
INTRODUCTION TO THEFINITE

ELEMENT METHOD

G. P. Nikishkov

2004 Lecture Notes. University of Aizu, Aizu-Wakamatsu 965-8580, Japan

niki@u-aizu.ac.jp

2

Updated 2004-01-19

Contents

1 Introduction 5

1.1 What is the finite element method . 5

1.2 How the FEM works . 5

1.3 Formulation of finite element equations . 6

1.3.1 Galerkin method . 6

1.3.2 Variational formulation . 8

2 Finite Element Equations for Heat Transfer 11

2.1 Problem Statement . 11

2.2 Finite element discretization of heat transfer equations 12

2.3 Different Type Problems . 13

3 FEM for Solid Mechanics Problems 15

3.1 Problem statement . 15

3.2 Finite element equations . 16

3.3 Assembly of the global equation system . 18

4 Finite Elements 21

4.1 Two-dimensional triangular element . 21

4.2 Two-dimensional isoparametric elements . 22

4.2.1 Shape functions . 22

4.2.2 Strain-displacement matrix . 23

4.2.3 Element properties . 24

4.2.4 Integration in quadrilateral elements . 25

4.2.5 Calculation of strains and stresses . 26

4.3 Three-dimensional isoparametric elements . 28

4.3.1 Shape functions . 28

4.3.2 Strain-displacement matrix . 29

4.3.3 Element properties . 30

4.3.4 Efficient computation of the stiffness matrix 30

4.3.5 Integration of the stiffness matrix . 31

4.3.6 Calculation of strains and stresses . 31

4.3.7 Extrapolation of strains and stresses . 31

3

4 CONTENTS

5 Discretization 33

5.1 Discrete model of the problem . 33

5.2 Mesh generation . 34

5.2.1 Mesh generators . 34

5.2.2 Mapping technique . 34

5.2.3 Delaunay triangulation . 36

6 Assembly and Solution 37

6.1 Disassembly and assembly . 37

6.2 Disassembly algorithm . 38

6.3 Assembly . 38

6.3.1 Assembly algorithm for vectors . 38

6.3.2 Assembly algorithm for matrices . 39

6.4 Displacement boundary conditions . 39

6.4.1 Explicit specification of displacement BC . 40

6.4.2 Method of large number . 40

6.5 Solution of Finite Element Equations . 40

6.5.1 Solution methods . 40

6.5.2 Direct LDU method with profile matrix . 41

6.5.3 Tuning of the LDU factorization . 43

6.5.4 Preconditioned conjugate gradient method . 44

Chapter 1

Introduction

1.1 What is the finite element method

The finite element method (FEM) is a numerical technique for solving problems which are described
by partial differential equations or can be formulated as functional minimization. A domain of interest
is represented as an assembly offinite elements. Approximating functions in finite elements are deter-
mined in terms of nodal values of a physical field which is sought. A continuous physical problem is
transformed into a discretized finite element problem with unknown nodal values. For a linear problem
a system of linear algebraic equations should be solved. Values inside finite elements can be recovered
using nodal values.

Two features of the FEM are worth to be mentioned:

1) Piece-wise approximation of physical fields on finite elements provides good precision even with
simple approximating functions (increasing the number of elements we can achieve any precision).

2) Locality of approximation leads to sparse equation systems for a discretized problem. This helps to
solve problems with very large number of nodal unknowns.

1.2 How the FEM works

To summarize in general terms how the finite element method works we list main steps of the finite
element solution procedure below.

1. Discretize the continuum.The first step is to divide a solution region into finite elements. The
finite element mesh is typically generated by a preprocessor program. The description of mesh consists
of several arrays main of which are nodal coordinates and element connectivities.

2. Select interpolation functions.Interpolation functions are used to interpolate the field vari-
ables over the element. Often, polynomials are selected as interpolation functions. The degree of the
polynomial depends on the number of nodes assigned to the element.

3. Find the element properties.The matrix equation for the finite element should be established
which relates the nodal values of the unknown function to other parameters. For this task different
approaches can be used; the most convenient are: the variational approach and the Galerkin method.

4. Assemble the element equations.To find the global equation system for the whole solution
region we must assemble all the element equations. In other words we must combine local element
equations for all elements used for discretization. Element connectivities are used for the assembly
process. Before solution, boundary conditions (which are not accounted in element equations) should
be imposed.

5

6 CHAPTER 1. INTRODUCTION

1 2 3

0 L 2L
x

x

x
1

x
2

u
1

u
2

Figure 1.1: Two one-dimensional linear elements and function interpolation inside element.

5. Solve the global equation system.The finite element global equation sytem is typically sparse,
symmetric and positive definite. Direct and iterative methods can be used for solution. The nodal values
of the sought function are produced as a result of the solution.

6. Compute additional results.In many cases we need to calculate additional parameters. For
example, in mechanical problems strains and stresses are of interest in addition to displacements, which
are obtained after solution of the global equation system.

1.3 Formulation of finite element equations

Several approaches can be used to transform the physical formulation of the problem to its finite element
discrete analogue. If the physical formulation of the problem is known as a differential equation then the
most popular method of its finite element formulation is theGalerkin method. If the physical problem
can be formulated as minimization of a functional thenvariational formulationof the finite element
equations is usually used.

1.3.1 Galerkin method

Let us use simple one-dimensional example for the explanation of finite element formulation using the
Galerkin method. Suppose that we need to solve numerically the following differential equation:

a
d2u

dx2
+ b = 0, 0 ≤ x ≤ 2L (1.1)

with boundary conditions

u|x=0 = 0

a
du

dx
|x=2L = R

(1.2)

whereu is an unknown solution. We are going to solve the problem using two linear one-dimensional
finite elements as shown in Fig. 1.1.

Fist, consider a finite element presented on the right of Figure. The element has two nodes and
approximation of the functionu(x) can be done as follows:

u = N1u1 + N2u2 = [N]{u}
[N] = [N1 N2]
{u} = {u1 u2}

(1.3)

1.3. FORMULATION OF FINITE ELEMENT EQUATIONS 7

whereNi are the so calledshape functions

N1 = 1− x− x1

x2 − x1

N2 =
x− x1

x2 − x1

(1.4)

which are used for interpolation ofu(x) using its nodal values. Nodal valuesu1 andu2 are unknowns
which should be determined from the discrete global equation system.

After substitutingu expressed through its nodal values and shape functions, in the differential
equation, it has the following approximate form:

a
d2

dx2
[N]{u}+ b = ψ (1.5)

whereψ is a nonzero residual because of approximate representation of a function inside a finite ele-
ment. The Galerkin method provides residual minimization by multiplying terms of the above equation
by shape functions, integrating over the element and equating to zero:

∫ x2

x1

[N]T a
d2

dx2
[N]{u}dx+

∫ x2

x1

[N]T bdx = 0 (1.6)

Use of integration by parts leads to the following discrete form of the differential equation for the finite
element:

∫ x2

x1

[
dN

dx

]T

a

[
dN

dx

]
dx{u}−

∫ x2

x1

[N]T bdx−
{

0
1

}
a
du

dx
|x=x2 +

{
1
0

}
a
du

dx
|x=x1 = 0 (1.7)

Usually such relation for a finite element is presented as:

[k]{u} = {f}
[k] =

∫ x2

x1

[
dN

dx

]T

a

[
dN

dx

]
dx

{f} =
∫ x2

x1

[N]T bdx +

{
0
1

}
a
du

dx
|x=x2 −

{
1
0

}
a
du

dx
|x=x1

(1.8)

In solid mechanics[k] is calledstiffness matrixand{f} is calledload vector. In the considered simple
case for two finite elements of lengthL stiffness matrices and the load vectors can be easily calculated:

[k1] = [k2] = a
L

[
1 −1

−1 1

]

{f1} = bL
2

{
1
1

}
, {f2} = bL

2

{
1
1

}
+

{
0
R

} (1.9)

The above relations provide finite element equations for the two separate finite elements. A global
equation system for the domain with 2 elements and 3 nodes can be obtained by an assembly of element
equations. In our simple case it is clear that elements interact with each other at the node with global
number 2. The assembled global equation system is:

a

L




1 −1 0
−1 2 −1

0 −1 1








u1

u2

u3





=
bL

2





1
2
1





+





0
0
R





(1.10)

8 CHAPTER 1. INTRODUCTION

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

x

u

FEM

Exact

Figure 1.2: Comparison of finite element solution and exact solution.

After application of the boundary conditionu(x = 0) = 0 the final appearance of the global equation
system is:

a

L




1 0 0
0 2 −1
0 −1 1








u1

u2

u3





=
bL

2





0
2
1





+





0
0
R





(1.11)

Nodal valuesui are obtained as results of solution of linear algebraic equation system. The value of
u at any point inside a finite element can be calculated using the shape functions. The finite element
solution of the differential equation is shown in Fig. 1.2 fora = 1, b = 1, L = 1 andR = 1.

Exact solution is a quadratic function. The finite element solution with the use of the simplest element is
piece-wise linear. More precise finite element solution can be obtained increasing the number of simple
elements or with the use of elements with more complicated shape functions. It is worth noting that
at nodes the finite element method provides exact values ofu (just for this particular problem). Finite
elements with linear shape functions produce exact nodal values if the sought solution is quadratic.
Quadratic elements give exact nodal values for the cubic solutionetc.

1.3.2 Variational formulation

The differential equation

a
d2u

dx2
+ b = 0, 0 ≤ x ≤ 2L

u|x=0 = 0

a
du

dx
|x=2L = R

(1.12)

with a = EA has the following physical meaning in solid mechanics. It describes tension of the
one dimensional bar with cross-sectional areaA made of material with the elasticity modulusE and
subjected to a distributed loadb and a concentrated loadR at its right end as shown in Fig 1.3.

Such problem can be formulated in terms of minimizing the potential energy functionalΠ:

Π =
∫

L

1
2
a

(
du

dx

)2

dx−
∫

L
budx−Ru|x=2L

u|x=0 = 0
(1.13)

1.3. FORMULATION OF FINITE ELEMENT EQUATIONS 9

1 2 3

0 L 2L

x

Rb

Figure 1.3: Tension of the one dimensional bar subjected to a distributed load and a concentrated load.

Using representation of{u} with shape functions (1.3)-(1.4) we can write the value of potential energy
for the second finite element as:

Πe =
∫ x2

x1

1
2
a{u}T

[
dN

dx

]T [
dN

dx

]
{u}dx

−
∫ x2

x1

{u}T [N]T bdx− {u}T

{
0
R

} (1.14)

The condition for the minimum ofΠ is:

δΠ =
∂Π
∂u1

δu1 + ... +
∂Π
∂un

δun = 0 (1.15)

which is equivalent to

∂Π
∂ui

= 0 , i = 1...n (1.16)

It is easy to check that differentiation ofΠ in respect toui gives the finite element equilibrium equation
which is coincide with equation obtained by the Galerkin method:

∫ x2

x1

[
dN

dx

]T

EA

[
dN

dx

]
dx{u}−

∫ x2

x1

[N]T bdx−
{

0
R

}
= 0 (1.17)

Example. Obtain shape functions for the one-dimensional quadratic element with three nodes. Use
local coordinate system−1 ≤ ξ ≤ 1.

1 2 3

-1 0 1
x

Solution. With shape functions, any field inside element is presented as:

u(ξ) =
∑

Niui , i = 1, 2, 3

At nodes the approximated function should be equal to its nodal value:

u(−1) = u1

u(0) = u2

u(1) = u3

10 CHAPTER 1. INTRODUCTION

Since the element has three nodes the shape functions can be quadratic polynomials (with three coeffi-
cients). The shape functionN1 can be written as:

N1 = α1 + α2ξ + α3ξ
2

Unknown coefficientsαi are defined from the following system of equations:

N1(−1) = α1 − α2 + α3 = 1
N1(0) = α1 = 0
N1(1) = α1 + α2 + α3 = 0

The solution is:α1 = 0, α2 = −1/2, α3 = 1/2. Thus the shape function N1 is equal to:

N1 = −1
2
ξ(1− ξ)

Similarly it is possible to obtain that the shape functionsN2 andN3 are equal to:

N2 = 1− ξ2

N3 =
1
2
ξ(1 + ξ)

Chapter 2

Finite Element Equations for Heat
Transfer

2.1 Problem Statement

Let us consider an isotropic body with temperature dependent heat transfer. A basic equation of heat
transfer has the following appearance:

−
(

∂qx

∂x
+

∂qy

∂y
+

∂qz

∂z

)
+ Q = ρc

∂T

∂t
(2.1)

Hereqx, qy andqz are components of heat flow through the unit area;Q = Q(x, y, z, t) is the inner
heat generation rate per unit volume;ρ is material density;c is heat capacity;T is temperature andt is
time. According to the Fourier’s law the components of heat flow can be expressed as follows:

qx = −k
∂T

∂x

qy = −k
∂T

∂y

qz = −k
∂T

∂z

(2.2)

wherek is the thermal conductivity coefficient of the media. Substitution of Fourier’s relations gives
the following basic heat transfer equation:

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ Q = ρc

∂T

∂t
(2.3)

It is assumed thatboundary conditionscan be of the following types:

1. Specified temperature

Ts = T (x, y, z, t) onS1

2. Specified heat flow

qxnx + qyny + qznz = −qs onS2

3. Convection boundary conditions

11

12 CHAPTER 2. FINITE ELEMENT EQUATIONS FOR HEAT TRANSFER

qxnx + qyny + qznz = h(Ts − Te) onS3

whereh is the convection coefficient,Ts is an unknown surface temperature andTe is a known envi-
ronmental temperature.

4. Radiation

qxnx + qyny + qznz = σεT 4
s − αqr onS4

whereσ is the Stefan-Boltzmann constant;ε is the surface emission coefficient;α is the surface absorp-
tion coefficient andqr is incoming heat flow per unit surface area.

For transient problems it is necessary to specify a temperature field for a body at the timet = 0:

T (x, y, z, 0) = T0(x, y, z) (2.4)

2.2 Finite element discretization of heat transfer equations

A domainV is divided into finite elements connected at nodes. We are going to write all relations for a
finite element. Global equations for the domain can be assembled from finite element equations using
connectivity information.

Shape functionsNi are used for interpolation of temperature inside a finite element:

T = [N]{T}
[N] = [N1 N2 ...]
{T} = { T1 T2 ... }

(2.5)

Differentiation of the temperature interpolation equation gives the following interpolation relation for
temperature gradients:





∂T/∂x
∂T/∂y
∂T/∂z





=




∂N1/∂x ∂N2/∂x ...
∂N1/∂y ∂N2/∂y ...
∂N1/∂z ∂N2/∂z ...


{T} = [B]{T} (2.6)

Here{T} is a vector of temperatures at nodes;[N] is a matrix of shape functions and[B] is a matrix
for temperature gradients interpolation.

Using Galerkin method, we can rewrite the basic heat transfer equation in the following form:

∫

V

(
∂qx

∂x
+

∂qy

∂y
+

∂qz

∂z
−Q + ρc

∂T

∂t

)
NidV = 0 (2.7)

Applying the divergence theorem to the first three terms, we arrive to the relations:

∫

V

ρc
∂T

∂t
NidV −

∫

V

[
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

]
{q}dV

=
∫

V

QNidV −
∫

S

{q}T {n}NidS

{q}T = [qx qy qz]
{n}T = [nx ny nz]

(2.8)

2.3. DIFFERENT TYPE PROBLEMS 13

where{n} is an outer normal to the surface of the body. After insertion of boundary conditions into the
above equation, the discretized equations are as follows:

∫

V

ρc
∂T

∂t
NidV −

∫

V

[
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

]
{q}dV

=
∫

V

QNidV −
∫

S1

{q}T {n}NidS

+
∫

S2

qsNidS −
∫

S3

h(T − Te)NidS −
∫

S4

(σεT 4 − αqr)NidS

(2.9)

It is worth noting that

{q} = −k[B]{T} (2.10)

The discretized finite element equations for heat transfer problems have the following finite form:

[C]{Ṫ}+ ([Kc] + [Kh] + [Kr]){T}
= {RT }+ {RQ}+ {Rq}+ {Rh}+ {Rr} (2.11)

[C] =
∫

V

ρc[N]T [N]dV

[Kc] =
∫

V

k[B]T [B]dV

[Kh] =
∫

S3

h[N]T [N]dS

[Kr]{T} =
∫

S4

σεT 4[N]dS

[RT] = −
∫

S1

{q}T {n}[N]T dS

[RQ] =
∫

V

Q[N]T dV

[Rq] = −
∫

S2

qs[N]T dS

[Rh] = −
∫

S3

hTe[N]T dS

[Rr] = −
∫

S4

αqr[N]T dS

(2.12)

2.3 Different Type Problems

Equations for different type problems can be deducted from the above general equation :

Stationary linear problem

([Kc] + [Kh]){T} = {RQ}+ {Rq}+ {Rh} (2.13)

14 CHAPTER 2. FINITE ELEMENT EQUATIONS FOR HEAT TRANSFER

Stationary nonlinear problem

([Kc] + [Kh] + [Kr]){T}
= {RQ(T)}+ {Rq(T)}+ {Rh(T)}+ {Rr(T)} (2.14)

Transient linear problem

[C]{Ṫ (t)}+ ([Kc] + [Kh(t)]){T (t)}
= {RQ(t)}+ {Rq(t)}+ {Rh(t)} (2.15)

Transient nonlinear problem

[C(T)]{Ṫ}+ ([Kc(T)] + [Kh(T, t)] + [Kr(T)]){T}
= {RQ(T, t)}+ {Rq(T, t)}+ {Rh(T, t)}+ {Rr(T, t)} (2.16)

Chapter 3

FEM for Solid Mechanics Problems

3.1 Problem statement

Let us consider a three-dimensional elastic body subjected to surface and body forces and temperature
field. In addition, displacements are specified on some surface area. For given geometry of the body,
applied loads, displacement boundary conditions, temperature field and material stress-strain law, it is
necessary to determine the displacement field for the body. The corresponding strains and stresses are
also of interest.

The displacements along coordinate axesx, y andz are defined by the displacement vector{u}:

{u} = {u v w} (3.1)

Six different strain components can be placed in the strain vector{ε}:

{ε} = {εx εy εz γxy γyz γzx} (3.2)

For small strains the relationship between strains and displacements is:

{ε} = [D]{u} (3.3)

where[D] is the matrix differentiation operator:

[D] =




∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z

∂/∂y ∂/∂x 0
0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x




(3.4)

Six different stress components are formed the stress vector{σ}:

{σ} = {σx σy σz τxy τyz τzx} (3.5)

which are related to strains for elastic body by the Hook’s law:

{σ} = [E]{εe} = [E]({ε} − {εt})
{εt} = {αT αT αT 0 0 0} (3.6)

15

16 CHAPTER 3. FEM FOR SOLID MECHANICS PROBLEMS

Here{εe} is the elastic part of strains;{εt} is the thermal part of strains;α is the coefficient of thermal
expansion;T is temperature. The elasticity matrix[E] has the following appearance:

[E] =




λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




(3.7)

whereλ andµ are elastic Lame constants which can be expressed through the elasticity modulusE and
Poisson’s ratioν:

λ =
νE

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

(3.8)

The purpose of finite element solution of elastic problem is to find such displacement field which
provides minimum to the functional of total potential energyΠ:

Π =
∫

V

1
2
{εe}T {σ}dv −

∫

V
{u}T {pV }dV −

∫

S
{u}T {pS}dS (3.9)

Here{pV } = {pV
x pV

y pV
z } is the vector of body force and{pS} = {pS

x pS
y pS

z } is the vector of
surface force. Prescribed displacements are specified on the part of body surface where surface forces
are absent.

Displacement boundary conditions are not present in the functional ofΠ. Because of these, dis-
placement boundary conditions should be implemented after assembly of finite element equations.

3.2 Finite element equations

Let us consider some abstract three-dimensional finite element having the vector of nodal displacements
{q}:

{q} = {u1 v1 w1 u2 v2 w2 ...} (3.10)

Displacements at some point inside a finite element{u} can be determined with the use of nodal dis-
placements{q} and shape functionsNi:

u =
∑

Niui

v =
∑

Nivi

w =
∑

Niwi

(3.11)

These relations can be rewritten in a matrix form as follows:

{u} = [N]{q}

[N] =




N1 0 0 N2 ...
0 N1 0 0 ...
0 0 N1 0 ...


 (3.12)

3.2. FINITE ELEMENT EQUATIONS 17

Strains can also be determined through displacements at nodal points:

{ε} = [B]{q}
[B] = [D][N] = [B1 B2 B3 ...]

(3.13)

Matrix [B] is called the displacement differentiation matrix. It can be obtained by differentiation of
displacements expressed through shape functions and nodal displacements:

[Bi] =




∂Ni/∂x 0 0
0 ∂Ni/∂y 0
0 0 ∂Ni/∂z

∂Ni/∂y ∂Ni/∂x 0
0 ∂Ni/∂z ∂Ni/∂y

∂Ni/∂z 0 ∂Ni/∂x




(3.14)

Now using relations for stresses and strains we are able to express the total potential energy through
nodal displacements:

Π =
∫

V

1
2
([B]{q} − {εt})T [E]([B]{q} − {εt})dV

−
∫

V
([N]{q})T {pV }dV −

∫

S
([N]{q})T {pS}dS

(3.15)

Nodal displacements{q} which correspond to the minimum of the functionalΠ are determined by the
conditions:

{
∂Π
∂q

}
= 0 (3.16)

Differentiation ofΠ in respect to nodal displacements{q} produces the following equilibrium equations
for a finite element:

∫

V
[B]T [E][B]dV {q} −

∫

V
[B]T [E]{εt}dV

−
∫

V
[N]T {pV }dV −

∫

S
[N]T {pS}dS = 0

(3.17)

which is usually presented in the following form:

[k]{q} = {f}
{f} = {p}+ {h}

[k] =
∫

V
[B]T [E][B]dV

{p} =
∫

V
[N]T {pV }dV +

∫

S
[N]T {pS}dS

{h} =
∫

V
[B]T [E]{εt}dV

(3.18)

Here[k] is the element stiffness matrix;{f} is the load vector;{p} is the vector of actual forces and
{h} is the thermal vector which represents fictitious forces for modeling thermal expansion.

18 CHAPTER 3. FEM FOR SOLID MECHANICS PROBLEMS

3.3 Assembly of the global equation system

The aim of assembly is to form the global equation system

[K]{Q} = {F} (3.19)

using element equations

[ki]{qi} = {fi} (3.20)

Here [ki], [qi] and [fi] are the stiffness matrix, the displacement vector and the load vector of the ith
finite element;[K], {Q} and{F} are global stiffness matrix, displacement vector and load vector.

In order to derive an assembly algorithm let us present the total potential energy for the body as a
sum of element potential energiesπi:

Π =
∑

πi =
∑ 1

2
{qi}T [ki]{qi} −

∑
{qi}T {fi}+

∑
E0

i (3.21)

whereE0
i is the fraction of potential energy related to free thermal expansion:

E0
i =

∫

Vi

1
2
{εt}T [E]{εt}dV (3.22)

Let us introduce the following vectors and a matrix where element vectors and matrices are simply
placed:

{Qd} = {{q1} {q2}
{Fd} = {{f1} {f2} ...} (3.23)

[Kd] =




[k1] 0 0
0 [k2] 0
0 0 ...


 (3.24)

It is evident that it is easy to find matrix[A] such that

{Qd} = [A]{Q}
{Fd} = [A]{F} (3.25)

The total potential energy for the body can be rewritten in the following form:

Π =
1
2
{Qd}T [Kd]{Qd} − {Qd}T {Fd}+

∑
E0

i

=
1
2
{Q}T [A]T [Kd][A]{Q} − {Q}T [A]T {Fd}+

∑
E0

i

(3.26)

Using the condition of minimum of the total potential energy

{
∂Π
∂Q

}
= 0 (3.27)

we arrive at the following global equation system:

[A]T [Kd][A]{Q} − [A]T {Fd} = 0 (3.28)

3.3. ASSEMBLY OF THE GLOBAL EQUATION SYSTEM 19

The last equation shows that algorithms of assembly the global stiffness matrix and the global load
vector are:

[K] = [A]T [Kd][A]
{F} = [A]T {Fd} (3.29)

Here[A] is the matrix providing transformation from global to local enumeration. Fraction of nonzero
(unit) entries in the matrix[A] is very small. Because of this the matrix[A] is never used explicitly in
actual computer codes.

Example. Write down a matrix[A], which relates local (element) and global (domain) node numbers
for the following finite element mesh:

1

4 5 6

2 3

1 2

7 8

3

1 2

34

Node order

for an element

Solution. To make the matrix representation compact let us assume that each node has one degree of
freedom (note that in three-dimensional solid mechanics problem there are three degrees of freedom at
each node). The matrix[A] relates element and global nodal values in the following way:

{Qd} = [A]{Q}

where{Q} is a global vector of nodal values and{Qd} is vector containing element vectors. The
explicit rewriting of the above relation looks as follows:









Q1

Q2

Q5

Q4









Q2

Q3

Q6

Q5









Q5

Q6

Q8

Q7









=




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0








Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8





20 CHAPTER 3. FEM FOR SOLID MECHANICS PROBLEMS

Chapter 4

Finite Elements

4.1 Two-dimensional triangular element

Triangular finite element was the first finite element proposed for continuous problems. Because of
simplicity it can be used as an introduction to other elements. A triangular finite element in the co-
ordinate systemxy is shown in Fig. 4.1. Since the element has three nodes, linear approximation of
displacementsu andv is selected:

u(x, y) = N1u1 + N2u2 + N3u3

v(x, y) = N1v1 + N2v2 + N3v3

Ni = αi + βix + γiy
(4.1)

Shape functionsNi(x, y) can be determined from the following equation system:

u(xi, yi) = ui , i = 1, 2, 3 (4.2)

Shape functions for the triangular element can be presented as:

Ni =
1

2∆
(ai + bix + ciy)

ai = xi+1yi+2 − xi+2yi+1

bi = yi+1 − yi+2

ci = xi+2 − xi+1

∆ =
1
2
(x2y3 + x3y1 + x1y2 − x2y1 − x3y2 − x1y3)

(4.3)

1
2

3

x

y

u
2

v
2

Figure 4.1: Triangular finite element is the simplest two-dimensional element.

21

22 CHAPTER 4. FINITE ELEMENTS

where∆ is the element area. The matrix[B] for interpolating strains using nodal displacements is equal
to:

[B] =
1

2∆




b1 0 b2 0 b3 0
0 c1 0 c2 0 c3

c1 b1 c2 b2 c3 b3


 (4.4)

The elasticity matrix[E] has the following appearance for plane problems:

[E] =




λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ


 (4.5)

whereλ andµ are Lame constants:

λ =
νE

(1 + ν)(1− 2ν)
for plane strain

λ =
νE

1− ν2
for plane stress

µ =
E

2(1 + ν)

(4.6)

HereE is the elasticity modulus andν is the Poisson’s ratio.

The stiffness matrix for the three-node triangular element can be calculated as:

[k] =
∫

V
[B]T [E][B]dV = [B]T [E][B]∆ (4.7)

Here it was taken into account that both matrices[B] and [E] do not depend on coordinates. It was
assumed that the element has unit thickness. Since the matrix[B] is constant inside the element the
strains and stresses are also constant inside the triangular element.

4.2 Two-dimensional isoparametric elements

Isoparametric finite elements are based on the parametric definition of both coordinate and displacement
functions. The same shape functions are used for specification of the element shape and for interpolation
of the displacement field.

4.2.1 Shape functions

Linear and quadratic two-dimensional isoparametric finite elements are presented in Figure 4.2. Shape
functionsNi are defined in local coordinatesξ, η (−1 ≤ ξ, η ≤ 1). The same shape functions are
used for interpolations of displacements and coordinates:

u =
∑

Niui , v =
∑

Nivi

x =
∑

Nixi , y =
∑

Niyi
(4.8)

whereu, v are displacement components at point with local coordinates(ξ, η); ui, vi are displacement
values at the nodes of the finite element;x, y are point coordinates andxi, yi are coordinates of element
nodes. Matrix form of the above relations is as follows:

{u} = [N]{q}
{u} = {u v}
{q} = {u1 v1 u2 v2 ...}

(4.9)

4.2. TWO-DIMENSIONAL ISOPARAMETRIC ELEMENTS 23

1

3

x

4

2

h
x

h

1 2 3

4

5
67

8 x

h

1

1

-1

-1
Linear element Quadratic element

Figure 4.2: Linear and quadratic finite elements and their representation in the local coordinate system.

{x} = [N]{xe}
{x} = {x y}
{xe} = {x1 y1 x2 y2 ...}

(4.10)

where the interpolation matrix for nodal values is:

[N] =

[
N1 0 N2 0 ...
0 N1 0 N2 ...

]
(4.11)

Shape functions for linear and quadratic two-dimensional isoparametric elements are given by:

linear element (4 nodes):

Ni =
1
4
(1 + ξ0)(1 + η0) (4.12)

quadratic element (8 nodes):

Ni =
1
4
(1 + ξ0)(1 + η0)− 1

4
(1− ξ2)(1 + η0)

−1
4
(1 + ξ0)(1− η2) i = 1, 3, 5, 7

Ni =
1
2
(1− ξ2)(1 + η0) , i = 2, 6

Ni =
1
2
(1 + ξ0)(1− η2) , i = 4, 8

(4.13)

In the above equations the following notation is used:ξ0 = ξξi , η0 = ηηi whereξi, ηi are values of
local coordinatesξ, η at nodes.

4.2.2 Strain-displacement matrix

For plane problem the strain vector contains three components:

{ε} = {εx εy γxy} =
{

∂u

∂x

∂v

∂y

∂v

∂x
+

∂u

∂y

}
(4.14)

24 CHAPTER 4. FINITE ELEMENTS

The strain-displacement matrix which is employed to compute strains at any point inside the element
using nodal displacements is:

[B] = [B1 B2 ...]

[Bi] =




∂Ni

∂x
0

0
∂Ni

∂y
∂Ni

∂y

∂Ni

∂x




(4.15)

While shape functions are expressed through the local coordinatesξ, η the strain-displacement matrix
contains derivatives in respect to the global coordinatesx, y. Derivatives can be easily converted from
one coordinate system to the other by means of the chain rule of partial differentiation:





∂Ni

∂ξ
∂Ni

∂η





=





∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η









∂Ni

∂x
∂Ni

∂y





= [J]





∂Ni

∂x
∂Ni

∂y





(4.16)

where[J] is the Jacobian matrix. The derivatives in respect to the global coordinates are computed with
the use of inverse of the Jacobian matrix:





∂Ni

∂x
∂Ni

∂y





= [J]−1





∂Ni

∂ξ
∂Ni

∂η





(4.17)

The components of the Jacobian matrix are calculated using derivatives of shape functionsNi in respect
to the local coordinatesξ, η and global coordinates of element nodesxi, yi:

∂x

∂ξ
=

∑ ∂Ni

∂ξ
xi ,

∂x

∂η
=

∑ ∂Ni

∂η
xi

∂y

∂ξ
=

∑ ∂Ni

∂ξ
yi ,

∂y

∂η
=

∑ ∂Ni

∂η
yi

(4.18)

The determinant of the Jacobian matrix|J | is used for the transformation of integrals from the global
coordinate system to the local coordinate system:

dV = dxdy = |J |dξdη (4.19)

4.2.3 Element properties

Element matrices and vectors are calculated as follows:

stiffness matrix

[k] =
∫

V
[B]T [E][B]dV (4.20)

force vector (volume and surface loads)

{p} =
∫

V
[N]T {pV }dV +

∫

S
[N]T {pS}dS (4.21)

4.2. TWO-DIMENSIONAL ISOPARAMETRIC ELEMENTS 25

thermal vector (fictitious forces to simulate thermal expansion)

{h} =
∫

V
[B]T [E]{εt}dV (4.22)

The elasticity matrix[E] is given by relation (4.5).

4.2.4 Integration in quadrilateral elements

Integration of expressions for stiffness matrices and load vectors can not be performed analytically for
general case of isoparametric elements. Instead, stiffness matrices and load vectors are typically evalu-
ated numerically using Gauss quadrature over quadrilateral regions. The Gauss quadrature formula for
the volume integral in two-dimensional case is of the form:

I =
∫ 1

−1

∫ 1

−1
f(ξ, η)dξdη =

n∑

i=1

n∑

j=1

f(ξi, ηj)wiwj (4.23)

whereξi, ηj are abscissae andwi are weighting coefficients of the Gauss integration rule. Abscissae
and weights of Gauss quadrature forn = 1,2,3 are given in Table:

Abscissae and weights of Gauss quadrature

n ξi wi

1 0 2
2 ∓1/

√
3 1

3 0 8/9
∓√

3/5 5/9

To compute the nodal equivalent of the surface load, the surface integral is replaced by line integration
along element side. The fraction of the surface load is evaluated as:

{p} =
∫

S
[N]T {pS}dS =

∫ 1

−1
[N]T {pS}ds

dξ
dξ (4.24)

ds

dξ
=

√(
dx

dξ

)2

+
(

dy

dξ

)2

(4.25)

Heres is a global coordinate along the element side andξ is a local coordinate along the element side.
If the distributed load load is applied along the normal to the element side as shown in Fig. 4.3 then the
nodal equivalent of such load is:

{p} =
∫
S [N]T p





dy

ds

−dx

ds





ds

dξ
dξ =

∫ 1
−1 [N]T p





dy

dξ

−dx

dξ





dξ (4.26)

Example. Calculate nodal equivalents of a distributed load with constant intensity applied to the side
of a two-dimensional quadratic element:

26 CHAPTER 4. FINITE ELEMENTS

dx
ds

P

Px

Py

Figure 4.3: Distributed normal load on a side of a quadratic element.

1 2 3

-1 0 1
x

p=1

xl=1

Solution. The nodal equivalent of the distributed load is calculated as:

{p} =
∫ 1

−1
[N]T p

dx

dξ
dξ

or

{p} =





p1

p2

p3





=
∫ 1

−1





N1

N2

N3





p
dx

dξ
dξ,

dx

dξ
=

1
2

The shape functions for the one-dimensional quadratic element are:

N1 = −1
2
ξ(1− ξ), N2 = 1− ξ2, N3 =

1
2
ξ(1 + ξ)

The values of nodal forces at nodes 1, 2 and 3 are defined by integration:

p1 = −
∫ 1

−1

1
2
ξ(1− ξ)

1
2
dξ =

1
6

p2 =
∫ 1

−1
(1− ξ2)

1
2
dξ =

2
3

p3 =
∫ 1

−1

1
2
ξ(1 + ξ)

1
2
dξ =

1
6

The example shows that physical approach cannot be used for the estimation of nodal equivalents
of a distributed load. It works for linear elements; however, it does not work for more complicated
elements.

4.2.5 Calculation of strains and stresses

Strains at any point an element are determined using Cauchy relations (4.14) with the use of the dis-
placement differentiation matrix (4.15):

{ε} = [B]{q} (4.27)

4.2. TWO-DIMENSIONAL ISOPARAMETRIC ELEMENTS 27

1 2

34

x

h

(2)(1)

(4) (3)

Figure 4.4: Numbering of integration points and vertices for the 8-node isoparametric element.

Stresses are calculated with the Hook’s law:

{σ} = [E]{εe} = [E]({ε} − {εt}) (4.28)

where{εt} is the vector of free thermal expansion:

{εt} = {αT αT 0} (4.29)

Precision of strains and stresses is significantly dependent on the point location where they are com-
puted. The highest precision for displacement gradients are at the geometric center for the linear ele-
ment and at reduced integration points2× 2 for the quadratic quadrilateral element.

For quadratic elements with 8 nodes, strains and stresses have best precision at2 × 2 integration
points with local coordinatesξ, η = ±1/

√
3. A possible way to create continuous stress field with

reasonable accuracy consists of: 1) extrapolation of stresses from reduced integration points to nodes;
2) averaging contributions from finite elements at all nodes of the finite element model. Later stresses
can be interpolated from nodes using quadratic shape functions.

Let us consider quadratic element in the local coordinate systemξ, η as shown in Fig. 4.4 where
integration points are numbered as (1)...(4); corner nodes have numbers 1...4. For extrapolation (inside
quadratic element) we are going to employ linear shape functions. In matrix form the extrapolation
relation can be presented as follows:

fi = Li(m)f(m) (4.30)

wheref(m) are known function values at reduces integration points;fi are function values at vertex
nodes andLi(m) is the symmetric extrapolation matrix:

Li(m) =




A B C B
A B C

A B
A




A = 1 +
√

3
2

B = −1
2

C = 1 +
√

3
2

(4.31)

28 CHAPTER 4. FINITE ELEMENTS

1

3
4

2
1 2 3

4
5

678

x

h

Linear element Quadratic element

5
6

7
8

9 10
1112

13 14 15
16

17
1819

20

z

Figure 4.5: Linear and quadratic three-dimensional finite elements and their representation in the local
coordinate system.

4.3 Three-dimensional isoparametric elements

4.3.1 Shape functions

Hexahedral (or brick-type) linear 8-node and quadratic 20-node three-dimensional isoparametric ele-
ments are depicted in Fig. 4.5. The term ”isoparametric” means that geometry and displacement field
are specified in parametric form and are interpolated with the same functions. Shape functions used for
interpolation are polynomials of the local coordinatesξ, η andζ (−1 ≤ ξ, η, ζ ≤ 1). Both coordinates
and displacements are interpolated with the same shape functions:

{u} = [N]{q}
{u} = {u v w}
{q} = {u1 v1 w1 u2 v2 w2 ...}

(4.32)

{x} = [N]{xe}
{x} = {x y z}
{xe} = {x1 y1 z1 x2 y2 z2 ...}

(4.33)

Hereu, v, w are displacements at point with local coordinatesξ, η, ζ; ui, vi, wi are displacement values
at nodes;x, y, z are point coordinates andxi, yi, zi are coordinates of nodes. The matrix of shape
functions is:

[N] =




N1 0 0 N2 0 0 ...
0 N1 0 0 N2 0 ...
0 0 N1 0 0 N2 ...


 (4.34)

Shape functions of the linear element are equal to:

Ni =
1
8
(1 + ξ0)(1 + η0)(1 + ς0)

ξ0 = ξξi , η0 = ηηi , ς0 = ςςi
(4.35)

4.3. THREE-DIMENSIONAL ISOPARAMETRIC ELEMENTS 29

For the quadratic element with 20 nodes the shape functions can be written in the following form:

Ni =
1
8
(1 + ξ0)(1 + η0)(1 + ς0)(ξ0 + η0 + ς0 − 2) vertices

Ni =
1
4
(1− ξ2)(1 + η0)(1 + ς0) , i = 2, 6, 14, 18

Ni =
1
4
(1− η2)(1 + ξ0)(1 + ς0) , i = 4, 8, 16, 20

Ni =
1
4
(1− ς2)(1 + ξ0)(1 + η0) , i = 9, 10, 11, 12

(4.36)

In the above relationsξi, ηi, ζi are values of local coordinatesξ, η, ζ at nodes.

4.3.2 Strain-displacement matrix

The strain vector{ε} contains six different components of the strain tensor:

{ε} = {εx εy εz γxy γyz γzx} (4.37)

The strain-displacement matrix for three-dimensional elements has the following appearance:

[B] = [D][N] = [B1 B2 B3 ...] (4.38)

[Bi] =




∂Ni/∂x 0 0
0 ∂Ni/∂y 0
0 0 ∂Ni/∂z

∂Ni/∂y ∂Ni/∂x 0
0 ∂Ni/∂z ∂Ni/∂y

∂Ni/∂z 0 ∂Ni/∂x




(4.39)

Derivatives of shape functions in respect to global coordinates are obtained as follows:




∂Ni/∂x
∂Ni/∂y
∂Ni/∂z





= [J]−1





∂Ni/∂ξ
∂Ni/∂η
∂Ni/∂ς





(4.40)

where the Jacobian matrix has the appearance:

[J] =




∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ς ∂y/∂ς ∂z/∂ς


 (4.41)

The partial derivatives ofx, y, z in respect toξ, η,ζ are found by differentiation of displacements
expressed through shape functions and nodal displacement values:

∂x

∂ξ
=

∑ ∂Ni

∂ξ
xi ,

∂x

∂η
=

∑ ∂Ni

∂η
xi ,

∂x

∂ζ
=

∑ ∂Ni

∂ζ
xi

∂y

∂ξ
=

∑ ∂Ni

∂ξ
yi ,

∂y

∂η
=

∑ ∂Ni

∂η
yi ,

∂y

∂ζ
=

∑ ∂Ni

∂ζ
yi

∂z

∂ξ
=

∑ ∂Ni

∂ξ
zi ,

∂z

∂η
=

∑ ∂Ni

∂η
zi ,

∂z

∂ζ
=

∑ ∂Ni

∂ζ
zi

(4.42)

The transformation of integrals from the global coordinate system to the local coordinate system is
performed with the use of determinant of the Jacobian matrix:

dV = dxdydz = |J |dξdηdς (4.43)

30 CHAPTER 4. FINITE ELEMENTS

4.3.3 Element properties

Element equilibrium equation has the following form:

[k]{q} = {f}
{f} = {p}+ {h} (4.44)

Element matrices and vectors are:

stiffness matrix

[k] =
∫

V
[B]T [E][B]dV (4.45)

force vector (volume and surface loads)

{p} =
∫

V
[N]T {pV }dV +

∫

S
[N]T {pS}dS (4.46)

thermal vector (fictitious forces to simulate thermal expansion)

{h} =
∫

V
[B]T [E]{εt}dV (4.47)

The elasticity matrix[E] is:

[E] =




λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




(4.48)

whereλ andµ are elastic Lame constants which can be expressed through the elasticity modulusE and
Poisson’s ratioν:

λ =
νE

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

(4.49)

4.3.4 Efficient computation of the stiffness matrix

Calculation of the element stiffness matrix by multiplication of three matrices involves many arithmetic
operations with zeros. After performing multiplications in closed form, coefficients of the element
stiffness matrix[k] can be expressed as follows:

kmn
ii =

∫

V

[
β

∂Nm

∂xi

∂Nn

∂xi
+ µ

(
∂Nm

∂xi+1

∂Nm

∂xi+1
+

∂Nm

∂xi+2

∂Nm

∂xi+2

)]
dV

kmn
ij =

∫

V

(
λ

∂Nm

∂xi

∂Nn

∂xj
+ µ

∂Nm

∂xj

∂Nn

∂xi

)
dV

β = λ + 2µ

(4.50)

Herem, n are local node numbers;i, j are indices related to coordinate axes (x1, x2, x3). Cyclic rule
is employed in the above equation if coordinate indices become greater than 3.

4.3. THREE-DIMENSIONAL ISOPARAMETRIC ELEMENTS 31

4.3.5 Integration of the stiffness matrix

Integration of the stiffness matrix for three-dimensional isoparametric elements is carried out in the
local coordinate systemξ, η, ζ:

[k] =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[B(ξ, η, ς)]T [E][B(ξ, η, ς)]|J |dξdηdς (4.51)

Three-time application of the one-dimensional Gauss quadrature rule leads to the following numerical
integration procedure:

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f(ξ, η, ς)dξdηdς

=
n∑

i=1

n∑

j=1

n∑

k=1

f(ξi, ηj , ςk)wiwjwk

(4.52)

Usually2 × 2 × 2 integration is used for linear elements and integration3 × 3 × 3 is applied to the
evaluation of the stiffness matrix for quadratic elements. Fore more efficient integration, a special 14-
point Gauss-type rule exists, which provides sufficient precision of integration for three-dimensional
quadratic elements.

4.3.6 Calculation of strains and stresses

After computing element matrices and vectors, the assembly process is used to compose the global
equation system. Solution of the global equation system provides displacements at nodes of the finite
element model. Using disassembly, nodal displacement for each element can be obtained.

Strains inside an element are determined with the use of the displacement differentiation matrix:

{ε} = [B]{q} (4.53)

Stresses are calculated with the Hook’s law:

{σ} = [E]{εe} = [E]({ε} − {εt}) (4.54)

where{εt} is the vector of free thermal expansion:

{εt} = {αT αT αT 0 0 0} (4.55)

It should be noted that displacement gradients (and hence strains and stresses) have quite difference
precision at different point inside finite elements. The highest precision for displacement gradients are
at the geometric center for the linear element and at reduced integration points2×2×2 for the quadratic
hexagonal element.

4.3.7 Extrapolation of strains and stresses

For quadratic elements, displacement derivatives have best precision at2×2×2 integration points with
local coordinatesξ, η, ζ = ±1/

√
3. In order to build a continuous field of strains or stresses, it is

necessary to extrapolate result values from2× 2× 2 integration points to vertices of 20-node element
(numbering of integration points and vertices is shown in Fig. 4.6).

32 CHAPTER 4. FINITE ELEMENTS

2

3

78

5 6

1

4

(1) (2)

(3)(4)

(5) (6)
(7)(8)

Created using UNREGISTERED Top Draw 7/13/101 11:17:01 PM

Figure 4.6: Numbering of integration points and vertices for the 20-node isoparametric element.

Results are calculated at 8 integration points, and a trilinear extrapolation in the local coordinate
systemξ, η, ζ is used:

fi = Li(m)f(m) (4.56)

wheref(m) are known function values at reduces integration points;fi are function values at vertex
nodes andLi(m) is the symmetric extrapolation matrix:

Li(m) =




A B C B B C D C
A B C C B C D

A B D C B C
A C D C B

A B C B
A B C

A B
A




A =
5 +

√
3

4
, B = −

√
3 + 1
4

C =
√

3− 1
4

, D =
5−√3

4

(4.57)

Stresses are extrapolated from integration points to all nodes of elements. Values for midside nodes can
be calculated as an average between values for two vertex nodal values. Then averaging of contributions
from the neighboring finite elements is performed for all nodes of the finite element model. Averaging
produces a continuous field of secondary results specified at nodes of the model with quadratic variation
inside finite elements. Later, the results can be interpolated to any point inside element or on its surface
using quadratic shape functions.

Chapter 5

Discretization

5.1 Discrete model of the problem

In order to apply finite element procedures a discrete model of the problem should be presented in
numerical form. A typical description of the problem can contain:

Scalar parameters (number of nodes, number of elements etc.);

Material properties;

Coordinates of nodal points;

Connectivity array for finite elements;

Arrays of element types and element materials;

Arrays for description of displacement boundary conditions;

Arrays for description of surface and concentrated loads;

Temperature field.

Let us write down numerical information for a simple problem depicted in Fig. 5.1.

The finite element model can be described as follows:

1. Scalar parameters

Number of nodes = 6
Number of elements = 2
Number of constraints = 5

1

2 4 6

3 5

y

x

1

0

0 1 2

0.5

0.5

1 2

Figure 5.1: Discrete model composed of two finite elements.

33

34 CHAPTER 5. DISCRETIZATION

Number of loads = 2

2. Material properties

Elasticity modulus = 2.0e+8 MPa
Poisson’s ratio = 0.3

3. Node coordinates (x1, y1, x2, y2 etc.)

1) 0 0 2) 0 1 3) 1 0 4) 1 1 5) 2 0 6) 2 1

4. Element connectivity array (counterclockwise direction)

1) 1 3 4 2 2) 3 5 6 4

5. Constraints (node, direction:x = 1; y = 2)

1 1 2 1 1 2 3 2 5 2

6. Nodal forces (node, direction, value)

5 1 0.5 6 1 0.5

While for simple example like the demonstrated above the finite element model can be coded by hand,
it is not practical for real-life models. Various automatic mesh generators are used for creating finite
element models for complex shapes.

5.2 Mesh generation

5.2.1 Mesh generators

The finite element models for practical analysis can contain tens of thousands or even hundreds of
thousands degrees of freedom. It is not possible to create such meshes manually. Mesh generator is
a software tool, which divides the solution domain into many subdomains – finite elements. Mesh
generators can be of different types.

For two-dimensionalproblems, we want to mention two types: block mesh generators and trian-
gulators.

Block mesh generatorsrequire some initial form of gross partitioning. The solution domain is
partitioned in some relatively small number of blocks. Each block should have some standard form.
The mesh inside block is usually generated by mapping technique.

Triangulatorsare typically generate irregular mesh inside arbitrary domains. Voronoi polygons
and Delaunay triangulation are widely used to generate mesh. Later triangular mesh can be transformed
to the mesh consisting of quadrilateral elements. Delaunay triangulation can be generalized for three-
dimensional domains.

5.2.2 Mapping technique

Suppose we want to generate quadrilateral mesh inside a domain that has the shape of curvilinear
quadrilateral. Mapping technique shown in Fig. 5.2 can be used for this purpose.

If each side of the curvilinear quadrilateral domain can be approximated by parabola then the do-
main looks like 8-node isoparametric element. The domain is mapped to a square in the local coordinate

5.2. MESH GENERATION 35

h

h

Dh

Dx

y

x

1
2

3

4

5

6 7
8

9

10

E1

E2

Figure 5.2: Mesh generation with mapping technique.

systemξ, η. The square in coordinatesξ, η is divided into rectangular elements then nodal coordinates
are transformed back to the global coordinate systemx, y.

Algorithm of coordinate calculation for node i

nξ = number of elements inξ direction

nη = number of elements inη direction

Row: R = (i− 1)/(nξ + 1) + 1
Column:C = mod((i− 1), (nξ + 1)) + 1

∆ξ = 2/nξ ∆η = 2/nη

ξ = −1 + ∆ξ(C − 1)
η = −1 + ∆η(R− 1)

x =
∑

Nk(ξ, η)xk

y =
∑

Nk(ξ, η)yk

Connectivities for elemente

Element row:R = (e− 1)/nξ + 1
Element column:C = mod((e− 1), nξ) + 1
Connectivities (global node numbers):

i1 = (R− 1)(nξ + 1) + C
i2 = i1 + 1
i3 = R(nξ + 1) + C + 1
i4 = i3 − 1

Shifting of midside nodes closer to some corner of the domain helps to refine (make smaller elements)
mesh near this corner. If refinement is done on the element side which is parallel to the local axisξ and
the size of the smallest element near the corner node is∆l then the midside node should be moved to

36 CHAPTER 5. DISCRETIZATION

Figure 5.3: Voronoi polygons and Delaunay triangulation.

the position:

α =
lm
l

=
1 + ∆l

l nξ − 2
nξ

4
(
1− 1

nξ

)

Herenξ is the number of elements inξ direction;lm is a distance from the corner node to the midside
node andl is the element side length.

5.2.3 Delaunay triangulation

Consider two-dimensional domain of an arbitrary shape. Letp1, p2, ..., pn be distinct points inside the
domain and at its boundary. Voronoi poligonVi represents a region in the plane whose points are nearer
to nodepi than to any other node. Thus,Vi is an open convex polygon whose boundaries are portions
of the perpendicular bisectors of the lines joining nodepi to nodepj whenVi andVj are contiguous.
Voronoi polygons are shown in Fig. 5.3 by dashed lines.

A vertex of a Voronoi polygon is shared by three adjacent polygons. Connecting of three points
associated with such adjacent three polygons form a truangle, sayTk. The set of trianglesTk is called
the Delaunay triangulation.

Generated triangular mesh can be used for creation of a mesh consisting of quadrilateral elements.
Usually joining triangles with subsequent quality improvement is employed for this purpose.

Chapter 6

Assembly and Solution

6.1 Disassembly and assembly

Disassemblyis a creation of element vectors from a given global vector. Thedisassemblyoperation is
given by the relation:

{Qd} = [A]{Q} (6.1)

Here[A] is the matrix providing correspondence between global and local numbers of nodes (or degrees
of freedom),{Q} is the global vector and{Qd} is the vector composed of the element vectors

{Qd} = {{q1} {q2} ...} (6.2)

For matrices the disassembly operation is not necessary for the finite element procedure implementa-
tion.

Assemblyis the operation of joining element vectors (matrices) in a global vector (matrix). For
vectors theassemblyoperation is given by the relation:

{F} = [A]T {Fd} (6.3)

and for matrices theassemblyoperation is given by the relation:

[K] = [A]T [Kd][A] (6.4)

Here[K] is the global matrix and[Kd] is the following matrix consisting of the element matrices:

[Kd] =




[k1] 0 0
0 [k2] 0
0 0 ...


 (6.5)

Fraction of nonzero (unit) entries in the matrix[A] is very small. Because of this the matrix[A] is never
used explicitly in actual computer codes.

37

38 CHAPTER 6. ASSEMBLY AND SOLUTION

6.2 Disassembly algorithm

Disassembly operation include matrix multiplication with the use of large matrix[A], which gives
correspondence between local and global enumerations. Matrix[A] is almost completely composed of
zeros. It has only one nonzero entry (= 1) in each row. Nonzero entries in[A] provide information
on global addresses where local entries should be taken. Instead of matrix multiplication it is possible
just to take vector elements from their global positions and to put to correspondent positions in element
vector.

Disassembly for one element vector

n = number of degrees of freedom per element
N = total number of degrees of freedom
E = number of elements
C[E,n] = connectivity array
f [n] = element load vector
F [N] = global load vector
e = element number for which we need local vector

do i = 1, n
f [i] = F [C[e, i]]

end do

In the above algorithm we used connectivity information related to degrees of freedom. If connectivity
array contains global node numbers and each node has more than one degrees of freedom then instead
of one number the block related to the node should be selected. For example, in three-dimensional
elasticity problem each node is associated with three displacements (three degrees of freedom).

6.3 Assembly

6.3.1 Assembly algorithm for vectors

Instead of matrix[A], assembly procedures are usually based on direct summation with the use of the
element connectivity array.

Suppose that we need to assemble global load vectorF using element load vectorsf and connec-
tivity arrayC. A pseudocode of assembly algorithm is as follows:

Assembly of the global vector

n = number of degrees of freedom per element
N = total number of degrees of freedom
E = number of elements
C[E,n] = connectivity array
f [n] = element load vector
F [N] = global load vector

do i = 1, N
F [i] = 0

end do
do e = 1, E

generatef
do i = 1, n

6.4. DISPLACEMENT BOUNDARY CONDITIONS 39

F [C[e, i]] = F [C[e, i]] + f [i]
end do

end do

Element load vectors are generated when they are necessary for assembly. It can be seen that connec-
tivity entry C[e, i] simply provides address in the global vector where theith entry of the load vector for
elemente goes. We assume that connectivity array is written in terms of degrees of freedom. In actual
codes the connectivity array contains node numbers which are transformed to degrees of freedom for
the current assembled element.

6.3.2 Assembly algorithm for matrices

An algorithm of assembly of the global stiffness matrixK from contributions of element stiffness
matricesk can be expressed by the following pseudo-code:

Assembly of the global matrix

n = number of degrees of freedom per element
N = total number of degrees of freedom in the domain
E = number of elements
C[E, n] = connectivity array
k[n, n] = element stiffness matrix
K[N, N] = global stiffness matrix

do i = 1, N
do j = 1, N

K[i, j] = 0
end do

end do
do e = 1, E

generatek
do i = 1, n

do j = 1, n
K[C[e, i], C[e, j]] = K[C[e, i], C[e, j]] + k[i, j]

end do
end do

end do

Here for simplicity, element matrices are assembled fully in the full square global matrix. Since the
global stiffness matrix is symmetric and sparse, these facts are used to economize space and time in
actual finite element codes.

6.4 Displacement boundary conditions

Displacement boundary conditions were not accounted in the functional of the total potential energy.
They can be applied to the global equation system after its assembly.

Let us consider application of the displacement boundary condition

Qm = d (6.6)

to the global equation system. Two methods can be used for the specification of the displacement
boundary condition.

40 CHAPTER 6. ASSEMBLY AND SOLUTION

6.4.1 Explicit specification of displacement BC

In the explicit method, we substitute the known value of the displacementQm = d in themth column
and move this column to the right-hand side. Then we put zeros to themth column andmth row of the
matrix except the main diagonal element, which is replaced by 1.

Explicit method:

Fi = Fi −Kimd, i = 1...N, i 6= m

Fm = d

Kmj = 0, j = 1...N

Kim = 0, i = 1...N

Kmm = 1

6.4.2 Method of large number

Method of large number uses the fact that computer computations have limited precision. Results of
double precision computations contain about 15-16 digits. So, addition1.0+1e−17 produces1.0 as the
result.

Method of large number (M >> Kij):

Kmm = M

Fm = Md

The method of large number is simpler than the explicit method of displacement boundary condition
specification. The solution of the finite element problem is the same for both methods.

6.5 Solution of Finite Element Equations

6.5.1 Solution methods

Practical applications of the finite element method lead to large systems of simultaneous linear algebraic
equations.

Fortunately, finite element equation systems possess some properties which allows to reduce stor-
age and computing time. The finite element equation systems are: symmetric, positive definite and
sparse. Symmetry allows to store only half of the matrix including diagonal entries. Positive definite
matrices are characterized by large positive entries on the main diagonal. Solution can be carried out
without pivoting. A sparse matrix contains more zero entries than nonzero entries. Sparsity can be used
to economize storage and computations.

Solution methods for linear equation systems can be divided into two large groups: direct methods
and iterative methods. Direct solution methods are usually used for problems of moderate size. For large
problems iterative methods require less computing time and hence they are preferable.

Matrix storage formats are closely related to the solution methods. Below we consider two solution
methods which are widely used in finite element computer codes. The first method is the direct LDU
solution with profile global stiffness matrix. The second one is the preconditioned conjugate gradient
method with sparse row-wise format of matrix storage.

6.5. SOLUTION OF FINITE ELEMENT EQUATIONS 41

1 2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

j

i

Figure 6.1: Symmetric profile storage of the global matrix.

6.5.2 Direct LDU method with profile matrix

Using symmetric profile format, the global stiffness matrix[A] = Aij of the orderN is stored by
columns as shown in Fig. 6.1. Each column starts from the first top nonzero element and ends at the
diagonal element. The matrix is represented by two arrays:

a[pcol[N + 1]] array of doubles containing matrix elements

pcol[N + 1] integer pointer array for columns.

The ith element ofpcol contains the address of the first column element minus one. The length of the
ith column is given bypcol[i+1]−pcol[i]. The length of the arraya is equal topcol[N +1] (assuming
that array indices begin from 1).

For example, for the matrix shown above, arraypcol has the following contents:

pcol = {0, 1, 3, 6, 8, 12, 15, 19, 22, 24}
It should be noted that proper node ordering can decrease the matrix profile significantly. Usually node
ordering algorithms are based on some heuristic methods because full ordering problem with seeking
global minimum is too time consuming.

We are going to present algorithms in full matrix notationaij . Then, it is necessary to have
relations between two-index notation for the global stiffness matrixaij and arraya used in FORTRAN
or C codes. The location of the first nonzero element in theith column of the matrix a is given by the
following function:

FN(i) = i− (pcol[i + 1]− pcol[i]) + 1). (6.7)

The following correspondence relations can be easily obtained for a transition from two-index notation
to FORTRAN/C notation for a one-dimensional array a:

Aij → a[i + pcol[j + 1]− j] (6.8)

Solution of symmetric linear algebraic system consists of three stages:

Factorization: [A] = [U]T [D][U]
Forward solution: {y} = [U]−T {b}
Back substitution: {x} = [U]−1[D]−1{y}

42 CHAPTER 6. ASSEMBLY AND SOLUTION

The right-looking algorithm of factorization of a symmetric profile matrix is as follows:

LDU factorization (right-looking)

do j = 2, N
Cdivt(j)
do i = j, N

Cmod(j, i)
end do

end do
do j = 2, N

Cdiv(j)
end do

Cdivt(j) =
do i = FN(j)), j − 1

ti = Aij/Aii

end do

Cmod(j, i) =
do k = max(FN(i), FN(j)), i− 1

Aji = Aji − tkAki

end do

Cdiv(j) =
do i = FN(j)), j − 1

Aij/ = Aii

end do

Forward solution with triangular matrix and back substitution are given by the pseudo-code:

Forward reduction and back substitution

do j = 2, N
do i = FN(j), j − 1

bj = bj −Aij ∗ bi

end do
end do

do j = 1, N
bj = bj/Ajj

end do
do i = N, 1,−1

do i = FN(j), j − 1
bi = bi −Aij ∗ bj

end do
end do

6.5. SOLUTION OF FINITE ELEMENT EQUATIONS 43

6.5.3 Tuning of the LDU factorization

Do loop, which takes most time of LDU decomposition is contained in the procedureCmod(j, i). One
column of the matrix is used to modify another column inside inner do loop. Two operands should
be loaded from memory in order to perform one Floating-point Multiply-Add (FMA) operation. Data
loads can be economized by tuning with the use of blocking technique. After unrolling two outer loops,
the tuned version of the LDU decomposition is as follows:

do j = 1, N, d
Bdivt(j, d)
do i = j + d,N, d

BBmod(j, i)
end do

end do
do j = 2, N

Cdiv(j)
end do

Bdivt(k, d) =
do j = k, k + d− 1

do i = FN(k)), j − 1
tij = Aij/Aii

end do
do i = j, k + d− 1

do l = max(FN(j), FN(i)), j − 1
Aji = Aji − tljAli

end do
end do

end do

BBmod(j, i, d = 2) =
do k = max(FN(j), FN(i)), j − 1

Aji = Aji − tkjAki

Aj+1i = Aj+1i − tkj+1Aki

Aji+1 = Aji+1 − tkjAki+1

Aj+1i+1 = Aj+1i+1 − tkj+1Aki+1

end do
if j >= FN(j)then

Aj+1i = Aj+1i − tjj+1Aji

Aj+1i+1 = Aj+1i+1 − tjj+1Aji+1

end if

ProcedureBBmod(j, i, d) performs modification of a column block, which starts from columni by a
column block, which starts from columnj and containsd columns. The pseudo-code above is given
for the block sized = 2 for brevity. Such block size is suitable for the solution of two-dimensional
problems. In three-dimensional problems, where each node contains tree degrees of freedom, the block
sized = 3 should be used. In the algorithm above, it is assumed that columns in the block start at the
same row of the matrixA. This is fulfilled automatically if the column block contains columns, which
are related to one node of the finite element model.

44 CHAPTER 6. ASSEMBLY AND SOLUTION

Tuning of the LDU decomposition significantly affects the solution speed. For C codes the solution
time can be decreased by about two times. For Java code, tuned solution can take four times less time
than untuned algorithm.

6.5.4 Preconditioned conjugate gradient method

A simple and efficient iterative method widely used for the solution of sparse systems is the conjugate
gradient (CG) method. In many cases the convergence rate of CG method can be too slow for practical
purposes. The convergence rate can be considerably improved by using preconditioning of the equation
system:

[M]−1[A]x = [M]−1{b} (6.9)

where[M]−1 is the preconditioning matrix which in some sense approximates[A]−1. The simplest
preconditioning is diagonal preconditioning, in which[M] contains only diagonal entries of the matrix
[A]. Typical algorithm of PCG method can be presented as the following sequence of computations:

PCG algorithm

Compute[M]
{x0} = 0
{r0} = {b}
do i = 0, 1...
{wi = [M]−1{ri}
γi = {ri}T {wi}
if i = 0 {pi} = {wi}
else{pi} = {wi}+ (γi/γi−1){pi−1}
{wi} = [A]{pi}
βi = {pi}T {wi}
{xi} = {xi−1}+ (γi/βi){pi}
{ri} = {ri−1} − (γi/βi){pi}
if γi/γ0 < ε exit

end do

In the above PCG algorithm, matrix[A] is not changed during computations. This means that no
additional fill arise in the solution process. Because of this, the sparse row-wise format is an efficient
storage scheme for PCG iterative method. In this scheme, the values of nonzero entries of matrix[A] are
stored by rows along with their corresponding column indices; additional array points to the beginning
of each row. Thus the matrix in the sparse row-wise format is represented by the following three arrays:

A[pcol[N + 1]] = array containing nonzero entries of the matrix;

col[pcol[N + 1]] = column numbers for nonzero entries;

pcol[N + 1] = pointers to the beginning of each row.

The following pseudocode explains matrix-vector multiplication{w} = [A]{p} when matrix[A] is
stored in the sparse row-wise format:

Matrix-vector multiplication in sparse-row format

do j = 1, N
w[j] = 0
do i = pcol[j], pcol[j + 1]− 1

6.5. SOLUTION OF FINITE ELEMENT EQUATIONS 45

w[j] = w[j] + A[i] ∗ p[coln[i]]
end do

end do

