the pruning:

D D Eafter � Ebefore (6.8)

From the available pruning alternatives, we choose the one where this difference
is the smallest, Dmin; but we carry out the pruning only if Dmin < c, where c is
a user-set threshold for how much performance degradation can be tolerated in
exchange for the tree’s compactness. The mechanism is then repeated, with the
decision tree becoming smaller and smaller, the stopping criterion being imposed
by the constant c. Thus in Fig. 6.2, the first pruning step might have removed the
subtree rooted at t3; and the second step, the subtree rooted at t6. Here the procedure
was stopped because any further attempt at pruning resulted in a tree whose error
estimate increased too much: the difference between the estimated error of the final
(pruned) tree and that of the original tree on the left of Fig. 6.2 exceeded the user’s
threshold: D > c.

The principle is summarized by the pseudocode in Table 6.8.

On-line pruning. In the divide-and-conquer procedure, each subsequent attribute
divides the set of training examples into smaller and smaller subsets. Inevitably,
the evidence supporting the choice of the tests at lower tree-levels will be weak.
When a tree node is reached by only, say, two training examples, one positive
and one negative, a totally irrelevant attribute may by mere coincidence succeed in
separating the positive example from the negative. The only “benefit” to be gained
from adding this test to the decision tree is training-set overfitting.

Table 6.8 The algorithm for decision-tree pruning

c : : : a user-set constant

(1) Estimate the error rate of the original decision tree. Let its value be denoted by Ebefore.
(2) Estimate the error rates of the trees obtained by alternative ways of pruning the original

tree.
(3) Choose the pruning after which the estimated error rate experiences minimum increase,

Dmin D Ebefore � Eafter , but only if Dmin < c.
(4) Repeat steps (2) and (3) as long as Ebefore � Eafter < c.

6.5 Pruning 129

error rate

extent of pruning

training set

testing set

Fig. 6.3 With the growing extent of pruning, error rate on the testing set usually drops, then starts
growing again. Error rate on the training set usually increases monotonically

The motivation behind on-line pruning is to make sure this situation is prevented.
Here is the rule: if the training subset is smaller than a user-set minimum, m, stop
further expansion of the tree.

Impact of pruning. How far the pruning goes is controlled by two parameters: c in
post-pruning, and m in on-line pruning. In both cases, higher values result in smaller
trees.

The main reason why pruning tends to improve classification performance on
future examples is that the removal of low-level tests, which have poor statistical
support, usually reduces the danger of overfitting. This, however, works only up to
a certain point. If overdone, a very high extent of pruning can (in the extreme) result
in the decision being replaced with a single leaf labeled with the majority class.
Such classifier is unlikely to be useful.

Figure 6.3 shows the effect that gradually increased pruning typically has on
classification performance. Along the horizontal axis is plotted the extent of pruning
as controlled by c or m or both. The vertical axis represents the error rate measured
on the training set as well as on some hypothetical testing set (the latter consisting
of examples that have not been used for learning, but whose class labels are known).

On the training-set curve, error rate is minimized when there is no pruning
at all. More interesting, however, is the testing-set curve. Its shape is telling us
that the unpruned tree usually scores poorly on testing data, which is explained
by the unpruned tree’s tendency to overfit the training set, a phenomenon that
can be reduced by increasing the extent of pruning. Excessive pruning, however,
will remove attribute tests that do carry useful information, and this will have a
detrimental effect on classification performance.

By the way, the two curves can tell us a lot about the underlying data. In some
applications, even very modest pruning will impair error rate on testing data; for
instance, in a noise-free domain with a relatively small training set.

Another thing to notice is that the error rate on the testing set is almost always
greater than the error rate on the training set.

130 6 Decision Trees

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What are the potential benefits of decision-tree pruning?
• How can we estimate the tree’s error rate on future data? Write down the formula

and explain how it is used.
• Describe the principle of post-pruning and the principle of on-line pruning.
• What parameters control the extent of pruning? How do they affect the error rate

on the training set, and how do they affect the error rate on the testing set?

6.6 Converting the Decision Tree into Rules

One of the advantages of decision trees in comparison with the other classifiers is
their interpretability. Any sequence of tests along the path from the root to a leaf
represents an if-then rule, and this rule explains why the classifier has labeled a
given example with this or that class.

Rules generated by a decision tree. The reader will find it easy to convert a
decision tree to a set of rules. It is enough to notice that a leaf is reached through a
series of edges whose specific choice is determined by the results of the attribute
tests encountered along the way. Each leaf is thus associated with a concrete
conjunction of test results.

For the sake of illustration, let us write down the complete set of rules for the
pos class as obtained from the decision tree in Fig. 6.1a.

if crust-size=big AND filling-size=big then pos
if crust-size=big AND filling-size=small AND shape=
circle then pos

if crust-size=small AND shape=circle then pos
if crust-size=small AND (shape=square OR triangle)
AND filling-size=big then pos
else neg

Note the default class, neg, in the last line. An example is labeled with the
default class if all rules fail, which means that the value of the if -part of each rule
is false. We notice that, in this two-class domain, we need to consider only the
rules resulting in the pos class, the other class being the default option. We could
have done it the other way round, considering only the rules for the neg class, and
making pos the default class. This would actually be more economical because
there are only two leafs labeled with the neg, and therefore only two corresponding
rules. The reader is encouraged to write down these two rules by way of a simple
exercise.

6.6 Converting the Decision Tree into Rules 131

Table 6.9 The algorithm for rule pruning

Re-write the decision tree as a set of rules.
Let c be a user-set constant controlling the extent of pruning

(1) In each rule, calculate the increase in error estimate brought about by the removal of
individual tests.

(2) Choose those removals where this increase, Dmin is smallest. Remove the tests, but only if
Dmin < c.

(3) In the set of rules, search for the weakest rules to be removed.
(4) Choose the default class.
(5) Order the rules according to their strengths (how many training examples they cover).

At any rate, the lesson is clear: in a domain with K classes, only the rules for
K � 1 classes are needed, the last class serving as the default.

Pruning the rules. The tree post-pruning mechanism described earlier replaced
a subtree with a leaf. This means that lower-level tests were the first to go, the
technique being unable to remove a higher-level node before the removal of the
nodes below it. The situation is similar in on-line pruning.

Once the tree has been converted to rules, however, pruning gains in flexibility:
any test in the if -part of any rule is a potential candidate for removal; and entire
rules can be deleted. This is done by the rule-pruning algorithm summarized by
the pseudocode in Table 6.9 and illustrated by the example in Table 6.10. Here,
the initial set of rules was obtained from the (now familiar) tree in the left part of
Fig. 6.2. The first pruning step removes those tests that do not appear to contribute
much to the overall classification performance; the next step deletes the weakest
rules.

We haste to admit, however, that the price for this added flexibility is a significant
increase in computational costs.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the mechanism that converts a decision tree to a set of rules. How many
rules are thus obtained? What is the motivation behind such conversion?

• What is meant by the term, default class? How would you choose it?
• Discuss the possibilities of rule-pruning. In what sense can we claim that rule-

pruning offers more flexibility than decision tree pruning? What is the price for
this increased flexibility?

132 6 Decision Trees

Table 6.10 Illustration of the algorithm for rule pruning

Suppose that the decision from the left part of Fig. 6.2 has been converted into the following
set of rules (neg is the default label to be used when the if-parts of all rules are false).

t1 ^ t2 ! pos

t1 ^ :t2 ^ t3 ^ t4 ! pos

:t1 ^ t5 ^ t6 ! pos

else neg

Suppose that the evaluation of the tests in the rules has resulted in the conclusion that t3 in
the second rule and t5 in the third rule can be removed without a major increase in the error
estimate. We obtain the following set of modified rules.

t1 ^ t2 ! pos

t1 ^ :t2 ^ t4 ! pos

:t1 ^ t6 ! pos

else neg

The next step can reveal that the second (already modified) rule can be removed without a
major increase in the error estimate. After the removal, the set of rules will look as follows.

t1 ^ t2 ! pos

:t1 ^ t6 ! pos

else neg

This completes the pruning.

6.7 Summary and Historical Remarks

• In decision trees, the attribute values are tested one at a time, the result of each
test indicating what should happen next: either another attribute test, or a decision
about the class label if a leaf has been reached. One can say that a decision tree
consists of a set of partially ordered set of tests, each sequence of tests defining
one branch in the tree terminated by a leaf.

• From a typical training set, many alternative decision trees can be created.
As a rule, smaller trees are to be preferred, their main advantages being
interpretability, removal of irrelevant and redundant attributes, and lower danger
of overfitting noisy training data.

• The most typical procedure for induction of decision trees from data proceeds in a
recursive manner, always seeking to identify the attribute that conveys maximum
information about the class label. This approach tends to make the induced
decision trees smaller. The “best” attribute is identified by simple formulas
borrowed from information theory.

• An important aspect of decision-tree induction is pruning. The main motivation
is to make sure that all tree branches are supported by sufficient evidence. Further
on, pruning reduces the tree size which has certain advantages (see above). Two

6.8 Solidify Your Knowledge 133

generic types of pruning exist. (1) In post-pruning, the tree is first fully developed,
and then pruned. (2) In on-line pruning (which is perhaps a bit of a misnomer),
the development of the tree is stopped once the training subsets used to determine
the next attribute test become too small. In both cases, the extent of pruning is
controlled by user-set parameters (denoted c and m, respectively).

• A decision tree can be converted to a set of rules that can further be pruned.
In a domain with K classes, it is enough to specify the rules for K � 1 classes,
the remaining class becoming the default class. The rules are usually easier to
interpret. Rule-pruning algorithms sometimes lead to more compact classifiers,
though at significantly increased computational costs.

Historical Remarks. The idea behind decision trees was first put forward by
Hoveland and Hund in the late 1950s. The work was later summarized in the book
Hunt, Marin and Stone [34] that reports experience with several implementations of
their Concept Learning System (CLS). Friedman, Bentley and Finkel [24] developed
a similar approach independently. An early high point of the research was reached
by Breiman et al. [9] where the system CART is described. The idea was then
imported to the machine-learning world by Quinlan [63, 64]. Perhaps the most
famous implementation is C4.5 from Quinlan [65]. This chapter was based on a
simplified version of C4.5.

6.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. In Fig. 6.4, eight training examples are described by two attributes, size and
color, the class label being the material: either wood or plastic.

• What is the entropy of the training set when only the class labels are
considered (ignoring the attribute values)?

• Using the information-based mechanism from Sect. 6.3, decide which of the
two attributes better predicts the class

2. Take the decision tree from Fig. 6.1a and remove from it the bottom-right test
on filling-size. Based on the training set from Table 6.1, what will be the
error estimate before and after this “pruning”?

134 6 Decision Trees

Fig. 6.4 Another example
with wooden and plastic
circles

wood plastic

3. Choose one of the decision trees in Fig. 6.1 and convert it to a set of rules. Pick
one of these rules and decide which of its tests can be removed with the minimum
increase in the estimated error.

4. Consider a set of ten training examples. Suppose there is a continuous attribute
that has the following values: 3:6; 3:2; 1:2; 4:0; 0:8; 1:2; 2:8; 2:4; 2; 2; 1:0. Sup-
pose that the first five of these examples, and also the last one, are positive, all
other examples being negative. What will be the best binary split of the range of
this attribute’s values?

Give It Some Thought

1. The baseline performance criteria used of the evaluation of decision trees are
error rate and the size of the tree (the number of nodes). These, however, may
not be appropriate in certain domains. Suggest applications where either the size
of the decision tree or its error rate may be less important. Hint: consider the
costs of erroneous decisions and the costs of obtaining attribute values.

2. What are likely to be the characteristics of a domain where a decision tree clearly
outperforms the baseline 1-NN classifier? Hint: consider such characteristics as
noise, irrelevant attributes, or the size of the training set; and then make your own
judgement as to what influence each of them is likely to have on the classifier’s
behavior.

3. On what kind of data may a linear classifier do better than a decision tree? Give at
least two features characterizing such data. Rely on the same hint as the previous
question.

4. Having found the answers to the previous two questions, you should be able
to draw the logical conclusion: applying to the given data both decision-tree
induction and linear-classifier induction, what will their performance betray
about the characteristics of the data?

5. The decision tree as described in this chapter gives only “crisp” yes-or-no
decisions about the given example’s class (in this sense, one can argue that

6.8 Solidify Your Knowledge 135

Bayesian classifiers or multilayer perceptrons are more flexible). By way of
mitigating this weakness, suggest a mechanism that would modify the decision-
trees framework so as to give, for each example, not only the class label, but also
the classifier’s confidence in this class label.

Computer Assignments

1. Implement the baseline algorithm for the induction of decision trees and test
its behavior on a few selected domains from the UCI repository.4 Compare the
results with those achieved by the k-NN classifier.

2. Implement the simple pruning mechanism described in this chapter. Choose a
data file from the UCI repository. Run several experiments and observe how
different extent of pruning affects the error rate on the training and testing sets.

3. Choose a sufficiently large domain from the UCI repository. Put aside 30 % of
the examples for testing. For training, use 10 %, 20 %, . . . 70 % of the remaining
examples, respectively. Plot a graph where the horizontal axis gives the number
of examples, and the vertical axis gives the computational time spent on the
induction. Plot another graph where the vertical axis will give the error rate on
the testing set. Discuss the obtained results.

4www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 7
Computational Learning Theory

As they say, nothing is more practical than a good theory. And indeed, mathematical
models of learnability have helped improve our understanding of what it takes to
induce a useful classifier from data, and, conversely, why the outcome of a machine-
learning undertaking so often disappoints. And so, even though this textbook does
not want to be mathematical, it cannot help introducing at least the basic concepts
of the computational learning theory.

At the core of this theory is the idea of PAC-learning, a paradigm that makes
it possible to quantify learnability. Restricting itself to domains with discrete
attributes, the first section of this chapter derives a simple expresion that captures
the mutual relation between the training-set size and the induced classifier’s error
rate. Some consequences of this formula are briefly discussed in the two sections
that follow. For domains with continuous attributes, the so-called VC-dimension is
then introduced.

7.1 PAC Learning

Perhaps the most useful idea contributed by computational learning theory is that of
“probably approximate learning,” sometimes abbreviated as PAC-learning. Let us
first explain the underlying principles and derive a formula that will then provide
some useful guidance.

Assumptions and definitions. The analysis will be easier if we build it around
a few simplifying assumptions. First, the training examples—as well as all future
examples—are completely noise-free. Second, all attributes are discrete (none of
them is continuous-valued). Third, the classifier acquires the form of a logical

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_7

137

138 7 Computational Learning Theory

expresion of attribute values; the expression is true for positive examples and false
for negative examples. And, finally, there exists at least one expression that correctly
classifies all training examples.1

Each of the logical expressions can then be regarded as one hypothesis about
what the classifier should look like. Together, all of the hypotheses form a hypothesis
space whose size (the number of distinct hypotheses) is jHj. Under the assumptions
listed above, jHj is a finite number.

Inaccurate classifier may still succeed on the training set. Available training
data rarely exhaust all subtleties of the underlying class; a classifier that labels
correctly all training examples may still perform poorly in the future. The frequency
of these mistakes is usually lower if we add more training examples because these
additions may reflect aspects that the original data failed to represent. The rule of
thumb is actually quite simple: the more examples we have, the better the induced
classifier.

How many training examples will give us a fair chance of future success? To
find the answer, we will first consider a hypothetical classifier whose error rate
on the entire instance space is greater than some pre-defined
. Put another way.
the probability that this classifier will label correctly a randomly picked example
is less than 1 �
. Taking this reasoning one step further, the probability, P, that
this imperfect classifier will label correctly m random examples is bounded by the
following expression:

P � .1 �
/m (7.1)

And here is what this means: with probability P � .1 �
/m, an entire training
set consisting of m examples will be correctly classified by a classifier whose error
rate actually exceeds
. Of course, this probability is for a realistic m very low. For
instance, if
 D 0:1 and m D 20 (which is a very small set), we will have P < 0:122.
If we increase the training-set size to m D 100 (while keeping the error rate bound
by
 D 0:1), then P drops to less than 10�4. This is indeed small; but low probability
is not the same as impossibility.

Eliminating poor classifiers. Suppose that an error rate greater than
 is deemed
unacceptable. What are the chances that a classifier with performance this poor is
induced from the given training set, meaning that it classifies correctly all training
examples?

The hypothesis space consists of jHj classifiers. Let us consider the theoretical
possibility that we evaluate all these classifiers on the m training examples, and
then keep only those classifiers that have never made any mistake. Among these

1The reader will have noticed that all these requirements are satisfied by the “pies” domain from
Chap. 1.

7.1 PAC Learning 139

“survivors,” some will disappoint in the sense that, while being error-free on the
training set, their error rates on the entire instance space actually exceed
. Let there
be k such classifiers.

The concrete value of k cannot be established without evaluating each single
classifier on the entire instance space. This being impossible, all we can say is that
k � jHj, which is a somewhat better situation because jHj is known in many realistic
cases, or at least can be calculated.2

Let us rewrite the upper bound on the probability that at least one of the k
offending classifiers will be error-free on the m training examples.

P � k.1 �
/m � jHj.1 �
/m (7.2)

With this, we have established an upper bound on the probability that m training
examples will succeed in eliminating all classifiers whose error rate exceeds
.

To become useful, the last expression has to be modified. Mathematicians know
that 1 �
 < e�
 , which means that (1 �
/m < e�m
 . With this in mind, we are able
to express the upper bound in an exponential form:

P � jHj � e�m
 (7.3)

Suppose we want this probability to be lower than some user-set ı:

jHj � e�m
 � ı (7.4)

Taking the logarithm of both sides, and rearranging the terms, we obtain the
formula that we will work with in the next few pages:

m >
1

.ln jHj C ln

1

ı
/ (7.5)

“Probably approximately correct” learning. The main reason we have gone
through all the details of the derivation is that the reader thus gets a better grasp
of the meanings and interpretations of the involved variables which may otherwise
be a bit confusing. This is also why these variables are summarized in Table 7.1 for
quick reference.

We have now reached a stage where we are able to define some important
concepts. A classifier with error rate below
 is deemed approximately correct; and
ı is the probability that this approximately correct classifier will be induced from m
training examples (m being a finite number). Hence the name of the whole paradigm:
probably approximately correct learning, or simply PAC-learning. For the needs of
this chapter, we will say that a class is not PAC-learnable if the number of examples

2Recall that in the “pies” domain from Chap. 1, the size of the hypothesis space was jHj D 2108.
Of these hypotheses, 296 classified correctly the entire training set.

140 7 Computational Learning Theory

Table 7.1 The variables
involved in our studies of
PAC-learnability

m : : : The number of the training examples

jHj : : : The size of the hypothesis space

 : : : The classifier’s maximum permitted error rate

ı : : : The probability that a classifier with error rate

Greater than
 is error-free on the training set

needed to satisfy the given (
; ı)-requirements is so high that we cannot expect a
training set of this size ever to be available—or, if it is available, then the learning
software will need impracticaly long time (say, thousands of years) to induce from
it the classifier.

Interpretation. Inequality 7.5 specifies how many training examples, m, are
needed if, with probability at least ı, a classifier with error rate lower than
 is to
be induced. Note that this result does not depend on the concrete machine-learning
technique, only on the size, jHj, of the hypothesis space defined by the given type
of classifier.

An important thing to remember is that m grows linearly in 1=
. For instance,
if we strengthen the limit on the error rate from
 D 0:2 to
 D 0:1, we will need
(at least in theory) twice as many training examples to have the same chance, ı, of
success. At the same time, the reader should also notice that m is less sensitive to
changes in ı, growing only logarithmically in 1=ı.

However, we must not forget that our derivation was something like a worst-case
analysis. As a result, the bound it has given us is less tight than a perfectionist might
desire. For instance, the derivation allowed the possibility that k D jHj, which is
clearly too pessimistic for the vast majority of practical applications. Inequality 7.5
should therefore never be interpreted as telling the engineer how many training
examples to use. Rather, it should be seen as a guideline that makes it possible
to compare the learnability of alternative classifier types. We will pursue this idea in
the next section.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the meaning of the four variables (m; jHj;
; and ı) used in
Inequality 7.5?

• What does the term PAC-learning refer to? Under what circumstances do we say
that a class is not PAC-learnable?

• Derive Inequality 7.5. Discuss the meaning and practical benefits of this result,
and explain why it should only be regarded as a worst-case analysis.

7.2 Examples of PAC Learnability 141

7.2 Examples of PAC Learnability

Inequality 7.5 tells us how learnability, defined by the (
; ı)-requirements, depends
on the size of the hypothesis space. Let us illustrate this result on two concrete types
of classifiers.

Conjunctions of boolean attributes: hypothesis space. Suppose that all attributes
are boolean, that all data are noise-free, and that an example’s class is known to be
determined by a logical conjunction of attribute values: if true, then the example
is positive, otherwise it is deemed negative. For instance, the labels of the training
examples may be determined by the following expression:

att1 = true AND att3 = false

This means that an example is labeled as pos if the value of the first attribute is
true and the value of the third attribute is false, regardless of the value of any other
attribute. An example that fails to satisfy these two conditions is labeled as neg.

The task for the machine-learning program is to find a conjunction that correctly
labels all training examples. The set of all conjuctions permitted by our informal
definition forms the hypothesis space, jHj. What is the size of this space?

In a logical conjunction of the kind specified above, each attribute is either true
or false or irrelevant. This gives us three possibilities for the first attribute, times
three possibilities for the second, and so on, times three possibilities for the last,
n-th, attribute. The size of the hypothesis space is therefore jHj D 3n.

Conjunctions of boolean attributes: PAC-learnability. Suppose that a training
set consisting of noise-free examples is presented to some machine-learning
program that is capable of inducing classifiers of the just-defined form.3 To satisfy
the last of the assumptions listed at the beginning of Sect. 7.1, we will assume that
at least one of the logical conjunctions classifies correctly all training examples.

Since ln jHj D ln 3n D n ln 3, we can rewrite Inequality 7.5 in the following
form:

m >
1

.n ln 3 C ln

1

ı
/ (7.6)

With this, we have obtained a conservative lower bound on the number of
training examples that are needed if our (
; ı)-requirements are to be satisfied: with
probability ı, the induced classifier (error-free on the training set) will exhibit error
rate less than
 on the entire instance space. Note that the value of this expression
grows linearly in the number of attributes, n. Theoretically speaking, then, if n is
doubled, then twice as many training examples will be needed if, with probability
limited by ı, classifiers with error rates above the pre-defined
 are to be weeded
out.

3For instance, a variation of the hill-climbing search from Sect. 1.2 might be used to this end.

142 7 Computational Learning Theory

Any boolean function: hypothesis space. Let us now investigate a broader class
of classifiers, namely those defined by any boolean function, allowing for all
three basic logical operators (AND, OR, and NOT) as well as any combination of
parentheses. As before, we will assume that the examples are described by n boolean
attributes, and that they are noise-free.

What is the size of this hypothesis space?
From n boolean attributes, 2n different examples can be created. This defines the

size of the instance space. For any subset of these 2n examples, there exists at least
one logical function that is true for all examples from this subset (labeling them as
pos) and false for all examples from outside this subset (labeling them as neg).
Two logical functions will be regarded as identical from the classification point of
view if each of them labels any example with the same class; that is, if they never
differ in their “opinion” about any example’s class. The number of logical functions
that are mutually distinct in their classification behavior then has to be the same as
the number of the subsets of the instance space.

A set consisting of X elements is known to have 2X subsets. Since our specific
instance space consists of 2n examples, the number of its subsets is 22n

—and this is
the size of our hypothesis space:

jHj D 22n
(7.7)

Any boolean function: PAC-learnbility. Since ln jHj D ln 22n D 2n ln 2,
Inequality 7.5 acquires the following form:

m >
1

.2n ln 2 C ln

1

ı
/ (7.8)

We conclude that the lower bound on the number of the training examples that
are needed if the (
, ı)-requirements are to be satisfied grows here exponentially in
the number of attributes, n. Such growth is prohibitive for any realistic value of n.
For instance, even if we add only a single attribute, n C 1, the value of ln jHj will
double because ln jHj D 2nC1 ln 2 which is twice a much as 2n ln 2. And if we add
ten attributes, n C 10, then the value of ln jHj increases a thousand times because
ln jHj D 2nC10 ln 2 D 210 � 2n ln 2 D 1; 024 � 2n � ln 2.

This observation is enough to convince us that a classifier in this general form is
not PAC-learnable.

A word of caution. We must be careful not to jump to conclusions. As pointed
out earlier, the derivation of Inequality 7.5—a worst-case analysis of sorts—
relied on quite a few simplifying assumptions that render the obtained bounds
very conservative. In reality, the number of the training examples needed for the
induction of a reliable classifier is much lower than that indicated by our “magic
formula.”

For the engineer seeking to choose the most appropriate learning technique, the
main contribution of Inequality 7.5 is that it helps him compare PAC-learnability of

7.3 Some Practical and Theoretical Consequences 143

classifiers constrained by different “languages.” For instance, we have seen that a
conjunction of attribute values can be learned from a reasonably-sized training set,
whereas a general concept defined by any boolean function usually cannot.

Some other corollaries of this analysis will be the subject of Sect. 7.3.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the size of a hypothesis space consisting of conjunctions of attribute
values? Substitute this size to Inequality 7.5 and discuss the result.

• Can you find the value of jHj for some other class of classifiers?
• Explain, in plain English, why a boolean function in its general form is not

PAC-learnable.

7.3 Some Practical and Theoretical Consequences

The theoretical analysis from the first section of this chapter offers a broader
perspective of the learning task as well as clues whose significance cannot be
overstated. Their benefits range from purely intellectual satisfaction enjoyed by a
theoretician to practical guidelines appreciated by the most down-to-earth engineer.
Let us take a quick look at some of them.

Bias and learnability. Section 7.2 investigated PAC-learnability of classes whose
descriptions are limited to conjuctions of attribute values. A constraint of this kind
is called a bias for a specific type of class.

Allowing for some attributes to be ignored as irrelevant, we calculated the size of
the hypothesis space thus defined as jHj D 3n. If we strengthen the bias by insisting
that every single attribute must be involved, we will reduce the size of the hypothesis
space: jHj D 2n. This is because every attribute in the class-describing expression
is either true or false, whereas in the previous case, a third possibility (“ignored”)
was permitted.

Many other biases exist, some limiting the number of terms in the conjunction,
others preferring a disjunction or some pre-specified combination of conjunctions
and disjunctions, or imposing yet another constraint. What matters, for our discus-
sion, is that each bias is likely to result in a different size of the hypothesis space.
And, as we have seen, this size affects learnability.

No learning without a bias. In the absence of any bias, allowing for any boolean
function, we have established that the value of ln jHj grows exponentially in the
number of attributes, ln jHj D 2n ln 2, which means that the class is in this most

144 7 Computational Learning Theory

general form not PAC learnable. The explanation is simple. The unconstrained
hypothesis space is so vast that there is a reasonable chance that one may find
a classifier that labels correctly the entire training set, and yet exhibits poor
performance on future examples. Put bluntly, the induced classifier cannot be
trusted.

It is in this sense that we say, with a grain of salt, that “there is no learning without
a bias.”

The thing to remember is that the machine-learning adventure can only succeed
if the engineer constrains the hypothesis space by a meaningful bias. It stands to
reason, however, that this bias should not be misleading. The reader will recall that
our analysis assumed that the hypothesis space does contain the solution, and that
the examples are noise-free.4

Occam’s Razor. Quite often, the engineer has an opportunity to choose from two
or more biases. For instance, the class to be learned is described by a conjunction
of attribute values, in which each single attribute plays a part. A weaker bias that
permits the absence of some attributes from the conjunctions also includes the case
where zero attributes are absent, and is therefore correct, too. In the former case, we
have ln jHj D n ln 2; and in the latter, ln jHj D n ln 3, which is bigger. We thus have
two correct biases, each defining a hypothesis space of a different size. Which of
them to prefer?

The attentive reader no doubt already knows the answer. In Inequality 7.5, the
number of training examples needed for successful learning depends on ln jHj.
A lower value of this term indicates that fewer examples are needed if we want
to satisfy the given .
; ı)-requirements. The engineer will thus benefit by choosing
the bias whose hypothesis space is smaller.

By the way, scientists have been using a similar rule for centuries: in a situation
where two different hypotheses can explain a certain phenomenon, it is assumed that
the simpler one has a higher chance of success. The fact that this principle, Occam’s
Razor, has been named after a scholastic theologian who died in the fourteenth
century indicates that the use of this rule pre-dates modern science. The word razor
is here to emphasize that, when formulating a hypothesis, we better slice away all
unnecessary information.

That mathematicians have now been able to find a formal proof of the validity of
this principle in the field of machine learning, and even to quantify the scope of its
utility, is a remarkable achievement.

Irrelevant and redundant attributes. In the types of classes investigated in
Sect. 7.2, the lower-bound on the number of examples, m, depended on the number
of attributes, n. For instance, in the case of conjunctions of attribute values, we now
know that ln jHj D n ln 3; and the number of examples needed to satisfy given
.
; ı/-requirements thus grows linearly in n.

4Analysis of situations where these requirements are not satisfied would go beyond the scope of an
introductory textbook.

7.4 VC-Dimension and Learnability 145

The same result enables us to form an opinion about how a class learnability
might be affected by the presence of irrelevant or redundant attributes. The higher
the number of these attributes, the higher the value of n, which means that more
training examples have to be provided if we want to satisfy the .
; ı/-requirements.
The lesson is clear: whenever we have a chance to identify (and remove) the less-
then-useful attributes, we better do so.

These considerations also explain why it is so difficult to induce a good
classifier in domains where only a tiny percentage of attributes carry the relevant
information—as is the case in text classification.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is meant by the statement, “there is no learning without a bias”? Con-
versely, under what circumstances will the engineer’s bias tend to hurt the
learning algorithm’s chances of success?

• Explain the meaning of the term, Occam’s Razor. In what way did mathemati-
cians provide a solid ground for this—formerly philosophical—principle?

• What does Inequality 7.5 tell us about the role of irrelevant and redundant
attributes?

7.4 VC-Dimension and Learnability

So far, we have only dealt with domains where the number of hypotheses is finite.
Let us now turn our attention to domains where the hypothesis space is infinite,
which is often inevitable in applications where at least some of the attributes are
continuous-valued. In this situation, it would appear that comparing the learnability
of two classes of classifiers is all but impossible because both of them have infinite
jHj anyway.

To begin with, the reader will agree that some classes of classifiers (say,
polynomial) are more flexible than others (say, linear). Surely this flexibility is likely
to have some impact on learnability? Indeed it does. Let us take a quick look at how
theoreticians quantify learnability under this situation.

Shattered training set. Consider the three examples in the two-dimensional space
depicted on the left of Fig. 7.1. No matter how we distribute the positive and negative
labels among them, we will always be able to find a linear classifier that separates
the two classes (the classifiers are shown in the same picture). We say that this
particular set of examples is “shattered” by the class of linear classifiers.

146 7 Computational Learning Theory

Fig. 7.1 The set of the three points on the left is “shattered” by a linear classifier. The set of the
three points on the fight is not shattered by a linear classifier because no straight line can separate
the point in the middle from those on the sides

This, however, is not the case of the three points on the right. As we can see,
these points find themselves all on the same line. If we label the one in the middle
as positive and the other two as negative, no linear classifier will ever succeed in
separating the two classes from each other. In other words, this particular set of
examples is not shattered by the linear classifier.

A different class of classifiers will have a different power to shatter a given
set of examples. For example, a parabola (a special kind of a quadratic, and thus
polynomial function) will shatter the three aligned points on the right; it will even
shatter four points that do not lie on the same line. And other classes of classifiers,
such as high-order polynomials, will shatter any realistically-sized set of examples.

Vapnik-Chervonenkis dimension. The Vapnik-Chervonenkis dimension (usually
abbreviated as VC-dimension) of a given class of classifiers is defined as the size of
the largest set of examples shattered by this class.

We have seen that, in a two-dimensional space, a linear classfier fails to shatter
three points that are all on the same line, but that the linear classifier does shatter
them if they do not lie on the same line. At the same time, four points, no matter how
we arrange them in a plane, can always be labeled in a way that makes it impossible
to separate positive examples from the negative linearly. Since the definition says,
“the largest set of examples shattered by this class,” we are bound to conclude that
the VC dimension of a linear classifier in a two-dimensional space is VCL D 3.

The point to remember is that the value of the VC-dimension reflects—and
quantifies—the geometrical properties of the given class of classifiers.

Learnability in continuous domains. The concept of VC-dimension makes it
possible for us to deal with learnability in continuous domains. Let us give here
a slightly modified version of a famous theorem, omitting certain technicalities that
are irrelevant for our specific needs:

7.4 VC-Dimension and Learnability 147

If the VC-dimension, d, of a classifier class, H, is finite, then an error rate below

 can be achieved with confidence 1 � ı if the target class is identical with some
hypothesis h 2 H, and if the number of the training examples, m, satisfies the
following inequality:

m � max.
4

log

2

ı
;

8d

log

13

/ (7.9)

Note that this means that the lower-bound on m is either (4

log 2
ı
) or (8d

log 13

/,

whichever is greater.
The engineer interprets this result as telling him that he can then trust any

classifier which correctly classifies the entire training set of size m, regardless of
the machine-learning algorithm that has induced the classifier.

Note that the number of examples necessary for PAC learning grows linearly in
the VC-dimension. This, however, is no reason to rejoice. Thing is, VC-dimensions
of many realistic classes of classifiers have a way of growing very fast with the
growing number of attributes—see below.

Some example VC-dimensions. Table 7.2 lists some VC-dimensions for linear
and polynomial classifiers. The reader may want to contemplate the inevitable
tradeoff: more complex classes of classifiers are more likely to contain the correct
solution, but the number of training examples needed for success increases so
dramatically that a classifier from this class cannot be deemed learnable.

Indeed, in the case of higher-order polynomials, the demands on the training-set
size become all but prohibitive. For instance, the VC-dimension of a second-order
polynomial in 100 dimensions (a fairly normal number of attributes) is as follows:

d D 102 � 101

2 � 1
D 5;050

This is much larger than that of a linear classifier, but perhaps still acceptable. At
any rate, the value is sufficiently high to make the first term in Inequality 7.9 small
enough (by comparison) to be ignored.

Table 7.2 VC-dimensions
for some hypothesis classes
in Rn

Hypothesis class VC-dimension

Hyperplane n C 1

Hypersphere n C 2

Quadratic
.n C 1/.n C 2/

2

r-order polynomial

n C r

r

!

148 7 Computational Learning Theory

If, however, we increase the polynomial’s order to r D 4, the VC-dimension will
become all but prohibitive:

d D 104 � 103 � 102 � 101

4 � 3 � 2 � 1
D 4;598;126

Polynomials of higher order therefore better be avoided. On the other hand,
the VC-dimensions of neural networks and decision trees (see Chaps. 5 and 6) are
known to be more affordable—which is why these classifiers are preferred.

A word of caution. Just as in the case of Inequality 7.5, this one (Formula 7.9)
is the result of a worst-case analysis during which certain simplifying assumptions
were made. The results therefore should not be interpreted as telling us how many
examples are needed in any concrete application.

Importantly, in realistic applications, examples are not labeled arbitrarily. Since
the examples of the same class are somehow similar to each other, they tend to be
clustered together in the instance space.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How does the number of examples that are necessary for the .
; ı/-requirements
grow with the increasing VC-dimension, d?

• What is the VC-dimension of a linear classifier in the two-dimensional continu-
ous space?

• What is the VC-dimension of an n-dimensional polynomial of the r-th order?
Why does the high value of this VC-dimension mean that polynomial classifiers
may not be a good choice?

7.5 Summary and Historical Remarks

• The Computational Learning Theory has been able to establish certain limits on
the number of the training examples needed for successful classifier induction.
These limits depend on two fundamental parameters: the threshold on error rate,

, and the upper bound, ı, on the probability that m training examples will
succeed in eliminating all classifiers whose error rate is above
.

• If all attributes are discrete, the minimum number of examples needed to satisfy
the .
; ı/-requirements is determined by the size, jHj, of the given hypothesis
space. Here is the classical formula:

m >
1

.ln jHj C ln

1

ı
/ (7.10)

7.6 Exercises and Thought Experiments 149

• In a domain where some attributes are continuous, the minimum number of
examples needed to satisfy the .
; ı/-requirements is determined by the so-called
VC-dimension of the given class of classifiers. Specifically, if the value of the
VC-dimension is denoted by d, then the number of the needed examples is
determined by the following inequality:

m � max.
4

log

2

ı
;

8d

log

13

/ (7.11)

• Inequalities 7.5 and 7.9 have been found by a worst-case analysis. In reality,
therefore, much smaller training sets are usually sufficient for the induction of
high-quality classifiers. The main benefit of these formulas is that they help us
compare learnability in different machine-learning paradigms.

Historical Remarks. The principles underlying the idea of PAC learning were
proposed by Valiant [78]. The classical paper on what later came to be known
as VC-dimension is Vapnik and Chervonenkis [81]; somewhat more elaborate
version was later developed by Vapnik [79]. The idea to apply VC dimension to
learnability, and to the investigation of Occcam’s Razor is due to Blumer et al. [5].
Tighter bounds were later found, for instance, by Shawe-Taylor, Anthony and
Biggs [73]. VC dimensions of linear and polynomial classifiers can be derived
from the results published by Cover [14]. Readers interested in learning more about
the Computational Learning Theory will greatly benefit from the excellent (even if
somewhat older) book by Kearns and Vazirani [36].

7.6 Exercises and Thought Experiments

The exercises are to solidify the acquired knowledge. The ambition of the suggested
thought experiments is to let the reader see this chapter’s ideas in a different light
and, somewhat immodestly, to provoke his or her independent thinking.

Exercises

1. Suppose that the instance space is defined by the attributes used in the “pies”
domain from Chap. 1. Determine the size of the hypothesis space if the classifier
is to be a conjunction of attribute values. Consider both cases: the one that
assumes that some attributes might be ignored as irrelevant (or redundant), and
the one that insists that all attributes must take part in the conjuction.

2. Return to the case of conjunctions of boolean attributes from Sect. 7.2. How many
more examples will have to be used (in the worst-case analysis) if we change the
required error rate from
 D 0:2 to
 D 0:05? Conversely, how will the size of
the necessary training set be affected by changes in ı?

150 7 Computational Learning Theory

3. Again, consider the case where all attributes are boolean, and the classifier has the
form of a conjunction of attribute values. What is the size of the hypothesis space
if the conjunction is permitted to involve exactly three attributes? For instance,
here is one conjuction from this class:

att1 = true AND attr2 = false AND att3 = false

4. Consider a domain with n D 20 continuous-valued attributes. Calculate the
VC-dimension for a classifier that has the form of a quadratic function, and
compare it with that of a third-order polynomial.

Second, suppose that the engineer has realized that half of the attributes are
irrelevant. Having removed them, he now has n D 10. How will this reduction
affect the VC-dimensions of the two classifiers?

5. Compare the PAC-learnability of the boolean function involving eight attributes
with the PAC-learnability of a quadratic classifier in a domain with four numeric
attributes

Give It Some Thought

1. A certain role in Inequality 7.5 is played by ı, a term that quantifies the
probability that a successful classifier will be induced from the given training
set. Under what conditions can the impact of ı be neglected?

2. From the perspective of PAC-learnability, is there a difference between irrelevant
and redundant attributes?

3. We have seen that a classifier is not PAC-learnable in the absence of a bias.
The bias, however, many not be known. Suggest a learning procedure that would
induce a classifier in the form of a boolean expression in this case. (Hint: consider
two or more alternative biases.)

4. In the past, some machine-learning scientists considered the idea of converting
continuous attributes into discrete ones by a process called discretization. By
this they meant dividing the range of attribute values into intervals, each interval
treated as a boolean attribute (the given numeric value either is or is not in the
given interval).

Suppose you are considering two ways of dividing the range Œ0; 100�. The
first consists of two subintervals, Œ0; 50�, Œ51; 100�, and the second consists of
ten equally sized subintervals: Œ0; 10�; : : : Œ91; 100�. Discuss the advantages and
disadvantages of the two options from the perspective of PAC-learnability.

Chapter 8
A Few Instructive Applications

For someone wishing to become an expert on machine learning, mastering a handful
of baseline techniques is not enough. Far from it. The world lurking behind a
textbook’s toy domains has a way of complicating things, frustrating the engineer
with unexpected obstacles, and challenging everybody’s notion of what exactly the
induced classifier is supposed to do and why. Just as in any other field of technology,
success is hard to achieve without a healthy dose of creativity.

Some practical experience helps, too, either your own, or at least of those who
have tried and succeeded (or failed) before you. And this is what this chapter wants
to offer. Using a few carefully selected case studies, it will acquaint you with some
issues typically encountered in realistic applications—and with practical ways of
dealing with them.

8.1 Character Recognition

The techniques from the previous chapters target recognition skills that are too
difficult to be hard-coded in a computer program, but can be conveyed by means
of pre-classified training examples. The ability to read text, even hand-written
text, belongs to this category. Applications are legion: automated pre-processing
of various forms, software for converting a text scribbled on a notepad into a format
to be used by a text-editor, and various newspaper-digitization programs. A mere
generation or two ago, an undertaking of this kind was judged so ambitious as to be
almost unrealistic; today, no one finds it extraordinary.

The task. To describe each character in a way that facilitates its recognition by
a computer is not easy. To get the idea, just try to explain, in plain English, how
to distinguish digit “5” from digit “6,” or what constitutes the difference between

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_8

151

152 8 A Few Instructive Applications

a 6−by−4 matrix of
numeric attributes,
each giving mean
intensity of a field

Fig. 8.1 A simple way to convert the image of a hand-written character into a vector of 64
continuous attributes, each giving the mean intensity of the corresponding field

a hand-written “t” and “l.” You will be surprised how difficult this is. And to
convert the plain-English explanation to a code that a computer can understand is
harder still.

This is why machine learning has been asked to help. If we prepare a collection of
training examples, and describe them by pre-classified attribute vectors, then surely
some of the techniques described in the previous chapters can induce the requisite
classifier. The process is so simple as to seem almost trivial. Let us take a look at
some of its crucial aspects.

Examples and attribute vectors. To begin with, the engineer has to define the
attributes to describe the examples. Figure 8.1 illustrates one possibility. The first
step identifies a rectangular region in which the digit is located; the second divides
this region into 6 � 4 D 64 equally-sized fields, each characterized by a continuous
attribute whose value gives the field’s mean intensity. More ink means the field
reflects less light, and thus results in a lower value of the attribute, and, conversely,
the value is maximized if the field contains no ink at all. Of course, this is just the
principle. There is no reason why there should be only 64 attributes. Indeed, the
higher the level of detail the program is expected to discern, the smaller the size of
the fields it needs to rely on, and thus the greater the number of attributes that will
be used to describe the examples.

In a realistic application, the classifier will have to recognize not just one isolated
character (such as the “3” in Fig. 8.1), but rather to “read” a whole text consisting of
many such characters. This generalization, however, does not represent any major
complication. As long as the individual characters can be isolated, and then treated
separately, the same principle of describing each of them by an attribute vector can
be applied.

8.1 Character Recognition 153

Nowadays it is possible to download datasets of hundreds of thousands of hand-
written characters, some described in the way presented above, some relying on
other approaches.

Choosing the classifier. Now that we know how the training examples are going
to be described, we are ready to proceed to the choice of the induction technique.

The first thing to be considered is that, in the attribute-vector obtained by the
mechanism from Fig. 8.1, only a small percentage of the attributes (if any) are likely
to be irrelevant or redundant, which means that this is not an issue to worry about
(unless the number of attributes is increased way beyond those shown in Fig. 8.1).
Another aspect guiding our choice of an appropriate machine-learning paradigm
is the fact that we do not know whether the classes are linearly separable, and
therefore hesitate to use linear classifiers. Finally, the classifiers need not be capable
of offering explanations. If the intention is to read and convert to a text editor a long
text, the user will hardly care to know the exact reason why a concrete character was
classified as a “P” and not as a “D.”

Based on these observations, the simple and easy-to-implement k-NN classifier
looks like a good candidate. A cautious engineer will perhaps be concerned about
the computational costs incurred in a domain with hundreds of thousands of training
and testing examples. But as long as the number of attributes is moderate, these
costs are unlikely to be prohibitive. From the practical point of view, a reasonable
limit on what constitutes “prohibitive costs” will be determined by the computations
associated with the isolation of the individual characters and the conversion of
their images to attribute vectors. As long as these are comparable with the costs
of classification (and they usually are), the classifier is affordable.

And indeed, the nearest-neighbor classifier is the most common choice, in this
application, typically exhibiting an error rate of less then 2 %. In some really
illegible hand-writings, the error rate will of course be higher. But then, we
should not be too harsh on the innocent machine, knowing as we do that even an
experienced pharmacist finds it difficult to read certain hand-written prescriptions.

The number of classes. In a domain where all characters are capitalized, the
induced classifier is to discern 10 digits and 26 letters, which amounts to 36
classes. If both lowercase and uppercase letters are allowed, the total increases to
10 C 2 � 26 D 62 classes, and to these we may have to add special characters such
as “?,” “!,” “$,” and so on. This relatively high number of classes is not without
consequences, and these deserve our attention.

The most immediate concern is the induced product’s evaluation. Mere informa-
tion about the error rate is somewhat inadequate here. Thus the performance of a
classifier that correctly identifies 98 % characters may appear good enough, even
impressive; what this value fails to tell us, though, is how the errors are distributed.
Typically, some characters will be correctly identified most of the time, while others
pose difficulties—and as such, deserve further attention. For instance, certain pairs
of similar characters tend to be mutually confused; the practically-minded engineer
then wants to know which pairs so as to mitigate the problem by providing additional
training examples for the “difficult” classes.

154 8 A Few Instructive Applications

Moreover, some letters will be less common than others. In a situation of this
kind, it is known that the rarer classes get “overlooked” by the classifier-inducing
algorithms unless special precautions have been taken. Section 10.2 will have more
to say about this issue.

The classifier should be allowed to reject an example. To decipher a person’s
handwriting is far from easy. Certain letters are so ambiguous as to make the reader
shrug his shoulders in despair. Yet the k-NN classifier from Chap. 3 is undeterred:
it always finds a nearest neighbor, and then simply returns its class, no matter how
arbitrary this class is.

Practical experience shows this circumstance to be harmful because the costs of
getting the wrong class can be greater than the costs of not knowing the class at all.
Thus in an automated reader of postal codes, an incorrectly read digit can result in
the letter being sent to a wrong destination, which, in turn, may cause great delay
in delivery. On the other hand, if the classifier does not give any answer, a human
employee will have to do the reading. The costs of manual processing may then be
lower than the costs of getting the wrong address.

We have convinced ourselves that the classifier should be implemented in a way
that makes it possible to refuse to classify an example if the evidence supporting
the winning class is insufficient. The simplest way of doing so in the context of
the k-NN classifier is to require a certain minimum margin between the number of
votes supporting the winner and the number of votes supporting the runner-up. For
instance, if the winning class in a 7-NN classifier receives only 4 votes as compared
to the 3 votes supporting another class, the example is rejected as ambiguous.

Something similar is easy to accomplish also in some other paradigms such
as the Bayesian classifiers or neural networks: the classifier simply compares the
probabilities (or output signals) of the two most likely classes, and rejects this
example if the difference does not exceed a predefined threshold.

Error rate versus rejection rate. A classifier that rejects ambiguous examples will
surely reduce its error rate; on the other hand, excessive reluctance to classify will
not be beneficial, either. What if all examples are rejected? The error rate then drops
to zero—and yet the user will question the tool’s practical utility.

The lesson is, the engineer needs to consider the trade-off between the rejection
rate and the error rate. True enough, increasing the former is likely to reduce the
latter; but overdoing it may render the classifier useless.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how to describe hand-written characters by attribute vectors.

8.2 Oil-Spill Recognition 155

• What aspects did we consider (and why) when looking for the most appropriate
machine-learning tool to be used here?

• What is the immediate consequence of the relatively high number of classes in
this domain? Why is here the error rate unable to give the full picture?

• Why should the classifier be allowed to refuse to classify certain examples?
Discuss the trade-off between error rate and rejection rate; comment on the
interplay between performance and utility.

8.2 Oil-Spill Recognition

Figure 8.2 shows a radar image of the sea surface as taken by a satellite-born device.
Against the grayish background, the reader can see several dark regions of the most
varied characteristics: small or large, sharp or barely discernible, and of all possible
shapes. What interests us here primarily is the sharp and elongated object in the
vicinity of the upper-right corner: an oil spill, illegally dumped by a tanker’s captain
who has chosen to get rid of the residues in its bilges in the open sea rather than
doing so in a specially designed terminal as required by the law. As such, this
particular oil spoil is of great interest to the Coast Guard.

For all relevant sea-surface areas (close to major ports, for example), satellites
take many of such “snapshots” and send them down to collaborating ground stations.
Here, experts pore over these images in search for signs of illegal oil spills.
Whenever they detect one, an airplane is dispatched and verifies the suspicion by
a spectrometer (which is unavailable to the satellite), collects evidence, and perhaps
even identifies the perpetrator.

Fig. 8.2 A radar image of a sea surface. The “wiggly” elongated dark region in the upper-right
corner represents environmental hazard: an oil spill (Kubat et al. [43])

156 8 A Few Instructive Applications

Unfortunately, human experts are expensive—and not always available. They
may be on holidays, on a sick leave, or not present for any number of other reasons.
Besides, in view of the high number of images, the work is tedious, and prone to
human errors. This is why the idea came up to develop a computer program to
automate the oil-spill recognition process.

The picture shown in Fig. 8.2 has been selected out of many, the main criterion
being its rare clarity. Indeed, the oil spill it contains is so different from the other
dark regions that even an untrained eye will easily recognize it as such. Even so,
the reader will find it difficult to specify the oil-spill’s distinguishing features in a
manner that can be used in a computer program. In the case of more realistic objects,
the task will be even more difficult, At any rate, to hard-code the oil-spill recognition
ability is quite a challenge.

Again, machine learning got its chance, the intention being to let the machine
develop the requisite skills automatically, by induction from training examples. The
general scenario of the adventure can be summarized into the following steps.

(i) collect a set of radar images containing oil spills;
(ii) use some image-processing software capable of identifying, in these images,

the dark regions of interest;
(iii) ask an expert to label the oil spills as positive examples, and the other dark

regions (so-called “look-alikes”) as negative examples;
(iv) describe all examples by attribute vectors, and let a machine-learning program

induce the requisite classifier from the training set thus obtained.

As in the previous application, we will try to glean some useful lessons by taking
a closer look at certain critical aspects of this undertaking.

Attributes and class labels. State-of-the-art image-processing techniques easily
discover dark regions in an image. For these to be used by the machine-learning tool,
we need to describe them by attributes that are hoped to capture those aspects that
distinguish spills from “look-alikes.” Preferably, their values should be unaffected
by the given object’s size and orientation.

The attributes that have been used in this project include the region’s mean
intensity, average edge-gradient (which quantifies the sharpness of the edges), the
ratio between the lengths of the object’s minor-axis and major-axis, variance of the
background intensity, variance of the edge gradient, and so on. All in all, more than
forty such attributes were selected in a rather ad hoc manner. Which of them would
really be useful was hard to tell because experts were unable to reach consensus
about the attributes’ respective relevance and redundancy. The final choice was left
to the machine-learning software.

Labeling the training examples with classes was not any easier. The objects in
Fig. 8.2 were easy to categorize; in other images, they were much more ambiguous.
On many occasions, the best the expert could say was, “yes, this looks like an oil
spill” or, “I rather doubt this is what we are looking for.” The correctness of the
selected class labels was thus uncertain, resulting in class-label noise. The presence
of class-label noise reduces our expectations: the classifier can be only as good as
the data that have been used during its induction.

8.2 Oil-Spill Recognition 157

Choosing the classifier. The examples were described by some forty attributes.
Among these, some, perhaps most, were suspected of being either irrelevant or
redundant. This is an important circumstance; the reader will recall that the presence
of irrelevant and redundant attributes makes some classifiers underperform. In this
particular project, the problem was side-stepped by first inducing a decision tree,
and then eliminating all attributes that never appeared in any of the tree’s tests. This
was quite logical. After all, the choice of which attributes to include in the tree has
been made based on the attributes’ information contents. Since information contents
of irrelevant attributes is low, this method of identifying them is quite reliable. Also
redundant attribute can thus be eliminated, at least to some extent.

When the k-NN classifier was applied to examples described by attributes that
“survived” this decision-tree-based elimination process, the classification perfor-
mance turned out to be acceptable. The oil-spill problem was thus solved with a very
simple machine-learning technique—which is good: having a choice, the engineer
is always well advised to give preference to the simpler tool.

The decision to use the k-NN classifier was also driven by another important
consideration. Since this is typical of many realistic applications, let us discuss it in
some detail.

Cost of errors. Performance evaluation is here not as straightforward as it was in
the previous chapters. For one thing, error rate can be a fairly misleading indicator
in domains where each type of error carries a different penalty.

This is manifestly the case in the oil-spill adventure. Here, a false positive results
in an aircraft being unnecessarily dispatched to a suspicious though “innocent”
region, and this means a waste of time and resources (note that the costs are not
only financial, but also moral because these kind of failures tend to undermine the
user’s trust in the classifier). On the other hand, a false negative means an undetected
environmental hazard whose consequences (financial, environmental, and political)
are hard to predict. In view of all this, the reader will agree that the two types of cost
are of such a different nature that it is almost impossible to compare them. This, of
course, makes it difficult to specify the project’s goal.

Experiments on pre-classified testing data indicated that most of the errors made
by the induced classifier were of the false-positive kind (i.e., false alarms). As for
false negatives, these were relatively rare. But then: was this good, or should this
observation be taken as a signal of a need to modify the classifier in order to change
the ratio of the two types of errors?

The question cannot be answered in isolation from the application’s momentary
needs. Financial constraints may force the user occasionally to accept the risk
of environmental hazard, simply because the budget can no longer tolerate false
alarms. The user then wants to reduce the frequency of false positives even if
this means to pay the price of an increased number of undetected oil spills (false
negatives).

However, the situation will change in more prosperous times when the
environmentally-conscious user does not want to miss an oil spill, and is prepared
to accept a higher frequency of false positives if it makes false negatives rare.

158 8 A Few Instructive Applications

Leaning toward one or the other class. In view of these tradeoffs, it is necessary
to give the user the opportunity to adjust the classifier’s behavior so as to modify the
frequency of one or the other type of error.

As already mentioned, this project relied on the k-NN classifier where this
requirement is easy to satisfy: the trick consists in manipulating the margin between
the number of votes supporting either of the two classes. For the sake of illustration,
suppose the 7-NN classifier is used. Here, the number of false positives can be
reduced if we instruct the classifier to label as positive only those examples where,
say, at least 5 of the nearest neighbors are positive; any example that fails to satisfy
this condition is deemed negative. Conversely, if we desire to lower the frequency
of false negatives, we tell the classifier to return the positive label whenever, say, at
least 3 of the nearest neighbors are positive. The user’s preference for either type
of error is thus expressed in terms of the number of votes that are necessary for the
example to be labeled as positive.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How did the engineers deal with the fact that many attributes were redundant or
irrelevant? What did they identify these less-then-useful attributes?

• What can be said about the reliability of the class labels in the training set? What
does it mean for the classifier’s expected performance?

• Discuss the respective costs, in this domain, of the two types of error: false
positive versus false negative. Can they be compared using the same units? Why
does the user need a mechanism to reduce one type of error at the cost of the
other?

• Explain the essence of the mechanism that enables the k-NN classifier to increase
or reduce either of the two errors.

8.3 Sleep Classification

Throughout the night, we go through different sleep stages such as deep, shallow,
or rapid-eye movements (REM, this is when we dream). To identify these stages in
a concrete sleeping subject, advanced instrumentation is used: an electrooculogram
to record eye movements, an electromyogram to record muscle contractions, and
contact electrodes attached to the scalp to record the brain’s neural signals. Based
on the readings of all these instruments, a medical expert can decide what stage the
sleeping subject is in at any given moment, and can even draw a hypnogram such as
the one shown in Fig. 8.3.

8.3 Sleep Classification 159

hours of sleep2 4 6 8

stage 3/4

stage 2

stage 1

REM

move

wake

Fig. 8.3 An example hypnogram that records the sleep stages experienced by a subject during an
8-hours’ sleep

Note that the deepest sleep stage occurs here only three times during the 8-hours
sleep, and that it usually does not last long. Note also the move stage; this occurs,
for instance, when the subject turns from one side to another, moves the head or an
arm, and the like.

Why is it important. Medical practice needs to be able to recognize specific sleep
stages. A case in point is the so-called sudden infant death syndrome (SIDS): an
infant dies without any apparent cause. A newborn suspected of being in danger
has to be watched, in a hospital, so that resuscitation can be started immediately.
Fortunately, SIDS is known almost always to occur during the REM stage. This
means that it is not necessary to watch the patient all the time, but only during this
period of increased risk. For instance, a device capable of recognizing the onset of
the REM stage might alert the nurse that more attention might be needed during the
next five of so minutes.

The hypnogram, in turn, is a useful diagnostic tool because the distribution of the
sleep stages during the night may indicate specific neural disorders such as epilepsy.

Why machine learning. To draw the hypnogram manually is a slow and tedious
undertaking, easily taking three to five hours of a highly qualified expert’s time.
Moreover, the expert is not always available. This is why efforts have been made
to develop a computer program capable of identifying the individual sleep stages
based on observed data, and, hopefully, even to draw the hypnogram.

To be able to help, the computer needs a description of the individual stages. Such
description, however, is difficult to obtain. Medical experts rely on skills obtained
in the course of long training, and they use features and indications that are too
subjective to be converted to a computer program.

This motivated an attempt to induce the classifier from pre-classified data.
Specifically, the data-acquisition process divided the 8-hours sleep period into
30-second samples, each of them treated as a separate training example. All in all, a
few hours’ sleep thus provided hundreds of training examples. Diverse instruments
than provide data to describe each 30-second sample.

160 8 A Few Instructive Applications

Attributes and classes: Again, the first task was to remove attributes suspected of
being irrelevant or redundant. In the previous application, oil-spill recognition, this
removal was motivated by the intention to increase the performance of the k-NN
classifier (which is known to be sensitive to their presence). In sleep classification,
another reason comes to the fore: the physician wants to minimize the number of
measurement devices attached to the sleeping subject. Not only does their presence
make the subject feel uncomfortable; they also disturb the sleep, and thus interfere
with the results of the sleep analysis.

As for the class labels, these are even less reliable than in the oil-spills domain.
The differences between “neighboring” (similar) sleep stages are so poorly defined
that any two experts rarely agree on more than 70–80 % of the class labels. No
wonder that the training set contains a lot of class-label noise, and the low quality
of the data imposes a limit on the minimum error rate that any realistic classifier
induced from the data can achieve.

The classifier and its performance. The classifier employed in this particular
case combined decision trees with a neural network in a manner whose details are
unimportant of our needs here. Suffice it to say that the classifier’s accuracy on
independent data indeed achieved those 70–80 % observed in human experts, which
means that the natural performance limits have been reached. It is perhaps worth
noting that plain decision trees were a few percent weaker than that.

This said, it is important to understand that classification accuracy does not give
the full picture of the classifier’s behavior (similarly as in the OCR domain from
Sect. 8.1). For one thing, the classifier correctly recognized some of the seven classes
most of the time, while failing on others. Particularly disappointing was its treatment
of the REM state. Here, classification accuracy was in the range 90–95 %, which,
at first sight, looked good enough. However, closer inspection of the training data
revealed that only less that 10 % of all examples belonged to the REM class; this
means that a comparable classification accuracy could be achieved by a classifier
that says, “there is not a single REM example”—and yet this is hardly what the
engineers hoped to achieve.

We realize that this way of measuring performance is not without its limitations,
and that other criteria have to be found. These indeed exist. They will be discussed
in Chap. 11.

Improving classification performance by post-processing. The accuracy of the
hypnogram can be improved by post-processing whose nature relies on the domain’s
logic. Indeed, several rules of thumb can be used here. For instance, the deepest
sleep (stage 3/4) is unlikely to occur right after the REM stage, and stage 2
does not happen after move. Also, the hypnogram can be “smoothed out” by
the removal of any stage lasting only one 30-second period. Applying such rules
in the course of post-processing makes it possible to improve the hypnogram’s
informational value.

The lesson is worth remembering. In domains where the examples are ordered
in time, the classes of the individual examples may not be independent of those
preceding or following them. In this event, post-processing can improve the
classifier’s performance.

8.4 Brain-Computer Interface 161

Proper use of the induced classifier. The original idea was to induce the classifier
from examples obtained from a few subjects, and then to classify future data using
this induced classifier instead of the much more expensive “manual” classification.
This ambition, however, turned out to be unrealistic. Practical experience showed
that no “universal classifier” of sleep data could be obtained in this manner: a
classifier induced from one person’s data could not be used to draw a hypnogram
for another person without serious degradation in classification performance.1

This does not mean that machine learning is in this domain totally disqualified.
Far from it. However, the user needs to modify his or her expectations: instead
of being universal, the classifier will be induced separately for each subject. The
expert’s efforts are still significantly reduced. The following three-step scenario is
indicated:

(i) The expert determines the class labels of a subset of the available examples,
thus creating a training set.

(ii) From this training set, a classifier is induced.
(iii) The induced classifier is used to classify the remaining examples, thus saving

the expert’s time.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Why was it important to minimize the number of attributes in this domain? How
were the relevant attributes identified?

• The sleep-classification domain has seven classes. What does it mean for an
engineer trying to evaluate the induced classifier’s performance?

• In the hypnogram, the examples are ordered in time. How can this circumstance
be exploited in data post-processing?

• In what manner can machine learning reduce the burden imposed on someone
who seeks to classify available data?

8.4 Brain-Computer Interface

The muscle-controlling commands are issued at specific locations of motor cortex,
a relatively well-understood region of the cortex. Even the brain of many totally
paralyzed patients is fully capable of generating these commands; unfortunately, the

1One can speculate that a different set of attributes might perhaps make this possible; the case
study reported here did not attempt to do so.

162 8 A Few Instructive Applications

information fails to reach the muscles. The fact that these signals can be detected
by contact electrodes inspired a fantastic idea: can these signals, properly recorded
and interpreted, be used to control a cursor on a computer screen? If yes, then there
might be a way for the patient to communicate with the outside world, in spite of
being unable to speak, in spite of being unable even to move his or her pupils.

The exact nature of the motor commands is too complicated to be expressed by
a mathematical formula. But we can record the signals, describe them by attributes,
and label with the concrete motor commands. If we do so, we have a training set
from which a machine-learning program can induce the classifier.

The training examples. In the specific case to be described in this section, only
two classes were considered: left and right. The training and testing examples
were obtained in the course of the following experiment. A subject was sitting in
front of a computer monitor. On the desk in front of him was a wooden board with
two buttons, one to be pressed by the left index finger, the other by the right index
finger, according to instructions displayed on the monitor (Fig. 8.4).

The whole scenario followed the time-line shown in the upper part of Fig. 8.5.
The contact electrodes attached to the scalp (see the bottom part of Fig. 8.5) record
the intensity of the neural signals during a certain period of time before the button

Fig. 8.4 Organization of the
experiment. After a “ready”
signal (WS) comes the CUE
(“left” vs. “right”). Once RS
appears on the screen, the
subject waits one second,
then presses the button
indicated by the CUE

WS CUE RS movement

0 1 2 3 4 5 6 87

Fig. 8.5 Arrangement of
electrodes on the subject’s
scalp. Only some of the
electrodes are actually used
(highlighted)

C3 C4

Cz

8.4 Brain-Computer Interface 163

is pressed. The signals from each electrode are characterized by five numeric
attributes, each representing the power of the signal over a specific time interval
(a fraction of a second).

As indicated in the picture, only some (typically eleven) of the electrodes
were actually used. For eleven electrodes, each represented by five attributes, this
amounted to 55 attributes. All in all, the subject “produced” a few hundred examples
with both classes equally represented. Since it was always known which button was
actually pressed, the training set was free of class-label noise. As for the attributes,
the experimenters suspected many of them to be irrelevant.

Classifier induction and its limitations. Several machine learning paradigms
were experimented with, including multilayer perceptrons and nearest-neighbor
classifiers with attribute-value ranges normalized so as to avoid scaling-related
problems. Relevant attributes were selected by a decision tree, similarly as in the
applications discussed in the previous sections.

Typical error rates of these induced classifiers on testing data were in the range
20–30 %, depending on the concrete subject. It is quite possible that better accuracy
could not be achieved: the information provided by the electrodes might have been
insufficient for this kind of experiment.

Importantly, just as in the sleep-classification domain, the classifier could only
be applied to the subject from whose training data it has been induced. All attempts
to induce a “general classifier” (to be used on any future subject) failed—the error
rates were so high as to make the classifications process look random.

Testing the classifier’s utility. As in the previous domain, the error rate measured
on independent data does not give the whole picture; the classifier’s practical utility
depends on how it is actually employed. In our case, the real question is: will the
classifier succeed in sending the cursor to the correct location?

The question was answered by an experiment illustrated in Fig. 8.6. The subject
is still sitting in front of a computer monitor, with electrodes attached to the scalp.
However, the board with the two buttons has been removed. On the monitor, we can
see two rectangles, one on the left and one on the right. In the middle is a cursor in
the shape of a little cross.

When instructed to move the cursor, say, to the right, the subject only imagined he
was pushing the right button. The electrodes recorded the neural signals and passed
them to the classifier. Based on these, the classifier selected the side (the class, left
or right) to which the cursor is to be moved. The movement was very slow so as
to give the subject the opportunity to “correct” the wrong direction. To make this
possible, the neural signals were sampled repeatedly, each sample becoming one
example to be passed on to the classifier. Suppose the subject’s intention is to move
the cursor to the right. It is possible that the first sample will be misclassified as
left, sending the cursor in the wrong direction; but if the following samples are
correctly classified as right, the cursor will, after all, land in the correct rectangle.

164 8 A Few Instructive Applications

Fig. 8.6 The classifier’s task
is to move the cross into
either the left box or the right
box, according to the
subject’s “thoughts”

What error rate is acceptable? Under the scenario just described, an error rate
of 30 % (which seems quite high) turned out to be fully acceptable. Even when the
cursor occasionally did start in the wrong direction (on account of one “example”
being misclassified), there was still the chance of correcting the mistake before the
cursor reached its destination. As a result, the cursor almost always landed in the
correct box, even if in a somewhat hesitating manner in which it moved back and
forth before finding the right direction.

An impartial observer, uninformed about how the classifier was actually used,
rarely noticed anything was going wrong. The occasional errors on the part of the
classifier (manifested by the cursor’s back-and-forth movements) were sometimes
perceived as a sign of indecisiveness on the part of the subject, and not of the
classifier’s imperfection.

Only when the classifier’s error rate dropped well below those 30 % did the cursor
miss its target frequently enough to cause disappointment. One can speculate that a
better measure of the classifier’s performance would in this case be the average time
needed for moving the cursor.

An honest historical remark. The classifier’s performance differed from one
person to another. On quite a high percentage of the subjects, the induced classifiers
exhibited an almost prohibitively high error rate. Also the fact that the classifier had
to be trained on the same patient on which it was supposed to be used was perceived
as a shortcoming. Further on, two classes are not enough. At the very least, also up
and down classes would be needed. On these, the experimental results were less
impressive. In the end, other methods of communication with paralyzed patients
came to be studied. Though successful as a machine-learning exercise, the project
did not satisfy the expectations of the medical domain.

8.5 Medical Diagnosis 165

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Discuss the experience made in this application: a classifier induced from the
data of one subject cannot be used to classify examples in another subject.

• Explain why the error rate of 30 % was in this domain still deemed acceptable.
What other methods of measuring performance, in this application would you
recommend?

8.5 Medical Diagnosis

A physician attempting to find the cause of her patient’s complaints behaves a
bit like a classifier: based on certain attributes (the patient’s symptoms, results of
laboratory tests), she suggests a diagnosis—and a treatment. No wonder that, in the
early days of machine learning, many believed medical diagnosis to be its natural,
almost straightforward application.

Some results. The optimism was motivated by early studies such as the one whose
results are summarized in Table 8.1. The numbers give the classification accuracy
achieved by bayesian classifiers, decision trees, and physicians on the same testing
set—patients described on attribute vectors. The four domains differ in the number
of classes and in the difficulty of the task (e.g., noise in the data, relevance and
reliability of the available information).

The values indeed seem to confirm machine-learning’s ability to induce classi-
fiers capable of competing with human experts; indeed they seem to outperform
them. In the multi-class primary tumor domain, the margin is perhaps unim-
pressive, but in all the other domains, the machine learning classifiers appear to be
clearly better. It is only a pity that the table does not tell us more about the variation
in the results. At least standard deviations would help, here, but there are other ways
how to ascertain whether the results are statistically reliable—Chaps. 11 and 12 will
have more to say about the methods to be used here.

Table 8.1 Classification
accuracy of two classifiers
compared to the performance
of physicians in four medical
domains

Bayesian Decision General

Classifier tree practitioner

Primary tumor 0.49 0.44 0.42

Breast cancer 0.78 0.77 0.64

Thyroid 0.70 0.73 0.64

Rheumatology 0.67 0.61 0.56

166 8 A Few Instructive Applications

Are the results encouraging? The results seem impressive, but we must not jump
to conclusions. The first question to ask is whether the comparison was fair. Since
the examples were described by attributes, the data available to the machine-learning
tool, and to the induced classifier, could hardly be the same as used by the physician
who could rely also on subjective information that might not have been available to
the machine. In this respect, the human enjoyed a certain advantage, and this makes
the machine learning’s results all the more impressive.

On the other hand, the authors of the study admit that the physicians participating
in the study were not necessarily top specialists in the given field, and machine
learning thus outperformed only general practicioners. Another aspect worth our
attention is that this study was conducted in the 1980s when the diagnostic tools
were less sophisticated than those in use today. It is hard to tell who will benefit
more from modern laboratory tests: human experts or machine learning?

Apart from classification, also explanation is needed. For medical diagnosis,
classification accuracy is not enough; more accurately, it is not enough for the
diagnosis to be correct. A patient will hardly agree with a surgery if the only
argument supporting this recommendation is, “this is what the machine says.” The
statement that “the machine is on average a few percentage points better than a
physician” is unlikely to convince the patient, either.

What a reasonable person wants is a convincing explanation of why the surgery is
to be preferred over a more conservative treatment. In the case of the domains from
Table 8.1, the doctor is usually able to itemize what evidence supports the concrete
diagnosis and why, and what treatment options are recommended in this particular
case and why. Unfortunately, the baseline machine learning techniques are not very
good at explaining their decisions (perhaps with the exception of decision trees).
Software for automated reasoning would be needed, here. This, however, is beyond
the scope of this book.

The need for measuring confidence. There is another problem to be aware of.
Most of the classifiers induced by the techniques treated in the previous chapters
only give the final verdict; for instance, “the example belongs to class 77.” The
physician (as well as the patient) needs to know more. For instance, is the
recommended class absolutely certain or is it only just a little more likely than some
other class? And if so, which other classes should be considered?

In other words, medical domains usually call for classifiers capable of telling us
how confident they are in the returned class. For example, such classifier should say
that “the example belongs to C1 with probability 0.8, and to C5 with probability 0.7.”
There probabilities are explicitly calculated by Bayesian classifiers, so these may be
a good choice; similar information can be obtained also from neural networks. Both
of these approaches, however, are rather unable to offer explanations.

On the other hand, decision trees are capable of offering some kind of explana-
tion. As for the confidence, this is only possible with additional functions that we
have not treated here.

Cultural barriers. There is one last reason why the encouraging results of the early
applications of machine learning to medical diagnosis failed to inspire followers.
With only minor injustice, they can be called cultural barriers. In a way, they are

8.6 Text Classification 167

understandable. Medical doctors surely did not like to be told how easily they would
be replaced by computers. No wonder that, in the early days of machine learning,
many of them were not eager to collaborate on the development of the requisite
software.

This, of course, is a misunderstanding. Machine learning is not meant to replace
a human expert. At its very best, is only offer advice; the final diagnostic decision
will always be the responsibility (even in legal terms) of the physician treating the
patient. Still, the value of the advice should not be underestimated. For instance, the
classifier can alert the doctor that additional, previously unsuspected, disorders my
accompany the current diagnosis (the patient often suffers from more than just one
problem at a time), and it can even point out the need to take specific additional
laboratory tests.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• As for the results mentioned in this section, why was it impossible to conclude
from them that the induced classifiers outperformed the human expert?

• Apart from classification accuracy, what is needed in medical diagnosis?
• Discuss the limitations of machine-based diagnosis. Suggest a reasonable way of

realistic application of machine learning in medical domains.

8.6 Text Classification

Suppose you have a vast collection of text documents, and you need to decide which
of them is relevant to a specific topic of interest. If there are really a great many
of them, there is no way you can do so manually. However, taking inspiration for
some of the above-described applications, you choose a manageable subset of these
documents, read them, assign the class labels to them (positive versus negative), and
induce a classifier that will then be used to classify the rest.

Attributes. A common way to describe a document is by the frequency of the
words it contains. Each attribute represents one word, and its value represents the
frequency with which it appears in the text. For instance, in a document that is 983
words long, the term “classifier” may appear five times, in which case its frequency
is 5=983 D 0:005.

Since the vocabulary typically contains tens of thousands of words, the attribute
vectors will be very long. And of course, since only a small subset of the vocabulary
finds its way into the document, most attribute values will be zero. This being
somewhat unwieldy, simple applications prefer to work with only a subset of the
whole vocabulary, say, 1,000 most common words.

168 8 A Few Instructive Applications

Class labels. The class labels for the training examples may be difficult to
determine. Even if we want only something very easy such as to decide, for each
document, if it deals with computer science, whether an example clearly
belongs into this class may not be easy to decide because some documents are more
relevant to this category than others. For instance, a very clear-cut case will be a
scientific paper dealing with algorithm analysis; on the other hand, a less relevant
document will only mention in passing that some algorithms are more expensive
than others; and yet another document will be an article from a popular magazine.

One possibility to deal with this circumstance is to “grade” the class labels. For
instance, if the document is most certainly relevant, the class is 2; if it is only
somewhat relevant, the class is 1; and only if it is totally irrelevant, the class is 0.
The user can then decide what level of relevance is needed for the given application.

Typical observations. The great number of attributes makes the induction compu-
tationally expensive. Thus in the case of decision trees, where one has to calculate
the information gain separately for each attribute, this means that tens of thousands
of attributes need to be investigated for each of the tests, and these calculations
can take a lot of time, especially if the number of examples is high. Upon some
thought, the reader will agree that bayesian classifiers and neural networks are quite
expensive, too.

One can suggest that induction will be cheaper in the case of the k-NN classifier
or a linear classifier. Here, however, another difficulty comes to the fore: for each
given topic, the vast majority of the attributes will be irrelevant, a circumstance that
reduces the utility of both of these paradigms.

The problem of multi-label examples. The applications discussed in the previous
sections assumed that each example is labeled with one and only one class. Here,
however, each document can belong to two or more (sometimes many) classes at
the same time.

The most commonly used way of dealing with the situation is to induce a
different classifier for each class. Whenever a future document’s class is needed,
the document’s attribute vector is submitted to all of these classifiers in parallel;
some of them will return “1” (meaning the document belongs to the corresponding
class), others will return a “0.”

This, however, makes the adventure even more expensive because of the need
to induce hundreds of classifiers. And given that the induction of each of these
classifiers is expensive in its own right, the result can be prohibitive.

Moreover, the classes are not independent of each other. At the very least, some
are subclasses or others, giving rise to a whole hierarchy of classes. This means that
their corresponding classifiers perhaps should not be induced in a manner totally
independent of the induction of the other classifiers.

8.7 Summary and Historical Remarks 169

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How are examples typically described in text-classification domains? Why are
the attribute vectors so long?

• What did this section mean by “graded class labels”?
• What makes induction of text classifiers expensive?
• Discuss the problem of multi-label examples.

8.7 Summary and Historical Remarks

• The number of examples that can be used for learning depends on the particular
application. In some domains, examples are abundant; for instance, if they can
be automatically extracted from a database. In others, they may be rare and
expensive, as was the case of the oil spill domain.

• We may be totally in the dark as to which attributes really matter. This was
the case of the oil spill domain where the shape and other characteristics could
be described by a virtually unlimited number of attributes obtained by image
processing techniques.

• In some domains, the really important attributes are not known or cannot be
obtained at reasonable costs. Inevitably then, the induction has to use those
attributes that are available, even if the performance of the classifier thus induced
will be diminished.

• In the brain-computer-interface domain, it turned out to be enough that a majority
of the decisions were correct: in this event, the cursor landed in the intended
rectangle. We can see that the maximum classification accuracy may not be
strictly necessary.

• In domains with more than just two classes, the error rate does not give the
full picture of the classifier’s behavior. Quite often, some classes will be almost
always perfectly recognized while others will pose problems. It is therefore
important to know not only the average performance, but also the performance
on each individual class.

• In some domains, we want to be able to explain the decision. High classification
accuracy is not enough. This is the case of medical diagnosis.

• The costs of false positives can be different from the costs of false negatives. In
the oil-spill domain, it was difficult to express these costs in monetary terms.

• Many applications are interested in minimizing error rate. Sometimes, however,
error rate fails to give the full picture.

170 8 A Few Instructive Applications

• Another important requirement: the possibility that the user be able to tweek
a parameter that will trade false positives for false negatives (see the oil spill
domain)

Historical Remarks. The results from Table 8.1 are taken from Kononenko
et al. [40] who refer there to an older project of theirs. The oil-spill project was
reported in Kubat et al. [43]. The sleep classification task is addressed by Kubat
et al. [45], and the experience with using machine learning in brain-computer
interface was published by Kubat et al. [44]. The character-recognition problem
has been addressed for decades by the field of Computer Vision; the first major text
systematically addressing the issue from the machine-learning perspective seems
to be Mori et al. [60]. The text-classification task was first studied by Lewis and
Gale [46].

A minor remark is in place, here. Of these six applications, the author of this
book participated in two. His motivation for including his own work was not to stun
the reader with his incredible scholarship and inestimable contribution to the field
of machine learning. Far from it. The truth is, if you work on a project for quite
some time, you develop not only personal attachment to it, but also certain deeper
understanding that makes this particular application more appropriate for instruction
purposes than those which you only read about in the literature.

8.8 Exercises and Thought Experiments

The exercises are to solidify the acquired knowledge. The ambition of the suggested
thought experiments is to let the reader see this chapter’s ideas in a different light
and, somewhat immodestly, to provoke his or her independent thinking.

Give It Some Thought

1. Suppose that you know that the correctness of some class labels in your training
set is not certain. Would you recommend that these “unreliable” examples be
removed from the training set? In your considerations, do not forget that some
of the pre-classified examples will be used as testing examples to assess the
classification performance of the induced classifier.

2. Discuss the reasons why application-domain users may be reluctant to accept
machine-learning tools. Suggest ways to eliminate, or at least diminish, their
suspicions and concerns.

3. Section 8.2 mentioned a simple mechanism by which the k-NN classifier can
manipulate the two kinds of error (false negatives versus false positives). Suggest
a mechanism that a Bayesian classifier or a neural network can use to the

8.8 Exercises and Thought Experiments 171

Fig. 8.7 In tic-tac-toe, the
goal is to achieve three
crosses (or circles) in a row or
a column or on a diagonal

o

o
x
x

o
xo

o
x
x

o
x o

x
o

x
o
x

x

o
x
o

x
o
x

x

same end. How would you go about implementing this mechanism in a linear
classifier?

4. In more than one of the domains discussed in this chapter, it was necessary
to reduce the number of irrelevant and/or redundant attributes. In the projects
reported here, decision trees were used. Suggest another possibility that would
use a technique from one of the previous chapters. Discuss its advantages and
disadvantages.

5. Suppose you wanted to implement a program that would decide whether a given
position in the tic-tac-toe game (see Fig. 8.7) is winning. What attributes would
you use? How would you collect the training examples? What can you say about
expected noise in the data thus collected? What classifier would you use? What
difficulties are to be expected?

Computer Assignments

1. Some realistic data sets for machine-learning experimentation can be found on
the website of the National Institute of Standards and Technology (NIST). Find
this web site, then experiment with some of these domains.

2. Go to the web and find a website about the demography of the 50 states in the
U.S. Identify an output variable whose value will be deemed positive if it is above
the U.S. average and negative otherwise. Each state thus constitutes an example.
Based on the information provided by the website, identify the attributes to
describe the examples. From the data thus obtained, induce a classifier to predict
the output variable’s value.

Chapter 9
Induction of Voting Assemblies

A popular way of dealing with difficult problems is to organize a brainstorming
session in which specialists from different fields share their knowledge, offering
diverse points of view that complement each other to the point where they may
inspire innovative solutions. Something similar can be done in machine learning,
too. A group of classifiers is created in a way that makes each of them somewhat
different. When they vote about the recommended class, their “collective wisdom”
often compensates for each individual’s imperfections.

This chapter deals with mechanisms for the induction of such sets of classifiers
from data. The reasons behind the high performance of these “classifier assemblies”
are explained on the simplest approach known as bagging. Building on these
foundations, we proceed to the more sophisticated boosting algorithms and their
variations, including the so-called stacking approach.

9.1 Bagging

For the sake of simplicity, we will limit ourselves to the field of two-class domains
where each example is either positive or negative. As always, the ultimate classifier
is to be induced from a set of pre-classified training examples.

The underlying principle. The approach known under the name of bagging1

induces a group of classifiers. When presented with an example, the classifiers are
used in parallel, each offering an opinion as to which class the example should be
labeled with. A “master classifier” collects this information, and then chooses the
label that has received more votes.

1The name is an acronym of booststrap aggregation.

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_9

173

174 9 Induction of Voting Assemblies

Table 9.1 The algorithm of Bagging

Input: the training set, T , and the user’s choice of the induction technique

1. Using random sampling with replacement, create from T several training subsets,
T1; T2; : : : Tn. Each subset consists of the same number of examples.

2. From each Ti, induce classifier Ci (for i D 1 : : : ; n).
3. When presented with a new example, submit it to all Ci’s in parallel and let each classifier,

Ci, offer its recommendation for the example’s class.
4. A “master classifier” decides which of the two classes received more votes.

Assuming that each of the participating classifiers represents a somewhat
different aspect of the recognition task, the classifier group (sometimes called a
“voting assembly”) is expected to outperform any individual.

Induction of the voting assembly. The principle of bagging is summarized in
Table 9.1. The idea is to take the original training set, T , and to create from it a
certain number of training subsets, T1; : : : Tn, each of the same size.

Once the subsets Ti have been created, a machine-learning algorithm induces a
classifier, Ci, separately from each of them. For this, any of the induction techniques
from the previous chapters can be used. However, the baseline version of bagging
assumes that the same technique (say, induction of decision trees with the same
user-set parameters) is always used.

Bootstrapping. Let us now explain how the training examples for Ti are selected.
Each example has the same chance of being picked. Once it has been included in
Ti, it is “returned” to T , by which we mean that it will participate in the selection of
examples for TiC1 with the same probability as any other example. For a training set,
T , consisting of N examples, the selection is repeated n times in a process known as
bootstrapping.

An example can appear in Ti more than once and, conversely, some examples
will fail to appear in Ti. This means that each Ti consists of N examples (with
duplicities), but each of these training subsets is different. As a result, each of the
induced classifiers will focus on a different aspect of the learning problem.

Why it works. Figure 9.1 explains how the voting can help reduce the error
rate. Three classifiers are considered. If the errors are rare, there is a chance that
each classifier will err on different examples. In this event, each example will be
misclassified at most once, the other two class labels being correct. An individual’s
occasional mistake will thus be “outvoted” (and thus corrected) by the others.

Of course, the situation will rarely be so convenient. If an example is misclas-
sified by two out of the three classifiers, the voting will result in the wrong class.
One can stipulate, however, that this unfavorable situation might be improved if the
number of classifiers is increased.

9.1 Bagging 175

classifier 3:

classifier 2:

classifier 1:

... a correctly classified example

... an incorrectly classified example

Fig. 9.1 The three classifiers were asked to classify the same 17 examples. By doing so each
erred on three examples—different for each classifier. The reader can see that these errors can be
eliminated by voting

The most important lesson to be drawn is that bagging works well if each
classifier tends to err on different examples.

Some observations. Practical experience shows that bagging achieves good results
if the error rate of each individual classifier is low. Then, with sufficiently large
number of classifiers, chances are high that an individual’s errors will be corrected
by the others, similarly as in Fig. 9.1.

This, however, is not necessarily the case when the error rates of the individual
classifiers are high. Up to a certain point, these errors are still corrected if there
are really a great many classifiers because then, by the law of large numbers, each
aspect of the underlying recognition problem is likely to be represented. The only
thing to criticize is that perhaps too many classifiers are then needed.

Conceptually, however, the approach involves too much randomness. Figure 9.1
leads us to believe that the same effect might be achieved if the classifiers were
induced not independently from each other, but rather in a way that might increase
their ability to complement each other. Such mechanisms will be the subject of the
following sections.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What makes us believe that a group of voting classifiers will outperform an
individual? Under what circumstances will the scheme fail?

• How are the individual classifiers induced in the bagging approach?
• What is meant by bootstrapping?

176 9 Induction of Voting Assemblies

9.2 Schapire’s Boosting

Although the bagging approach often achieves impressive results, it suffers from a
serious shortcoming: the voting classifiers have all been induced independently of
each other from randomly selected data. One would surmise that a smarter—and
perhaps more successful—approach should rely on a mechanism that makes the
classifiers complement each other. For instance, this can be done by inducing each
of them from training examples that are perceived as difficult by the other classifiers.
Schapire’s boosting was invented with this idea in mind.

Induction of three mutually complementing classifiers. Suppose that a random
subset, T1 2 T , of m training examples has been created. These are used to induce
the first classifier, C1. When testing this classifier on the entire training set, T , we
will observe that it misclassifies a certain number of examples.

Suppose we now create another training subset, T2 2 T . Let it consist of m
examples selected in a manner that ensures that the previously induced C1 classifies
correctly 50 % of them, misclassifying the remaining 50 %. This means that T2 is
so difficult for C1 that the classifier will not outperform a flipped coin. From the
training subset thus created, the second classifier, C2, is induced.

The two classifiers, C1 and C2, having been induced each from different
examples, will inevitably differ in how they label certain instances. A tie-breaker
is therefore needed. To this end, a third training subset, T3, is created, consisting
only of examples on which C1 and C2 differ. From this third subset, T3, the third
classifier, C3, is induced.

The principle is summarized by the pseudocode in Table 9.2. When an example
is presented, the master classifier collects the labels recommended by the three
classifiers, and then returns the class that has received more votes.

Ideally, each of the training sets, Ti, is of the same size, m.

Recursive implementation. The principle just described can be implemented
recursively. Figure 9.2 shows how. The resulting triplet of classifiers (in the dotted
rectangle) is treated as a single classifier. In the next step, a new training subset, T4,
is created in a manner that ensures that the triplet’s error rate on T4 is 50 %. From
these, classifier C4 is induced. Finally, training subset T5 is created from examples
on which the triplet and C4 differ; from these, classifier C5 is induced. Figure 9.2
also shows how the voting in the resulting scheme is hierarchically organized.

Table 9.2 The algorithm of Schapire’s boosting

Input: the training set, T , and the user’s choice of the induction technique

1. Create a random training subset, T1, and induce from it classifier C1.
2. Create a training subset T2 in a manner that makes sure that C1 scores 50 % on it.

Induce from T2 classifier C2.
3. Create T3 such that C1 and C2 disagree on each of the examples it contains. Induce

from T3 classifier C3.
4. For classification, use plain majority voting.

9.2 Schapire’s Boosting 177

classif.1 classif.2 classif.3 classif.4 classif.5

master classif.A

master classif.B

Fig. 9.2 Recursive application of Schapire’s boosting. Master classifier A combines the votes of
classifiers 1–3. Then, master classifier B combines the votes of master classifier A with those of
classifiers 4 and 5

It is important to understand the logic of the voting procedure. If classifiers 1
through 3 all return 0, master classifier A returns 0, too; however, this result can still
be outvoted if both classifier 4 and classifier 5 return 1. The whole structure thus
may return 1 even if three out of the five participating classifiers return 0.

Note that the total number of classifiers induced using this single level of
recursion is 3 C 2 D 5. Of course, the principle can be repeated, resulting in
5 C 2 D 7 classifiers, and so on. Assuming NR levels of recursion, the total number
of participating classifiers is 2NR C 3.

Performance considerations. Suppose that each of the induced classifiers has an
error rate below a certain
. Mathematicians have been able to prove that the voting
triplet’s error rate is less than 3
2�2
3, which is always smaller than
. For instance,
if
 D 0:2, then 3
2 � 2
3 D 2 � 0:04 � 2 � 0:008 D 0:104. And if
 D 0:1, then
3
2 � 2
3 D 0:03 � 0:002 D 0:028.

Put another way, Schapire’s boosting brings about an improvement over the
performance of the individual classifiers. But if the first voting triplet achieves (see
the previous paragraph) 3
2 � 2
3 D 0:104, it may be difficult to achieve an equally
low error rate with the other two classifiers (4 and 5). One possibility to handle this
situation is to create each of them (classifier 4 and classifier 5) as a triplet in its own
right as indicated in Fig. 9.3. In this case, the total number of classifiers participating
in NR levels of recursion will be 3NR .

The thing to remember is that each added level of recursion reduces the error
rate. It is therefore theoretically possible to reduce the error rate all the way down to
zero. Practice, however, is different—for reasons addressed in the next paragraph.

Limitations. The main difficulty is how to find the right examples for each of the
subsequent training subsets. These, we already know, have to satisfy certain criteria.
Recall that, to induce the second classifier, C2, we need to create a training subset,
T2, that has been chosen in a way that makes the previous classifier, C1, classify
correctly only 50 % of them.

178 9 Induction of Voting Assemblies

master classif.B

class.3class.1

class.2

class.4 class.6

class.5

class.7

class.8

class.9

master classif. master classif. master classif.

Fig. 9.3 Another approach to recursive application of Schapire’s boosting

This may be easier said than done. For instance, if the entire training set that we
have at our disposal consists of 100 examples, and the first classifier’s error rate is
10 %, then we have only 10 misclassified examples, to which 10 correctly classified
examples are added to create T2; this means that the size of T2 cannot exceed 20.

In the same spirit, we may find it impossible to find m examples that satisfy the
requirements for the third training subset, T3, which, as we know, should consist
only of examples for which C1 and C2 give the opposite class labels.

And even if we do succeed in creating all the three training subsets, we may find
it impossible to apply the same principle recursively. To be able to do this, we would
need an almost inexhaustible (and certainly not affordable) source of examples—a
luxury rarely available.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How does Schapire’s boosting create the training subsets from which to induce
the individual classifiers?

• Explain the two ways of implementing the principle recursively. How many
classifiers are induced in each case if NR levels of recursion are used? Explain
also the voting mechanism that reaches the final classification.

• When compared to the error rate of the individual classifiers, what is the error
rate of the final classification?

• Explain the practical limitation of Schapire’s boosting: the problem with finding
enough examples.

9.3 Adaboost: Practical Version of Boosting 179

9.3 Adaboost: Practical Version of Boosting

The main weakness of bagging is the randomness of its behavior: each of the
constituting classifiers is induced in total isolation from all the other classifiers.
In Schapire’s boosting, the randomness is minimized, but we have noticed another
complaint: in a realistic setting, it is often impossible to find the right number of the
training examples that satisfy the conditions for the second and the third classifier.
And so perhaps the most practical approach to boosting is that of Adaboost where
the examples are chosen from a probabilistic distribution that is gradually modified
in a way that makes the whole “assembly” focus on those aspects that appear to be
difficult.

The general approach. Similarly to Schapire’s approach, Adaboost creates the
classifiers one by one, each of them from a different training subset whose
composition depends on the behavior of the previous classifiers. There is a major
difference, though. Whereas Schapire’s boosting selects the examples according to
certain precisely defined conditions, Adaboost chooses them probabilistically. This
means that each example has a certain probability of being drawn, the probabilities
of all examples summing-up to 1. The mechanism is implemented in a way
that makes sure that examples that were repeatedly misclassified by the previous
classifiers will get a higher chance of being included in the training subset for the
induction of the next classifier.

Another difference is the number of classifiers. Unlike Schapire’s triplets, this
approach typically relies on a great number of classifiers. Further on, the final
decision is not achieved by the plain voting used in bagging. Instead, the so-called
weighted majority voting scheme is used (see later).

Probabilistic selection of training examples. We have mentioned that, for the
individual training subsets, Ti, the examples are selected from the original set, T ,
probabilistically. Here is a simple way of implementing this principle. Suppose the
i-th example’s probability is p.xi/ D 0:1. A random-number generator is asked for
a number between 0.0 and 1.0. If the returned number is from the interval Œ0:0; 0:1�,
then the example is chosen; otherwise, it is not chosen.

At the beginning, when the first training set, T1, is being created, each example
has the same chance of being selected. Put more technically, if T consists of m
examples, then the probability of each example is p D 1=m.

For each of the next subsets, Ti, the probabilities of the individual examples are
modified based on the observed behavior of the previous classifier, Ci�1. The idea
is to make sure that examples misclassified by the previous classifiers should get a
higher chance of being included in Ti. This will focus the next classifier, Ci, on those
aspects that the previous classifiers found difficult.

Modifying the probabilities for the i-th training set. To begin with, all m training
examples have the same probability, p D 1=m, of being selected. Using this
probability, the first training subset, T1, is created. From T1, the first classifier, C1 is
induced. After this, the probabilities of the training examples are modified according

180 9 Induction of Voting Assemblies

Table 9.3 The algorithm of Adaboost

Input: the training set, T , consisting of m examples; and the user’s choice of the induction
technique

1. Let i D 1. For each xj 2 T , set p1.xj/ D 1=m.
2. Create subset Ti consisting of m examples randomly selected according to the given

probabilities. From Ti, induce Ci.
3. Evaluate Ci on each example, xj 2 T .

Let ei.xj/ D 1 if Ci misclassified xj and ei.xj/ D 0 otherwise.

(i) Calculate
i D Pm
jD1 pi.xj/ei.xj/;

(ii) Calculate ˇi D
i=.1 �
i/

4. Modify the probabilities of correctly classified examples by piC1.xj/ D pi.xj/ � ˇi

5. Normalize the probabilities to make sure that
Pm

jD1 piC1.xj/ D 1.
6. Unless a termination criterion has been met, set i D i C 1 and go to 2.

to the classifier’s behavior. More specifically, the probability of examples that have
been correctly classified by C1 will be reduced, thus increasing the future chances
of examples misclassified by C1.

The concrete way in which the probabilities are modified according to the
i-th classifier’s behavior is shown in Table 9.3. First, Adaboost calculates the
i-th classifier’s overall error,
i, as the weighted sum of errors on the whole
original training set: this is obtained simply by summing-up the probabilities of
the misclassified examples. Once the weighted sum has been obtained, it is used to
reduce the probability of those examples that have been correctly classified by Ci.
To be more specific, each such probability is multiplied by the term, ˇi D
i=.1�
i/.

Normalizing the probabilities. After this, the probabilities are normalized to make
sure that their values sum-up to 1 as required by the theory of probability. The easiest
way to normalize them is to divide each probability by the sum of all probabilities.
For instance, suppose that the following probabilities have been obtained:

p1 D 0:4; p2 D 0:2; p3 D 0:2

The sum of these values is 0:4 C 0:2 C 0:2 D 0:8. Dividing each of the three
probabilities by 0.8 will give the following normalized values:

p1 D 0:4

0:8
D 0:5; p2 D 0:2

0:8
D 0:25; p3 D 0:2

0:8
D 0:25

It is easy to verify that the new probabilities now sum-up to 1:

p1 C p2 C p3 D 0:5 C 0:25 C 0:25 D 1:0

9.3 Adaboost: Practical Version of Boosting 181

Table 9.4 An example illustrating how Adaboost modifies the probabilities of the individual
examples

Suppose that the training set, T , consists of ten examples denoted as x1 : : : x10. The total
number of examples being m D 10, all initial probabilities are set to p.xi/ D 1=m D 0:1:

p1.x1/ p1.x2/ p1.x3/ p1.x4/ p1.x5/ p1.x6/ p1.x7/ p1.x8/ p1.x9/ p1.x10/

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

According to this probability distribution, the examples for inclusion in T1 are selected. From
T1, classifier C1 is induced.
Suppose that, when applied to T , classifier C1 classified correctly examples x1 : : : x7 (for
these, e1.xj/ D 1) and misclassified examples x8 : : : x10 (for these, e1.xj/ D 0).
The weighted error is then obtained as follows:

1 D †10
jD1p1.xj/ � e1.xj/ D 0:3

From here, the multiplicative term for probability modifications is calculated:

ˇ1 D
1=.1 �
1/ D 0:43

The probabilities are modified by p.xj/ D p.xj/ � ˇ1

Here are the new (not yet normalized) values:

p2.x1/ p2.x2/ p2.x3/ p2.x4/ p2.x5/ p2.x6/ p2.x7/ p2.x8/ p2.x9/ p2.x10/

0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.1 0.1 0.1

After normalization, we obtain the following values:

p2.x1/ p2.x2/ p2.x3/ p2.x4/ p2.x5/ p2.x6/ p2.x7/ p2.x8/ p2.x9/ p2.x10/

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.17 0.17 0.17

Note that these ten probabilities sum-up to 1.0. The next classifier, C2, is then induced
from a training set T2 whose examples have been selected from T according to these last
probabilities.

An illustration. Table 9.4 shows how Adaboost modifies the probabilities of the
individual examples. At the beginning, each example has the same chance of being
selected for inclusion of the first training set, T1. Once the first classifier, C1, has
been induced from T1, the classifier is applied to each single example from the
original set, T .

The probability of those examples that have been correctly classified by C1

(examples x1 through x7) is then reduced according to piC1.xj/ D pi.xj/ � ˇi where
ˇi D
i=.1 �
i/ and
i D Pm

jD1 pi.xj/ei.xj/. The resulting probabilities are then
normalized in order to make sure that they sum-up to 1 as required by the theory of
probability.

182 9 Induction of Voting Assemblies

After this, the second training set, T2, is created, and then classifier C2 induced
from it. Based on the observed behavior of C2 when applied to T , we calculate the
values of
2 and ˇ2; these are then used when modifying the correctly-classified
examples’ probabilities, p.x1/ : : : p.x10/. The process thus indicated continues until
a pre-defined user-specified termination criterion is reached. This criterion can be
based on the maximum permitted number of classifiers having been reached, or
on the classification accuracy of the whole “assembly” having achieved a certain
threshold, or on some other requirement.

Weighted majority voting. Once the classifiers have been induced, the example to
be classified is presented to them in parallel, and the final classification decision is
reached by a weighted majority voting whereby each classifier has been assigned
a certain weight according to its classification record (see below). The final
decision is not obtained by the plain vote used in the previous sections. Rather,
the voting mechanism used in Adaboost is somewhat less-then-democratic in that
each classifier has a different strength defined by its weight, denoted as wi.

When presented with an example, each classifier returns a class label. The final
decision is then obtained by comparing the sum, Wpos, of the weights of the
classifiers voting for the positive class with the sum, Wneg, of the weights of the
classifiers voting for the negative class.

For instance, suppose there are seven classifiers with the following weights:
Œ0:2; 0:1; 0:3; 0:7; 0:2; 0:9; 0:8�. Suppose, further, that the first four of these return
pos, and last three return neg. Plain voting will return the pos label, seeing that
this class is supported by the greater number of votes.

By contrast, weighted majority voting will separately sum-up the weights
supporting the positive class, obtaining Wpos D 0:2C0:1C0:3C0:7 D 1:3, and then
sum-up the weights supporting the negative class: Wneg D 0:2 C 0:9 C 0:8 D 1:9.
The master classifier will then label the example as negative because, as we can see,
Wneg > Wpos.

How to obtain the weights of the individual classifiers. Each classifier is
assigned a weight according to its performance: the higher the classifier’s reliability,
the higher its weight. On the other hand, the weight can in principle even be
negative—if it is believed that the classifier is more often wrong than right. It is
important to be aware of methods to find the concrete weights.

Many alternative possibilities exist. The inventors of Adaboost suggested specific
formulas which facilitated mathematical analysis of the technique’s behavior.
Practically speaking, though, one can just as well use the perceptron-learning
algorithm from Chap. 4. The idea is to begin with equal weights for all classifiers,
and then present the system, one by one, with the training examples. Each time the
master classifier misclassifies an example, we increase or decrease the weights of
the individual classifiers according to the relation between the master classifier’s
hypothesis, h.x/, and the training example’s true class, c.x/.

9.4 Variations on the Boosting Theme 183

Of course, other methods can be used. One might consider the WINNOW that
we know is good at weeding out those classifiers that do not contribute much to
the overall system’s performance (as if these classifiers were irrelevant attributes
describing an example).

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Describe the mechanism that Adaboost uses when selecting the training examples
to be included in the training set, Ti, from which the i-th classifier is to be induced.

• Explain how, after the induction of the i-th classifier, Adaboost modifies for each
example its probability that it will be chosen for inclusion in TiC1.

• Explain the principle of the weighted majority voting that Adaboost uses when
deciding about a concrete example’s class label.

• How are the weights of the individual classifiers obtained?

9.4 Variations on the Boosting Theme

The essence of boosting is to combine several imperfect classifiers that tend to
complement each other. Schapire was the first to suggest a concrete way of inducing
the classifiers, with bagging and Adaboost being the most popular alternatives.

The number of variations on this theme is virtually inexhaustible. It is good to
be aware of them, and this is why this section presents at least some of the most
important ones.

Randomizing the attribute set. Rather than inducing each classifier from a
different training subset (as in the previous versions of boosting), one may consider
using the same training examples, but always described by a different subset of
attributes.

Again, the input is the set, T , of the training examples—and the set, A, of the
attributes used to describe them. Instead of the random subsets of examples (as in
bagging), we choose N random subsets of attributes, Ai � A. The i-th classifier
(i 2 Œ1; N�) is then induced from the examples from T described by attributes from
Ai. As before, the classifiers’ outputs are combined by the weighted majority voting,
the weights being obtained (for instance) by perceptron learning.

The approach is useful in domains marked by a great many attributes of which
most are suspected to be either irrelevant or redundant. Typically, classifiers induced
using less valuable attribute sets will exhibit poor classification performance; and as
such, they will receive low (or even negative) weights.

184 9 Induction of Voting Assemblies

The approach can easily be combined with classical bagging: the idea is that,
for each classifier, a different set of examples, and also a different set of attributes,
should be used.

Non-homogeneous boosting. So far, all boosting approaches presented here
assumed that the individual classifiers are induced from somewhat different data,
but always using the same induction technique. But there is no reason for this
always having to be the case. The so-called non-homogeneous boosting does the
exact opposite: each classifier is induced from the same data, but with a different
machine-learning technique. The classifiers’ outputs are then, again, combined by
weighted majority voting.

The main advantage of this approach is the way in which it reduces error. As we
will see in Chap. 10, the errors committed by any classifier fall into two fundamental
categories. The first is caused by the variance in the available data: from a different
training set, a somewhat different classifier will be induced, and this will lead to
different errors. The second source of error is the bias inherent in the classifier.
For instance, a linear classifier cannot avoid misclassifying some examples if the
decision surface separating the positive examples from the negative is highly non-
linear.

Importantly, non-homogeneous boosting is known to reduce both kinds of error:
variance-related errors (this reduction happens in all boosting algorithms) as well as
bias-related errors (which is an advantage specific to non-homogeneous boosting).

Stacking. The idea of non-homogeneous boosting is to take the outputs of a
group of classifiers, and then reach the final classification decision by the weighted
majority voting. If you think of it, two layers are involved here: at the lower level are
the base-level classifiers; and at the upper level is the master classifier combining
their outputs. Note that the master classifier itself has to be induced; for instance,
with the help of perceptron learning—because this is essentially a linear classifier.

The principle can be generalized to the so-called stacking approach. As before, a
set of diverse classifiers is used at the lower lever. The upper level then goes beyond
the bounds of a linear classifier. Indeed, any paradigm can be used for the master
classifier: Bayesian, nearest-neighbor based, a decision tree, or a neural network.
The linear classifier used in non-homogeneous boosting is just one out of many
possibilities.

Likewise, the base-level classifiers may come from the most diverse paradigms.
Sometimes, however, the individual classifiers differ only in the concrete choice of
parameter values. For instance, there can be a few decision trees differing in the
extent of pruning. At any rate, the base-level classifiers should all differ in the way
they classify the examples.

The method is illustrated by Table 9.5. The rows represent the individual
classifiers. Specifically, six classifiers have been induced here, each by a different
machine-learning technique. The columns represent the training examples. The field
in the i-th row and the j-th column contains a one if the i-th classifier labels the
j-th example as positive; otherwise, it contains a zero. Each column can thus be

9.5 Cost-Saving Benefits of the Approach 185

Table 9.5 The class labels
suggested by the six
base-level classifiers are used
as attributes to re-describe the
examples. Each column then
represents a training example
to be used for the induction of
the master classifier

x1 x2 x3 : : : xm

Classifier 1 1 1 0 . . . 0

Classifier 2 0 0 1 . . . 1

Classifier 3 1 1 0 . . . 1

Classifier 4 1 1 0 . . . 1

Classifier 5 0 1 0 . . . 1

Classifier 6 0 0 0 . . . 1

Real class 1 1 0 . . . 1

interpreted as a binary vector that re-describes the corresponding example. This
new training set is then presented to a machine-learning program that induces from
it the master classifier.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain what this section meant by “randomizing the attribute set.” What is the
main advantage of the approach? How can it be combined with the classical
bagging?

• Explain the principle of non-homogeneous boosting. What is its main advantage
from the perspective of the errors committed by the classifier?

• Explain the two-layered principle of “stacking.” In what sense do we say that
stacking is a generalization of non-homogeneous boosting?

9.5 Cost-Saving Benefits of the Approach

In some machine-learning techniques, computational costs grow very fast with the
growing size of the training set. In this event, an experimenter will observe that
induction from half of the examples incurs only a small fraction of the costs incurred
by induction from all examples. Likewise, the induction technique’s costs may grow
very fast with the growing number of attributes.

An illustration. The situation is visualized in Fig. 9.4. Here, the time needed for
a hypothetical machine-learning technique to induce a classifier from N examples
is T; however, the time needed to induce a classifier from 50 % of the examples is
only one fifth of it, 0:2T . From this follows that to induce two classifiers, one from
the first half of the training set, the other from the second half, we will need only
2 � 0:2T D 0:4T of the time that would have been needed for the induction of the
classifier from the whole set, T . The computational savings thus amount to 60 % of
the original costs.

186 9 Induction of Voting Assemblies

Generalization to K classifiers. Following the same logic, we may consider
induction of K classifiers, each from a different subset, Ti, such that the size of each
of them is m (a user-set constant) which is supposed to be much smaller than N.
The classifiers induced from these sets will then vote, just as they do in bagging. In
many cases, the induction of the individual classifiers will take only a tiny fraction of
the original time—and yet the classification performance of the “voting assembly”
thus obtained may compare favorably with that of a classifier induced from the
entire training set. Similar observations can be made also in the case of Schapire’s
boosting and Adaboost.

To conclude, the boosting paradigm may not only improve classification perfor-
mance. Quite often, it will lead to significant savings in the computational costs
associated with the induction. This observation is particularly important in domains
marked by many examples described by many attributes. Here, induction can be
very expensive, and any idea that helps reduce computational costs is more than
welcome.

Comments on practical implementation. In bagging, the number of examples
to be included in Ti is the same as in the original training set; no computational
savings in the sense illustrated by Fig. 9.4 are thus possible. On the other hand, we
have to remember that the assumption about the sizes of Ti was used only to make it
possible to present bagging as a bootstrapping technique. In practical applications,
the assumption is unnecessary, and can thus be relaxed. In other words, the size, m,
of the sets Ti can be a user-set constant, just as it is in Adaboost.

In the case of Schapire’s Boosting and non-homogeneous boosting, the reader
will recall that the sizes of Ti, are user-specified parameters. The same applies to
stacking.

Fig. 9.4 In some
machine-learning techniques,
computational costs grow
quickly with the growing size
of the training set. Quite
often, induction from half of
the examples incurs only a
small fraction of the costs
incurred by induction from all
examples

NN/2

T

T/5

#examples

CPU time

9.6 Summary and Historical Remarks 187

The costs of example selection. When considering the savings in computational
costs, however, we must not forget that the price for them is a certain unavoidable
overhead. To be more specific, additional costs are associated with the need to select
the examples to be included in the next Ti.

In the case of bagging, these costs are so small as to be easily neglected. They are
higher in Adaboost, but even here they are still affordable. The situation is different
in the case of Schapire’s boosting. Here, the search for the examples that satisfy the
conditions for T2 and T3 can be quite expensive—especially when a great number
of training examples have been made available, but only a small percentage of them
satisfy the required conditions.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Elaborate on the statement that “computational costs of induction can be greatly
reduced by exploiting the idea of the voting assemblies induced from small
subsets of examples.”

• Discuss the circumstances under which one can expect that the boosting idea will
reduce computational costs.

• How expensive (computationally) is it to create the training subsets, Ti, in each
of the boosting techniques?

9.6 Summary and Historical Remarks

• A popular machine learning approach induces a set of classifiers, each from a
different subset of the training examples. When presented with an example, each
classifier offers a class. Based on these suggestions, a master classifier makes the
final decision.

• The simplest application of this idea is the so-called bagging. Here, the subsets
used for the induction of the individual classifiers are obtained from the original
training set, T , by a bootstrapping mechanism. Suppose that T contains m
examples. Then, when creating Ti, we choose m examples “with replacement.”
Some examples may then appear in Ti more than once, while others will not
appear there at all.

• Schapire’s boosting induces three classifiers, C1; C2, and C3, making sure that
they complement each other as much as possible. This complementarity is
achieved by the way the training subsets are created: the composition of T1 is
random; the composition of T2 is such that C1 experiences 50 % error rate on this
set; and T3 consists of examples on which C1 and C2 disagree. Each of the three
subsets contains the same number of examples.

188 9 Induction of Voting Assemblies

• By contrast, Adaboost chooses the examples probabilistically in a way that makes
each Ti consist primarily of examples on which the previous classifiers failed.
Another difference is that the final class label is obtained by weighted majority
voting.

• A few variations on the theme exist. One of them, randomization of attribute
sets, induces the classifiers from the same training examples which, however,
are each time described by a different subset of the attributes. Another one,
non-homogeneous boosting, uses always the same training set (and the same
attributes), but induces each classifier by a different induction technique. The
final class is then obtained by weighted majority voting. Finally, stacking
resembles non-homogeneous boosting, but the output is decided by a master
classifier that has been trained on the outputs of the base-level classifiers.

Historical Remarks. The idea of boosting was invented by Schapire [72] who
pointed out that, in this way, even the performance of very weak induction
paradigms can thus be “boosted”—hence the name. The somewhat more practical
idea underlying Adaboost was published by Freund and Schapire [26], whereas
the bagging approach was explored by Breiman [7]; its application to decision
trees, known under the term random forests is was published by Breiman [8]. The
principle of stacking (under the name Stacking Generalization) was introduced by
Wolpert [86].

9.7 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. Suppose the probabilities of the training examples to be used by Adaboost are
those listed in Table 9.6. From these, a training subset, Ti, has been created, and
from Ti, classifier Ci was induced. Suppose that Ci then misclassifies examples
x2 and x9. Show how the probabilities of all training examples are re-calculated,
and then normalize the probabilities.

2. Suppose that eight classifiers have labeled an example. Let the weights of the
classifiers returning the pos label be Œ0:1; 0:8; 0:2�, and let the weights of the
classifiers returning the neg label be Œ�0:1; 0:3; 0:3; 0:4; 0:9�. What label is
going to be returned by a master classifier that relies on weighted majority voting?

9.7 Solidify Your Knowledge 189

Table 9.6 The probabilities of ten training examples

p.x1/ p.x2/ p.x3/ p.x4/ p.x5/ p.x6/ p.x7/ p.x8/ p.x9/ p.x10/

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.17 0.17 0.17

3. Return to Table 9.5 that summarizes the class labels returned for some of the m
examples by six different classifiers. Suppose a 3-NN-based master classifier is
asked to label an example, and that the three nearest neighbors (the columns in
Table 9.5) are x1, x2, and x3. What final label is returned?

Give It Some Thought

1. Recall how Schapire’s boosting chooses the examples for inclusion in the training
sets T2, and T3. Discuss possible situations under which it is impossible to find
enough examples for these subsets. Identify a situation where enough examples
can be found, but the search for them is impractically expensive. Conversely,
under what circumstances can it be affordable to identify all the necessary
examples even when recursion is used?

2. Give some thought to the stacking approach. Think of a situation under which it
will disappoint. Conversely, suggest a situation where stacking will outperform
the less general non-homogeneous boosting.

Computer Assignments

1. Implement the basic algorithm of Adaboost. The number of voting classifiers is
determined by a user-set constant. Another user-set constant specifies the number
of examples in each training set, Ti. The weights of the individual classifiers are
obtained with the help of perceptron learning.

2. Apply the program implemented in the previous task to some of the benchmark
domains from the UCI repository.2 Make observations about this program’s
performance on different data. For each domain, plot a graph showing how
the overall accuracy of the resulting classifier depends on the number of
subclassifiers. Also, observe how the error rate on the training set and the error
rate on the testing set tend to converge with the growing number of classifiers.

3. Implement the stacking algorithm for different base-level learning algorithms and
for different types of the master classifier. Apply the implemented program to a
few benchmark domains, and observe its behavior.

2www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 10
Some Practical Aspects to Know About

The engineer who wants to avoid disappointments has to be aware of certain
machine-learning aspects that, for the sake of clarity, our introduction to the basic
techniques had to neglect. To present some of the most important ones is the task
for this chapter.

The first thing to consider is bias: to be able to learn, the learner has to build on
certain assumptions about the problem at hand, thus reducing the size of the search
space. The next important point has to do with the observation that an increase in the
size of the training set can actually hurt the learner’s chances if most of the training
examples belong only to one class. After this, we will discuss the question how to
deal with classes whose definitions tend to change with context or in time. The last
part focusses on some more mundane aspects such as unknown attribute values, the
selection the most useful sets of attributes, and the problem of multi-label examples.

10.1 A Learner’s Bias

Chapter 7 boldly declared that there is “no learning without bias.” The point was that
an unconstrained (and hence extremely large) hypothesis space is bound to contain
many hypotheses that only by mere chance correctly classify the entire training set
while still erring a lot on future examples. There is another, more practical side to
it. To be able to find something, you need to know where to look; and the smaller
the place where that something is hidden, the higher the chances of finding it.

A simple example. Suppose we are to identify the property shared by the following
set of integers: f2; 3; 10; 20; 12; 21; 22; 28g. In the language of machine learning,
these constitute positive examples. Alongside these, also negative examples are
provided: f1; 4; 5; 11g. In these, the property is not present.

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_10

191

192 10 Some Practical Aspects to Know About

A student trying the find the answer typically explores various notions offered
by the number theory, such as primes, odd numbers, integers whose values exceed
a certain threshold, results of arithmetic operations, and so on. After a lot of effort,
some property satisfying the training examples is found. Usually, however, the
discovered rule is ridiculously complicated and awkward to say the least.

And yet, there is a simple solution which the students almost never hit upon.
Thing is, the underlying property does not come from the realm of arithmetics. What
the positive examples have in common (and the negative examples lack) is that they
all begin with the letter t: two, three, : : :, all the way to twenty-eight. Conversely,
none of the integers in the set of negative examples begins with a t.

The reason this simple solution is so difficult to find is that most people search for
it in the wrong place: arithmetics. Expressed in the language of machine learning,
they rely on the wrong bias. Once they are given the correct answer, their mindset
will be willing to take this experience into account in the future. If you give them
another puzzle of a similar nature, they will subconsciously think not only about
arithmetics, but also about the English vocabulary—they will incorporate into their
thinking also this new bias.

Representational bias versus procedural bias. As far as machine learning is
concerned, biases come in different forms. A so-called representational bias is
determined by the language in which we want the classifier to be formulated.
For instance, in domains with continuous-valued attributes, one possible repre-
sentational bias can consist in the choice of a linear classifier; another can be the
preference for polynomials, and yet another the preference for neural networks. If
all attributes are discrete-valued, the engineer may prefer conjunctions of attribute
values, or perhaps even decision trees. Of course, all of these biases then have its
advantages as well as shortcomings.

Apart from this, the engineer usually also has to opt for a certain procedural
bias. By this we mean preference to a certain method of searching for the solution,
the selection of a specific machine-learning procedure. For instance, one such bias
relies on the assumption that pruning will improve the classification performance of
a decision tree on future data. Another procedural bias is the choice of a concrete set
of parameters in a neural-network’s training. And yet another, in the field of linear
classifiers, can be the engineer’s decision to employ the perceptron learning instead
of WINNOW—or the other way round.

The strength of a bias versus the correctness of a bias. Suppose the engineer
wants to decide whether to approach the given machine-learning problem with a
linear classifier or with a neural network. If the positive and negative examples
are linearly separable, then the linear classifier is clearly the better choice. While
both paradigms are capable of finding the solution, neural networks tend to overfit
the training set, thus poorly generalizing to future data. On the other hand, if the
tentative boundary separating the two classes is highly non-linear, then the linear
classifier will lack the necessary flexibility, whereas neural networks will probably
manage quite easily. The reader now begins to understand that each bias has two
critical aspects: strength, and correctness.

10.1 A Learner’s Bias 193

A bias is strong if it defines only a narrow class of classifiers. In this sense, the
bias of linear classifiers is much stronger than that of neural networks: the former
only allow for linear decision surfaces, while the latter can model virtually any
decision surface.

A bias is correct if it is the right one for the task at hand. For instance, the linear
classifier’s bias is correct only in a domain where the positive examples are linearly
separable from the negative ones. A conjunction of boolean attributes is correct
only if the underlying class can indeed be described by a conjunction of attributes.
Of course, the opposite term, incorrect bias, is not a crisp concept. Some gradation
is involved; some biases are only slightly incorrect, others significantly so.

A useful rule of thumb: Occam’s Razor. Ideally, the engineer wants to use a
bias (representational or procedural) that is correct. And if there is a possibility to
choose between two or more biases that are all correct, the stronger bias is to be
preferred because it has a higher chance of success—this is what we learned in
Chap. 7 where the advice to choose the simpler solution was presented under the
name of the Occam’s Razor.

Unfortunately, we rarely know in advance the correctness/incorrectness of all
possible biases. An educated guess is the best we can hope for. In some paradigms,
say, high-order polynomials, the bias is so weak that there is a high probability that
a classifier from this class will classify the entire training set with zero error rate;
and yet its performance on future data is uncertain on account of its problems with
PAC-learnability. Strengthening the bias (say, by reducing a polynomial’s order)
will reduce the VC-dimension, increasing the chances on future data—but only as
long as the bias remains correct. At a certain moment, further strengthening of the
bias will do more harm then good because the bias becomes incorrect, perhaps very
much so.

What we need to remember is the existence of an almost inescapable trade-off: a
mildly incorrect but strong bias can be better than a correct but very weak bias. But
what the term, “mildly incorrect bias,” means in a concrete application can usually
be decided only based on the engineer’s experience or by additional experimentation
(see Chap. 11).

“Lifelong learning.” In some applications, the machine-learning software is to
learn a series of concepts or classes, all of which are expected to have a solution
within the realm of the same specific bias. In this event, it makes sense to organize
the learning procedure in two tiers. At the lower level, the task is to identify the most
appropriate bias; at the higher level, the software induces the classifier using this
bias. The term used for this strategy, “lifelong learning,” reminds us of something
typical of our own human difficulties in learning: the need to “learn how to learn”
in a given field.

Two sources of the classifier’s errors. The observations made so far will help us
get a better grasp of the two main sources of a classifier’s errors.

The first is the variance in the training examples. Thing is, the data used for
the induction of the concrete classifier almost never capture all aspects of the
underlying class. This is partly due to the way the training set has been created.

194 10 Some Practical Aspects to Know About

In some applications, the training set has been created at random. In other domains,
it consists of examples available at the given moment, which involves a great deal
of randomness, too. And in yet others, the training set has been created by an expert
who has chosen the examples which he believes best represent the given class. The
last case is inevitably subjective, and thus no less unreliable than the previous two. In
view of all this, one can easily imagine that a different training set might be created
for the same domain. And here is the point. From a different training set, a somewhat
different classifier will be induced, and this different classifier will make somewhat
different errors on future data. This is what we mean by saying that variance in the
training data is an important source of errors. Its negative effect can often be reduced
if we use really large training sets.

The second source of error is bias-related. If the two classes, pos and neg,
are not linearly separable, then any linear classifier is bound to misclassify certain
minimum percentage of future examples. Bias-related errors cannot be reduced
below a certain limit because they are inherent in the very nature of the selected
type of classifier.

It is instructive to give some thought to the trade-off between the two sources. For
one thing, the bias-related error can be reduced if we resort to a machine-learning
paradigm known to have a weaker bias. Unfortunately, one of the unintended
consequences of such a decision is higher variance. Conversely, variance can in
principle be reduced by strengthening the bias—which, if incorrect, will increase
the frequency of bias-related errors.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the difference between the representational bias and the procedural bias.
Illustrate each type by examples.

• Explain the difference between the strong and weak bias. Explain the difference
between the correct and incorrect bias. Discuss the interrelation of the two
dichotomies.

• What has this section taught us about the two typical causes of a classifier’s
underperformance on future data?

10.2 Imbalanced Training Sets

When discussing the oil-spill domain, Sect. 8.2 pointed out that well-documented
images of oil spills are relatively rare. Indeed, the project could rely only on a
few dozen positive examples while the negative examples were abundant. Such
imbalanced representation of the two classes is not without serious consequences
for machine learning. This section will explain the cause of the difficulties, then
proceed to some very simple ways of reducing their negative impact.

10.2 Imbalanced Training Sets 195

0 100 200 300 400 500 600 700 800
10

20

30

40

50

60

70

80

90

100
1−nearest neighbor

ac
cu

ra
cy

number of negative examples

Fig. 10.1 Dotted curve: classification accuracy on the neg class; dashed curve: classification
accuracy on the pos class; solid curve: geometric means of the two classification accuracies

A simple experiment. Suppose we have at our disposal a training set that is so
small that it consist of only 50 positive examples and 50 negative examples. Let
us subject this set to a 5-fold crossvalidation1: we divide it into five equally-sized
parts; then, in five different experimental runs, we always remove one of the parts,
induce a classifier from the union of the remaining four, and test the classifier on
the removed part. In this manner, we eliminate, or at least reduce, the effect of
randomness in the choice of the concrete training set. At the end, we write down
the average results of the testing: classification accuracy on the positive examples,
classification accuracy on the negative examples, and the geometric mean of the two
classification accuracies.

Suppose now that we realize we have many more negative examples at our
disposal than we originally thought. Wishing to see how this newly-discovered
bounty is going affect the learning, we add to the previous training set another 50
negative examples (the positive examples remain the same), repeat the experimental
procedure, and then write down the new result. We then continue in the same spirit,
always adding to the training set another batch of fifty negative examples while
keeping the same original fifty positive examples.

1An evaluation methodology introduced in Sect. 11.6

196 10 Some Practical Aspects to Know About

Observation. If we plot the results of the above series of experiments, we will
obtain a graph that, in all likelihood, will look very much like the one shown
in Fig. 10.1 where the 1-NN classifier was used. The reader can see that as the
number of the majority-class examples increases, the induced classifiers become
biased toward this class, gradually converging to a situation where the classification
accuracy on the negative examples (the majority class) approaches 100 %, while the
classification accuracy on the positive examples (the minority class) drops to well
below 20 %. The geometric mean of the two values keeps dropping, too.

The observation may appear somewhat counterintuitive. Surely the induced
classifiers should become more powerful if more training examples are made
available, even if these added examples all happen to belong to the same class? In
turns out, however, that the unexpected behavior described above is typical of many
machine-learning techniques. Engineers usually call it the problem of imbalanced
class representation.

Majority-class undersampling (the mechanical approach). The experiment has
convinced us that adding more examples from the majority class may cause
degradation of the induced classifier’s performance on the minority class. This may
be a serious shortcoming. Thus in the oil-spill domain, the minority class represents
the oil spills, the primary target of the machine-learning undertaking. In medical
diagnosis, any disorder we want to recognize is typically a minority class, too. And
the same applies to software whose task is to alert a company to misuse of its product
(e.g., a wrongful use of calling cards, or credit-card fraud). In domains of this kind,
it is the minority class that interests us. We now know that blindly adding more
and more majority-class examples to the training set is likely to do more harm than
good.

Suppose we are provided with a heavily imbalanced training set where, say,
nine out of ten examples are negative. In this event, we will often benefit from the
removal of many negative examples. In the simplest possible approach, this removal
can be made at random: for instance, each negative example will face a 50 % chance
of being deleted from the training set. As we noticed above, the classifier induced
from this reduced set is likely to outperform a classifier induced from the entire
training set.

Identifying the cause. The mechanical solution indicated in the previous para-
graph will hardly satisfy the thoughtful engineer who wants to understand why
the data-removing trick worked—or, conversely, why increasing the number of
majority-class examples may have such detrimental consequences.

Suppose the 1-NN classifier uses a training set where the vast majority of the
examples are negative, and only a few are positive. Moreover, the data are known
to suffer from a considerable amount of class-label noise. Limiting itself to an easy-
to-visualize two-class domain, the left part of Fig. 10.2 shows one such training set.
The reader is sure to have noticed the point: in consequence of the noise, the nearest
neighbor of almost every positive example is negative. In reality, these neighbors are
probably positive, their negative labels being explained by errors made in the course
of the creation of the training set. Be it as it may, the 1-NN classifier misclassifies
these positive examples, and this is why there are so many false negatives, and only
a few (if any) false positives.

10.2 Imbalanced Training Sets 197

+
+ +

+
+

+

__ _ _
_

_

_

_
_

_

_

__ _

_
_

_
_

_ _ +
+ +

+
+

+

__ _ _
_

_

_

_
_

_

_

__ __

_

Fig. 10.2 In noisy domains where negative examples heavily outnumber positive examples,
the removal of negative examples that participate in Tomek links may increase classification
performance

Of course, not all machine-learning paradigms will suffer from this situation as
dramatically as the 1-NN classifier. But most of them will suffer to some degree,
and we now understand the reason why.

An informed solution: one-sided selection. Knowing the source of our troubles,
we are ready to suggest a remedy. To wit, the cause of our woes is the presence
of many class-noisy examples in the positive region; the situation should therefore
improve if we remove primarily these examples (rather than resorting to a random
selection as in the mechanical approach suggested above).

In Chap. 3, we encountered a simple algorithm capable of identifying “suspi-
cious” examples: the technique of Tomek links. The reader will recall that two
examples, .x; y/, are said to participate in a Tomek link if three conditions are
satisfied: (1) each of the two examples has a different class label; (2) the nearest
neighbor of x is y; and (3) the nearest neighbor of y is x. In the situation depicted
in Fig. 10.2, many of the noisy examples on the left indeed do participate in Tomek
links. This indicates that we may do improve the classifier’s behavior if we delete
from the training set the negative participants of each Tomek-link pair. The principle
is known as one-sided selection because only one side of the Tomek link is selected
for inclusion in the training set.

Applying the technique to the training set shown in the left part of Fig. 10.2, we
will obtain something like the smaller training set shown in the right part. It is easy
to see that the frequency of false negatives is now going to be lower. The efficiency
of this methods is usually higher than just mechanical removal of randomly picked
negative examples.

The opposite solution: oversampling the minority class. In some domains,
however, the training set is so small that any further reduction of its size by
undersampling is impractical. Even the majority-class examples are sparse, here;
the deletion of any one of them may remove some critical aspect of the learning
task, and thus jeopardize the performance of the induced classifier.

198 10 Some Practical Aspects to Know About

In this event, the opposite approach is sometimes preferred. Rather than removing
majority-class examples, we add examples representing the minority class. Since we
do not have at our disposal real examples from this class, we have to create them
artificially. This can be done in two fundamental ways:

1. For each example from the minority class, create one copy and add this copy into
the training set. Alternatively, two or more copies for each example can thus be
created and added.

2. For each example from the minority class, create its slightly modified version and
add it into the training set. The modification is made by minor (random) changes
in continuous attributes; much less useful, though still possible, are changes in
discrete attribute values.

The left part of Fig. 10.2 helps us understand why this works. To the neighbor-
hood of some of the “afflicted” positive examples (those whose nearest neighbors
have been turned negative by noise), minority-class oversampling inserts additional
positive examples; as a result, the 1-NN classifier is no longer misled. The principle
helps improve the behavior of other types of classifiers, too.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What does the term imbalanced training set refer to? Explain the main reason
why induction from imbalanced training sets so often leads to disappointing
results.

• What is the essence of majority-class undersampling? Explain the mechanical
approach, and then proceed to the motivation and principle of the one-sided
selection that uses Tomek links.

• Explain the principle of minority-class oversampling. Describe and discuss the
two alternative ways of creating new examples that are to be added to the training
set.

10.3 Context-Dependent Domains

Up till now, we have tacitly assumed that the underlying “meaning” of a given
class is fixed and immutable, that a single classifier, once induced, will under all
circumstances exhibit the same (or at least similar) behavior. This, however, is not
always the case.

Context-dependent classes. Some classes change their essence with circum-
stances. If you think of that, this is the case of many concepts used in daily life.

10.3 Context-Dependent Domains 199

Thus the meaning of “fashionable dress” changes in time, and different cultures
have a different idea of what they want to wear. “State-of-the-art technology” was
something else a hundred years ago that it is today. Even the intended meaning of
such notorious terms as “democracy” or “justice” depends on political background
and historical circumstances. And if you want a more technical example, consider
the problems encountered by speech-recognition software: everybody knows that
the same word is often pronounced differently in England than in North America;
but the software should “understand” speakers from both backgrounds.

Context-dependent features. For the needs of this book, context is understood as
a “a feature that has no bearing on the class if taken in isolation, but still affects the
class when combined with other features.”

For instance, suppose you want to induce a classifier capable of suggesting
medical diagnosis, of recognizing X based on a set of symptoms. Some attributes,
say, gender, do not have any predictive power; the patient being male is no
proof of prostate-cancer; but the attribute value gender=female is a
clear indication that the class is not prostate-cancer. This, of course, was
an extreme example. In other diagnoses, the impact of gender will be limited to
influencing the critical values of certain laboratory tests, say, p D 0:5 being a critical
threshold for male patients and p D 0:7 for female patients. Alternatively, the prior
probabilities will be affected, breast-cancer being more typical of females,
although men can suffer from it, too.

Induction in context-dependent domains. Suppose you want to induce a speech-
recognition system, and you have a set of training examples coming both from
British and American speakers. Suppose the attribute vector describing each
example contains the “context” attribute, the speaker’s origin. The other attributes
capture the properties of the concrete digital signal. Each class label represents a
different phoneme.

For the induction of a classifier that for each attribute vector decides which
phoneme it represents, the engineer can essentially follow two different strategies.
The first takes advantage of the contextual attribute, and divides the training
examples into two subsets, one for British speakers and one for American speakers;
then it induces a separate classifier from each of these training subsets. The second
strategy mixes all examples in one big training set, and induces one “universal”
classifier.

Practical experience indicates that, in applications of this kind, the first strategy
performs better, provided that the real-time system in which the classifiers are
embedded knows which of them to use. This decision can be assisted by an
additional two-valued classifier that is trained to distinguish British speakers from
American speakers.

Concept drift. Sometimes, the context changes in time. The “fashionable dress”
example mentioned earlier belongs to this category, as do the political terms. In this
event, machine-learning specialists talk about a so-called concept drift. What they
have in mind is that, in the course of time, the essence or meaning of a class drifts
from one context to another.

200 10 Some Practical Aspects to Know About

current
classifier

window
examples

store of
old

classifiers

Fig. 10.3 A window passes over a stream of examples; “current classifier” is periodically updated
to reflect changes in the underlying class. Occasionally, the system can retrieve some of the
previous classifiers if the underlying context recurs

The drift has many aspects. One of them is the extent to which the context
has changed the meaning of the class. In some rare domains, this change is so
substantial that the induced classifier becomes virtually useless, and a new one has
to be induced. Much more typical, however, is a less severe change that results only
in a minor reduction of the classification performance. The old classifier can then
still be used, perhaps after some fine-tuning.

Another feature worth consideration is the “speed” of the drift. At one extreme
is an abrupt change. At a certain moment, one context is simply replaced, at it were,
by another. More typically, however, the change is gradual in the sense that there is
a certain “transition” period during which one context is, step by step, replaced by
the other. In this event, the engineer may ask how fast the transition is, and whether
(or when) the concept drift will necessitate special actions.

Induction of time-varying classes. Perhaps the simplest scenario in which concept
drift is encountered is the one shown by Fig. 10.3. Here, a classifier is faced with a
stream of examples that arrive one at a time, either in regular or irregular intervals.
Each time an example arrives, the classifier labels it with a class. There may or
may not be a feedback loop that tells the system (immediately or after some delay)
whether the classification was correct, and if not, what the correct class label should
have been.

If there is a reason to suspect the possibility of an occasional concept drift, it
may be a good idea to take advantage of a sliding window such as the one shown
in the picture. The classifier is then induced only from the examples “seen through
the window.” Each time a new example arrives, it is added to the window. Whenever
deemed appropriate, older examples are removed, either one at a time, or in groups,
such as “the oldest 25 % examples.” The motivation for the deletion is simple: the

10.3 Context-Dependent Domains 201

engineer wants the window to contain only recent examples, suspecting that older
ones may belong to an outdated context.

As already mentioned, the classifier is supposed to reflect only the examples
contained in the window. In the simplest implementation, the classifier is re-induced
each time the window contents change. Alternatively, the change in the window
contents may only trigger a modification/adaptation of the classifier.

Figure 10.3 shows yet another aspect of this learning paradigm: sometimes, an
older context may reappear (e.g., due to a certain “seasonality”). For this reason, it
may be a good idea to store previously induced versions of the classifier, just in case
they might be re-used in the future.

Engineering issues in the sliding-window approach. There are certain essential
issues that the engineer wishing to implement the sliding-window approach needs
to consider. The first is the question of the size of the window. If it is too small, then
the examples it contains may not be sufficient for successful learning. If it is too big,
then it may contain examples that come from outdated contexts. Ideally, then, the
window should grow (no old examples deleted) as long as it can be assumed that the
context has not changed. When a change is detected, a certain number of the oldest
examples should be deleted because they are no longer trusted.

This leads us to the next important question: how to recognize that a context has
changed? One simple solution relies on the feedback about the classifier’s behavior.
The change of context is then identified by a sudden drop in the classification
performance.

Finally, there is the question of how many of the oldest examples to delete from
the window. The answer will depend on how gradual the context change is, and also
on the extent of this change. At one extreme, an abrupt and considerable change will
call for the deletion of all examples. At the other extreme, a very slow transition
between two very similar contexts will necessitate the deletion of only a few of the
oldest examples.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Give examples of domains where the meaning of a given class varies in
time and/or geographical location. Give examples of domains where previous
meanings recur in time.

• Describe the basic scenario that is based on a stream of time-ordered examples.
Explain the principle of the sliding-window approach to induction in time-
varying domains.

• Discuss briefly the basic engineering issues encountered in the sliding-window
approach.

202 10 Some Practical Aspects to Know About

10.4 Unknown Attribute Values

In many domains, certain attribute values are not known. A patient refused to
give his age, a measurement device failed, and some information got lost—or is
unavailable for any other reason. As a result, we get an imperfect training set such
as the one shown in Table 10.1 where some of the values are replaced with question
marks. In some domains, the question marks represent a considerable portion of
all attribute-value fields, and this may complicate the learning task. The engineer
needs to understand what kind of damage the unknown values may cause, and what
solutions exist.

Adverse effects. In the case of the plain version of the k-NN classifier, the distance
between two vectors can only be calculated if all values in the vectors are known.
True, the distance metric can be modified so that it quantifies also the distance
between, say, red and unknown; but distances calculated in this manner tend to
be rather ad hoc.

The situation is not any better in the case of linear and polynomial classifiers.
Without the knowledge of all attribute values, it is impossible to calculate the
weighted sum, †wixi, whose sign tells the classifier which class label to choose.
Likewise, unknown attribute values complicate the use of Bayesian classifiers and
neural networks.

Decision trees are more flexible, in this sense. When classifying an example, it is
quite possible that the attribute whose value is unknown will not have to be tested
(will not find itself on the path from the root node to the terminal node).

Trivial approaches to filling-in missing values. In a domain with a sufficiently
large training set that contains only a few question marks, there is usually no harm
in removing all examples that have unknown attribute values. This, however, will

Table 10.1 Training examples with missing attribute values

Crust Filling
Example Shape Size Shade Size Shade Weight Class

ex1 Circle Thick Gray Thick Dark 7 pos

ex2 Circle Thick White Thick Dark 2 pos

ex3 Triangle Thick Dark Thick Gray 2 pos

ex4 Circle Thin White ? Dark 3 pos

ex5 Square Thick Dark ? White 4 pos

ex6 Circle Thick White Thin Dark ? pos

ex7 Circle Thick Gray Thick White 6 neg

ex8 Square Thick ? Thick Gray 5 neg

ex9 Triangle Thin Gray Thin Dark 5 neg

ex10 Circle Thick Dark Thick ? ? neg

ex11 Square Thick White Thick Dark 9 neg

ex12 Triangle Thick White Thick Gray 8 neg

10.4 Unknown Attribute Values 203

become impractical in domains where the number of question marks is so high
that the removal of all affected examples would destroy most of the training set,
disposing in the process of valuable information.

In this event, we may try to replace the question marks with some values, even
though these may be incorrect. This is easily done. When the attribute is discrete,
then we may simply replace the question mark with the attribute’s most frequent
value. Thus in Table 10.1, example ex8, the unknown value of crust-shade will
be replaced with white because this is the most frequent value of this attribute in
this particular training set. In the case of a continuous-valued attribute, the average
value can be used. In ex6 and ex10, the value of weight is unknown. Among the
10 examples where it is known, the average value is weight=5.1, and this is the
value we will use in ex6 and ex10.

When doing so, caution is called for. The reader has to keep in mind that using
the most frequent or average values will render the examples’ description unreliable,
perhaps even dubious. The technique should therefore be used sparingly. When
many values are missing, more sophisticated methods (such as the one below)
should be used.

Learning to fill-in missing values. Sometimes, using the most common or average
values can mislead the learning program. A better idea of how to fill the empty
slots is built around the observation that attributes are rarely independent from each
other. For instance, the taller the man, the greater his body weight. If the weight
of someone with height=6.5 is unknown, it would be foolish to use the average
weight calculated over the whole population; after all, our rather tall individual is
certainly heavier than the average person. Seeking a way out, we will probably do
better calculating the average weight among those with height > 6.

So much for a pair of mutually dependent attributes. Quite often, however,
the interrelations are more complicated than that, easily involving three or more
attributes. One simple mechanism to predict unknown values in situations of this
kind will rely on the idea of decision-tree induction. A pseudocode of the technique
is provided in Table 10.2.

The idea is quite simple. Suppose that at is an attribute that has, in the training
set, many question marks. We want to replace the question marks with the most

Table 10.2 An algorithm to determine unknown attribute values

Let T be the original training set.
Let at be the attribute with unknown values.

1. Create a new training set, T 0, in which at becomes the class label; the examples are described
by all the remaining attributes, the former class label (e.g., pos versus neg) being treated
like just another attribute.

2. Remove from T 0 all examples in which the value of at is unknown.
3. From this final version of T 0, induce a decision tree.
4. Use the decision tree thus induced to determine the values of at in those examples in which

its values were unknown.

204 10 Some Practical Aspects to Know About

likely values. We decide to so by means of a decision tree. To this end, we convert
the original training set, T , into a new training set, T 0, where the original class label
(e.g., pos or neg) becomes one of the attributes, whereas at will be treated as a
class label. From this training set, we remove all examples whose values of at are
unknown. From the rest, we induce the decision tree, and then use the decision tree
to fill in the missing values.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What are the main difficulties posed by unknown attribute values? What are their
typical consequences for classifier induction?

• Describe the trivial ways of dealing with examples with some unknown attribute
values. Discuss their limitations.

• Explain how the idea of decision-tree induction can be used when we want to
determine the unknown attribute values.

10.5 Attribute Selection

In many domains, the training examples are described by great many attributes:
tens of thousands, or even more. Learning from data sources of this kind can be
prohibitively expensive. Besides, we have to face problems with learnability, and
also with issues related to irrelevant or redundant attributes. To avoid unnecessary
disappointments, the engineer needs to be acquainted with methods to select the
most appropriate attributes.

Irrelevant and redundant attributes. Not all attributes are created equal. Some
of them are irrelevant in the sense that their values do not have any effect on
an example’s class. Others are redundant in the sense that their values can be
obtained from values of other attributes: for instance, age can be obtained from the
value of date-of-birth. Attributes of these kinds can mislead certain induction
techniques. For instance, irrelevant attributes (and, to a lesser degree, also redundant
attributes) distort the vector-to-vector distances calculated by the k-NN classifier.
Other paradigms, such as decision trees, are less vulnerable, but even they may
suffer from excessive computational costs.

Extremely long attribute vectors. Some domains, such as automated text cat-
egorization, are marked by tens of thousands of attributes, and this often causes
problems. One of the difficulties is the reduced learnability: the induced classifiers
are prone to overfit the training data, disappointing the user when tested on future

10.5 Attribute Selection 205

examples. Also the computational costs can be impractical, especially when a
multilayer neural network is used: each additional attribute increases the number
of weights to be trained, thus adding to the calculations.

Moreover, examples described by thousands of attributes are inevitably sparse,
which is known to mislead many machine-learning approaches. For instance, the
problem of sparsity in k-NN classifiers was explained in Chap. 3.

And yet it is known that, for all intents and purposes, most of the attributes are
useless, and as such, should be disposed of.

Filter approaches to attribute selection. Perhaps the simplest approach to
attribute selection is based on what machine learning calls filtering. The idea is
to calculate for each attribute its “utility” for the classification task at hand, and then
order them according to this criterion. The intention to select the top N percent. The
choice of the “cut-off” point, N, is usually made by trial and error.

When ordering the attributes, the information gain from Sect. 6.3 can be used if
the attributes are discrete. Thanks to the existence of mechanisms for binarization
(see Sect. 6.4), information gain can actually be employed even in the case of
continuous-valued attributes; for this, however, statistical approaches to correlation
measurement are usually preferred.

One reason to criticize attribute filtering is that this approach ignores the relations
that exist among the attributes. This makes it difficult, almost impossible, to
identify redundant attributes. As we know, a redundant attribute does not bring
any additional information beyond that provided by the other attributes; and yet
its information gain can be high.

There is a relatively simple way to overcome this weakness. We induce a decision
tree, and then use only those attributes that are encountered in the tests in the tree’s
internal nodes. The careful reader will recall that this approach was used in some of
the simple applications discussed in Chap. 8.

Wrapper approaches to attribute selection. More powerful, but also more
computationally expensive, is the so-called wrapper approach to attribute selection.
Here is the underlying principle. Suppose we want to compare the quality of two
attribute sets, A1 and A2. From the original training set, T , we create two training
sets, T1 and T2. In both, all examples have the same class labels as in T . However, T1

describes the examples by A1 and T2 uses A2. From the two newly-created training
subsets, two classifiers are induced and evaluated on some independent evaluation
set, TE. The attribute set that results in the higher performance is better.

This is the principle used in the search-based algorithm whose pseudocode is
provided in Table 10.3. The input consists of a training set, T , and of a set of
attributes, A. The output is a subset, S 2 A, of the most useful attributes. At the
beginning, S is empty. At each step, the approach chooses the best attribute from A,
and adds it to S. What is “best” is determined by the classification performance (on
an independent testing set) of the classifier induced from the examples described
by the attributes from S. The algorithm is terminated if no addition to S leads to an
improvement of the classification performance—or if there are no more attributes to
be added to S.

206 10 Some Practical Aspects to Know About

Table 10.3 An wrapper approach to sequential attribute selection

Divide the available set of pre-classified examples into two parts, TT and TE . Let A be the set of
attributes. Create an empty set, S.

1. For every attribute, ati 2 A:

(i) Add ati to S; let all examples in TT and TE be described by attributes from S;
(ii) Induce a classifier from TT , then evaluate its performance on TE; denote this performance

by pi;
(iii) Remove ati from S.

2. Identify the attribute that resulted in the highest value of pi. Remove this attribute from A and
add it to S.

3. If A D ;, stop; if the latest addition did not increase performance, remove this last attribute
from S and stop, too. In both cases, S is the final set of attributes.

4. Return to step 1.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what sense do we say that some attributes are less useful than others? Why
is the engineer often incapable of choosing the right attributes for example
description?

• Explain and discuss the principle of filter-based approaches to attribute selection.
• Describe the principle of the wrapper approaches to attribute selection. Explain

how the principle can be employed in a simple search-based approach to attribute
selection.

10.6 Miscellaneous

Some issues worth knowing about do not merit a separate section in an introductory
text, and yet they cannot be ignored. Let us briefly summarize them here.

Lack of regularity in the data. Suppose you are asked to induce a classifier
from training examples that have been created by a random number generator;
all attribute values are random, and so are the class labels. Obviously, there is no
regularity in such data—and yet-machine learning techniques are often capable of
inducing from them a classifier with zero error rate on the training set. Of course,
this perfect behavior on the training set will not translate into similar behavior on
future examples.

This observation suggests a simple mechanism to be used when measuring the
amount of regularity in data. The idea is simply to divide the data in two subsets—

10.6 Miscellaneous 207

one for training and one for testing. The classifier is induced from the training set,
and then applied to the testing set. In the case of random data, we will observe only
a small (if any) error rate on the training examples but the results on the testing
examples will be dismal. Conversely, the more regularity there is, in the data, the
better the results on the testing set.

Multi-label domains. In some domains, an example can belong to two or more
classes at the same time. For instance, a text document can be labeled as representing
nutrition, diet, athletics, popular science, and perhaps quite a few
other categories. Practically speaking, the training set then looks something like the
one shown in the upper part of Table 10.4 where the attribute vectors are replaced
with just the examples’ names. Note that most of these examples are labeled with
two or more classes.

The most common approach to domains of this kind is to induce a separate
binary classifier for each class. To be more specific, the classifier for the i-th class is
induced from the training set, Ti, that contains the same examples with new labels;
an example’s class in Ti is “1” if the example is in the original training set labeled
with Ci, and “0” otherwise.

The bottom part of Table 10.4 illustrates the point. Since the original training set
contains five class labels, C1; : : : ; C5, five new training sets, T1; : : : ; T5, are created.
From Ti, the classifier for class Ci is induced. Note that some of the new training
sets, Ti, may suffer from the imbalanced class representation discussed in Sect. 10.2.
In this particular example, this happened to T4 and T5. The engineer has to decide

Table 10.4 An example training set in a multi-label domain is converted into five
“binary” training sets, each for one class label

Class(es)

ex1 C1, C2

ex2 C2

ex3 C1, C3, C5

ex4 C2, C3

ex5 C2, C4

T1 T2 T3 T4 T5

ex1 1 ex1 1 ex1 0 ex1 0 ex1 0

ex2 0 ex2 1 ex2 0 ex2 0 ex2 0

ex3 1 ex3 0 ex3 1 ex3 0 ex3 1

ex4 0 ex4 1 ex4 1 ex4 0 ex4 0

ex5 0 ex5 1 ex5 0 ex5 1 ex5 0

208 10 Some Practical Aspects to Know About

machine
learning

decision
trees

k−NN
classif.

irrel.
attrib.pruning

Fig. 10.4 Sometimes, the classes are hierarchically organized. The hierarchy may be known in
advance, or may have to be discovered by the induction program

whether to address the problem by majority-class undersampling or minority-class
oversampling.

Some issues in multi-label examples. Some domains with multi-label examples
are very large. Thus in text categorization, one can easily encounter hundreds of
thousands of examples, each described by thousands of attributes, and labeled with
a subset of thousands of classes. To induce those thousands of binary classifiers
from training sets this large can be computationally very expensive—so expensive,
indeed, that special techniques are needed to make the learning possible.

Performance evaluation of the classifier system is not straightforward, either.
Each of the induced classifiers can have a different performance, and some
averaging is therefore necessary. To Sect. 11.4 will have more to say about how
this is to be done.

A note on hierarchically-organized classes. In some domains (quite often in the
multi-label domains treated in the previous paragraph), the classes are not totally
independent of each other. An entire hierarchy may exist, such as the one whose
small part is shown in Fig. 10.4. Induction of each of these classes then has to be
organized accordingly. For instance, the top-most class is induced first; after this,
the classes subsumed by it are induced, using also the label of the parent class in a
way that maximizes efficiency.

The induction process is not so simple as it looks. One or two specific issues
complicate the task. One of them is so-called error propagation: if an example is
mistakenly classified as belonging to machine-learning, the classifier will use
this information in an attempt to place it in one of the subsumed categories, thus
propagating the error to lower levels in the hierarchy. Another complication is the
fact that, almost always, the training sets associated with the individual nodes in the
hierarchy are heavily imbalanced.

10.7 Summary and Historical Remarks 209

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how to use machine learning when measuring the amount of regularity
in data. Give examples of domains where this regularity can be expected to be
low.

• What are multi-label domains? What is the simplest approach to induction
in these domains? What typical problems does the machine-learning engineer
encounter in them?

• Explain the principle as well as some basic issues in domains marked by
hierarchically-organized classes.

10.7 Summary and Historical Remarks

• Chapter 7 offered mathematical arguments supporting the claim that “there is no
learning without bias.” Certain practical considerations have convinced us that
this is indeed the case.

• Sometimes, the meaning of the underlying class depends on a concrete context;
this context can change in time, in which case we are facing the problem of time-
varying classes.

• The classical machine-learning techniques from the earlier chapters of this book
assume that both (or all) classes are adequately represented in the training set.
Quite often, however, this requirement is not satisfied, and the engineer has to
deal with the difficulties caused by the problem of imbalanced training sets.

• The most typical approaches to the problem of imbalanced training sets are
majority-class undersampling and minority-class oversampling.

• In many training sets, some attribute values are unknown, and this complicates
the use of certain induction techniques. One possible solution is to use (in place
of the unknown values) the most frequent or the average values of the given
attributes.

• Quite often, the engineer is faced with the necessity to select the most appropriate
set of attributes. Two fundamental approaches can be used here: the filtering
techniques and the wrapper techniques.

• In some domains (such as text categorization), each example can be labeled with
more than one class at the same time. These are so-called multi-label domains.
Usually, the problem is solved by inducing a separate binary classifier for each
class, and then using all these classifiers in parallel.

• Sometimes, the classes are hierarchically ordered. This is very often the case in
multi-label domains. The hierarchy is often known in advance.

210 10 Some Practical Aspects to Know About

Historical Remarks. The idea to distinguish different biases in machine learning
was pioneered by Gordon and desJardin [29]. The principle of lifelong learning
was first mentioned by Thrun and Mitchell [75]. The early influential papers
addressing the issue of context were published by Turney [77] and Katz et al. [35].
Induction of time-varying concepts was introduced by Kubat [41] and some early
algorithms were described by Widmer and Kubat [84]. The oldest paper on multi-
label classification known to the author of this book was published by McCallum
[49].

10.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. Consider the training set shown in Table 10.5. How will you replace the missing
values (question marks) with the most frequent values? How will you use a
decision tree to this end?

2. Once you have replaced the question marks in Table 10.5 with concrete values,
identify the two attributes that offer the highest information gain.

Table 10.5 A simple exercise in “unknown values”

Crust Filling
Example Shape Size Shade Size Shade Class

ex1 Circle Thick Gray Thick Dark pos

ex2 Circle Thick White Thick Dark pos

ex3 Triangle Thick Dark ? Gray pos

ex4 Circle Thin White Thin ? pos

ex5 Square Thick Dark Thin White pos

ex6 Circle Thick White Thin Dark pos

ex7 Circle Thick Gray Thick White neg

ex8 Square Thick White Thick Gray neg

ex9 Triangle Thin Gray Thin Dark neg

ex10 Circle Thick Dark Thick White neg

ex11 Square Thick White Thick Dark neg

ex12 Triangle ? White Thick Gray neg

10.8 Solidify Your Knowledge 211

Give It Some Thought

1. The text emphasized the difference between two basic types of error: those
caused by the wrong bias(representational or procedural), and those that are due
to variance in the training data. Suggest an experimental procedure that would
give the engineer an idea about how much of the overall error rate can in a given
domain be explained by either of these two sources.

2. Boosting algorithms are known to be relatively robust with respect to variance-
based errors. Explain why this is the case. Further on, non-homogeneous boosting
presented in Sect. 9.4 is known to reduce bias-based errors. Again, offer some
explanation.

3. Suppose that a Bayesian classifier is to be employed in an imbalanced two-class
domain where examples from one class heavily outnumber examples from the
other class. Will this classifier be as sensitive to this situation as the nearest-
neighbor approach? Support your answer by concrete arguments. Suggest an
experimental verification.

4. In this section, the problem of imbalanced training set was explored only within
the framework of two-class domains where each example is either positive or
negative. How does the same problem generalize to domains that have more than
two classes? Suggest some concrete situations where imbalanced classes in such
multi-class domains are or are not a problem.

Computer Assignments

1. Write a computer program that accepts as input a training set where many
attribute-values are missing, and outputs an improved training set where the
missing values of discrete attributes have been replaced with the most frequent
values, and the missing values of continuous attributes with the average values.
Implement a computer program that will experimentally ascertain whether the
missing-values replacement helps or harms the performance of a decision tree
induced from such data.

2. Choose some public-domain data, for instance from the UCI repository2. Make
sure this domain has at least one binary attribute. The exercise suggested here will
assume that this binary attribute represents a context. Divide the training data into
two subsets, each for a different context (a different value of the binary attribute).
Then induce from each subset the corresponding context-dependent classifier.
Assuming that it is at each time clear which of the two classifiers to use, how
much will the average performance of these two classifiers be better than that of
a “universal” classifier that has been induced from the original training set?

2www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 11
Performance Evaluation

The previous chapters pretended that performance evaluation in machine learning
is a fairly straightforward matter. All it takes is to apply the induced classifier to a
set of examples whose classes are known, and then count the number of errors the
classifier has made. In reality, things are not as simple. Error rate rarely paints the
whole picture, and there are situations in which it can even be misleading. This is
why the conscientious engineer wants to be acquainted with other criteria to assess
the classifiers’ performance. This knowledge will enable her to choose the one that
is best in capturing the behavioral aspects of interest.

So much for the evaluation of classifiers. Somewhat different is the question
is how to compare the suitability of alternative machine-learning techniques for
induction in a given domain. Dividing the set of pre-classified examples randomly
into two subsets (one for induction, the other for testing) may not be the best thing to
do, especially if the training set is small; random division may then result in subsets
that do not represent the given domain properly. To obtain more reliable results,
repeated random runs are necessary.

This chapter addresses both issues, explaining alternative criteria to quantify the
performance of classifiers, and then discussing some strategies commonly used in
experimental evaluation of machine-learning algorithms. The question of statistical
evaluation of the results is relegated to the next chapter.

11.1 Basic Performance Criteria

Let us begin with formal definitions of error rate and classification accuracy. After
this, we will take a look at the consequences of the decision to refuse to classify an
example if the evidence favoring the winning class is weak.

Correct and incorrect classification. Let us first define four fundamental quan-
tities that will be used throughout this chapter. When testing a classifier on an

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_11

213

214 11 Performance Evaluation

Table 11.1 The basic quantities used in
the definitions of performance criteria. For
instance, NFP is the number of false positives:
negative examples misclassified by the classi-
fier as positive

Labels

returned by the classifier
pos neg

True labels: pos NTP NFN

neg NFP NTN

example whose real class is known, we can encounter only the following four
different outcomes: (1) the example is positive and the classifier correctly recognizes
it as such (true positive); (2) the example is negative and the classifier correctly
recognizes it as such (true negative); (3) the example is positive, but the classifier
labels it as negative (false negative); and (4) the example is negative, but the
classifier labels it as positive (false positive).

When applying the classifier to an entire set of examples (whose real classes are
known), each of these four outcomes will occur a different number of times—and
these numbers are then employed in the performance criteria defined below. The
symbols representing the four outcomes are summarized in Table 11.1. Specifically,
NTP is the number of true positives, NTN is the number of true negatives, NFP is the
number of false positives, and NFN is the number of false negatives. In the entire
example set, T , only these four categories are possible; therefore, the size of the set,
jTj, equals the sum, jTj D NFP C NFN C NTP C NTN .

Note that the number of correct classifications is the number of true positives plus
the number of true negatives, NTP C NTN ; and the number of errors is the number of
false positives plus the number of false negatives, NFP C NFN .

Error Rate and Classification Accuracy. A classifier’s error rate, E, is the
frequency of errors made by the classifier over a given set of examples. It is
calculated by dividing the number of errors, NFP C NFN , by the total number of
examples, NTP C NTN C NFP C NFN .

E D NFP C NFN

NFP C NFN C NTP C NTN
(11.1)

Sometimes, the engineer prefers to work with the opposite quantity, classification
accuracy, Acc: the frequency of correct classifications made by the classifier over a
given set of examples. Classification accuracy is calculated by dividing the number
of correct classifications, NTP C NTN , by the total number of examples. Note that
Acc D 1 � E.

Acc D NTP C NTN

NFP C NFN C NTP C NTN
(11.2)

11.1 Basic Performance Criteria 215

Rejecting an example. When discussing the problem of optical character recog-
nition, Sect. 8.1, suggested that the classifier should sometimes be allowed to
refuse to classify an example if the evidence supporting the winning class is
not strong enough. The motivation is quite simple: in some domains, the penalty
for misclassification can be much higher than the penalty for not making any
classification at all.

An illustrative example is not difficult to find. Thus the consequence of a
classifier’s refusal to return the precise value of the ZIP code is that the decision
where the letter should be sent will have to be made by a human operator. To be
sure, this manual processing is more expensive than automatic processing, but not
excessively so. On the other hand, an incorrect value returned by the classifier results
in the letter being sent to a wrong destination, which can cause a serious delay in
delivery. This latter cost is often much higher than the cost of “manual” reading.
Similarly, an incorrect medical diagnosis is often more expensive than no diagnosis
at all; lack of knowledge can be remedied by additional tests, but a wrong diagnosis
may result in choosing a treatment that does more harm than good.

This is why the classifier should sometimes refuse to classify an example if the
evidence favoring either class is insufficient. In some machine-learning paradigms,
the term insufficient evidence is easy to define. Suppose, for instance, that, in a 7-NN
classifier, four neighbors favor the pos class, and the remaining three favor the neg
class. The final count being four versus three, the situation seems “too close to call.”
More generally, the engineer may define a threshold for the minimum difference
between the number of votes favoring the winning class and the number of votes
favoring the runner-up class.

In Bayesian classifiers, the technique is easily implemented, too. If the difference
between the probabilities of the two most strongly supported classes falls short of
a user-specified minimum, the example is rejected as too ambiguous to classify.
Something similar can be done also in neural networks: compare the signals returned
by the corresponding output neurons—and refuse to classify if there is no clearcut
winner.

In other classifiers, such as decision trees, implementation of the rejection mech-
anism is not so straightforward, and is only made possible by the implementation of
“additional tricks.”

Advantages and disadvantages of a rejection to classify. The classifier that
occasionally refuses to make a decision about an example’s class is of course
less likely to go wrong. No wonder that its error rate will be lower. Indeed, the
more examples are rejected, the lower the error rate. But the caution should not be
exaggerated. It may look like a good thing that the error rate is reduced almost to
zero. But if this low rate is achieved only thanks to the refusal to classify almost
all examples, the classifier becomes impractical. Which of these two aspects (low
error rate versus rare classifications) plays a more important role will depend on the
concrete circumstances of the given application.

Figure 11.1 graphically illustrates the essence of the trade-off involved in
decisions of this kind. The horizontal axis represents a parameter capable of

216 11 Performance Evaluation

error rate rejection rate

100%

Fig. 11.1 Error rate can be increased by allowing the classifier to refuse to classify an example if
available evidence fails to “convince” it. At the extreme, the error rate drops to E D 0 because all
examples are rejected

adjusting the rejection rate. As we move from left to right, the rejection rate
increases, whereas the error rate goes down until, at the extreme, all examples
are rejected. At this point, the zero error rate is a poor consolation for having
a classifier that never does anything. The lesson is clear. Occasional rejection of
unclear examples makes a lot of sense, but the principle should be handled with
care.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Define the terms false negative, false positive, true negative, and true positive.
• Specify the formulas for classification accuracy and error rate. How are the two

criteria mutually interrelated?
• When should a classifier reject an example (i.e, when should it refuse to classify)?

How would you implement this behavior in diverse types of classifiers?
• How does rejection rate relate to error rate? What is the trade-off between the

two? Under what circumstances can refusal to classify be useful, and under what
circumstances does it hurt?

11.2 Precision and Recall

In some applications, negative examples outnumber positive ones by a wide
margin. When this happens, error rate offers a misleading picture of classification
performance. To see why, just consider the case where only 2 % of all examples

11.2 Precision and Recall 217

are positive, and all the remaining 98 % are negative. A “classifier” that returns the
negative class for any example in the set will be correct 98 % of the time—which
may look like a remarkable feat. And yet, the reader will agree, a classifier that never
recognizes a positive example is useless.

Imbalanced classes revisited. This observation is worth keeping in mind because
domains with imbalanced classes are quite common. We encountered some of
them in Chaps. 8 and 10, and other applications can be found. Thus in automated
information retrieval, the user may want to find a scientific document dealing with,
say, “performance evaluation of classifiers.” No matter how attractive the topic may
appear to this particular person, papers dealing with it will represent only a small
fraction of the millions of documents available in the digital library. Likewise,
patients suffering from a specific medical disorder are in the entire population
relatively rare. And the same goes for any undertaking that seeks to recognize a rare
event such as a default on mortgage payments or a fraudulent use of a credit card.
A seasoned engineer will go so far as to say that the majority of realistic applications
are in some degree marked by the phenomenon of imbalanced classes.

In domains of this kind, error rate and classification accuracy will hardly tell us
anything reasonable about the classifier’s practical utility. Rather than averaging the
performance over both (or all) classes, we need criteria that focus on a class which,
while important, is represented by only a few examples. Let us take a quick look at
some of them.

Precision. By this we mean the percentage of true positives, NTP, among all
examples that the classifier has labeled as positive: NTP C NFP. The value is thus
obtained by the following formula:

Pr D NTP

NTP C NFP
(11.3)

Put another way, precision is the probability that the classifier is right when labeling
an example as positive.

Recall. By this we mean the probability that a positive example will be correctly
recognized as such (by the classifier). The value is therefore obtained by dividing the
number of true positives, NTP, by the number of positives in the given set: NTPCNFN .
Here is the formula:

Re D NTP

NTP C NFN
(11.4)

Note that the last two formulas differ only in the denominator. This makes sense.
Whereas precision is the frequency of true positives among all examples deemed
positive by the classifier, recall is the frequency of the same true positives among
all positive examples in the set.

218 11 Performance Evaluation

Illustration of the two criteria. Table 11.2 illustrates the behavior of the two
criteria in a simple domain with an imbalanced representation of two classes,
pos and neg. The induced classifier, while exhibiting an impressive classification
accuracy, suffers from poor precision and recall. Specifically, precision of Pr D
0:40 means that of the fifty examples labeled as positive by the classifier, only
twenty are indeed positive, the remaining thirty being nothing but false positives.
With recall, things are even worse: out of the seventy positive examples in the testing
set, only twenty are correctly identified as such by the classifier.

Suppose that the engineer decides to improve the situation by modifying some of
the classifier’s internal parameters, and suppose that this modification results in an
increased number of true positives (from NTP D 20 to NTP D 30) and also a drop
in the number of false positives (from NFP D 30 to NFP D 20). On the other hand,
the number of false negatives has gone up, too: from NFN D 50 to NFN D 70. The
calculations in Table 11.2 indicate that recall was thus barely affected, but precision
has improved, from Pr D 0:40 to Pr D 0:60. Classification accuracy remained
virtually unchanged—actually, it has even gone down a bit, in spite of the improved
precision.

When high precision matters. In some domains, precision is more important than
recall. For instance, when you purchase something from an e-commerce web site,
their recommender system often reacts with a message to the effect that, “Customers
who have bought X buy also Y.” The obvious intention is to cajole you into buying
Y as well.

Recommender systems are sometimes created with the help of machine learning
techniques applied to the company’s historical data.1 When evaluating their perfor-
mance, the engineer wants to achieve high precision. The customers better be happy
about the recommended merchandise, or else they will ignore the recommendations
in the future.

The value of recall is here unimportant. The list offered on the web site has to
be of limited size, and so it does not matter much that the system identifies only a
small percentage of all items that the customers may like.

When high recall matters. In other domains, by contrast, recall is more important.
This is often the case in medical diagnosis. A patient suffering from X, and properly
diagnosed as such, represents a true positive. A patient suffering from X but not
diagnosed as such represents a false negative, something the doctor wants to avoid—
which means that NFN should be small. In the definition of recall, Re D NTP

NTPCNFN
, the

number of false negatives appears in the denominator; consequently a small value
of NFN implies a high value of recall.

ROC curves. In many classifiers, tweaking certain parameters can modify the
values of NFP and NFN , thus affecting (at least to some extent) the classifier’s

1The concrete techniques employed to this end are somewhat more advanced than those discussed
in this textbook, and are thus not treated here.

11.2 Precision and Recall 219

Table 11.2 Illustration of the two criteria: precision and recall

Suppose a classifier has been induced. Evaluation on a testing set gave the results summarized
in this table:

Labels

returned by the classifier

pos neg

True labels: pos 20 50

neg 30 900

From here, the following values of precision, recall, and accuracy are obtained:

precision = 20
50

D 0:40; recall = 20
70

D 0:29; accuracy = 920
1;000

D 0:92

Suppose the classifier’s parameters were modified with the intention to improve its behavior
on positive examples. After the modification, evaluation on a testing set gave the results
summarized in the table below.

Labels

returned by the classifier
pos neg

True labels: pos 30 70

neg 20 880

From here, the following values of precision, recall, and accuracy are obtained.

precision = 30
50

D 0:60; recall = 30
100

D 0:30; accuracy = 910
1;000

D 0:91

The reader can see that precision has considerably improved, while recall remained virtually
unaffected. Note that classification accuracy has not improved, either.

behavior, for instance, by improving recall at the cost of worsened precision or
vice versa. This possibility can be useful in domains where the user has an idea as
to which of these two quantities is more important.

The reader will find it easy to suggest various ways to do the “tweaking.” Thus in
the k-NN classifier, the engineer may request that an example be labeled as negative
unless some very strong evidence supports the positive label. For instance, if four out
of seven nearest neighbors are positive, the classifier can be instructed still to return
the negative label (in spite of the small majority recommending the positive class).
In this way, the number of false positives can be reduced, though this often means to
the price in terms of an increased number of false negatives. Even stronger reduction
in NFP (and an increase in NFN) can be achieved by requesting that any example
be deemed negative unless at least five (or six) of the seven nearest neighbors are
positive.

220 11 Performance Evaluation

accuracy on positives

0

0 error rate on negatives 1

1

c1

c2

Fig. 11.2 Example of ROC curves for two classifiers, c1 and c2. The parameters of the classifiers
can be used to modify the numbers of false positives and false negatives

Something similar is easy to implement in Bayesian classifiers and in neural
networks. The idea is the same: label the example with the preferred class unless
strong evidence indicates that this decision is incorrect.

The behavior of the classifier under different values of its parameters can be
visualized by the so-called ROC curve, a graph where the horizontal axis represents
error rate on the negative examples, and the vertical axis represents classification
accuracy on the positive examples. Example ROC curves for two classifiers, c1 and
c2, are shown in Fig. 11.2. Ideally, we would like to reach the upper left corner that
represents zero error rate on the negatives and 100 % accuracy on the positives. For
various reasons, this is rarely possible.

An important question to ask is which of the two, c1 or c2 is better. This can
only be answered based on the specific needs of the concrete application. All we
can say by just looking at the graph is that c1 outperforms c2 on the positives in the
region with low error rate on negatives. As the error rate on the negative examples
increases, c2 outperforms c1 on the positive examples. Again, whether is this good
or bad can only be decided by the user. See the comments concerning the question
when to prefer precision and when recall.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what kind of data would we rather evaluate the classifier’s performance by the
quantities known as precision and recall (instead of, say, error rate)?

• What formulas help us calculate the concrete values of these criteria? How do
the two formulas differ?

11.3 Other Ways to Measure Performance 221

• Under what circumstances do we prefer high precision, and under what circum-
stances do we place more emphasis on high recall?

• Explain the nature of an ROC curve. What extra information does the curve
convey about a classifier’s behavior? How does the ROC curve help the user
in the choice between two alternative classifiers?

11.3 Other Ways to Measure Performance

Apart from error rate, classification accuracy, precision, and recall, other criteria
are sometimes used, each reflecting a somewhat different aspect of the classifier’s
behavior. Let us take at least a cursory look at some of the most important ones.

Combining precision and recall in Fˇ . Using two different (and sometimes
contradictory) performance criteria can be awkward; it is in the human nature to
want to quantify things by a single number. Especially in the case of precision and
recall, attempts have been made somehow to combine the two in one quantity. The
best-known such formula, Fˇ , is defined as follows:

Fˇ D .ˇ2 C 1/ � Pr � Re

ˇ2 � Pr C Re
(11.5)

The parameter, ˇ 2 Œ0; 1/, enables the user to weigh the relative importance of
the two criteria. If ˇ > 1, then more weight is given to recall. If ˇ < 1, then more
weight is apportioned to precision. It would be easy to show that Fˇ converges to
recall when ˇ ! 1, and to precision when ˇ D 0.

Quite often, the engineer does not really know which of the two, precision or
recall, is more important, and by how much. In that event, she prefers to work with
the neutral value of the parameter, ˇ D 1:

F1 D 2 � Pr � Re

Pr C Re
(11.6)

A numeric example. Suppose that an evaluation of a classifier on a testing set
resulted in the values summarized in the upper part of Table 11.2. For these, the
table established the values of precision and recall, respectively, as Pr D 0:40 and
Re D 0:29. Using these numbers, we will calculate Fˇ for the following concrete
settings of the parameter: ˇ D 0:2; ˇ D 1, and ˇ D 5.

F0:2 D .0:22 C 1/ � 0:4 � 0:29

0:22 � 0:4 C 0:29
D 0:121

0:306
D 0:39

F1 D .12 C 1/ � 0:4 � 0:29

0:4 C 0:29
D 0:232

0:330
D 0:70

222 11 Performance Evaluation

F5 D .52 C 1/ � 0:4 � 0:29

52 � 0:4 C 0:29
D 3:02

10:29
D 0:29

Sensitivity and specificity. The choice of the concrete criterion is often influenced
by the given application field—with its specific needs and deep-rooted traditions
that should not be ignored. Thus the medical domain has become accustomed to
assessing performance of their “classifiers” (not necessarily developed by machine
learning) by sensitivity and specificity. In essence, these quantities are nothing but
recall measured on the positive and negative examples, respectively. Let us be more
concrete:

Sensitivity is recall measured on positive examples:

Se D NTP

NTP C NFN
(11.7)

Specificity is recall measured on negative examples:

Sp D NTN

NTN C NFP
(11.8)

In the machine-learning literature, evaluation in terms of sensitivity and speci-
ficity is rare, but it is still good to be aware of these two criteria. After all, we may
be asked to use them when applying machine learning to medical data—and quite
often it is the customer who is the ultimate boss.

Gmean. When inducing a classifier in a domain with imbalanced class representa-
tion, the engineer sometimes wants to achieve similar performance on both classes,
pos and neg. In this event, the geometric mean, gmean, of the two classification
accuracies (on the positive examples and on the negative examples) is used:

gmean D p
accpos � accneg D

s
NTP

NTP C NFN
� NTN

NTN C NFP
(11.9)

Note that gmean is actually the product of recall on positive examples and recall
on negative examples—or, in other words, the product of sensitivity and specificity.

Perhaps the most important aspect of gmean is that it depends not only on the
concrete values of the two terms under the square root symbol, accpos and accneg,
but also on how close the two values are to each other. A simple numeric example
will convince us that his is indeed the case.

Thus the arithmetic average of 0:75 and 0:75 is .0:75 C 0:75/=2 D 0=75; also
the arithmetic average of 0:55 and 0:95 is .0:55 C 0:95/=2 D 0:75. However, the
geometric means of the first pair is

p
0:75 � 0:75 D 0:75 whereas the geometric

means of the second pair is
p

0:55 � 0:95 D 0:72, a smaller number. We can see

11.3 Other Ways to Measure Performance 223

that the gmean is indeed smaller when the two numbers are different; and the more
different they are, the lower the value of gmean.

Another numeric example. Again, suppose that the evaluation of a classifier on
a testing set resulted in the values summarized in the upper part of Table 11.2. The
values of sensitivity, specificity, and gmean are calculated as follows:

Se D 20

50 C 20
D 0:29

Sp D 900

900 C 30
D 0:97

gmean D
r

20

50 C 20
� 900

900 C 30
D p

0:29 � 0:97 D 0:53

Cost functions. In the world of machine-learning applications, not all errors carry
the same penalty. False positives may be more costly than false negatives or vice
versa. Comparisons of alternative classifiers are further complicated by the fact that,
in some domains, the costs of the two types of error cannot even be expressed in the
same (or at least comparable) units.

Consider the oil spill-recognition problem discussed in Chap. 8. A false positive
here means that a “lookalike” is incorrectly taken for an oil spill (false positive).
When this happens, a plane is unnecessarily sent to the given location to verify
the case. The costs incurred by this error are those associated with the flight. By
contrast, a false negative means that a potential environmental hazard has gone
undetected, something difficult to express in monetary terms.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how Fˇ combines precision and recall. Write down the formula and
discuss how different values of ˇ give more weight either to precision or recall.
Which value of ˇ gives equal weight to both?

• Give the formulas for the calculation of sensitivity and specificity. Explain their
nature, and show their relation to recall. When are the two criteria used?

• Give the formula for the calculation of gmean. Explain the nature of this quantity,
and show its relation to recall. When is this criterion used?

• Under what circumstances can the costs associated with false positives be
different from the costs associated with false negatives? Suggest a situation where
the comparison of the costs is almost impossible.

224 11 Performance Evaluation

11.4 Performance in Multi-label Domains

We already know that, in some domains, each example can belong to two or
more classes at the same time. A good example is text categorization where each
document can be labeled by two or more class labels. The engineer needs to know
how to measure the induced classifiers’ performance under these circumstances.

Macro-averaging. In principle, an average of the performance criteria is usually
taken. However, there are two different ways of averaging. In macro-averaging, the
performance is first calculated for each class, and the results are averaged. In this
way, each class gets the same weight. Here are the formulas for precision, recall,
and F1:

PrM D 1

L

LX

iD1

pri

ReM D 1

L

LX

iD1

rei (11.10)

FM
1 D 1

L

LX

iD1

f 1i

Micro-averaging. A different approach is preferred by micro-averaging. Here,
each class receives a weight according to its frequency among the examples. In
this sense, the performance is averaged over all examples as if they belonged to one
class. Here are the formulas for precision, recall, and F1:

Pr� D
PL

iD1 TPiPL
iD1 TPi C FPi

Re� D
PL

iD1 TPiPL
iD1 TPi C FNi

(11.11)

F�
1 D 2 � pr� � re�

pr� C re�

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

11.5 Learning Curves and Computational Costs 225

• Give an example of a multi-label domain.
• Give the formulas for macro-averaging of precision, recall, and Fˇ .
• Give the formulas for micro-averaging of precision, recall, and Fˇ . Discuss the

difference between macro-averaging and micro-averaging.

11.5 Learning Curves and Computational Costs

The first four sections of this chapter dealt with the problem of performance
evaluation of the induced classifiers. Let us now turn our attention to the evaluation
of the learning algorithm itself. How efficient is the given induction technique
computationally? And how good are the classifiers it induces? Will better results
be achieved if we choose some other machine-learning framework?

In this section, we will give some thought to the costs of learning—in terms of
the number of examples needed for successful induction, as well as in terms of the
computational time consumed. The other aspect, the ability to induce a tool with
high classification performance will be addressed by the following section.

The learning curve. When evaluating a human subject’s ability to learn how
to solve a certain problem, psychologists rely on a learning curve, a notion that
machine learning has borrowed for its own purposes.

From our perspective, the learning curve simply shows how the classification
performance of the induced classifier depends on the size of the training set. Two
such curves are shown in Fig. 11.3. The horizontal axis represents the number
of training examples; and the vertical axis represents the classification accuracy
of the classifier induced from these examples. Usually, though not always, this
classification accuracy is evaluated on independent testing examples.

Most of the time, a larger training set means higher classification performance—
at least until the moment when no further improvement is possible. Ideally, we
would like to achieve maximum performance from the smallest possible training
set. For one thing, training examples can be expensive to obtain, and their source
can be limited no matter how much we are willing to spend on them. For another,
the more examples we use, the higher the computational costs od induction.

Comparing learners with different learning curves. Figure 11.3 shows the
learning curves of two learners, l1 and l2. The reader can see that the learning
curve of the former, l1, rises very quickly, only to level off at a point beyond
which virtually no improvement is possible—the limitation may be imposed by an
incorrect bias (see Sect. 10.1). By contrast, the learning curve of the second learner,
l2, does not grow so fast, but in the end achieves higher levels of accuracy than l1.

Which of the two curves indicates a preferable learner depends on the circum-
stances of the given application. When the source of the training examples is limited,
the first learner is clearly more appropriate. If the examples are abundant, we will
prefer the other learner, assuming of course, that the computational costs are not
prohibitive.

226 11 Performance Evaluation

100%

classification accuracy

training examples

l

l 2

1

Fig. 11.3 A learning curve shows how the achieved classification accuracy depends on the number
of examples used during learning

Computational costs. There are two aspects to computational costs. First is the
time needed for the induction of the classifier from the available data. The second is
the time it takes to classify a set of examples with the classifier thus induced.

Along these lines, the techniques described in this book cover a fairly broad
spectrum. As for induction costs, the cheapest is the basic version of the k-NN
classifier: the only “computation” involved is to store the training examples.2 On
the other hand, the k-NN classifier is expensive in terms of the classification costs.
For instance, if we have a million training examples, each described by ten thousand
attributes, then tens of billions of arithmetic operations will have to be carried out to
classify a single example. When asked to classify millions of examples, even a very
fast computer will take quite some time.

The situation is different in the case of decision trees. These are cheap when
used to classify examples: usually only a moderate number of single-attribute tests
are needed. However, induction of decision trees can take a lot of time if many
training examples described by many attributes are available.

Induction costs and classification costs of the other classifiers vary, and the
engineer is well advised to consider these costs when choosing the most appropriate
machine-learning paradigm for the given application. Just as important is a solid
understanding of how these costs depend on the number of the training examples,
on the number of attributes describing them, and sometimes also on the required
accuracy (e.g., in the case of neural networks).

2Some computation will be necessary if we decide to remove noisy or redundant examples.

11.6 Methodologies of Experimental Evaluation 227

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What are the two main aspects of costs associated with a given machine-learning
paradigm?

• What does the learning curve tell us about a machine learning algorithm’s
behavior? What shape of the learning curve do we want in the ideal case? What
should we expect in reality?

• Under what circumstances is a steeper learning curve with lower maximum better
than a flatter curve with a higher maximum?

11.6 Methodologies of Experimental Evaluation

The reader understands that different domains will benefit from different induction
techniques. The choice is usually not difficult to make. Some knowledge of the
available training data often helps us choose the most appropriate paradigm; for
instance, if a high percentage of the attributes are suspected to be irrelevant, then
decision trees are likely to be more successful than a nearest-neighbor classifier.

However, the success of a given technique also depends on the values of various
parameters. Although even here certain time-tested rules of thumb can help, the best
parameter setting is usually found only by experimentation.

Baseline approach and its limitations. The basic scenario is simple. The set of
pre-classified examples is divided into two subsets, one used for training, the other
for testing. The training-testing session is repeated for different parameter settings,
and the one that results in the highest performance is then chosen.

This, however, can only be done if a great many pre-classified examples are
available. In domains where examples are scarce, or expensive to obtain, a random
division into a pair of the training and testing sets will lack objectivity. Either
of the two sets can, by mere chance, misrepresent the given domain adequately.
Statisticians are telling us that both the training set and the testing set should have
more or less the same distribution of examples. In small sets, of course, this cannot
be guaranteed.

Random subsampling. When the set of pre-classified examples is small, the
engineer usually prefers to repeat the training-testing procedure several times. In
each run, the set of examples is randomly divided into two parts, one for training,
the other for testing. The measured performances are recorded, and then averaged.
Care has to be taken that the individual data-splits are mutually independent.

Once the procedure has been repeated N times (typically, N D 10 or N D 5), the
results are reported in terms of the average classification accuracy and the standard
deviation, say, 84:2 ˙ 0:6. For the calculation of averages and standard deviations,

228 11 Performance Evaluation

the formulas from Chap. 2 are used: the average, �, is obtained by Eq. 2.12; the
standard deviation, � , is obtained as the square root of variance, �2, which is
calculated using Eq. 2.13.

N-fold crossvalidation. For more advanced statistical evaluation, experienced
experimenters often prefer the so-called N-fold crossvalidation. The principle is
shown in Fig. 11.4. To begin with, the set of pre-classified examples is divided into N
equally-sized (or almost equally-sized) subsets which the machine-learning jargon
sometimes (not quite correctly) refers to as “folds.”

N-fold crossvalidation then runs N experiments. In each, one of the N subsets
is removed so as to be used only for testing (this guarantees that, in each run, a
different testing set is used). The training is then carried out on the union of the
remaining N � 1 subsets. Again, the results are averaged, and the standard deviation
calculated.

The advantage of N-fold crossvalidation as compared to random subsampling is
that the testing sets are disjoint (non-overlapping), which is deemed advantageous
for certain types of statistical evaluations (see Chap. 12).

Stratified approaches. Suppose you are dealing with a domain with 60 positive
and 940 negative examples. If you rely on N-fold crossvalidation with N D 10,
each of the “folds” is likely to contain a different number of positive examples. On
average, there will be six positives in each fold, but the concrete numbers can vary
significantly. In a domain where one of the classes is relatively rare, it can even
happen that some of the “folds” will not contain any single positive example at all.
The situation is typically encountered in domains with heavily imbalanced class
representation.

In this event, the experienced experimenter prefers a so-called stratified approach
to N-fold crossvalidation. The idea is to make sure that each of the N “folds” con-
tains (approximately) the same representation of the examples from the individual

2.

1.

3.

4.

5.

the original trainig set

5−fold cross−validation

... training

... testing

Fig. 11.4 N-fold cross-validation divides the training set into N equally-sized subsets. In each of
the N experimental runs, it withholds a different subset for testing, inducing the classifier from the
union of the remaining N � 1 subsets

11.6 Methodologies of Experimental Evaluation 229

Table 11.3 The algorithm for 5x2 cross-validation (5x2 CV)

Let T be the original set of pre-classified examples.

(1) Divide T randomly into two equally-sized subsets. Repeat the division five times. The
result is five pairs of subsets denoted as Ti1 and Ti2 (for i D 1; : : : 5).

(2) For each of these pairs, use Ti1 for training and Ti2 for testing, and then the other way
round.

(3) For the ten training/testing sessions thus obtained, calculate the mean value and the
standard deviation of the chosen performance criterion.

classes. For instance, when using the 5-fold crossvalidation in a domain with 60 and
940 positive and negative examples, respectively, each fold should consist of 200
examples of which 12 are positive.

The same principle is often used in the random-subsampling approach—which,
admittedly, is in its stratified version no longer totally random. Again, the idea
is to make sure that each training set, and each testing set, has about the same
representation of each class.

5x2 crossvalidation (5x2cv). There is yet another approach to experimental evalu-
ation of machine-learning techniques, the so-called 5x2 crossvalidation, sometimes
abbreviated as 5x2cv. This may actually be the most popular methodology in
machine learning. The principle is built around a combination of random subsam-
pling and 2-fold crossvalidation.

To be more specific, 5x2cv divides the set of pre-classified examples into two
equally-sized parts, T1 and T2. Next, it uses T1 for training and T2 for testing, and
then the other way round: T2 for training and T1 for testing. The procedure is then
repeated 5 times, each time with a different random division into two subsets. All
in all, ten learning/testing sessions are thus created. The principle is summarized by
the pseudocode in Table 11.3.

Again, many experimenters prefer to work with the stratified version of this
methodology, making sure that the representation of the individual classes is about
the same in each of the ten parts used in the experiments.

The no-free-lunch theorem. It would be foolish to expect some machine-learning
technique to be a holy grail, a mechanism to be preferred under all circumstances.
Nothing like this exists. The reader by now understands that each paradigm has its
advantages that make it succeed in some domains—and shortcomings that make it
fail miserably in others. Only systematic experiments can tell the engineer which
type of classifier, and which induction algorithm, to select for the task at hand. The
truth of the matter is that no machine-learning approach will outperform all other
machine-learning approaches under all circumstances.

Mathematicians have been able to prove the validity of this statement by a
rigorous proof. The result is known under the (somewhat fancy) name of “no-free-
lunch theorem.”

230 11 Performance Evaluation

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the difference between N-fold cross-validation and random subsam-
pling? Why do we sometimes prefer to employe the stratified versions of these
methodologies?

• Explain the principle of the 5x2 cross-validation (5x2 cv), including its stratified
version.

• What does the so-called no-free-lunch theorem tell us?

11.7 Summary and Historical Remarks

• The basic criterion to measure classification performance is error rate, E, defined
as the percentage of misclassified examples in the given set. The complementary
quantity is classification accuracy, Acc D 1 � E.

• When the evidence for any class is not sufficiently strong, the classifier should
better reject the example to avoid the danger of a costly misclassification.
Rejection rate then becomes yet another important criterion for the evaluation
of classification performance. Higher rejection rate usually means lower error
rate; beyond a certain point, however, the classifier’s utility will degrade.

• Criteria for measuring classification performance can be defined by the counts
(denoted as NTP; NTN ; NFP; NFN ;) of true positives, true negatives, false positives,
and false negatives, respectively.

• In domains with imbalanced class representation, error rate can be a misleading
criterion. A better picture is offered by the use of precision (Pr D NTP

NTPCNFP
) and

recall (Re D NTP
NTPCNFN

).
• Sometimes, precision and recall are combined in a single criterion, Fˇ , that is

defined by the following formula:

Fˇ D .ˇ2 C 1/ � Pr � Re

ˇ2 � Pr C Re

The value of the user-set parameter ˇ determines the relative importance of
precision (ˇ < 1) or recall (ˇ > 1). When the two are deemed equally important,
we use ˇ D 1, obtaining the following:

F1 D 2 � Pr � Re

Pr C Re

11.8 Solidify Your Knowledge 231

• Less common criteria for classification performance include sensitivity, speci-
ficity, and gmean.

• In domains where an example can belong to more than one class at the same time,
the performance is often evaluated by an average taken over the performances
measured along the individual classes. Two alternative methods of averaging are
used: micro-averaging and macro-averaging.

• Another important aspect of a machine-learning technique is how many training
examples are needed if a certain classification performance is to be reached. The
situation is sometimes visualized by means of a learning curve. Also worth the
engineer’s attention are the computational costs associated with induction and
with classification.

• When comparing alternative machine-learning techniques in domains with lim-
ited numbers of pre-classified examples, engineers rely on methodologies known
as random subsampling, N-fold cross-validation, and the 5x2 cross-validation.
The stratified versions of these techniques make sure that each training set (and
testing set) has the same proportion of examples for each class.

Historical Remarks. Most of the performance criteria discussed in this chapter are
well-established in the statistical literature, and have been used for such a long time
that it is difficult to trace their origin. The exception is the relatively recent gmean
that was proposed to this end by Kubat, Holte, and Matwin [42].

The idea to refuse to classify examples where the k-NN classifier cannot rely
on a significant majority was put forward by Hellman [31] and later analyzed by
Louizou and Maybank [48]. The principle of 5x2 cross-validation was suggested,
and experimentally explored, by Dietterich [18]. The no-free-lunch theorem was
published by Wolpert [87].

11.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. Suppose that the evaluation of a classifier on a testing set resulted in the counts
summarized in the following table:

232 11 Performance Evaluation

Labels
returned by the classifier
pos neg

True labels: pos 50 50
neg 40 850

Calculate the values of precision, recall, sensitivity, specificity, and gmean.
2. Using the data from the previous question, calculate Fˇ for different values of

the parameter: ˇ D 0:5; ˇ D 1, and ˇ D 2.
3. Suppose that an evaluation of a machine-learning technique using 5-fold cross-

validation resulted in the following error rates measured in the testing sets:

E11 D 0:14; E12 D 0:16; E13 D 0:10; E14 D 0:15; E15 D 0:18

E21 D 0:17; E22 D 0:15; E23 D 0:12; E24 D 0:13; E25 D 0:20

Calculate the mean value of the error rate as well as the standard deviation,
� , using the formulas from Chap. 2 (do not forget that standard deviation is the
square root of variance, �2).

Give It Some Thought

1. Suggest a domain where precision is much more important than recall; con-
versely, suggest a domain where it is the other way round, recall being more
important than precision.
(Of course, use different examples than those mentioned in this chapter.)

2. What aspects of the given domain is reflected in the pair, sensitivity and
specificity? Suggest circumstances under which these two give a better picture
of the classifier’s performance than precision and recall.

3. Suppose that, for a given domain, you have induced two classifiers: one with
very high precision, the other with high recall. What can be gained from the
combination of the two classifiers? How would you implement this combination?
Under what circumstances will the idea fail?

4. Try to think about the potential advantages and shortcomings of random subsam-
pling in comparison with N-fold crossvalidation.

Computer Assignments

1. Assume that some machine-learning experiment resulted in a table where each
row represents a testing example. The first column contains the examples’ class
labels (“1” or “0” for the positive and negative examples, respectively), and the
second column contains the labels suggested by the induced classifier.

11.8 Solidify Your Knowledge 233

Write a program that calculates precision, recall, as well as Fˇ for a user-
specified ˇ.

Write a program that calculates the values of the other performance criteria.
2. Suppose that the training set has the form of a matrix where each row represents

an example, each column represents an attribute, and the right-most column
contains the class labels.

Write a program that divides this set randomly into five pairs of equally-sized
subsets, as required by the 5x2 cross-validation technique. Then write another
program that creates the subsets in the stratified manner where each subset has
approximately the same representation of each class.

3. Write a program that accepts two inputs: (1) a set of class labels of multi-label
testing examples, and (2) the labels assigned to these examples by a multi-label
classifier. The output consists of micro-averaged and macro-averaged values of
precision and recall.

4. Write a computer program that accepts as input a training set, and outputs N
subsets to be used in N-fold crossvalidation. Make sure the approach is stratified.
How will your program have to be modified if you later decide to use the 5x2
crossvalidation instead of the plain N-fold crossvalidation?

Chapter 12
Statistical Significance

Suppose you have evaluated a classifier’s performance on an independent testing set.
To what extent can you trust your findings? When a flipped coin comes up heads
eight times out of ten, any reasonable experimenter will suspect this to be nothing
but a fluke, expecting that another set of ten tosses will give a result closer to reality.
Similar caution is in place when measuring classification performance. To evaluate
classification accuracy on a testing set is not enough; just as important is to develop
some notion of the chances that the measured value is a reliable estimate of the
classifier’s true behavior.

This is the kind of information that an informed application of mathematical
statistics can provide. To acquaint the student with the requisite techniques and
procedures, this chapter introduces such fundamental concepts as standard error,
confidence intervals, and hypothesis testing, explaining and discussing them from
the perspective of the machine-learning task at hand.

12.1 Sampling a Population

If we test a classifier on several different testing sets, the error rate on each of them
will be different—but not totally arbitrary: the distribution of the measured values
cannot escape the laws of statistics. A good understanding of these laws can help us
estimate how representative the results of our measurements really are.

An observation. Table 12.1 contains one hundred zeros and ones, generated by
a random-number generator whose parameters have been set to make it return a
zero twenty percent of a time, and a one eighty percent of the time. The real
percentages in the generator’s output are of course slightly different than what the
setting required. In this particular case, the table contains 82 ones and 18 zeros.

The numbers on the side and at the bottom of the table tell us how many ones are
found in each row and column. Based on these, we can say that the proportions of

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_12

235

236 12 Statistical Significance

Table 12.1 A set of binary
values returned by a
random-number generator set
to return a one 80 % of the
time. In reality, there are 82
ones and 18 zeros. At the
ends of the rows and columns
are the corresponding sums

0 0 1 0 1 1 1 0 1 1 6

1 1 0 1 1 1 1 1 1 1 9

1 1 1 0 1 1 1 1 1 1 9

1 1 1 1 1 1 0 0 1 1 8

1 1 1 0 1 0 1 0 1 1 7

1 1 1 1 1 1 1 1 1 1 10

1 1 1 1 1 1 1 1 0 1 9

1 1 1 0 1 1 1 0 1 1 8

1 1 1 0 1 0 1 1 1 1 8

1 0 1 1 1 1 1 0 1 1 8

9 8 9 5 10 8 9 5 9 10 82

ones in the first two rows are 0.6 and 0.9, respectively, because each row contains 10
numbers. Likewise, the proportions of ones in the first two columns are 0.9 and 0.8.
The average of these four proportions is .0:6 C 0:9 C 0:9 C 0:8/=4 D 0:80, and the
standard deviation is 0:08.1

For a statistician, each row or column represents a sample of the population. All
samples have the same size: n D 10. Now, suppose we increase this value to, say,
n D 30. How will the proportions be distributed then?

Returning to the table, we can see that the first three rows combined contain
6 C 9 C 9 D 24 ones, the next three rows contain 8 C 7 C 10 D 25 of them,
the first three columns contain 9 C 8 C 9 D 26, and the next three columns contain
5C10C8 D 23. Dividing each of these numbers by n D 30, we obtain the following
proportions: 24

30
D 0:80; 25

30
D 0:83; 26

30
D 0:87, and 23

30
D 0:77. Calculating the

average and the standard deviation of these four values, we get 0:82 ˙ 0:02.
If we compare the results observed in the case of n D 10 with those for

n D 30, we notice two things. First, there is a minor difference between the
average calculated for the bigger samples (0.82) versus the average calculated for
the smaller samples (0.80). Second, the bigger samples exhibit a clearly smaller
standard deviation: 0.02 for n D 30 versus 0.08 for n D 10. Are these observation
explained by mere coincidence, or are they the consequence of some underlying
law?

Estimates based on random samples. The answer is provided by a theorem that
says that estimates based on samples become more accurate with the growing
sample size, n. Further on, the larger the samples, the smaller the variation of the
estimates from one sample to another.

Another theorem, the so-called central limit theorem, states that the distribution
of the individual estimates can be approximated by the Gaussian normal distribution
which we already know from Chap. 2—the reader will recall its signature bell-like

1Recall that standard deviation is the square root of variation; this, in turn, is calculated by Eq. 2.13
from Chap. 2.

12.1 Sampling a Population 237

shape. However, this approximation is known to be reasonably accurate only if the
proportion, p, and the sample size, n, satisfy the following two conditions:

np � 10 (12.1)

n.1 � p/ � 10 (12.2)

If the conditions are not satisfied (if at least one of the products is less than 10),
the distribution of estimates obtained from the samples cannot be approximated by
the normal distribution without certain loss in accuracy.

Sections 12.2 and 12.3 will elaborate on how the normal-distribution approxi-
mation can help us establish our confidence in the measured performance of the
induced classifiers.

An illustration. Let us check how these conditions are satisfied in the case of
the samples of Table 12.1. We know that the proportion of ones in the original
population was determined by the user-set parameter of the random-number
generator: p D 0:8. Let us begin with samples of size n D 10. It turns out that
none of the two conditions is satisfied because np D 10 � 0:8 D 8 < 10 and
n.1 � p/ D 10 � 0:2 D 2 < 10. Therefore, the distribution of the proportions
observed in these small samples cannot be approximated by the normal distribution.

In the second attempt, the sample size was increased to n D 30. As a result, we
obtain np D 30 � 0:8 D 24 > 10, and this means that Condition (12.1) is satisfied.
At the same time, however, Condition (12.2) is not satisfied because n.1 � p/ D
30 � 0:2 D 6 < 10. Even here, therefore, the normal distribution does not offer
sufficiently accurate approximation.

The situation will change if we increase the sample size to n D 60. Doing the
math, we easily establish that np D 60�0:8 D 48 � 10 and also n.1�p/ D 60�0:2 D
12 � 10. We can therefore conclude that the distribution of the proportions of ones
in samples of size n D 60 can be approximated with the normal distribution without
any perceptible loss in accuracy.

The impact of p. Note how the applicability of the normal distribution is affected
by p, the proportion of ones in the entire population. It is easy to see that, for
different values of p, different sample sizes are called for if the two conditions are to
be satisfied. Relatively small size is sufficient if p D 0:5; but the more the proportion
differs from p D 0:5 to either side, the bigger the samples that we need.

To get a better idea of what this means in practice, recall that we found the sample
size of n D 60 to be sufficient in a situation where p D 0:8. What if, however, we
decide to base our estimates on samples of the same size, n D 60, but in a domain
where the proportion is higher, say, p D 0:95? In this event, we will realize that
n.1 � p/ D 60 � 0:05 D 3 < 10, which means that Condition (12.2) is not met, and
the distribution of the proportions in samples of this size cannot be approximated
by the normal distribution. For this condition to be satisfied in this domain, we
would need a sample size of at least n D 200. Since 200 � 0:05 D 10, we have

238 12 Statistical Significance

just barely made it. By the way, note that, on account of the symmetry of the two
conditions, (12.1) and (12.2), the same minimum size, n D 200, will be called for
in a domain where p D 0:05 instead of p D 0:95.

Parameters of the distribution. Let us return to our attempt to estimate the
proportion of ones based on sampling. We now know that if the samples are large
enough, the distribution of estimates made in different samples can be approximated
by the normal distribution whose mean equals the (theoretical) proportion of ones
that would have been observed in the entire population if such an experiment were
possible.

The other parameter of a distribution is the standard deviation. In our context,
statisticians prefer the term standard error, a terminological subtlety essentially
meant to indicate the following: whereas “standard deviation” refers to a distribution
of any variable (such as weight, age, or temperature), the term “standard
error” is used when we refer to variations of estimates from one sample to another.
And this is what interests us in the case of our proportions.

Let us denote the standard error by sE. Mathematicians have established that its
value can be calculated from the sample size, n, and the theoretical proportion, p,
using the following formula:

sE D
r

p.1 � p/

n
(12.3)

For instance, if n D 50 and p D 0:80, then the standard error is as follows:

sE D
r

0:80 � 0:20

50
D 0:06

When expressing this result in plain English, some engineers prefer to say that
the standard error is 6 %.

The impact of n; diminishing returns. Note how the value of the standard error
goes the other way than the sample size, n. To be more specific, the larger the
samples, the lower the standard error and vice versa. Thus in the case of n D 50

and p D 0:80, we obtained sE D 0:06. If we use larger samples, say, n D 100, the

standard error will drop to sE D
q

0:8�0:2
100

D 0:04. The curve defined by the normal
distribution thus becomes narrower, and the proportions in different samples will
tend to be closer to p.

This said, we should also be aware of the fact that increasing the sample size
brings diminishing returns. Let us illustrate this statement using a simple example.
The calculations carried out in the previous paragraph convinced us that, when
proceeding from n D 50 to n D 100 (doubling the sample size), we managed
to reduce sE by two percentage points, from 6 % to 4 %. If, however, we do the
same calculation for n D 1;000, we get sE D 0:013, whereas n D 2;000 results in
sE D 0:009. In other words, doubling the sample size from 1;000 to 2;000, we only

12.2 Benefiting from the Normal Distribution 239

succeeded in reducing the standard error from 1.3 % to 0.9 %, which means that the
only reward for doubling the sample size was the paltry 0.4 %.

This last observation is worth remembering—for very practical reasons. In many
domains, pre-classified examples are difficult or expensive to obtain; the reader
will recall that this was the case of the oil-spill domain discussed in Sect. 8.2. If
acceptable estimates of proportions can be made using a relatively small testing
set, the engineer will not want to go into the trouble of trying to procure additional
examples; the miniscule benefits may not justify the extra costs.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Write down the formulas defining the conditions to be satisfied if the distribution
of the proportions obtained from random samples are to follow the normal
distribution.

• Explain how the entire-population proportion, p, affects the sample size, n, that is
necessary for the proportions measured on different samples to follow the normal
distribution.

• What is the mean value of a set of estimates that have been made based on
different samples? Also, write down the formula that calculates the standard
error.

• Elaborate on the statement that “increasing the sample size brings only diminish-
ing returns.”

12.2 Benefiting from the Normal Distribution

The previous section investigated the proportions of ones in samples taken from a
certain population. The sample size was denoted by n, and the theoretical proportion
of ones in the whole population was denoted by p. This theoretical value we do not
know; the best we can do is estimate it based on our observation of a sample. Also,
we have learned that, while the proportion in each individual sample is different, the
distribution of these values can often be approximated by the normal distribution—
the approximation being reasonably accurate if Conditions (12.1) and (12.2) are
satisfied.

The normal distribution can help us decide how much to trust the classification
accuracy (or, for that matter, any other performance criterion) that has been
measured on one concrete testing set. To be able to do so, let us take a brief look at
how to calculate so-called confidence values.

240 12 Statistical Significance

−3σ 2σ−2σ −σ σ 3σp

Fig. 12.1 Gaussian (normal) distribution whose mean value is p

Re-formulation in terms of a classifier’s performance. Suppose the ones and
zeros in Table 12.1 represent correct and incorrect classifications, respectively, as
they have been made by a classifier being evaluated on a testing set that consists of
one hundred examples (one hundred being the number of entries in the table). In this
event, the proportion of ones gives the classifier’s accuracy, whereas the proportion
of zeros defines its error rate.

Evaluation of the classifier on a different testing set will of course result in
different values of the classification accuracy or error rate. But when measured on
great many testing sets, the individual accuracies will be distributed in a manner
that, as we have seen, roughly follows the normal distribution.

Properties of the normal distribution. Figure 12.1 shows the fundamental shape
of the normal distribution. The vertical axis represents the probability density
function as we know it from Chap. 2. The horizontal axis represents classification
accuracy. The mean value, denoted here as p, is the theoretical classification
accuracy which we would obtain if we had a chance to evaluate the classifier on
all possible examples from the given domain. This theoretical value is of course
unknown, which is why our intention is to estimate it on the basis of a concrete
sample—the available set of testing examples.

The bell-like shape of the density function reminds us that most testing sets
will yield classification accuracies relatively close to the mean, p. The greater
the distance from p, the smaller the chance that this particular performance will
be obtained from a random testing set. Note also that, along the horizontal axis,
the graph highlights certain specific distances from p: the multiples of � , the
distribution’s standard deviation—or, when we deal with sample-based estimates,
the standard error of these estimates.

The formula defining the normal distribution was introduced in Sect. 2.5 where it
was called the Gaussian “bell” function. Knowing the formula, we can establish the

12.2 Benefiting from the Normal Distribution 241

Table 12.2 For the normal
distribution, with mean p and
standard deviation � , the left
column gives the percentage
of values found in the interval
Œp � z��; p C z���

Confidence
level (%) z�

68 1.00

90 1.65

95 1.96

98 2.33

99 2.58

percentage of values found within a specific interval, Œa; b�. The size of the entire
area under the curve (from minus infinity to plus infinity) is 1. Therefore, if the
area under the curve within the range of Œa; b� is 0.80, we can say that 80 % of the
performance estimates are found in this interval.

Identifying intervals of interest. Not all intervals are equally important. For the
needs of classifier evaluation, we are interested in those that are centered at the mean
value, p. For instance, the engineer may want to know what percentage of values will
be found in Œp��; pC��. Conversely, she may want to know the size of the interval
(again, centered at p) that contains 95 percent of all values.

Strictly speaking, questions of this kind can be answered with the help of
mathematical analysis. Fortunately, we do not need to do the math ourselves because
others have done it before, and we can take advantage of their findings. Some of the
most useful results are shown in Table 12.2. Here, the left column lists percentages
called confidence levels; for each of these, the right column specifies the interval that
comprises the given percentage of values. Note that the length of the interval is
characterized by z�, the number of standard deviations to either side of p. More
formally, therefore, the interval is defined as Œp � z��; p C z���.

Here is how the table is used for practical purposes. Suppose we want to know
the size of the interval that contains 95 % of the values. This percentage is found in
the third row. We can see that the number on the right is 1.96, and this is interpreted
as telling us that 95 % of the values are in the interval Œp � 1:96 � �; p C 1:96 � ��.
Similarly, 68 % of the values are found in the interval Œp � �; p C ��—this is what
we learn from the first row in the table.

Standard error of sample-based estimates. Let us take a look at how to employ
this knowledge when evaluating classification accuracies. Suppose that the testing
sets are all of the same size, n, and suppose that this size satisfies Conditions (12.1)
and (12.1) that allow us to use the normal distribution. We already know that the
average of the classification accuracies measured on great many independent testing
sets will converge to the theoretical accuracy, the one that would have been obtained
by testing the classifier on all possible examples.

242 12 Statistical Significance

The standard error2 is calculated using Eq. 12.3. For instance, if the theoretical
classification accuracy is p D 0:70, and the size of each testing set is n D 100, then
the standard error of the classification accuracies obtained from great many different
testing sets is calculated as follows:

sacc D
r

p.1 � p/

n
D
r

0:7.1 � 0:7/

100
D 0:046 (12.4)

After due rounding, we will say that the classification accuracy is 70 % plus or
minus 5 %. Note, again, that the standard error will be lower if we use a larger testing
set. This makes sense: the larger the testing set, the more thorough the evaluation,
and thus the higher our confidence in the value thus obtained.

Let us now ask what value we are going to obtain if we evaluate the classifier
on some other testing sets of the same size. Once again, we answer the question
with the help of Table 12.2. First of all, we find the row representing 95 %. In this
row, the right column gives the value z� D 1:96; and this is interpreted as telling
us that 95 % of all results will be in the interval Œp � 1:96 � sacc; p C 1:96 � sacc� D
Œ0:80 � 1:96 � 0:46; 0:80 C 1:96 � 0:46� D Œ0:61; 0:79�.

Do not forget, however, that this will only be the case if the testing set has the
same size, n D 100. For a different n, Eq. 12.4 will give us a different standard error,
sacc, and thus a different interval.

Two important reminders. It may be an idea to remind ourselves of what exactly
the normal-distribution assumption is good for. Specifically, if the distribution is
normal, then we can use Table 12.2 from which we learn the size of the interval
(centered a p) that contains the given percentage of values.

On the other hand, the formula for standard error (Eq. 12.3) is valid generally,
even if the distribution is not normal. For the calculation of standard error, the two
conditions, (12.1) and (12.2), do not have to be satisfied.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How do the considerations from the previous section apply to the evaluation of
an induced classifier’s performance?

• What kind of information can we glean from Table 12.2? How can this table
be used when quantifying the confidence in the classification-accuracy value
obtained from a testing set of size n?

2As explained in Sect. 12.1 in connection with the distribution of results obtained from different
samples, we prefer the term standard error to the more general standard deviation.

12.3 Confidence Intervals 243

• How will you calculate the standard error of estimates based on a given testing
set? How does this standard error depend on the size of the testing set?

12.3 Confidence Intervals

Let us now focus on how the knowledge gained in the previous two sections can help
us specify the experimenter’s confidence in the classifier’s performance as measured
on the given testing data.

Confidence interval: an example. Now that we understand how the classification
accuracies obtained from different testing sets are distributed, we are ready to
draw conclusions about how confident we can be in our expectation that the value
measured on one concrete testing set is close to the true theoretical value.

Suppose the size of the testing set is n D 100, and let the classification accuracy
measured on this testing set be acc D 0:85. For the training set of this size, the
standard error is as follows:

sacc D
r

0:85 � 0:15

100
D 0:036 (12.5)

Checking the normal-distribution conditions, we realize that they are both
satisfied here because 100 � 0:85 D 85 � 10 and 100 � 0:15 D 15 � 10. This
means that we can take advantage of the z�-values listed in Table 12.2. Using this
table, we easily establish that 95 percent of all values are found in the interval
Œacc � 1:96 � sacc; acc C 1:96 � sacc�. For acc D 0:85 and sacc D 0:036, we realize
that the corresponding interval is Œ0:85 � 0:07; 0:85 C 0:07� D Œ0:78; 0:92�.

What this result is telling us is that, based on the evaluation on the given testing
set, we can say that, with 95 % confidence, the real classification accuracy finds itself
somewhere in the interval Œ0:78; 0:92�. This interval is usually called the confidence
interval.

Two new terms: confidence level and margin of error. Confidence intervals
reflect specific confidence levels—those defined by the percentages listed in the left
column of Table 12.2. In our specific case, the confidence level was 95 %.

Each confidence level defines a different confidence interval. This interval can
be re-written as p ˙ M where p is the mean and M is the so-called margin of error.
For instance, in the case of the interval Œ0:78; 0:92�, the mean was p D 0:85 and the
margin of error was M D z�sacc D 1:96 � 0:036 D 0:07.

Choosing the confidence level. In the example discussed above, the requested
confidence level was 95 %, a fairly common choice. For another confidence level, a
different confidence interval would have been obtained. Thus for 99 %, Table 12.2
gives z� D 2:8, and the confidence interval is Œ0:85�2:58 �sacc; 0:85C2:58 �sacc� D
Œ0:76; 0:94�. Note that this interval is longer than the one for confidence level

244 12 Statistical Significance

95 %. This was to be expected: the chance that the real, theoretical, classification
accuracy finds itself in a longer interval is higher. Conversely, it is less likely that
the theoretical value will fall into some narrower interval. Thus for the confidence
level of 68 % (and the standard error rounded to sacc D 0:04), the confidence interval
is Œ0:85 � 0:04; 0:85 C 0:04� D Œ0:81I 0:89�.

Importantly, we must not forget that, even in the case of confidence level
99 %, one cannot be absolutely sure that the theoretical value will fall into the
corresponding interval. There is still that 1 % probability that the measured value
will be outside this interval.

Another parameter: sample size. The reader now understands that the length of
the confidence interval depends on the standard error, and that the standard error, in
turn, depends on the size, n, of the testing set (see Eq. 12.3). Essentially, the larger
the testing set, the stronger the evidence in favor of the measured value, and thus the
narrower the confidence interval. This is why we say that the margin of error and the
training-set size are in inverse relation: as the training-set size increases, the margin
of error decreases.

Previously, we mentioned that a higher confidence level results in a longer
confidence interval. If we think this interval to be too big, we can make it shorter by
using a bigger testing set, and thus a higher value of n (which decreases the value of
the standard error of the measured value).

There is a way of deciding how large the testing set should be if we want to limit
the margin of error to a certain maximum value. Here is the formula calculating the
margin of error:

M D z�sacc D z�
r

p.1 � p/

n
(12.6)

Solving this equation for n (for specific values of M. p, and z�) will give us the
required testing-set size.

A concluding remark. The method of establishing the confidence interval for
the given confidence level was explained using the simplest performance criterion,
classification accuracy. Yet the scope of the method’s applicability is much broader:
the uncertainty of any variable that represents a proportion can thus be quantified.
In the context of machine learning, we can use the same approach to establish our
confidence in any of the performance criteria from Chap. 11, be it precision, recall,
or some other quantity.

But we have to be careful we do it right. For one thing, we must not forget that
the distribution of the values of the given quantity can only be approximated by the
normal distribution if the conditions (12.1) and (12.2) are satisfied. Second, we have
to make sure we understand the meaning of n when calculating the standard error
using Eq. 12.3. For instance, the reader remembers that precision is calculated with
the formula, NTP

NTPCNFP
: the percentage of true positives among all examples labeled

by the classifier as positive. This means that we are dealing with a proportion of true
positives in a sample of the size n D NTP C NFP. Similar considerations have to be
made in the case of recall and some other performance criteria.

12.4 Statistical Evaluation of a Classifier 245

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the meaning of the term, confidence interval. What is meant by the
margin of error?

• How does the size of the confidence interval (and the margin of error) depend on
the user-specified confidence level? How does it depend on the size of the testing
set?

• Discuss the calculations of confidence intervals for some other performance
criteria such as precision and recall.

12.4 Statistical Evaluation of a Classifier

A claim about a classifier’s performance can be confirmed or refuted experimentally,
by testing the classifier on a set of pre-classified examples. One possibility for the
statistical evaluation of the results thus obtained is to follow the algorithm from
Table 12.3. Let us illustrate the procedure on a simple example.

A simple example. Suppose a machine-learning specialist tells you that the
classifier he has induced has classification accuracy acc D 0:78. Faithful to the
dictum, “trust but verify,” you decide to find out whether this statement is correct.
To this end, you prepare n D 100 examples whose class labels are known, and then
set about measuring the classifier’s performance on this testing set.

Let the experiment result in giving us classification accuracy 0:75. Well, this
is less than the promised 0:78, but then: is this observed difference still within
reasonable bounds? To put it another way, is there a chance that the specialist’s

Table 12.3 The algorithm for statistical evaluation of a classifier’s performance

(1) For the given size, n, of the testing set, and for the claimed classification accuracy, acc, check
whether the conditions for normal distribution are satisfied:
n � acc � 10 and n � .1 � acc/ � 10

(2) Calculate the standard error by the usual formula:

sacc D
q

acc.1�acc/

n

(3) Assuming that the normal-distribution assumption is correct, find in Table 12.2 the z�-value
for the requested level of confidence. The corresponding confidence interval is Œacc � z� �
sacc; acc C z� � sacc�.

(4) If the value measured on the testing set finds itself outside this interval, reject the claim that
the accuracy equals acc. Otherwise, assume that the available evidence is insufficient for the
rejection.

246 12 Statistical Significance

claim was correct, and that the lower performance measured on the testing set can
be explained by the variations implied by the random nature of the employed testing
data? After all, a different testing set is likely to result in a different classification
accuracy.

Checking the conditions for normal distribution. The first question to ask is
whether the distribution of the performances thus obtained can be approximated
by the normal distribution. A positive answer will allow us to base our statistical
evaluation on the values from Table 12.2.

Verification of Conditions (12.1) and (12.2) is quite easy. Seeing that np D 100 �
0:75 D 75 � 10, and that n.1 � p/ D 100 � 0:25 D 25 � 10, we realize that the
conditions are satisfied and the normal-distribution assumption can be used.

Finding the confidence interval for the 95 %-confidence level. Suppose that you
are prepared to accept the specialist’s claim (acc D 0:78) if there is at least a 95 %
chance that such performance will make it possible to observe that the classification
accuracy on a random testing set is acc D 0:75. This will be possible if 0.75 finds
itself within the corresponding confidence interval, centered at 0.78. Let us find out
whether this is the case.

The corresponding row in the table informs us that z� D 1:96; this means
that 95 % of accuracies obtained on random testing set will find themselves in the
interval Œacc � 1:96 � sacc; acc C 1:96 � sacc�, where acc D 0:78 is the original claim
and sacc is the standard error to be statistically expected for testing sets of the given
size, n.

In our concrete training set, the size is n D 100. The standard error is calculated
as follows:

sacc D
r

acc.1 � acc/

n
D
r

0:75 � 0:25

100
D 0:043 (12.7)

We conclude that the confidence interval is Œ0:78�1:96�0:043; 0:78C1:96�0:043�

which, after evaluation and due rounding, is Œ0:70; 0:86�.

A conclusion regarding the specialist’s claim. Evaluation on our own training set
resulted in classification accuracy acc D 0:75, a value that finds itself within the
confidence interval corresponding to the chosen confidence level of 95 %.

This is encouraging. For the given claim, acc D 0:78, there is a 95 % probability
that our evaluation on a random testing set will give us a classification accuracy
somewhere within the interval Œ0:70; 0:86�. This, indeed, is what happened in this
particular case. And so, although our result, acc D 0:75, is somewhat lower than
the specialist’s claim, we have to admit that our experimental evaluation failed to
provide convincing evidence against the claim. In the absence of such evidence, we
accept the claim as valid.

12.4 Statistical Evaluation of a Classifier 247

Type-I error in statistical evaluation: false alarm. The reader now understands
the fundamental principle of statistical evaluation. Someone makes a statement
about performance. Based on the size of our testing set (and assuming normal
distribution), we calculate the size of the interval that is supposed to contain the
given 95 % of all values. There is only a 5 % chance that, if the original claim
is correct, the result of testing will be outside this interval. This is why we reject
any hypothesis whose testing results landed in this less-than-5 % region. We simply
assume that it is rather unlikely that such difference would be observed.

This said, such difference should still be expected in 5 % cases. We have to admit
that there exists some small danger that the evaluation of the classifier on a random
testing set will result in a value outside the given confidence interval. In this case,
rejecting the specialist’s claim would be unfair. Statisticians call this the type-I error:
the false rejection of an otherwise correct claim; a rejection that is based on the fact
that certain results are untypical.

If we do not like to face this danger, we can reduce it by increasing the required
confidence level. If we choose 99 % instead of the 95 %, false alarms will be less
frequent. But this reduction is not gained for free—as will be explained in the next
paragraph.

Type-II error in statistical evaluation: failing to detect an incorrect claim.
Also the opposite case is possible. To wit, the initial claim is false, and yet the
classification accuracy obtained from our testing falls within the given confidence
interval. When this happens, we are forced to conclude that our experiment failed to
provide sufficient evidence against the claim; the claim thus has to be accepted.

The reader may find this unfortunate, but this is indeed what sometimes happens.
An incorrect claim is not refuted. Statisticians call this the type-II error. It is
typical of those cases where very high confidence level is required: so broad is the
corresponding interval that the results of testing will almost never fall outside; the
experimental results then hardly ever lead to the rejection of the initial claim.

The thing to remember is the inevitable trade-off between the two types of error.
By increasing the confidence level, we reduce the danger of the type-I error, but only
at the cost of increasing the danger of the type-II error; and vice versa.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain how to evaluate statistically the results of an experimental measurement
of a classifier’s performance on a testing set.

248 12 Statistical Significance

• What is meant by the term, type-I error (false alarm)? What can be done to reduce
the danger of making this error?

• What is meant by the term, type-II error (missed detection)? What can be done
to reduce the danger of making this error?

12.5 Another Kind of Statistical Evaluation

At this moment, the reader understands the essence of statistical processing of
experimental results, and knows how to use it when evaluating the claims about
a given classifier’s performance. However, much more can be accomplished with
the help of statistics.

Do two testing sets represent two different contexts? Chapter 10 mentioned the
circumstance that, sometimes, a different classifier should perhaps be induced for a
different context—such as the British accent as compared to the American accent.
Here is how statistics can help us identify such situations in the data.

Suppose we have tested two classifiers on two different testing sets. The
classification accuracy in the first test is Op1 and the classification accuracy in the
second test is Op2 (the letter “p” alluding to the proportion of correct answers). The
sizes of the two sets are denoted by n1 and n2. Finally, let the average proportion of
correctly classified examples in the two sets combined be denoted by Op.

The statistics of interest is defined by the following formula:

z D Op1 � Op2q
Op.1 � Op/. 1

n1
C 1

n2
/

(12.8)

The result is compared to the critical value for the given confidence level—the
value can be found n Table 12.2.

A concrete example. Suppose the classifier was evaluated on two testings sets
whose sizes are n1 D 100 and n2 D 200. Let the classification accuracies measured
on the two be Op1 D 0:82 and Op2 D 0:74, respectively, so that the average
classification accuracy on the two sets combined is Op D 0:77. The reader will easily
verify that the conditions for normal distribution are satisfied.

Plugging these values into Eq. 12.8, we obtain the following:

z D 0:82 � 0:74
q

0:77.1 � 0:77/. 1
100

C 1
200

/

D 1:6: (12.9)

Since this value is lower than the one given for the 95 % confidence level in
Table 12.2, we conclude that the result is within the corresponding confidence
interval, and therefore accept that the two results are statistically indistinguishable.

12.6 Comparing Machine-Learning Techniques 249

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Why should we be concerned that a classifier is being applied to a wrong kind of
data?

• What formula is used here? How do you carry our the evaluation?

12.6 Comparing Machine-Learning Techniques

Sometimes, we need to know which of two alternative machine-learning techniques
is more appropriate for the given class-recognition problem. The usual methodology
is here somewhat different than in the previous sections, though it is build around
similar principles. Instead of lengthy theorizing, let us illustrate this kind of
evaluation on a simple example with concrete data.

Experimental methodology. As discussed in Chap. 11, one way to compare,
experimentally, two machine-learning algorithms is to use 5x2 crossvalidation. The
reader will recall that, in this method, the set of available pre-classified data is
divided into two equally-sized subsets, T11 and T12. First, the two machine-learning
techniques are used to induce their classifiers from T11, and these classifiers are then
tested on T12; then, the two classifiers are both induced from T12 and tested on T11.
The process is repeated five times, each time for a different random division of the
set of data into two subsets, Ti1 and Ti2.

As a result, we obtain ten pairs of testing-set classification accuracies (or error
rates, precisions, recalls, or any other performance criterion of choice). The question
to ask is then formulated as follows: “Are the differences between the ten pairs of
results statistically significant?”

Example of experimental results: paired comparisons. Let us denote the i-th
pair of the sets by Ti1 and Ti2, respectively. Suppose we are comparing two machine-
learning algorithms, ML1 and ML2, evaluating them in the ten experimental runs
as explained in the previous paragraph. Suppose that the results are those listed in
Table 12.4. In this table, each column is headed with the name of the test set used
in the corresponding experimental run. The fields in the table give the classification
accuracies (in percentages) that have been achieved on the corresponding test sets
by classifiers induced by the two alternative induction techniques. The last row
specifies the differences between the two classification accuracies. Note that the
differences are either positive or negative.

Evaluating these results, we realize that the average difference is d D 2:0, and
that the standard deviation of these differences is sd D 4:63.

250 12 Statistical Significance

Table 12.4 Example experimental results of a comparison of two
alternative machine-learning techniques, ML1 and ML2. The num-
bers in the first two rows give classification accuracies (in percent-
ages), the last row gives the differences, d

T11 T12 T21 T22 T31 T32 T41 T42 T51 T52

ML1 78 82 99 85 80 95 87 57 69 73

ML2 72 79 95 80 80 88 90 50 73 78

d 6 3 4 5 0 7 �3 7 �4 �5

Table 12.5 Some
probabilities of the t-values
for nine degrees of freedom

Degrees Confidence level
of freedom 0.10 % 0.05 % 0.02 % 0.01 %

9 1.83 2.26 2.81 3.35

The principle of statistical evaluation of paired differences. Observing the mean
value of differences, d (with standard deviation, sd), we have to ask: is this difference
statistically significant? In other words, is this difference outside what we previously
called a confidence interval for a given confidence level, say, 95 %? Note that the
midpoint of this confidence interval is Od D 0.

As compared to the methods discussed in the previous sections, we have to point
out two major differences. First of them is the fact that, instead of proportions, we
are now dealing with mean values, d. The second is the circumstance that we can
no longer rely on the normal distribution because the number, n, of the values on
which the statistical evaluation rests is small, and the standard deviation has only
been estimated on the basis of the given 10 observations (it is not known for the
entire population).

In this situation, we have to resort to another theoretical distribution, the so-called
t-distribution. Its shape is similar to the normal distribution (the “bell” shape), but
it is flatter. Also, its “flatness” or “steepness” depends on what is called the number
of degrees of freedom. In the case of 10 testing sets, there are 10 � 1 D 9 degrees
of freedom. Some typical t values for the case of 9 degrees of freedom are shown in
Table 12.5.3

Calculating the t-values in paired tests. Statistical evaluation using the t-tests is
essentially the same as in the case of normal distribution. For the mean difference,
d, and the standard deviation sd, the t9-value (the subscript refers to the number of
degrees of freedom) is calculated by the following formula, where n is the number
of tests:

t9 D d � 0

sd=
p

n
(12.10)

3With more degrees of freedom, the curve would get closer to the normal distribution, becoming
almost indistinguishable from it for 30 or more degrees of freedom.

12.7 Summary and Historical Remarks 251

The result is then compared with the critical thresholds associated with concrete
levels of confidence. These are listed in Table 12.5. Specifically, in the case of the
results from Table 12.4, we obtain the following:

t9 D 2 � 0

4:63=
p

10
D 1:35 (12.11)

Seeing that the obtained value is less than the 2.26 listed for the 95 % confidence
level in the table, we conclude that the experiment has failed to refute (for the
given confidence level) the hypothesis that the two techniques lead to comparable
classification accuracies. We therefore accept the claim.

What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the principle of the 5x2-crossvalidation technique which results in a set
of 10 paired results.

• Why cannot we use the normal distribution as in the previous sections? What
other distribution is used here?

• Write down the formula calculating the t-value. Explain how the value for each
individual variable in this formula is obtained.

12.7 Summary and Historical Remarks

• The essence of statistical evaluation is to draw conclusions about the behavior of
an entire population based on our observations made on a relatively small sample.

• Different samples will yield different results, but these different values are bound
to be distributed according to statistical laws. Knowledge of these laws helps a
machine-learning engineer to calculate his or her confidence in the classification
performance as measured on concrete testing set.

• The most typical distribution of the “sampling results” is the Gaussian normal
distribution. It can only be used if two essential conditions are satisfied. For
training-set size n and for the mean value p, the conditions are as follows:
np � 10 and n.1 � p/ � 10.

• Regardless whether the distribution is normal or not, the standard error of the
classification accuracies, acc, measured on different testing sets is given by the
following formula:

252 12 Statistical Significance

sacc D
r

acc.1 � acc/

n
D
r

0:75 � 0:25

100
D 0:043

• For each confidence level, the normal-distribution assumption leads to a specific
z� value (see Table 12.2) Having calculated the standard error, and having chosen
a confidence level, we establish the confidence interval by the following formula:

Œacc � z�sacc; acc C z�sacc�

The term z�sacc is referred to as the margin of error. For different performance
metrics, similar formulas are used.

• Suppose we are testing a claim about certain classification accuracy, acc. If the
result of experimental evaluation falls into the confidence interval defined by
the chosen confidence level, we assume we do not have enough evidence against
the claim regarding the value of acc. If the result is outside the value, we reject
the claim.

• When comparing two machine-learning techniques, we often rely on the 5x2-
crossvalidation technique, subjecting the results to the so-called t-test. This test
relies on the t-distribution instead of the normal distribution. The t-distribution
has a slightly different shape for different numbers of degrees of freedom.

Historical Remarks. The statistical methods discussed in this chapter are so old
and well-established that textbooks of statistics no longer care to give credit to those
who developed them. From the perspective of machine learning, however, we must
mention that the idea of applying t-tests to experimental results obtained from 5x2
crossvalidation was advocated by Dietterich [18].

12.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. Suppose we intend to evaluate the statement that a certain classifier’s accuracy is
p D 0:80. What size n, of the testing set is needed if we want to be able to rely
on the normal distribution and Table 12.2?

2. Suppose that a certain classifier accuracy has been specified as p D 0:9. What is
the value of the standard error, sE, if the classifier is to be evaluated on testing

12.8 Solidify Your Knowledge 253

sets of size n D 400? Determine the size of the confidence interval for the
95 % confidence level. Do not forget to check the validity of Conditions (12.1)
and (12.2).

3. Suppose your company is offered a classifier with stated accuracy p D 0:85.
When the company decides to test the validity of this statement on a testing set
of 200 examples, the measured value is 0.81, which of course is less than what
was promised. Is there at least 95 % chance that the original claim was correct?
What about 99 %?

Give It Some Thought

1. Suppose you test a classifier’s performance, using the 95 %-confidence interval.
What if you change your mind and decide to use the 99 %-confidence instead?
You will increase tolerance, but what is the price for this?

Computer Assignments

1. This assignment assumes that the reader has already implemented a program
dividing the data into the 5 “folds” needed for the evaluation of the performance
using the 5x2-CV methodology. Another assumption is that the reader has
implemented at least two class-induction programs.

Write a program comparing the two induction techniques using the 5x2-CV
methodology, evaluating the results using t-tests.

Chapter 13
The Genetic Algorithm

The essence of machine learning is the search for the best solution to our problem:
to find a classifier which classifies as correctly as possible not only the training
examples, but also future examples. Chapter 1 explained the principle of one of the
most popular AI-based search techniques, the so-called hill-climbing, and showed
how it can be used in classifier induction.

There is another approach to search: the Genetic Algorithm, inspired by the
principles of Darwinian evolution. The reader needs to be acquainted with it because
the technique can be very useful in dealing with various machine-learning problems.
This chapter presents the baseline version, and then illustrates its use using certain
typical issues from the field of k-NN classifiers.

13.1 The Baseline Genetic Algorithm

Let us first briefly describe the general principle of the genetic algorithm, relegating
the details of implementation to the next section.

The basic philosophy. In this section, the classifier will be encoded in the
form of a chromosome, which most of the time will be a string of bits that are
sometimes referred to as “genes.” The genetic algorithm operates with a population
of chromosomes, each describing one individual (a classifier). Each such individual
is assigned a value by a fitness function; this value will usually depend on the
classifier’s performance. The fitness function plays a role analogous to that of the
evaluation function in heuristic search.1

1This chapter will use the terms “evaluation function,” “survival function” and “fitness function”
interchangeably.

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_13

255

256 13 The Genetic Algorithm

survivors

a
population

wheel of

mutation

recombination

mating
fortune

Fig. 13.1 The genetic algorithm’s endless loop. Each individual in the population has its chance
of survival. Recombination of the genetic information provided by mating partners creates new
chromosomes that may be corrupted by mutation

The genetic algorithm’s loop. The genetic algorithm operates in an endless loop
depicted in Fig. 13.1. At each moment, there is a population of individuals, each
with a certain value of the fitness function. This value then determines the size of
the segment belonging to the individual in a “wheel of fortune” that determines the
individual’s chances of survival. It is important to understand the probabilistic nature
of the process. While an individual with a larger segment enjoys a higher chance of
survival, there is no guarantee of it because the survival game is non-deterministic.
In the real world, too, a specimen with excellent genes may perish in a silly accident,
while a weakling can make it by mere good luck. But in the long run, and in large
populations, the laws of probability will favor genes that contribute to high fitness.

13.1 The Baseline Genetic Algorithm 257

Table 13.1 The principle of the genetic algorithm

Initial state: a population of individual chromosomes

1. The fitness of each individual is evaluated. Based on its value, individuals are randomly
selected for survival.

2. Survivors select mating partners.
3. New individuals are created by chromosome recombination of the mating partners.
4. Individual chromosomes are corrupted by random mutation.
5. Unless a termination criterion is satisfied, the algorithm returns to step 1.

The surviving specimens will then choose “mating partners.” In the process
of mating, the chromosomes of the participating individuals are recombined (see
below), which gives rise to a pair of new chromosomes. These new chromosomes
may subsequently be subjected to mutation, which essentially adds noise to the
strings of genes.

The whole principle is summarized by the pseudocode in Table 13.1.

How the endless loop works. Once a new population has been created, the
process enters a new cycle in which the individuals are subjected to the same
wheel of fortune, followed by mating, recombination, and mutation, and the story
goes on and on until stopped by an appropriate termination criterion. Note how
occasional wrong turns are eliminated by the probabilistic nature of process.
A low-quality chromosome may survive the wheel of fortune by a fluke; but if its
children’s fitness values remain low, the genes will perish in subsequent generations
anyway. Alternatively, some of an unpromising individual’s genes may prove to be
useful when embedded in different chromosomes which they may enter through
recombination. By giving them an occasional second chance, the process offers
flexibility that would be impossible in a more deterministic setting.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the main principle of the genetic algorithm. How are the individuals
described here? What is meant by their “survival chances”?

• Summarize the basic loop of the genetic algorithm.
• What is the advantage of the probabilistic implementation of the principle of

survival as compared to a possible deterministic implementation?

258 13 The Genetic Algorithm

13.2 Implementing the Individual Modules

Let us take a closer look at how to implement in a computer program the basic
aspects of the genetic algorithm: the survival game, the mating process (partner
selection), chromosome recombination, and mutation. To begin with, we will
discuss only very simple solutions, relegating more advanced techniques to later
sections.

For the sake of simplicity, we will assume that the chromosomes acquire the
form of binary strings such as [1 1 0 1 1 0 0 1], where each bit represents
a certain property that is either present, in which case the bit has value 1, or absent,
in which case the bit is 0. Thus in a simplified version of the “pies” problem, the first
bit may indicate whether or not the crust is thick, the second bit may indicate
whether or not the filling is black, and so on.

Initial population. The most common approach to creating the initial population
will employ a random number generator. Sometimes, the engineer can rely on some
knowledge that may help her create initial chromosomes known to outperform
randomly generated individuals. In the “pies” domain, this role can be played by
the descriptions of the positive examples. However, one has to make sure that the
initial population is sufficiently large and has sufficient diversity.

The survival game. The genetic algorithm assumes that there is a way to calculate
for each specimen its survival chances. In some applications, these chances can be
established by a practical experiment that lets the individual specimens to fight it out.
In other domains, the fitness is calculated by a user-specified evaluation function
whose value depends on the chromosome’s properties. And if the chromosome
represents a classifier, the fitness function can rely on the percentage of the training
examples correctly labeled by the classifier.

An individual’s survival is determined probabilistically. Here is how to imple-
ment this “wheel of fortune” in a computer program. Let Fi denote the i-th
specimen’s fitness and let F D †iFi be the sum of all individual’s fitness values
that are then arranged along the interval .0; F�. The survival is modeled by a
random number generator that returns some r 2 .0; F�: the sequential number of
the subinterval that has been “hit” by r then points to the survivor. The principle
is illustrated in Fig. 13.2 for a small population of four specimens and a random
number that lands in the third interval so that individual 3 is selected. If the
fate wants 20 specimens to survive, it has to generate 20 random numbers whose
locations in the interval .0; F� identify the survivors.

Whereas specimens with small fitness are likely to get eliminated, those with
higher values can appear in the pool of survivors more than once. A biologist will
wince at this “cloning” idea, but in the pragmatic world of computer programmers,
the same individual can “survive” twice, three times, or even many times.

The mating operator. The survival game is followed by mating. In nature, an
individual judges a partner’s suitability by strength, speed, or sharp teeth. Something
similar is accomplished in a computer implementation by means of the fitness

13.2 Implementing the Individual Modules 259

80 13 22 25

random number

individual 2individual 1 individual 3 individual 4

Fig. 13.2 The axis represents a population of four individuals whose fitness values are 8; 5; 9; and
3; respectively. Since the randomly generated number, 15, falls into the third subinterval, the third
individual is selected

function. There is a difference, though: the notion of sex is usually ignored—any
chromosome can mate with any other chromosome.

An almost trivial mating strategy will pair the individuals arbitrarily, perhaps
generating random pairs of integers from the interval Œ1; Ns�, where Ns is the number
of specimens in the population. However, this technique fails to do justice to
the circumstance that specimens with high fitness are likely to be deemed more
attractive than others. A simple way to reflect this in a computer program is to order
the individuals in a descending order of their fitnesses, and then pair the neighbors.

Yet another strategy does it probabilistically. It takes the highest-ranking indi-
vidual, then chooses its partner using the mechanism employed in the survival
game—see Fig. 13.2. The same is done for the second highest-ranking individual,
then for the third, and so on, until the new population has reached the required
size. “Better” individuals are thus likely (though not guaranteed) to mate with
other strong individuals. Sometimes, the partner will have low value (due to the
probabilistic selection), but this gives rise to diversity that gives the system the
opportunity to preserve valuable chromosome chunks that only have the bad luck
of being currently incorporated in low-quality specimens.

Long-living and immortal individuals. One of the shortcomings of this algorithm
is that a very good organism may be replaced by lower-valued children and useful
genes may disappear. To prevent this from happening, some computer programs
copy the best specimens into the new generation alongside their children. For
instance, the program may directly insert in the new generation 20 % best survivors,
and then create the remaining 80 % by applying the recombination and mutation
operators to the best 95 % individuals, totally ignoring the bottom 5 %. In this way,
not only will the best specimens live longer (even become “immortal”), but the
program will also get rid of some very weak specimens that have survived by mere
chance.

Chromosome recombination: one-point crossover. The simplest way to imple-
ment chromosome recombination is by the one-point crossover, an operator that
swaps parts of the information in the parent chromosomes. The principle is simple.
Suppose that each chromosome consists of a string of n bits and that a random

260 13 The Genetic Algorithm

number generator has returned an integer i 2 Œ1; n�. Then, the last i bits in the first
chromosome (its i-bit tail) are replaced with the last i bits in the second chromosome
and vice versa. A concrete implementation can permit the situation where i D n, in
which case the two children are just replications of their parents. In the example
below, the random integer is i D 4, which means that 4-bit tails are exchanged (the
crossover point is indicated by a space).

1101 1001

0010 0111
) 1101 0111

0010 1001

The reader can see that the children tend to take after their parents, especially
when the exchanged tails are short. The maximum distance between the children
and the parents is achieved when i D n � 1.

In many applications, the recombination operator is applied only to a certain
percentage of individuals. For instance, if 50 pairs have been selected for mating,
and if the probability of recombination has been set by the user as 80 %, then only
40 pairs will be subject to recombination, and the remaining 10 will just be copied
into the next generation.

The mutation operator. The task for mutation is to corrupt the inherited genetic
information. Practically speaking, this is done by flip-flopping a small percentage of
the bits in the sense that a bit’s value 0 is changed to 1 or the other way round. The
concrete percentage (the frequency of mutations) is a user-set parameter. Suppose
that this parameter requires that p D 0:001 of the bits should on average be thus
affected. The corresponding program module will then for each bit generate a
random integer from the interval Œ1; 1000�. If the integer equals 1, then the bit’s
value is changed, otherwise it is left alone.

Let us give some thought to what frequency of mutations we need. At one
extreme, very rare mutations will hardly have any effect at all. At the other extreme,
very high mutation frequency would disrupt the genetic search by damaging too
many chromosomes. If the frequency approaches 50 %, then each new chromosome
will behave as a randomly generated bit string; the genetic algorithm then degener-
ates to a random-number generator.

The mutation operator serves a different purpose than the crossover operator. In
the one-point crossover, no new information is created, only existing substrings are
swapped. Mutation introduces some new twist, previously absent in the population.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the main task of the survival game and how would you implement it in a
computer program?

• Describe a simple mechanism to implement the selection of the mating partners.
Describe the recombination operator, and the mutation operator.

13.3 Why it Works 261

13.3 Why it Works

Let us now offer an intuitive explanation of the genetic algorithm’s performance.

Function maximization. The goal of the simple problem in Table 13.2 is to find
the value of x for which the function f .x/ D x2 �x is maximized. Each chromosome
in the second column of the upper table is interpreted as a binary-encoded integer
whose decadic value is given in the third column. The fourth column gives the

Table 13.2 Illustration of the genetic algorithm

Suppose we want the genetic algorithm to find the maximum of f .x/ D x2 � x. Let x be an
integer represented by a binary string. The initial population consists of the four strings in the
following table that for each of them gives the integer value, x, the corresponding f .x/, the
survival chances (proportional to f .x/), and the number of times each exemplar was selected for
the next generation.

Initial Survival Actual
No. population x x2 � x chance count

1 0 1 1 0 0 12 132 0.14 1

2 1 1 0 0 1 25 600 0.50 2

3 0 1 0 0 0 8 56 0.05 0

4 1 0 0 1 1 19 342 0.31 1

Average 282

Maximum 600

In the sample run reported here, the neighboring specimens mated, exchanging 1-bit tails and
3-bit tails, respectively, as dictated by the randomly generated tail lengths (the crossover sites
indicated by spaces). No mutation is used here. The last two columns give the values of x and
f .x/ for the new generation.

After Mate Tail New
reproduction with length population x x2 � x

0 1 1 0 0 2 1 0 1 1 0 1 13 156

1 1 0 0 1 1 1 1 1 0 0 0 24 552

1 1 0 0 1 4 3 1 1 0 1 1 27 702

1 0 0 1 1 3 3 1 0 0 0 1 17 289

Average 425

Maximum 702

The reader can see that the value of the best specimen as well as the average value in the entire
population have increased.

262 13 The Genetic Algorithm

corresponding f .x/ whose relative value, shown in the fifth column, then determines
for each individual its survival chances. For example, the first specimen has f .x/ D
122 � 12 D 132 and the relative chances of survival (in this particular population)
are 14 % because 132=.132 C 600 C 56 C 342/ D 0:14. The rightmost column
tells us how many times each individual has been selected for inclusion in the next
generation.

In the next step, the survivors identify their mating partners. Let us assume that
we have simply paired the neighboring specimens: the first with the second, and the
third with the fourth. Then, the random selection of the crossover point dictates that
1-bit tails be exchanged in the first pair and 3-bit tails in the second. No mutation
is applied. The result is shown in the bottom table where the last three columns
show, respectively, the new binary strings, their decadic values, and the values of
f .x/. Note that both the average and the maximum value of the fitness function have
increased.

Do children have to outperform their parents? Let us ask what caused this
improvement. An intuitive answer is illustrated by Fig. 13.3 that shows the location
of two parents and the values of the survival function, f .x/, for each of them
(the dashed vertical lines). When the two chromosomes swap their 4-bit tails, two
children are created, each relatively close to one of the parents. The fact that each
child finds itself in a region where the values of f .x/ are higher than those of the
parents begs the question: are children always more fit then their parents? Far from
that. All depends on the length of the exchanged tails and on the shape of the fitness
function. Imagine that in the next generation the same two children get paired with
each other and that the randomly generated crossover point is at the same location.
Then, these children’s children will be identical to the two original strings (their
“grandparents”); this means that the survival chances decreased back to the original
values. Sometimes, both children outperform their parents; in other cases, they are
weaker than their parents; and quite often, we get a mixed bag. What matters is that
in a sufficiently large population, most of the better specimens will survive because
the selection process favors individuals with higher fitness, f .x/. Unfit specimens
will occasionally make it, but they tend to lose in the long run.

If the exchanged string-tails are short, the children are close to their parent
chromosomes. Long tails will give rise to children much less similar to their parents.
As for mutation, its impact on the distance between the child and its parent depends
on which bit is mutated. If it is the leftmost bit, the mutation will cause a big jump
along the horizontal axis. If it is the rightmost bit, the jump is short. Either way,
mutation complements recombination. Whereas the latter tends to explore the space
in the vicinity of the parent chromosomes, the former may look elsewhere.

The shape of the fitness function. Some potential pitfalls inherent in the definition
of the fitness functions are illustrated by Fig. 13.4. The function on the left is almost
flat. The fact that different individuals have here virtually the same chances to
survive defeats the purpose of the survival game. When the survivors are chosen
according to a near-uniform distribution, the qualities of the individuals will not

13.3 Why it Works 263

x

f(x)

0011 1001

0011 1110 0101 1001

0101 1110

Fig. 13.3 After exchanging 4-bit tails, two parent chromosomes (upper strings) give rise to two
children (lower strings). There is a chance that at least one child will “outperform” both parents

xx

f(x)f(x)

Fig. 13.4 Examples of two fitness functions that are ppor guides for the genetic search. To be
useful, the survival function should not be too flat and it should not contain isolated narrow peaks

give these individuals any perceptible competitive advantage. This drawback can be
mitigated by making f .x/ less flat. There is an infinite number of ways this can be
achieved, one possibility being to replace f .x/ with, say, f .x/ D f 2.x/.

The right-hand part of Fig. 13.4 shows another pitfall: isolated narrow peaks. In
comparison to the widths of the “peaks,” children may find themselves too far from
their parents. For instance, if the parent lies just at a hill’s foot, the child may find
itself on the opposite side, in which case the peak will go unnoticed. This problem
is more difficult to prevent than the previous one.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how the location of the crossover point determines how much the
children will differ from their parents.

• Explain how the mutual interplay between recombination and mutation may
affect the survival chances. Show how they also depend on the concrete shape
of the survival function and on the location of the parents.

264 13 The Genetic Algorithm

13.4 The Danger of Premature Degeneration

The fact that the genetic algorithm reached a value that does not seem to improve
over a series of generation does not yet mean the search has been successful. The
plateau may be explained by other circumstances.

Premature degeneration. A simple implementation of the genetic algorithm will
stop after a predefined number of generations. A more sophisticated version will
keep track of the highest fitness value achieved so far, and then terminate the search
when this value no longer improves.

There is a catch, though. The fact that the fitness value has reached a plateau may
not guarantee that a solution has been found. Rather, the search might have reached
the stage called premature degeneration. Suppose that the search from Table 13.2
has reached the following population:

0 1 0 0 0

0 1 0 0 1

0 1 0 0 0

0 1 0 0 0

What are the chances of improving this population? Recombination will not get
us anywhere. If the (identical) last two chromosomes mate, the children will only
be copies of the parents. If the first two are paired, then 1-point crossover will only
swap the rightmost bit, an operation that does not create a new chromosome, either.
The only way to cause a change is to use mutation. By changing the appropriate bits,
mutation can reignite the search. For instance, this will happen after the mutation
of the third bit in the first chromosome and the fourth bit (from the left) of the last
chromosome. Unfortunately, mutations are rare, and to wait for this to happen may
be impractical. For all practical purposes, premature degeneration means the the
search got stuck.

Preventing premature degeneration. Premature degeneration has a lot to do with
the population’s diversity. The worst population is one in which all chromosomes
have exactly the same bit string, something the engineer wants to avoid. Any
computer implementation will therefore benefit from a module that monitors
diversity and takes action whenever it drops below a certain level. A simple way
to identify this situation is to calculate the average similarity between pairs of
chromosomes, perhaps by counting the number of bits that have the same value
in both strings. For instance, the similarity between [0 0 1 0 0] and 0 1 1 0
0] will be 4 (four bits are equal) and the similarity between [0 1 0 1 0] and
[1 0 1 0 1] will be 0.

Once a drop in average chromosome-to-chromosome similarity has been
detected, the system has to react. This not yet a cause for alarm. Thus in the function-
maximization example, advanced generations will be marked by populations where

13.5 Other Genetic Operators 265

most specimens are already close to the maximum. This kind of “degeneration” will
certainly not be deemed “premature.” However, the situation is different if the best
chromosome can be shown to be very different from the solution. In this event, we
have to increase diversity.

Increasing diversity. Several strategies can be used. The simplest will just insert
in the current population one or more newly created random individuals. A more
sophisticated approach will run the genetic algorithm on two or more populations in
parallel, in isolation from each other. Then, either at random intervals, or whenever
premature degeneration is suspected, a specimen from one population will be
permitted to choose its mating partner in a different population. When implementing
this technique, the programmer has to decide in which population to place the
children.

The impact of population size. Special attention has to be paid to the size of the
population. Usually, though not always, the size is kept constant throughout the
entire genetic search. The number of individuals in the population will be dicated
by the concrete application. As a rule of thumb, smaller populations will need
many generations to reach a good solution—unless they degenerated prematurely.
Very large populations may be robust against degeneration, but they may incur
impractical computational costs.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what way does the success of the genetic algorithm depend on the definition
of the fitness function? What are the two main pitfalls? How would you handle
them?

• What criteria to terminate the genetic search would you recommend? What are
their advantages and disadvantages?

• What is premature degeneration? How can it be detected and how can the
situation be rectified? Why do we need diversity in the population?

• Discuss the impact of the population size.

13.5 Other Genetic Operators

We have introduced only a very simple version of the genetic algorithm and its
operators. Now that the reader understands the principle, we take a look at some
alternatives.

266 13 The Genetic Algorithm

Two-point crossover. The one-point crossover introduced above is only a special
case of the much more common two-point crossover. Here, the random number
generator is asked to return two integers that define two locations in the binary
strings. The parents then swap the substrings between these two locations as
illustrated below (the two crossover points are indicated by spaces).

110 110 01

001 001 11
) 110 001 01

001 110 11

The two crossover points can be different for each chromosome. In this event,
each parent will “trade” a different substring of its chromosome as indicated below.

1 101 1001

001 001 11
) 1 001 1001

001 101 11

Random bit exchange. Yet another variation on the chromosome-recombination
theme is the so-called random bit exchange. Here, the random number generator
selects a user-specified number of locations, and then swaps the bits at these
locations as illustrated below.

1 1 0 1 1 0 0 1

0 0 1 0 0 1 1 1
) 1 0 0 1 1 1 0 1

0 1 1 0 0 0 1 1

Here, the second and the sixth bits (counting from the left) were swapped. Note
that nothing will happen if the leftmost bit is exchanged because it has the same
value in both chromosomes. The number of exchanged bits can vary but most
applications prefer the number to be much smaller than the chromosome’s length.

A common practice in realistic applications is to combine two or more recombi-
nation operators. For instance, the selected pair of parents will with 50 % probability
be subjected to a 2-point chromosome, with 30 % probability to a random bit
exchange, and with 20 % probability there will be no recombination at all.

Inversion. Whereas the recombination operators act on pairs of chromosomes,
other operators act on single specimens. One such operator is mutation; another
is inversion. In a typical implementation, the random number generator returns
two integers that define two locations in the binary string (similarly as in the
2-point crossover). Then, the substring between the two positions is inverted as
shown below.

110 110 01) 110 011 01

Note that the order of the zeros and ones in the substring between the third and
the seventh bit (counting from the left) was reversed. The location of the two points
determines how much inversion impacts the chromosome. If the two integers are
close to each other, say, 4 and 7, then only a small part of the chromosome is
affected.

In advanced implementations, inversion is used to supplement mutation. For
instance, the probability that a given bit is mutated can be set to 0.2 % whereas

13.6 Some Advanced Versions 267

each chromosome may have a 0.7 % chance to see its random substring inverted.
Similarly as with mutation, care has to be taken to make sure the inversion operator
is used rarely. Excessive use may destroy the positive contribution of recombination.

Inversion and premature degeneration. Much more than mutation, inversion is
very good at extricating the genetic search from premature degeneration. To see
why, take a look at the following degenerated population.

0 1 0 0 0

0 1 0 0 1

0 1 0 0 0

0 1 0 0 0

Inverting the middle three bits of the first chromosome, and the last three bits of
the second chromosome will result in the following population:

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

0 1 0 0 0

The reader can see that the diversity has indeed increased. This observation
suggests a simple way to handle premature degeneration: just increase, for a while,
the frequency of inversions, and perhaps also that of mutations.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the differences between one-point crossover, two-point crossover, and
random bit exchange.

• What specific aspect makes the recombination operators different from the
mutation and inversion operators?

• How does inversion affect the genetic search?

268 13 The Genetic Algorithm

13.6 Some Advanced Versions

The genetic algorithm is a versatile general framework with almost infinite possibil-
ities of variations. This section will introduce two interesting techniques.

A note on the lamarckian alternative. Computer programs are not constrained
by the limitations of biology. Very often, the engineer discards some of these
limitations, just as early aviators abandoned the idea of feathered wings. We have
already encountered one such violation when making some specimens “immortal,”
copying them into the new generation to make sure they would not be destroyed by
recombination and mutation. Let us now look at another deviation.

In the baseline genetic algorithm, new substrings come into being only as a result
of random processes during such operators as recombination or mutation. After this,
the genetic information remains unchanged throughout the specimen’s entire life.
One pre-Darwinian biologist, Jean-Baptiste Lamarck, suggested something more
flexible: in his view, evolution might be driven by the individuals’ needs. A giraffe
that keeps trying to reach the topmost leaves will stretch his neck that will thus
become longer. This longer neck is then passed on to the offspring. While the
lamarckian hypothesis is untenable in the realm of biology, its is not totally irrational
in other fields. For instance, by publishing a scientific paper, a researcher leaves to
posterity the knowledge acquired during his lifetime.

Lamarckian evolution is much faster that of the classical darwinian process,
which is why we sometimes implement it in the genetic algorithm. The simplest
way to incorporate this concept in the general loop from Fig. 13.1 is to place the
“lamarckian” operator between the “wheel of fortune” and recombination. The task
for the operator is to improve the chromosome by adaptation. For instance, one
can ask what happens if a certain bit gets flipped-flopped by mutation. Whereas
mutation by itself is irreversible, we can add flexibility by explicitly testing what
happens when the i bit is flipped-flopped, and then choose the better version.

Multi-population search. One motivation for multi-population search has to do
with the many parameters the genetic algorithm depends on. Most of the time, the
engineer has to rely only on her experience. Alternatively, we may choose to subject
the same initial population to several parallel runs of the genetic algorithm, each
with its own mutation frequency, with or without inversion, with a different mixture
of recombination operators, or with a modified fitness function. Among the many
alternatives, some will reach the solution faster than the others.

The reader will recall having encountered multi-population search in the section
that discussed the threat of premature degeneration. In that particular context, the
suggestion was to let two or more populations evolve in relative isolation that is
disrupted by occasional interbreeding. Note that this interbreeding may not be easy
to implement if each population uses a different way of chromosome definition as
suggested in the previous paragraphs. In that case, the programmer has to implement
a special program module for the conversion from one encoding to another.

13.6 Some Advanced Versions 269

Strings of numbers, strings of symbols. Chromosomes do not have to be binary
strings; they can consist of numbers, or characters. The same recombination
operators as before can then be used, though mutation may call for creativity.
Perhaps the most common kind of mutation in numeric strings is to use “noise”
superimposed on some (or all) of the chromosome’s “genes.” For instance, if all
locations contain numbers from the interval Œ0; 100�, then the noise can be modeled
as a random number from Œ�a; a� where a is a user-set parameter that plays here a
role similar to that of mutation frequency in binary strings. Here is how it can work:

Before mutation 10 22 17 42 16
The “noise” �3 1 �2

After mutation 10 19 18 40 16

The situation is slightly different if the chromosomes have the form of strings
of symbols. Here, mutation can replace a randomly selected symbol in the chromo-
some with another symbol chosen by the random number generator. For instance,
when applied to chromosome [d s r d w k l], the mutation can change from
r to s the third symbol from the left, the resulting chromosome being [d s s d
w k l].

Also possible are “mixed” chromosomes where some locations are binary, others
numeric, and yet others symbolic. Here, mutation is usually implemented as a
combination of the individual approaches. For instance, the program selects a
random location in the chromosome, determines whether the location is binary,
numeric, or symbolic, and then applies the appropriate type of mutation.

Chromosomes implemented as tree structures. In some applications, strings of
bits, numbers, or symbols are inadequate; a tree-structure may then be more flexible.
This, for instance, is the case of classifiers in the form of logical expressions—see
the example in Fig. 13.5 where the following expression is represented by a tree-like
chromosome.

(shape=circle ^ crust-size=thick) _ : crust-shade=gray

shape = circle
crust−size = thick

crust−shade = grey

Fig. 13.5 A tree representation of a candidate expression from the “pies” domain

270 13 The Genetic Algorithm

The expression consists of attributes, the values of these attributes, and the logical
operators of conjunction, disjunction, and negation. Note how naturally this is cast in
the tree structure. The internal nodes represent the logical operations and the leaves
contain the attribute-value pairs Recombination swaps random subtrees. Mutation
can affect the leaves: either attribute names or attribute values or both. Another
possibility for mutation is occasionally to replace ^ with _ or the other way round.

Special attention has to be paid to the way the initial population is generated. The
programmer has to make sure that the population already contains some promising
expressions. One possibility is to create a group of random expressions and to
insert in it the descriptions of the positive examples. The survival function (to be
maximized) can be defined as the classification accuracy on the training set.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the difference between the darwinian and the lamarckian evolution
processes? Which of them is faster?

• What weakness is remedied by the multi-population genetic algorithm? In what
way do multiple populations address this problem?

• How would you implement the mutation operator if the chromosome is a “mixed”
string of bits, numeric values and symbols?

• How would you implement the recombination and mutation operators in domains
where chromosomes have the form of tree data structures?

13.7 Selections in k-NN Classifiers

Let us now illustrate a possible application of the genetic algorithm on a realistic
problem from the field of machine learning.

Attribute selection and example selection. The reader knows that the success
of the k-NN classifier depends on the quality of the stored examples and also on
the choice of the attributes to describe these examples. The problem of choosing
the right examples and attributes is easily cast in the search paradigm. For instance,
the initial state can be defined as the complete set of examples, and the complete set
of attributes; the search operators will remove examples and/or attributes; and the
evaluation function (whose value is to be minimized) will be defined as the error rate
reached by the 1-NN rule as measured on an independent set of testing examples.

Another possibility is to employ the genetic algorithm. In essence, we have to
decide how to represent the problem in terms of chromosomes, how to define the
fitness function, and the recombination and mutation operators. Then, we have to be
clear about how to interpret (and utilize) the result of the search.

13.7 Selections in k-NN Classifiers 271

attributesexamples

chromosome 1 chromosome 2
SPECIMEN:

Fig. 13.6 Each specimen is described by two chromosomes, one representing examples and the
other representing attributes. Recombination is applied to each of them separately

Chromosomes to encode the problem. A very simple approach will divide the
binary chromosome into two parts: each location in the first part corresponds to one
training example, and each location in the second part corresponds to one attribute.
If the value of a certain bit is 0, the corresponding example or attribute is ignored,
otherwise it is kept. The fitness function will be designed in a way that seeks to
minimize the number of 1s.

This solution may lead to impractically long chromosomes in domains where
the training set contains many examples: if the training set has ten thousand
examples, ten thousand bits would be needed. A better solution will then opt for
the more flexible variable-length scheme where each element in the chromosome
contains an integer that points to a training example or an attribute. The length of
the chromosome would be the number of relevant attributes plus the number of
representative examples. This mechanism is known as value encoding (Fig. 13.6).

Interpreting the chromosomes. We must be sure to interpret the pairs of chro-
mosomes properly. For instance, the specimen [3,14,39],[2,4] represents a
training subset consisting of the third, the fourteenth, and the thirty-ninth training
example, described by the second and the fourth attribute. When such specimen
is used as a classifier, the system selects the examples determined by the first
chromosome and describes them by the attributes determined by the second
chromosome. The distances between vectors x D .x1; : : : xn/ and y D .y1; : : : ; yn/

are calculated using the formula:

D.x; y/ D
q

†n
iD1d.xi; yi/ (13.1)

where d.xi; yi/ is the contribution of the ith dimension. For numeric attributes,
this contribution can be calculated by the usual formula for Euclidean distance,
d.xi; yi/ D .xi � yi/

2; for boolean attributes and for discrete attributes, we may
define d.xi; yi/ D 0 if xi D yi and d.xi; yi/ D 1 if xi ¤ yi.

The fitness function. The next problem is how to quantify each individual’s
survival chances. Recall that we want to reduce the number of examples and
the number of attributes without compromising classification accuracy. These
requirements may contradict each other because, in noise-free domains, the entire

272 13 The Genetic Algorithm

training set tends to give higher classification performance than a reduced set.
Likewise, removing attributes is hardly beneficial if each of them provides relevant
information.

The involved trade-offs therefore should be reflected in fitness-function param-
eters that give the user the chance to specify the concrete preferences. The
fitness function should make it possible to place emphasis either on maximizing
the classification accuracy or on minimizing the number of the retained training
examples and attributes. This requirement is expressed by the following formula
where ER is the number of training examples misclassified by the given specimen,
NE is the number of retained examples, and NA is the number of retained attributes:

f D 1=.c1 	 ER C c2 	 NE C c3 	 NA/ (13.2)

Note that the fitness of a specimen is high if its error rate is low, if the set
of retained examples is small, and if many attributes have been eliminated. The
function is controlled by three user-set parameters, c1; c2, and c3, that weigh the
user’s preferences. For instance, if c1 is high, emphasis is placed on classification
accuracy. If c2 or c3 are high, emphasis is placed on minimizing the number of
retained examples and on minimizing the number of retained attributes, respectively.

Genetic operators for this application. Parents are selected probabilistically.
In particular, the following formula is used to calculate the probability that the
specimen S’ will be chosen:

Prob.S0/ D f .S0/P
f .S/

(13.3)

Here, f .S/ is the fitness of specimen S as calculated by Eq. 13.2. The denominator
sums up the values of the fitness functions of all specimens in the population—this
makes the probabilities sum-up to 1.

Once the pair of parents have been chosen, their chromosomes are recombined by
the two-point crossover. Since each specimen is defined by a pair of chromosomes,
each with a different meaning, we apply the recombination operator to each of them
separately. Let the length of one parent’s chromosome be denoted by N1 and let
the length of the other parent’s chromosome be denoted by N2. Using the uniform
distribution, the algorithm selects one pair of integers from the closed interval Œ1; N1�

and another pair of integers from the closed interval Œ1; N2�. Each of these pairs then
defines a substring in the respective chromosome (the first and the last locations
are included in the substring). The crossover operator then exchanges the substrings
from one of the parent chromosomes with the substrings of the other parent. Note
that, as each of these substrings can have a different size, the children’s lengths are
likely to be different from the parents’ lengths.

Graphical illustration. The principle is illustrated by Fig. 13.7 where the middle
parts of chromosomes A and B have been exchanged. Note how the lengths of A and

13.8 Summary and Historical Remarks 273

A

B

after crossoverbefore crossover

B’

A’

Fig. 13.7 The two-point crossover operator creates the children by exchanging randomly selected
substrings in the parent chromosomes

B are affected. The engineer has to decide whether to permit the situation where the
exchanged segments have size 0; in the other extreme, a segment can represent the
entire parent.

The mutation operator should prevent premature degeneration of the population
and make sure the population represents a representative part of the search space.
One possibility it to select, randomly, a pre-specified percentage of the locations
in the newly created population and to add to each of them a random integer
generated separately for the location. The result is then taken modulo the number of
examples/attributes. Let the original number of examples/attributes be 100 and let
the location selected for mutation contains be 95. If the randomly generated integer
is 22, then the value after mutation is .95 C 22/ mod 100 D 17.

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What can be accomplished by choosing the best attributes and the most represen-
tative examples?

• What are the advantages of using two chromosomes instead of just one?
• How does the chosen fitness function reflect the competing requirements of small

sets of attributes and examples versus high classification accuracy?
• Why did we use a recombination operator that exchanges substrings of different

lengths? How was mutation carried out?

13.8 Summary and Historical Remarks

• The genetic algorithm, inspired by the Darwinian evolution, is a popular
alternative to classical artificial-intelligence search techniques. The simplest
implementation works with binary strings.

274 13 The Genetic Algorithm

• The algorithm subjects a population of individuals to three essential operations:
fitness-function based survival, recombinations of pairs of chromosomes, and
mutation. Also inversion of a substring is sometimes used.

• One of the frequently encountered problems in practical applications of the
genetic algorithm is a population’s premature degeneration. One way of detecting
it is to consider the diversity of the chromosomes in the population. One solution
will add artificially created chromosomes to the population. Also the inversion
operator is useful, here.

• Alternative implementations of the genetic algorithm use strings of numbers,
symbols, mixed strings, or even tree structures.

• The chapter illustrated the practical use of the genetic algorithm using a simple
problem from the field of nearest-neighbor classifiers.

Historical Remarks. The idea to cast the principle of biological evolution in the
form of the genetic algorithm is due to Holland [32], although some other authors
suggested something similar a little earlier. Among these, perhaps Rechenberg [67]
deserves to be mentioned, while Fogel, Owens, and Walsh [25] should be credited
with pioneering the idea of genetic programming. The concrete way of applying the
genetic algorithm to selections in the k-classifier is from Rozsypal and Kubat [69].

13.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Exercises

1. Hand-simulate the genetic algorithm with a pencil and paper in a similar way
as in Table 13.2. Use a fitness function of your own choice, a different initial
population, and the random points for a one-point crossover. Then repeat the
exercise with the two-point crossover.

Give it Some Thought

1. Explain how different population sizes may affect the number of generations
needed to reach a good solution. Elaborate on the relation of population size to
the problem of premature degeneration. Discuss also the effect of the shape of
the fitness function.

13.9 Solidify Your Knowledge 275

2. What types of search problems are likely to be more efficiently addressed by the
genetic algorithm than by classical search algorithms?

3. Identify concrete engineering problems (other than those in the previous text)
appropriate for the genetic algorithm. Suggest problems where the chromosomes
are best represented by binary or numeric strings, and suggest problems where
trees are more appropriate.

4. Name some differences between natural evolution and its computer model.
Speculate on whether more inspiration can be taken from nature. Where do you
think are the advantages of the computer programs as compared to biological
evolution?

Computer Assignments

1. Implement the baseline genetic algorithm to operate on binary-string chromo-
somes. Make sure you have separate modules for the survival function, the wheel
of fortune, recombination, and mutation, and that these modules are sufficiently
general to enable easy modifications.

2. Create the initial populations for the “pies” and “circles” domains from Chap. 1
and use them as input to the program developed in the previous task. Note that, in
the case of the “circles” domain, you might have to consider a slight modification
of the original program so that it can handle numeric-string chromosomes.

3. For a domain of your choice, implement a few alternative mating strategies.
Run systematic experiments to find out which strategy will most quickly find
the solution. The speed can be measured by the number of chromosomes whose
fitness values have to be evaluated before the solution is found.

4. For a domain of your choice, experiment with alternative “cocktails” of different
recombination operators, and with different frequencies of recombinations,
mutations, and inversions. Plot graphs that show how the speed of search
(measured as in the previous task) depends of the concrete settings of these
parameters.

Chapter 14
Reinforcement Learning

The fundamental problem addressed by this book is how to induce a classifier
capable of determining the class of an object. We have seen quite a few techniques
that have been developed with this in mind. In reinforcement learning, though, the
task is different. Instead of induction from a set of pre-classified examples, the agent
“experiments” with a system, and the system responds to this experimentation with
rewards or punishments. The agent then optimizes its behavior, its goal being to
maximize the rewards and to minimize the punishments.

This alternative paradigm differs from the classifier-induction task to such an
extent that a critic might suggest that reinforcement learning should perhaps be
relegated to a different book, perhaps a sequel to this one. The wealth of available
material would certainly merit such decision. And yet, the author feels that this
textbook would be incomplete without a least a cursory introduction of the basic
ideas. Hence this last chapter.

14.1 How to Choose the Most Rewarding Action

To establish the terminology, and to convey some early understanding of what
reinforcement learning is all about, let us begin with a simplified version of the
task at hand.

N-armed bandit. Figure 14.1 shows five slot machines. Each gives a different
average return, but we do not know how big these average returns are. If we want
to maximize our gains, we need to find out what these average returns are, and then
stick with the most promising machine. This is the essence of what machine learning
calls the problem of an N-armed bandit, alluding to the notorious tendency of the
slot machines to rob you of your money.

In theory, this should be easy. Why not simply try each machine many times,
observe the returns, and then choose the one where these returns have been highest?

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1_14

277

278 14 Reinforcement Learning

Fig. 14.1 The generic problem: which of the slot machines offers the highest average return?

In reality, though, this is not a good idea. Too many coins may have to be wasted
before a reliable decision about the best machine can be made.

A simple strategy. Mindful of the incurred costs, the practically-minded engineer
will limit the experimentation, and make an initial choice based on just a few trials.
Knowing that this early decision is unreliable, she will not be dogmatic. She will
occasionally experiment with the other machines: what if some of them might
indeed be better? If yes, it will be quite reasonable to replace the “previously best”
with this new one. The strategy is quite natural. One does not have to be machine-
learning scientist to come up with something of this kind.

This then is the behavior that the reinforcement learning paradigm seeks to
emulate. In the specific case from Fig. 14.1, there are five actions to choose from.
The principle described above combines exploitation of the machine currently
believed to be the best, and the exploration of alternatives. Exploitation dominates;
exploration is rare. In the simplest implementation, the frequency of the exploration
steps is controlled by a user-specified parameter,
. For instance,
 D 0:1 means that
the “best” machine (the one that appears best in view of previous trials) is chosen
90 % of the time; in the remaining 10 % cases, a chance is given to a randomly
selected other machine.

Keeping a tally of the rewards. The “best action” is defined as the one that has
led to the highest average return.1 For each action, the learner keeps a tally of
the previous returns; and the average of these returns is regarded as this action’s
quality. For instance, let us refer to the machines in Fig. 14.1 by integers, 1; 2; 3; 4,
and 5. Action ai then represents the choice of the i-th machine. Suppose the left-
most machine was chosen three times, and these choices resulted in the following
returns r1 D 0; r2 D 9, and r3 D 3. The quality of this particular choice is then
Q.a1/ D .r1 C r2 C r3/=3 D .0 C 9 C 3/=3 D 4.

To avoid the necessity to store the rewards of all previously taken actions, the
engineer implementing the procedure can take advantage of the following formula
where Qk.a/ is the quality of action a as calculated from k rewards, and rkC1 is the
.k C 1/st reward.

1At this point, let us remark that the returns can be negative—”punishments,” rather.

14.1 How to Choose the Most Rewarding Action 279

Table 14.1 The algorithm for the
-greedy reinforcement learning strategy

Input: user-specified parameter
, e.g.,
 D 0:1;
a set of actions, ai, and their initial value-estimates, Q0.ai/;
for each action, ai, let ki D 0 (the number of times the action has been taken);

1. Generate a random number, p 2 .0; 1/, from the uniform distribution.
2. If p �
, choose the action with the highest value (exploitation).

Otherwise, choose a randomly selected other action (exploration).
3. Denote the action chosen in the previous step by ai.

Observe the reward, ri.
4. Update the value of ai using the following formula:

Q.ai/ D Q.ai/ C 1

ki C 1
Œri � Q.ai/�

5. Set ki D ki C 1 and return to 1.

QkC1.a/ D Qk.a/ C 1

k C 1
ŒrkC1 � Qk.a/� (14.1)

Thanks to this formula, it is enough to “remember” for each action only the
values of k and Qk.a/—these are all that is needed, together with the latest reward,
to update the action’s value at the .k C 1/st step.

The procedure just described is sometimes called the
-greedy strategy. For the
user’s convenience, Table 14.1 summarizes the algorithm in a pseudocode.

Initializing the process. To be able to use Formula 14.1, we need to start
somewhere: we need to set for each action its initial value, Q0.ai/. An elegant
possibility is to choose a value well above any realistic single return. For instance,
if all returns are known to come from the interval Œ0; 10�, the following will be
reasonable initial values: Q0.ai/ D 50.

At each moment, the system chooses, with (1�
) probability, the action with the
highest value, breaking ties randomly. At the beginning, all actions have the same
chance of being taken. Suppose that ai is picked. In consequence of the received
reward, this action’s quality is then reduced using Formula 14.1. Therefore, when
the next action is to be selected, it will (if exploitation is to be used) have to be some
other action—whose value will then get reduced, too. Long story short, the reader
can see that initialization of all action values to the same big number makes sure
that, in the early stages of the game, all actions will be systematically experimented
with.

280 14 Reinforcement Learning

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Describe the
-greedy strategy to be used when searching for the best machine
in the N-armed bandit problem. Explain the meaning of actions and their values.
What is meant by exploitation and exploration?

• Describe the simple mechanism for maintaining the average rewards. How does
this mechanism update the action’s values?

• Why did this section recommend that the initial values, Q0.ai/, of all actions
should be set to a multiple of the typical reward?

14.2 States and Actions in a Game

The example with slot machines is a simplification that has made it easy to explain
the basic terminology. Its main limitation is the existence of only one state in which
an appropriate action is to be selected.

In reality, the situation is more complicated than that. Usually, there are many
states, each with several actions to choose from. The essence can be illustrated on
the tic-tac-toe game.

The tic-tac-toe game. The principle is shown in Fig. 14.2 for the elementary case
where the size of the playing board is three by three squares. Two players are taking
turns, one placing crosses on the board, the other one circles. The goal is to achieve
a line of three crosses or circles—either in a column or in a row or diagonally.
Who succeeds first, wins. If, in the situation on the left, it is the turn of the player
that plays with crosses, he wins by putting his cross in the bottom left corner. If,
conversely, it were his opponent’s turn, the opponent would prevent this by putting
there a circle.

o o

o
x
o

x
x

o
x

o
x x

x
Fig. 14.2 In tic-tac-toe, two players took turns at placing their crosses and circles. The winner is
the one who obtaines a triplet in a line (vertical, horizontal, or diagonal)

14.2 States and Actions in a Game 281

States and actions. Each board-position represents a state. At each state, the player
is to choose a concrete action. Thus in the state depicted on the left, there are three
empty squares, and thus three actions to choose from (one of them winning). The
whole situation can be represented by a look-up table in which each state-action
pair has a certain value, Q.s; a/. Based on these values, the
-greedy policy decides
which action should be taken in the particular state. The action results in a reward,
r, and this reward is then used to update the value of the state-action pair by means
of Formula 14.1.

The most typical way of implementing the learning scenario is to let the program
play a long series of games with itself, starting with ad hoc choices for actions
(based on only the initial values of Q.s; a/), then gradually improving them until it
achieves very high playing strength.

The main problem is how to determine the rewards of the concrete actions. In
principle, three alternatives can be considered.

Episodic formulation. This is perhaps the simplest way of dealing with the
reward-assignment problem. A whole game is played. If it is won, then all state-
actions pairs encountered throughout the game by the learning agent are treated as
if they received reward 1. If the game is lost, they are treated as if they all received
reward �1.

The main weakness of this method is that it ignores the circumstance that not all
actions taken in a game have equally contributed to the final outcome. A player
may have lost only because of a single blunder that followed a long series of
excellent moves. In this case, it would of course be unfair, even impractical, to
punish the good moves. The same goes for the opposite: weak actions might actually
receive the reward only because the game happened to be eventually won thanks to
the opponent’s unexpected blunder. One can argue, however, that, in the long run,
these little “injustices” get averaged out because, most of the time, the winner’s
actions will be good.

The advantage of the episodic formulation is its simplicity.

Continuing formulation. The aforementioned problem with the episodic formu-
lation (the fact that it may punish a series of good moves on account of a single
blunder) might be removed under the assumption that we know how to determine
the reward right after each action. This is indeed sometimes possible; and even in
domain where this is not possible, one can often at least make an estimate.

Most of the time, however, an attempt to determine the reward for a given action
before the game ends is speculative—and thus misleading. This is why this approach
is rarely used.

Compromise: discounted returns. This is essentially an episodic formulation
improved in a way that determines the rewards based on the length of the game. For
instance, the longer it has taken to win a tic-tac-toe game, the smaller the reward
should be. There is some logic, in this approach: stronger moves are likely to win
sooner. The way to implement this strategy is to discount the final reward by the
number of steps taken before the victory.

282 14 Reinforcement Learning

Fig. 14.3 The task: keep the pole upright by moving the cart left or right

Here is how to formulate the idea more technically: Let rk denote the reward
obtained at the k-th trial and let � 2 .0; 1/ is a user-set discounting constant. The
discounted return R is then calculated as follows:

R D †1
kD1� krk (14.2)

Note how the growing value of k decreases the coefficient by which rk is
multiplied. If the ultimate reward comes at the 10th step, and if “1” is the reward for
the winning game, then the discounted reward for � D 0:9 is R D 0:910 � 1 D 0:35.

Illustration: pole balancing. A good illustration of when the discounted return
may be a good idea is the pole-balancing problem shown in Fig. 14.3. Here, each
state is defined by such attributes as the cart location, the cart’s velocity, the pole’s
angle, and the velocity of the change in the pole’s angle. There are essentially two
actions to choose from: (1) apply force in the left-right direction or (2) apply force
in the right-left direction. However, a different amount of force may be used. The
simplest version of this task assumes that the actions can only be taken at regular
intervals, say, 0.2 s.

In this game, the longer the time that has elapsed before the pole falls, the greater
the perceived success, and this is why longer games should be rewarded more than
short games. A simple way to implement this circumstance is to reward each state
during the game with a 0, and the finall fall with, say, r D �10. The discounted
return will then be R D �10�N where N is the number of steps before the pole has
fallen.

14.3 The SARSA Approach 283

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the difference between states and actions. What is the meaning of the
“value of the state-action pair”?

• When it comes to reward-assignment, what is the difference between the episodic
formulation and the continuing formulation?

• Discuss the motivation behind the idea of discounted returns. Give the precise
formula, and illustrate its use on the pole-balancing game.

14.3 The SARSA Approach

The previous two sections introduced only a very simplified mechanism to deal with
the reinforcement-learning problem. Without going into details, let us describe here
a more popular approach that is known under the name of SARSA. The pseudocode
summarizing the algorithm is provided in Table 14.2.

Essentially, the episodic formulation with discounting is used. The episode
begins with selecting an initial state, s (in some domains, this initial state is
randomly generated). In a series of successive steps, actions are taken according
to the
-greedy policy. Each such action results in a new state, s0, being reached,
and reward, r, being received. The same
-greedy policy is then used to choose the
next action, a0 (to be taken in state s0). After this, the quality, Q.s; a/, of the given
state-action pair is updated by the following formula:

Q.s; a/ D Q.s; a/ C ˛Œr C �Q.s0; a0/ � Q.s; a/� (14.3)

Here, ˛ is a user-set constant and � is the discounting factor.
Note that the update of the state-action pair’s quality is based on the quintuple

.s; a; r; s0; a0/. This is how the technique got its name.

Table 14.2 The SARSA algorithm—using the
-greedy strategy and the episodic formulation of
the task

Input: user-specified parameters
; ˛; �

Initialized values of all action-value pairs, Q0.si; aj/;
for each state-action pair, si; aj, initialize kij D 0;

1. Choose an initial state, s.
2. Choose action a using the
-greedy strategy from Table 14.1.
3. Take action a. This results in a new state, s0, and reward, r.
4. In state s0, choose action a0 using the
-greedy strategy.

Update Q.s; a/ D Q.s; a/ C ˛Œr C �Q.s0; a0/ � Q.s; a/�

5. Let s D s0 and a D a0.
If s is a terminal state, start a new episode by going to 1; otherwise, go to 3.

284 14 Reinforcement Learning

What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Describe the principle of the SARSA approach to reinforcement learning. Where
did this name come from?

14.4 Summary and Historical Remarks

• Unlike the classifier-induction problems from the previous chapters, reinforce-
ment learning assumes that an agent learns from direct experimentation with a
system it is trying to control.

• In the greatly simplified formalism of the N-armed bandit, the agent seeks to
identify the most promising action—the one that offers the highest average
returns. The simplest practical implementation relies on the so-called
-greedy
policy.

• More realistic implementations of the task assume the existence of a set of states.
For each state, the agent is to choose from a set of alternative actions. The choice
can be made by the
-greedy policy that relies on the qualities of the state-action
pairs, Q.s; a/.

• The problem of assigning the rewards to the state-action pairs can be addressed
by its episodic formulation, by continuing formulation, or by episodic formula-
tion with discounting.

• Of the more advanced approaches to reinforcement learning, the chapter briefly
mentioned the SARSA method.

Historical Remarks. One of the first systematic treatments of the “bandit” prob-
lem was offered by Bellman [2] who, in turn, was building on some earlier work still.
Importantly, the same author later developed the principle of dynamic programming
that can be regarded as a direct precursor to reinforcement learning [3]. The basic
principles of reinforcement learning probably owe most for their development to
Sutton [74].

14.5 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

14.5 Solidify Your Knowledge 285

Exercises

1. Calculate the number of state-action pairs in the tic-tac-toe example from
Fig. 14.2.

Give it Some Thought

1. This chapter is all built around the idea of using the
-greedy policy. What do
you think are the limitations of this policy? Can you suggest how to overcome
them?

2. The principles of reinforcement learning have been explained using some very
simple toy domains. Can you think of an interesting real-world application? The
main difficulty will be how to cast the concrete problem into the reinforcement-
learning formalism.

3. How many episodes might be needed to solve the simple version of the tic-tac-toe
game shown in Fig. 14.2?

Computer Assignments

1. Write a computer program that implements the N-armed bandit as described in
Sect. 14.1.

2. Consider the maze-problem illustrated by Fig. 14.4. The task is to find the
shortest path from the starting point, S, to the goal, G. A computer can use the

G

S

Fig. 14.4 The agent starts at S; the task is to find the shortest path to G

286 14 Reinforcement Learning

principles of reinforcement learning to learn this shortest path based on great
many training runs.

Suggest the data structures to capture the states and actions of this game. Write
a computer program that relies on the episodic formulation and the
-greedy
policy when addressing this task.

Bibliography

1. Ash, T. (1989). Dynamic node creation in backpropagation neural networks. Connection
Science: Journal of Neural Computing, Artificial Intelligence, and Cognitive Research, 1,
365–375.

2. Bellman, R. E. (1956). A problem in the sequential design of experiments. Sankhya, 16,
221–229.

3. Bellman, R. E. (1957). Dynamic programming. Princeton: Princeton University Press.
4. Blake, C. L. & Merz, C. J. (1998). Repository of machine learning databases. Department

of Information and Computer Science, University of California at Irvine. www.ics.uci.edu/~
mlearn/MLRepository.html.

5. Blumer, W., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and the
Vapnik-Chervonenkis dimension. Journals of the ACM, 36, 929–965.

6. Bower, G. H., & Hilgard, E. R. (1981). Theories of learning. Englewood Cliffs: Prentice-Hall.
7. Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123–140.
8. Breiman, L. (2001). Random forests. Machine learning, 45, 5–32.
9. Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and regression

trees. Belmont: Wadsworth International Group.
10. Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive

networks. Complex Systems, 2, 321–355.
11. Bryson, A. E., & Ho, Y.-C. (1969). Applied optimal control. New York: Blaisdell.
12. Chow, C. K. (1957). An optimum character recognition system using decision functions. IRE

Transactions on Computers, EC-6, 247–254.
13. Coppin, B. (2004). Artificial intelligence illuminated. Sudbury: Jones and Bartlett.
14. Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities

with applications in pattern recognition. IEEE Transactions on Electronic Computers, EC-14,
326–334.

15. Cover, T. M. (1968). Estimation by the nearest neighbor rule. IEEE Transactions on Informa-
tion Theory, IT-14, 50–55.

16. Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, IT-13, 21–27.

17. Dasarathy, B. V. (1991). Nearest-neighbor classification techniques. Los Alomitos: IEEE
Computer Society Press.

18. Dietterich, T. (1998). Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation, 10, 1895–1923.

19. Dudani, S. A. (1975). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-6, 325–327.

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1

287

www.ics.uci.edu/~mlearn/MLRepository.html
www.ics.uci.edu/~mlearn/MLRepository.html

288 Bibliography

20. Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in
decision tree generation. Machine Learning, 8, 87–102.

21. Fisher, R. A. (1936). The use of multiple measurement in taxonomic problems. Annals of
Eugenics, 7, 111–132.

22. Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2, 139–172.

23. Fix, E., & Hodges, J. L. (1951). Discriminatory analysis, non-parametric discrimination. USAF
School of Aviation Medicine, Randolph Field, TX, Project 21-49-004, Report 4, Contract
AF41(128)-3.

24. Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches
in logarithmic expected time. ACM Transactions on Mathematical Software, 3(3), 209–226.

25. Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated
evolution. New York: Wiley.

26. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceed-
ings of the thirteenth international conference on machine learning, Bari (pp. 148–156).

27. Gennari, J. H., Langley, P., & Fisher, D. (1990). Models of incremental concept formation.
Artificial Intelligence, 40, 11–61.

28. Good, I. J. (1965). The estimation of probabilities: An essay on modern Bayesian methods.
Cambridge: MIT.

29. Gordon, D. F., & desJardin, M. (1995). Evaluation and selection of biases in machine learning.
Machine Learning, 20, 5–22.

30. Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, IT-14, 515–516.

31. Hellman, M. E. (1970). The nearest neighbor classification rule with the reject option. IEEE
Transactions on Systems Science and Cybernetics, 6, 179–185.

32. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

33. Holte, R. C. (1993). Very simple classification rules perform well on most commonly used
databases. Machine Learning, 11, 63–90.

34. Hunt, E. B., Marin, J., & Stone, P. J. (1966). Experiments in induction. New York: Academic.
35. Katz, A. J., Gately, M. T., & Collins, D. R. (1990). Robust classifiers without robust features.

Neural Computation, 2, 472–479.
36. Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory.

Cambridge, MA: MIT.
37. Kodratoff, Y. (1988). Introduction to machine learning. London: Pitman.
38. Kodratoff, Y., & Michalski, R. S. (1990). Machine learning: An artificial intelligence approach

(Vol. 3). San Mateo: Morgan Kaufmann.
39. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.
40. Kononenko, I., Bratko, I., & Kukar, M. (1998). Application of machine learning to medical

diagnosis. In R. Michalski, I. Bratko, & M. Kubat (Eds.), Machine learning and data mining:
Methods and applications. Chichester: Wiley.

41. Kubat, M. (1989). Floating approximation in time-varying knowledge bases. Pattern Recogni-
tion Letters, 10, 223–227.

42. Kubat, M., Holte, R., & Matwin, S. (1997). Learning when negative examples abound. In
Proceedings of the European conference on machine learning (ECML’97), Apr 1997, Prague
(pp. 146–153).

43. Kubat, M., Holte, R., & Matwin, S. (1998). Detection of oil-spills in radar images of sea
surface. Machine Learning, 30, 195–215.

44. Kubat, M., Koprinska, I., & Pfurtscheller, G. (1998). Learning to classify medical signals. In
R. Michalski, I. Bratko, & M. Kubat (Eds.), Machine learning and data mining: Methods and
applications. Chichester: Wiley.

45. Kubat, M., Pfurtscheller, G., & Flotzinger D. (1994). AI-based approach to automatic sleep
classification. Biological Cybernetics, 79, 443–448.

Bibliography 289

46. Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text classifiers.
In Proceedings of the 17th annual international ACM SIGIR conference on research and
development in information retrieval (SIGIR’94), Dublin (pp. 3–12).

47. Littlestone, N. (1987). Learning quickly when irrelevant attributes abound: A new linear
threshold algorithm. Machine Learning, 2, 285–318.

48. Louizou, G., & Maybank, S. J. (1987). The nearest neighbor and the bayes error rates. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 9, 254–262.

49. McCallum, A. Multi-label text classification with a mixture model trained by EM. In
Proceedings of the workshop on text learning (AAAI’99), Orlando, Florida (pp. 1–7).

50. Michalski, R. S. (1969). On the quasi-minimal solution of the general covering problem. In
Proceedings of the 5th international symposium on information processing (FCIP’69), Bled,
Yugoslavia (Vol. A3, pp. 125–128).

51. Michalski, R. S., Bratko, I., & Kubat, M. (1998). Machine learning and data mining: Methods
and applications. New York: Wiley.

52. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1983). Machine learning: An artificial
intelligence approach. Palo Alto: Tioga Publishing Company.

53. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1986). Machine learning: An artificial
intelligence approach (Vol. 2). Palo Alto: Tioga Publishing Company.

54. Michalski, R. S., & Tecuci, G. (1994). Machine learning: A multistrategy approach. Palo Alto:
Morgan Kaufmann.

55. Mill, J. S. (1865). A system of logic. London: Longmans.
56. Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT.
57. Michell, M. (1998). An introduction to genetic algorithm. Cambridge, MA: MIT.
58. Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203–226.
59. Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
60. Mori, S, Suen, C. Y., & Yamamoto, K. (1992). Historical overview of OCR research and

development. Proceedings of IEEE, 80, 1029–1058.
61. Neyman, J., & Pearson E. S. (1928). On the use and interpretation of certain test criteria for

purposes of statistical inference. Biometrica, 20A, 175–240.
62. Ogden, C. K., & Richards, I. A. (1923). The meaning of meaning. New York: Harcourt, Brace,

and World. Eighth edition 1946.
63. Quinlan, J. R. (1979). Discovering rules by induction from large colections of examples. In

D. Michie (Ed.), Expert systems in the micro electronic age. Edinburgh: Edinburgh University
Press.

64. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
65. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann.
66. Parzen E. (1962). On estimation of a probability density function and mode. Annals of

Mathematical Statistics, 33, 1065–1076.
67. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach principien

der biologischen evolution. Stuttgart: Frommann-Holzboog.
68. Rosenblatt, M. (1958). The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65, 386–408.
69. Rozsypal, A., & Kubat, M. (2001). Using the genetic algorithm to reduce the size of a nearest-

neighbor classifier and to select relevant attributes. In Proceedings of the 18th international
conference on machine learning, Williamstown (pp. 449–456).

70. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing. Cambridge:
MIT Bradford Press.

71. Russell, S., & Norvig, P. (2003). Artificial intelligence, a modern approach (2nd ed.).
Englewood Cliffs: Prentice Hall.

72. Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197–227.
73. Shawe-Taylor, J., Anthony, M., & Biggs, N. (1993). Bounding sample size with the Vapnik-

Chervonenkis dimension. Discrete Applied Mathematics, 42(1), 65–73.
74. Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. PhD Dissertation,

University of Massachusetts, Amherst.

290 Bibliography

75. Thrun, S. B., & Mitchell, T. M. (1995). Lifelong robot learning. Robotics and Autonomous
Systems, 15, pp. 24–46.

76. Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man and
Communications, SMC-6, 769–772.

77. Turney, P. D. (1993). Robust classification with context-sensitive features. Proceedings of
the sixth international conference of industrial and engineering applications of artificial
intelligence and expert systems, Edinburgh (pp. 268–276).

78. Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.
79. Vapnik, V. N. (1992). Estimation of dependences based on empirical data. New York: Springer.
80. Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
81. Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability and its Applications, 16,
264–280.

82. Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral
sciences. PhD thesis, Harvard University.

83. Whewel, W. (1858). History of scientific ideas. London: J.W. Parker.
84. Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts.

Machine Learning, 23, 69–101.
85. Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON convention

record, New York (pp. 96–104).
86. Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241–259.
87. Wolpert, D. (1996). The lack of a priori distinctions between learning algorithms. Neural

Computation, 8, 1341–1390.

Index

A
applications, 151, 167
attributes

continuous, 30, 38, 45–47, 83, 124, 145
discrete, 8, 22, 44, 137
irrelevant, 13, 49, 74, 75, 118, 144, 156
redundant, 14, 60, 118, 144, 156
selection, 204, 205, 270
unknown, 202

B
backpropagation, 97, 99
bias, 67, 143, 191, 193

C
context, 191, 198, 201

D
decision trees, 113

I
imbalanced classes, 77, 194, 207, 217, 228
interpretability, 114, 126

L
linear classfiers, 65

N
neural networks, 91
noise

in attributes, 14, 45, 57
in class labels, 14

P
performance criteria

Fˇ , 221
error rate, 15
macro-averaging, 224
micro-averaging, 224
precision, 217
recall, 217
sensitivity, 222
specificity, 222

probability, 19
pruning

decision tree, 126, 127, 129, 184, 192
rules, 131

R
reinforcement learning, 277

S
search

genetic, 255
hill-climbing, 1, 5, 7, 8, 98, 255

similarity, 43
statistical evaluation, 245
support vector machines

linear, 83
RBF-based, 108

V
voting

plain, 174, 176
weighted majority, 179, 182

© Springer International Publishing Switzerland 2015
M. Kubat, An Introduction to Machine Learning,
DOI 10.1007/978-3-319-20010-1

291

	Contents
	Introduction
	1 A Simple Machine-Learning Task
	1.1 Training Sets and Classifiers
	What Have You Learned?

	1.2 Minor Digression: Hill-Climbing Search
	What Have You Learned?

	1.3 Hill Climbing in Machine Learning
	What Have You Learned?

	1.4 The Induced Classifier's Performance
	What Have You Learned?

	1.5 Some Difficulties with Available Data
	What Have You Learned?

	1.6 Summary and Historical Remarks
	1.7 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	2 Probabilities: Bayesian Classifiers
	2.1 The Single-Attribute Case
	What Have You Learned?

	2.2 Vectors of Discrete Attributes
	What Have You Learned?

	2.3 Probabilities of Rare Events: Exploiting the Expert's Intuition
	What Have You Learned?

	2.4 How to Handle Continuous Attributes
	What Have You Learned?

	2.5 Gaussian ``Bell'' Function: A Standard pdf
	What Have You Learned?

	2.6 Approximating PDFs with Sets of Gaussians
	What Have You Learned?

	2.7 Summary and Historical Remarks
	2.8 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	3 Similarities: Nearest-Neighbor Classifiers
	3.1 The k-Nearest-Neighbor Rule
	What Have You Learned?

	3.2 Measuring Similarity
	What Have You Learned?

	3.3 Irrelevant Attributes and Scaling Problems
	What Have You Learned?

	3.4 Performance Considerations
	What Have You Learned?

	3.5 Weighted Nearest Neighbors
	What Have You Learned?

	3.6 Removing Dangerous Examples
	What Have You Learned?

	3.7 Removing Redundant Examples
	What Have You Learned?

	3.8 Summary and Historical Remarks
	3.9 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	4 Inter-Class Boundaries: Linear and Polynomial Classifiers
	4.1 The Essence
	What Have You Learned?

	4.2 The Additive Rule: Perceptron Learning
	What Have You Learned?

	4.3 The Multiplicative Rule: WINNOW
	What Have You Learned?

	4.4 Domains with More than Two Classes
	What Have You Learned?

	4.5 Polynomial Classifiers
	What Have You Learned?

	4.6 Specific Aspects of Polynomial Classifiers
	What Have You Learned?

	4.7 Numerical Domains and Support Vector Machines
	What Have You Learned?

	4.8 Summary and Historical Remarks
	4.9 Solidify Your Knowledge
	Exercises
	Give it Some Thought
	Computer Assignments

	5 Artificial Neural Networks
	5.1 Multilayer Perceptrons as Classifiers
	What Have You Learned?

	5.2 Neural Network's Error
	What Have You Learned?

	5.3 Backpropagation of Error
	What Have You Learned?

	5.4 Special Aspects of Multilayer Perceptrons
	What Have You Learned?

	5.5 Architectural Issues
	What Have You Learned?

	5.6 Radial Basis Function Networks
	What Have You Learned?

	5.7 Summary and Historical Remarks
	5.8 Solidify Your Knowledge
	Exercises
	Give it Some Thought
	Computer Assignments

	6 Decision Trees
	6.1 Decision Trees as Classifiers
	What Have You Learned?

	6.2 Induction of Decision Trees
	What Have You Learned?

	6.3 How Much Information Does an Attribute Convey?
	What Have You Learned?

	6.4 Binary Split of a Numeric Attribute
	What Have You Learned?

	6.5 Pruning
	What Have You Learned?

	6.6 Converting the Decision Tree into Rules
	What Have You Learned?

	6.7 Summary and Historical Remarks
	6.8 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	7 Computational Learning Theory
	7.1 PAC Learning
	What Have You Learned?

	7.2 Examples of PAC Learnability
	What Have You Learned?

	7.3 Some Practical and Theoretical Consequences
	What Have You Learned?

	7.4 VC-Dimension and Learnability
	What Have You Learned?

	7.5 Summary and Historical Remarks
	7.6 Exercises and Thought Experiments
	Exercises
	Give It Some Thought

	8 A Few Instructive Applications
	8.1 Character Recognition
	What Have You Learned?

	8.2 Oil-Spill Recognition
	What Have You Learned?

	8.3 Sleep Classification
	What Have You Learned?

	8.4 Brain-Computer Interface
	What Have You Learned?

	8.5 Medical Diagnosis
	What Have You Learned?

	8.6 Text Classification
	What Have You Learned?

	8.7 Summary and Historical Remarks
	8.8 Exercises and Thought Experiments
	Give It Some Thought
	Computer Assignments

	9 Induction of Voting Assemblies
	9.1 Bagging
	What Have You Learned?

	9.2 Schapire's Boosting
	What Have You Learned?

	9.3 Adaboost: Practical Version of Boosting
	What Have You Learned?

	9.4 Variations on the Boosting Theme
	What Have You Learned?

	9.5 Cost-Saving Benefits of the Approach
	What Have You Learned?

	9.6 Summary and Historical Remarks
	9.7 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	10 Some Practical Aspects to Know About
	10.1 A Learner's Bias
	What Have You Learned?

	10.2 Imbalanced Training Sets
	What Have You Learned?

	10.3 Context-Dependent Domains
	What Have You Learned?

	10.4 Unknown Attribute Values
	What Have You Learned?

	10.5 Attribute Selection
	What Have You Learned?

	10.6 Miscellaneous
	What Have You Learned?

	10.7 Summary and Historical Remarks
	10.8 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	11 Performance Evaluation
	11.1 Basic Performance Criteria
	What Have You Learned?

	11.2 Precision and Recall
	What Have You Learned?

	11.3 Other Ways to Measure Performance
	What Have You Learned?

	11.4 Performance in Multi-label Domains
	What Have You Learned?

	11.5 Learning Curves and Computational Costs
	What Have You Learned?

	11.6 Methodologies of Experimental Evaluation
	What Have You Learned?

	11.7 Summary and Historical Remarks
	11.8 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	12 Statistical Significance
	12.1 Sampling a Population
	What Have You Learned?

	12.2 Benefiting from the Normal Distribution
	What Have You Learned?

	12.3 Confidence Intervals
	What Have You Learned?

	12.4 Statistical Evaluation of a Classifier
	What Have You Learned?

	12.5 Another Kind of Statistical Evaluation
	What Have You Learned?

	12.6 Comparing Machine-Learning Techniques
	What Have You Learned?

	12.7 Summary and Historical Remarks
	12.8 Solidify Your Knowledge
	Exercises
	Give It Some Thought
	Computer Assignments

	13 The Genetic Algorithm
	13.1 The Baseline Genetic Algorithm
	What Have You Learned?

	13.2 Implementing the Individual Modules
	What Have You Learned?

	13.3 Why it Works
	What Have You Learned?

	13.4 The Danger of Premature Degeneration
	What Have You Learned?

	13.5 Other Genetic Operators
	What Have You Learned?

	13.6 Some Advanced Versions
	What Have You Learned?

	13.7 Selections in k-NN Classifiers
	What Have You Learned?

	13.8 Summary and Historical Remarks
	13.9 Solidify Your Knowledge
	Exercises
	Give it Some Thought
	Computer Assignments

	14 Reinforcement Learning
	14.1 How to Choose the Most Rewarding Action
	What Have You Learned?

	14.2 States and Actions in a Game
	What Have You Learned?

	14.3 The SARSA Approach
	What Have You Learned?

	14.4 Summary and Historical Remarks
	14.5 Solidify Your Knowledge
	Exercises
	Give it Some Thought
	Computer Assignments

	Bibliography
	Index

