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Preface

Mechanics of Materials is the second volume of a three-volume
textbook on Engineering Mechanics. Volume 1 deals with Statics
while Volume 3 contains Dynamics. The original German version
of this series has been the bestselling textbook on mechanics for
more than two decades; its 11th edition is currently being publis-
hed.

It is our intention to present to engineering students the basic
concepts and principles of mechanics in the clearest and simp-
lest form possible. A major objective of this book is to help the
students to develop problem solving skills in a systematic manner.

The book has been developed from the many years of teaching
experience gained by the authors while giving courses on engi-
neering mechanics to students of mechanical, civil and electrical
engineering. The contents of the book correspond to the topics
normally covered in courses on basic engineering mechanics, also
known in some countries as strength of materials, at universities
and colleges. The theory is presented in as simple a form as the
subject allows without becoming imprecise. This approach makes
the text accessible to students from different disciplines and al-
lows for their different educational backgrounds. Another aim of
the book is to provide students as well as practising engineers with
a solid foundation to help them bridge the gaps between under-
graduate studies and advanced courses on mechanics and practical
engineering problems.

A thorough understanding of the theory cannot be acquired
by merely studying textbooks. The application of the seemingly
simple theory to actual engineering problems can be mastered
only if the student takes an active part in solving the numerous
examples in this book. It is recommended that the reader tries to
solve the problems independently without resorting to the given
solutions. In order to focus on the fundamental aspects of how the
theory is applied, we deliberately placed no emphasis on numerical
solutions and numerical results.
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Introduction

Volume 1 (Statics) showed how external and internal forces acting
on structures can be determined with the aid of the equilibrium
conditions alone. In doing so, real physical bodies were appro-
ximated by rigid bodies. However, this idealisation is often not
adequate to describe the behaviour of structural elements or who-
le structures. In many engineering problems the deformations also
have to be calculated, for example in order to avoid inadmissibly
large deflections. The bodies must then be considered as being
deformable.

It is necessary to define suitable geometrical quantities to de-
scribe the deformations. These quantities are the displacements
and the strains. The geometry of deformation is given by kinema-
tic equations; they connect the displacements and the strains.

In addition to the deformations, the stressing of structural mem-
bers is of great practical importance. In Volume 1 we calculated
the internal forces (the stress resultants). The stress resultants
alone, however, allow no statement regarding the load carrying
ability of a structure: a slender rod or a stocky rod, respectively,
made of the same material will fail under different loads. Therefo-
re, the concept of the state of stress is introduced. The amount of
load that a structure can withstand can be assessed by comparing
the calculated stress with an allowable stress which is based on
experiments and safety requirements.

The stresses and strains are connected in the constitutive equa-
tions. These equations describe the behaviour of the material and
can be obtained only from experiments. The most important me-
tallic or non-metallic materials exhibit a linear relationship bet-
ween the stress and the strain provided that the stress is small
enough. Robert Hooke (1635–1703) first formulated this fact in
the language of science at that time: ut tensio sic vis (lat., as the
extension, so the force). A material that obeys Hooke’s law is cal-
led linearly elastic; we will simply refer to it as elastic.

In the present text we will restrict ourselves to the statics of ela-
stic structures. We will always assume that the deformations and
thus the strains are very small. This assumption is satisfied in ma-
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ny technically important problems. It has the advantage that the
equilibrium conditions can be formulated using the undeformed
geometry of the system. In addition, the kinematic relations have
a simple form in this case. Only in stability problems (see Chapter
7, Buckling) the equilibrium conditions must be formulated in the
deformed geometry.

The solution of problems is based on three different types of
equations: a) equilibrium conditions, b) kinematic relations and
c) constitutive equations. In the case of a statically determinate
system, these equations are uncoupled. The stress resultants and
the stresses can be calculated directly from the equilibrium con-
ditions. The strains follow subsequently from Hooke’s law and the
deformations are obtained from the kinematic relations.

Since we now consider the deformations of structures, we are
able to analyse statically indeterminate systems and to calculate
the forces and displacements. In such systems, the equilibrium
conditions, the kinematic relations and Hooke’s law represent a
system of coupled equations.

We will restrict our investigations only to a few technically im-
portant problems, namely, rods subjected to tension/compression
or torsion and beams under bending. In order to derive the re-
levant equations we frequently employ certain assumptions con-
cerning the deformations or the distribution of stresses. These
assumptions are based on experiments and enable us to formulate
the problems with sufficient accuracy.

Special attention will be given to the notion of work and to ener-
gy methods. These methods allow a convenient solution of many
problems. Their derivation and application to practical problems
are presented in Chapter 6.

Investigations of the behaviour of deformable bodies can be
traced back to Leonardo da Vinci (1452–1519) and Galileo Ga-
lilei (1564–1642) who derived theories on the bearing capacities
of rods and beams. The first systematic investigations regarding
the deformation of beams are due to Jakob Bernoulli (1655–1705)
and Leonhard Euler (1707–1783). Euler also developed the theo-
ry of the buckling of columns; the importance of this theory was
recognized only much later. The basis for a systematic theory of
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elasticity was laid by Augustin Louis Cauchy (1789–1857); he in-
troduced the notions of the state of stress and the state of strain.
Since then, engineers, physicists and mathematicians expanded
the theory of elasticity as well as analytical and numerical me-
thods to solve engineering problems. These developments continue
to this day. In addition, theories have been developed to describe
the non-elastic behaviour of materials (for example, plastic beha-
viour). The investigation of non-elastic behaviour, however, is not
within the scope of this book.
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Tension and Compression in Bars





1 Tension and Compression in
Bars

1.1 Stress.............................................................. 7

1.2 Strain.............................................................. 13

1.3 Constitutive Law................................................ 14

1.4 Single Bar under Tension or Compression................. 18

1.5 Statically Determinate Systems of Bars ................... 29

1.6 Statically Indeterminate Systems of Bars ................. 33

1.7 Supplementary Examples...................................... 40

1.8 Summary ......................................................... 46

Objectives: In this textbook about the Mechanics of Ma-
terials we investigate the stressing and the deformations of elastic
structures subject to applied loads. In the first chapter we will re-
strict ourselves to the simplest structural members, namely, bars
under tension or compression.

In order to treat such problems, we need kinematic relations and
a constitutive law to complement the equilibrium conditions which
are known from Volume 1. The kinematic relations represent the
geometry of the deformation, whereas the behaviour of the elastic
material is described by the constitutive law. The students will
learn how to apply these equations and how to solve statically
determinate as well as statically indeterminate problems.

D. Gross et al., Engineering Mechanics 2,
DOI 10.1007/978-3-642-12886-8_1, © Springer-Verlag Berlin Heidelberg 2011



1.1 Stress 7

1.11.1 Stress
Let us consider a straight bar with a constant cross-sectional area
A. The line connecting the centroids of the cross sections is called
the axis of the bar. The ends of the bar are subjected to the forces
F whose common line of action is the axis (Fig. 1.1a).

The external load causes internal forces. The internal forces
can be visualized by an imaginary cut of the bar (compare Volu-
me 1, Section 1.4). They are distributed over the cross section (see
Fig. 1.1b) and are called stresses. Being area forces, they have the
dimension force per area and are measured, for example, as mul-
tiples of the unit MPa (1 MPa = 1 N/mm2). The unit “Pascal”
(1 Pa = 1 N/m2) is named after the mathematician and physicist
Blaise Pascal (1623–1662); the notion of “stress” was introduced
by Augustin Louis Cauchy (1789–1857). In Volume 1 (Statics) we
only dealt with the resultant of the internal forces (= normal for-
ce) whereas now we have to study the internal forces (= stresses).

b

a d

e

c

ϕ

τσ

c

ϕ

F

F

F

F

Fσ

F

F

c

F

c

F F

τ σ

A

c
A∗= A

cosϕ

N

Fig. 1.1

In order to determine the stresses we first choose an imaginary
cut c − c perpendicular to the axis of the bar. The stresses are
shown in the free-body diagram (Fig. 1.1b); they are denoted by
σ. We assume that they act perpendicularly to the exposed surface
A of the cross section and that they are uniformly distributed.
Since they are normal to the cross section they are called normal
stresses. Their resultant is the normal force N shown in Fig. 1.1c
(compare Volume 1, Section 7.1). Therefore we have N = σA and
the stresses σ can be calculated from the normal force N :
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σ =
N

A
. (1.1)

In the present example the normal force N is equal to the applied
force F . Thus, we obtain from (1.1)

σ =
F

A
. (1.2)

In the case of a positive normal force N (tension) the stress σ
is then positive (tensile stress). Reversely, if the normal force is
negative (compression) the stress is also negative (compressive
stress).

Let us now imagine the bar being sectioned by a cut which is
not orthogonal to the axis of the bar so that its direction is given
by the angle ϕ (Fig. 1.1d). The internal forces now act on the
exposed surface A∗ = A/ cosϕ. Again we assume that they are
uniformly distributed. We resolve the stresses into a component σ
perpendicular to the surface (the normal stress) and a component
τ tangential to the surface (Fig. 1.1e). The component τ which
acts in the direction of the surface is called shear stress.

Equilibrium of the forces acting on the left portion of the bar
yields (see Fig. 1.1e)

→ : σA∗ cosϕ+ τA∗ sinϕ− F = 0 ,

↑ : σA∗ sinϕ− τA∗ cosϕ = 0 .

Note that we have to write down the equilibrium conditions for
the forces, not for the stresses. With A∗ = A/ cosϕ we obtain

σ + τ tanϕ =
F

A
, σ tanϕ− τ = 0 .

Solving these two equations for σ and τ yields

σ =
1

1 + tan2 ϕ

F

A
, τ =

tanϕ
1 + tan2 ϕ

F

A
.
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It is practical to write these equations in a different form. Using
the standard trigonometric relations

1
1 + tan2 ϕ

= cos2 ϕ , cos2 ϕ =
1
2
(1 + cos 2ϕ) ,

sinϕ cosϕ =
1
2

sin 2ϕ

and the abbreviation σ0 = F/A (= normal stress in a section
perpendicular to the axis) we finally get

σ =
σ0

2
(1 + cos 2ϕ) , τ =

σ0

2
sin 2ϕ . (1.3)

Thus, the stresses depend on the direction of the cut. If σ0 is
known, the stresses σ and τ can be calculated from (1.3) for arbi-
trary values of the angle ϕ. The maximum value of σ is obtained
for ϕ = 0, in which case σmax = σ0; the maximum value of τ is
found for ϕ = π/4 for which τmax = σ0/2.

If we section a bar near an end which is subjected to a concen-
trated force F (Fig. 1.2a, section c − c) we find that the normal
stress is not distributed uniformly over the cross-sectional area.
The concentrated force produces high stresses near its point of
application (Fig. 1.2b). This phenomenon is known as stress con-
centration. It can be shown, however, that the stress concentration
is restricted to sections in the proximity of the point of application
of the concentrated force: the high stresses decay rapidly towards
the average value σ0 as we increase the distance from the end of the
bar. This fact is referred to as Saint-Venant’s principle (Adhémar
Jean Claude Barré de Saint-Venant, 1797–1886).

Fig. 1.2

b

a

c

cc′

c′ c F

F

FF

F

F

σ

σ



10 1 Tension and Compression in Bars

The uniform distribution of the stress is also disturbed by holes,
notches or any abrupt changes (discontinuities) of the geometry.
If, for example, a bar has notches the remaining cross-sectional
area (section c′ − c′) is also subjected to a stress concentration
(Fig. 1.2c). The determination of these stresses is not possible
with the elementary analysis presented in this textbook.

Let us now consider a bar with only a slight taper (compare Ex-
ample 1.1). In this case the normal stress may be calculated from
(1.1) with a sufficient accuracy. Then the cross-sectional area A
and the stress σ depend on the location along the axis. If volume
forces act in the direction of the axis in addition to the concentra-
ted forces, then the normal force N also depends on the location.
Introducing the coordinate x in the direction of the axis we can
write:

σ(x) =
N(x)
A(x)

. (1.4)

Here it is also assumed that the stress is uniformly distributed
over the cross section at a fixed value of x.

In statically determinate systems we can determine the normal
force N from equilibrium conditions alone. If the cross-sectional
area A is known, the stress σ can be calculated from (1.4). Stati-
cally indeterminate systems will be treated in Section 1.4.

In engineering applications structures have to be designed in
such a way that a given maximum stressing is not exceeded. In
the case of a bar this requirement means that the absolute value
of the stress σ must not exceed a given allowable stress σallow :
|σ| ≤ σallow. (Note that the allowable stresses for tension and for
compression are different for some materials.) The required cross
section Areq of a bar for a given load and thus a known normal
force N can then be determined from σ = N/A:

Areq =
|N |
σallow

. (1.5)

This is referred to as dimensioning of the bar. Alternatively, the
allowable load can be calculated from |N | ≤ σallowA in the case
of a given cross-sectional area A.
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Note that a slender bar which is subjected to compression may
fail due to buckling before the stress attains an inadmissibly large
value. We will investigate buckling problems in Chapter 7.

E1.1Example 1.1 A bar (length l) with a circular cross section and a
slight taper (linearly varying from radius r0 to 2 r0) is subjected
to the compressive forces F as shown in Fig. 1.3a.

Determine the normal stress σ in an arbitrary cross section
perpendicular to the axis of the bar.

ba l
F

x
F

r(x)
F

r0
2r0

F

Fig. 1.3

Solution We introduce the coordinate x, see Fig. 1.3b. Then the
radius of an arbitrary cross section is given by

r(x) = r0 +
r0
l
x = r0

(
1 +

x

l

)
.

Using (1.4) with the cross section A(x) = π r2(x) and the constant
normal force N = −F yields

σ =
N

A(x)
=

−F
πr20

(
1 +

x

l

)2
.

The minus sign indicates that σ is a compressive stress. Its value
at the left end (x = 0) is four times the value at the right end
(x = l).

E1.2Example 1.2 A water tower (height H , density �) with a cross
section in the form of a circular ring carries a tank (weight W0)
as shown in Fig. 1.4a. The inner radius ri of the ring is constant.

Determine the outer radius r in such a way that the normal
stress σ0 in the tower is constant along its height. The weight of
the tower cannot be neglected.
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�������
�������
�������
�������

a b

ri

H

dx

A

σ0

σ0

W0

x
r

r(x)

A+dA

dW

ri

Fig. 1.4

Solution We consider the tower to be a slender bar. The relation-
ship between stress, normal force and cross-sectional area is given
by (1.4). In this example the constant compressive stress σ = σ0

is given; the normal force (here counted positive as compressive
force) and the area A are unknown.

The equilibrium condition furnishes a second equation. We in-
troduce the coordinate x as shown in Fig. 1.4b and consider a slice
element of length dx. The cross-sectional area of the circular ring
as a function of x is

A = π(r2 − r2i ) (a)

where r = r(x) is the unknown outer radius. The normal force
at the location x is given by N = σ0A (see 1.4). At the location
x+ dx, the area and the normal force are A+ dA and N + dN =
σ0(A+ dA).

The weight of the element is dW = � g dV where dV = Adx
is the volume of the element. Note that terms of higher order are
neglected (compare Volume 1, Section 7.2.2). Equilibrium in the
vertical direction yields

↑: σ0(A+ dA)− � g dV − σ0A = 0 → σ0 dA− � g Adx = 0 .

Separation of variables and integration lead to
∫

dA
A

=
∫
� g

σ0
dx → ln

A

A0
=
� g x

σ0
→ A = A0 e

� g x
σ0 . (b)
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The constant of integration A0 follows from the condition that the
stress at the upper end of the tower (for x = 0 we have N = W0)
also has to be equal to σ0:

W0

A0
= σ0 → A0 =

W0

σ0
. (c)

Equations (a) to (c) yield the outer radius:

r2(x) = r2i +
W0

π σ0
e

� g x
σ0 .

1.21.2 Strain
We will now investigate the deformations of an elastic bar. Let
us first consider a bar with a constant cross-sectional area which
has the undeformed length l. Under the action of tensile forces
(Fig. 1.5) it gets slightly longer. The elongation is denoted by Δl
and is assumed to be much smaller than the original length l. As a
measure of the amount of deformation, it is useful to introduce, in
addition to the elongation, the ratio between the elongation and
the original (undeformed) length:

ε =
Δl
l
. (1.6)

The dimensionless quantity ε is called strain. If, for example, a
bar of the length l = 1 m undergoes an elongation of Δl = 0.5
mm then we have ε = 0.5 · 10−3. This is a strain of 0.05%. If the
bar gets longer (Δl > 0) the strain is positive; it is negative in the
case of a shortening of the bar. In what follows we will consider
only small deformations: |Δl| � l or |ε| � 1, respectively.

The definition (1.6) for the strain is valid only if ε is constant
over the entire length of the bar. If the cross-sectional area is not

F F

l Δl

Fig. 1.5
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deformed bar

undeformed bar

dx

u

dx+(u+du)−u

x

u+du

Fig. 1.6

constant or if the bar is subjected to volume forces acting along its
axis, the strain may depend on the location. In this case we have
to use a local strain which will be defined as follows. We consider
an element of the bar (Fig. 1.6) instead of the whole bar. It has
the length dx in the undeformed state. Its left end is located at x,
the right end at x+ dx. If the bar is elongated, the cross sections
undergo displacements in the x-direction which are denoted by u.
They depend on the location: u = u(x). Thus, the displacements
are u at the left end of the element and u + du at the right end.
The length of the elongated element is dx+(u+du)−u = dx+du.
Hence, the elongation of the element is given by du. Now the local
strain can be defined as the ratio between the elongation and the
undeformed length of the element:

ε(x) =
du
dx

. (1.7)

If the displacement u(x) is known, the strain ε(x) can be de-
termined through differentiation. Reversely, if ε(x) is known, the
displacement u(x) is obtained through integration.

The displacement u(x) and the strain ε(x) describe the geo-
metry of the deformation. Therefore they are called kinematic
quantities. Equation (1.7) is referred to as a kinematic relation.

1.3 1.3 Constitutive Law
Stresses are quantities derived from statics; they are a measure for
the stressing in the material of a structure. On the other hand,
strains are kinematic quantities; they measure the deformation
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of a body. However, the deformation depends on the load which
acts on the body. Therefore, the stresses and the strains are not
independent. The physical relation that connects these quantities
is called constitutive law. It describes the behaviour of the material
of the body under a load. It depends on the material and can be
obtained only with the aid of experiments.

One of the most important experiments to find the relationship
between stress and strain is the tension or compression test. Here,
a small specimen of the material is placed into a testing machine
and elongated or shortened. The force F applied by the machine
onto the specimen can be read on the dial of the machine; it
causes the normal stress σ = F/A. The change Δl of the length l
of the specimen can be measured and the strain ε = Δl/l can be
calculated.

The graph of the relationship between stress and strain is shown
schematically (not to scale) for a steel specimen in Fig. 1.7. This
graph is referred to as stress-strain diagram. One can see that
for small values of the strain the relationship is linear (straight
line) and the stress is proportional to the strain. This behaviour
is valid until the stress reaches the proportional limit σP . If the
stress exceeds the proportional limit the strain begins to increase
more rapidly and the slope of the curve decreases. This continues
until the stress reaches the yield stress σY . From this point of the
stress-strain diagram the strain increases at a practically constant
stress: the material begins to yield. Note that many materials do

Fig. 1.7
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not exhibit a pronounced yield point. At the end of the yielding the
slope of the curve increases again which shows that the material
can sustain an additional load. This phenomenon is called strain
hardening.

Experiments show that an elongation of the bar leads to a re-
duction of the cross-sectional area A. This phenomenon is referred
to as lateral contraction. Whereas the cross-sectional area decrea-
ses uniformly over the entire length of the bar in the case of small
stresses, it begins to decrease locally at very high stresses. This
phenomenon is called necking. Since the actual cross section Aa

may then be considerably smaller than the original cross section
A, the stress σ = F/A does not describe the real stress any more.
It is therefore appropriate to introduce the stress σt = F/Aa which
is called true stress or physical stress. It represents the true stress
in the region where necking takes place. The stress σ = F/A is re-
ferred to as nominal or conventional or engineering stress. Fig. 1.7
shows both stresses until fracture occurs.

Consider a specimen being first loaded by a force which causes
the stress σ. Assume that σ is smaller than the yield stress σY ,
i.e., σ < σY . Subsequently, the load is again removed. Then the
specimen will return to its original length: the strain returns to
zero. In addition, the curves during the loading and the unloa-
ding coincide. This behaviour of the material is called elastic; the
behaviour in the region σ ≤ σP is referred to as linearly elastic.
Now assume that the specimen is loaded beyond the yield stress,
i.e., until a stress σ > σY is reached. Then the curve during the
unloading is a straight line which is parallel to the straight line
in the linear-elastic region, see Fig. 1.7. If the load is completely
removed the strain does not return to zero: a plastic strain εpl re-
mains after the unloading. This material behaviour is referred to
as plastic.

In the following we will always restrict ourselves to a linearly-
elastic material behaviour. For the sake of simplicity we will refer
to this behaviour shortly as elastic, i.e., in what follows “elastic”
always stands for “linearly elastic”. Then we have the linear rela-
tionship
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Table 1.1 Material Constants

Material E in MPa αT in 1/◦C

Steel 2,1·105 1,2·10−5

Aluminium 0,7·105 2,3·10−5

Concrete 0,3·105 1,0·10−5

Wood (in fibre direction) 0,7... 2,0·104 2,2 ... 3,1·10−5

Cast iron 1,0·105 0,9·10−5

Copper 1,2·105 1,6·10−5

Brass 1,0·105 1,8·10−5

σ = E ε (1.8)

between the stress and the strain. The proportionality factor E is
called modulus of elasticity or Young’s modulus (Thomas Young,
1773–1829). The constitutive law (1.8) is called Hooke’s law after
Robert Hooke (1635–1703). Note that Robert Hooke could not
present this law in the form (1.8) since the notion of stress was
introduced only in 1822 by Augustin Louis Cauchy (1789–1857).

The relation (1.8) is valid for tension and for compression: the
modulus of elasticity has the same value for tension and compres-
sion. However, the stress must be less than the proportional limit
σP which may be different for tension or compression.

The modulus of elasticity E is a constant which depends on the
material and which can be determined with the aid of a tension
test. It has the dimension of force/area (which is also the dimen-
sion of stress); it is given, for example, in the unit MPa. Table 1.1
shows the values of E for several materials at room temperature.
Note that these values are just a guidance since the modulus of
elasticity depends on the composition of the material and on the
temperature.
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A tensile or a compressive force, respectively, causes the strain

ε = σ/E (1.9)

in a bar, see (1.8). Changes of the length and thus strains are
not only caused by forces but also by changes of the temperature.
Experiments show that the thermal strain εT is proportional to
the change ΔT of the temperature if the temperature of the bar
is changed uniformly across its section and along its length:

εT = αT ΔT . (1.10)

The proportionality factor αT is called coefficient of thermal ex-
pansion. It is a material constant and is given in the unit 1/◦C.
Table 1.1 shows several values of αT .

If the change of the temperature is not the same along the
entire length of the bar (if it depends on the location) then (1.10)
represents the local strain εT (x) = αT ΔT (x).

If a bar is subjected to a stress σ as well as to a change ΔT of the
temperature, the total strain ε is obtained through a superposition
of (1.9) and (1.10):

ε =
σ

E
+ αT ΔT . (1.11)

This relation can also be written in the form

σ = E(ε− αT ΔT ) . (1.12)

1.4 1.4 Single Bar under Tension or Compression
There are three different types of equations that allow us to de-
termine the stresses and the strains in a bar: the equilibrium con-
dition, the kinematic relation and Hooke’s law. Depending on the
problem, the equilibrium condition may be formulated for the en-
tire bar, a portion of the bar (see Section 1.1) or for an element
of the bar. We will now derive the equilibrium condition for an
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Fig. 1.8

element. For this purpose we consider a bar which is subjected to
two forces F1 and F2 at its ends and to a line load n = n(x), see
Fig. 1.8a. The forces are assumed to be in equilibrium. We imagine
a slice element of infinitesimal length dx separated from the bar
as shown in Fig. 1.8b. The free-body diagram shows the normal
forces N and N + dN , respectively, at the ends of the element;
the line load is replaced by its resultant ndx (note that n may be
considered to be constant over the length dx, compare Volume 1,
Section 7.2.2). Equilibrium of the forces in the direction of the
axis of the bar

→: N + dN + n dx−N = 0

yields the equilibrium condition

dN
dx

+ n = 0 . (1.13)

In the special case of a vanishing line load (n ≡ 0) the normal
force in the bar is constant.

The kinematic relation for the bar is (see (1.7))

ε =
du
dx

,

and Hooke’s law is given by (1.11):

ε =
σ

E
+ αT ΔT .

If we insert the kinematic relation and σ = N/A into Hooke’s
law we obtain
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du
dx

=
N

EA
+ αT ΔT . (1.14)

This equation relates the displacements u(x) of the cross sections
and the normal force N(x). It may be called the constitutive law
for the bar. The quantity EA is known as axial rigidity. Equations
(1.13) and (1.14) are the basic equations for a bar under tension
or compression.

The displacement u of a cross section is found through integra-
tion of the strain:

ε =
du
dx

→
∫

du =
∫
ε dx → u(x)− u(0) =

x∫

0

ε dx̄ .

The elongation Δl follows as the difference of the displacements
at the ends x = l and x = 0 of the bar:

Δl = u(l)− u(0) =

l∫

0

ε dx . (1.15)

With ε = du/dx and (1.14) this yields

Δl =

l∫

0

(
N

EA
+ αT ΔT

)
dx . (1.16)

In the special case of a bar (length l) with constant axial rigidity
(EA = const) which is subjected only to forces at its end (n ≡
0, N = F ) and to a uniform change of the temperature (ΔT =
const), the elongation is given by

Δl =
F l

EA
+ αT ΔT l . (1.17)

If, in addition, ΔT = 0 we obtain
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Δl =
F l

EA
, (1.18)

and if F = 0, (1.17) reduces to

Δl = αT ΔT l . (1.19)

If we want to apply these equations to specific problems, we
have to distinguish between statically determinate and statical-
ly indeterminate problems. In a statically determinate system we
can always calculate the normal force N(x) with the aid of the
equilibrium condition. Subsequently, the strain ε(x) follows from
σ = N/A and Hooke’s law ε = σ/E. Finally, integration yields the
displacement u(x) and the elongation Δl. A change of the tem-
perature causes only thermal strains (no stresses!) in a statically
determinate system.

In a statically indeterminate problem the normal force cannot
be calculated from the equilibrium condition alone. In such pro-
blems the basic equations (equilibrium condition, kinematic re-
lation and Hooke´s law) are a system of coupled equations and
have to be solved simultaneously. A change of the temperature in
general causes additional stresses; they are called thermal stresses.

Finally we will reduce the basic equations to a single equation
for the displacement u. If we solve (1.14) for N and insert into
(1.13) we obtain

(EAu′)′ = − n+ (EAαT ΔT )′ . (1.20a)

Here, the primes denote derivatives with respect to x. Equation
(1.20a) simplifies in the special case EA = const and ΔT = const
to

EAu′′ = − n . (1.20b)

If the functions EA(x), n(x) and ΔT (x) are given, the displace-
ment u(x) of an arbitrary cross section can be determined through
integration of (1.20). The constants of integration are calculated
from the boundary conditions. If, for example, one end of the bar
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is fixed then u = 0 at this end. If, on the other hand, one end of the
bar can move and is subjected to a force F0, then applying (1.14)
and N = F0 yields the boundary condition u′ = F0/EA+αT ΔT .
This reduces to the boundary condition u′ = 0 in the special case
of a stress-free end (F0 = 0) of a bar whose temperature is not
changed (ΔT = 0).

Frequently, one or more of the quantities in (1.20) are given
through different functions of x in different portions of the bar
(e.g., if there exists a jump of the cross section). Then the bar
must be divided into several regions and the integration has to
be performed separately in each of theses regions. In this case the
constants of integration can be calculated from boundary conditi-
ons and matching conditions (compare Volume 1, Section 7.2.4).

a b

������

l W

N(x)

W ∗= l−x
l

W

x

Fig. 1.9

As an illustrative example of a statically determinate system
let us consider a slender bar (weight W , cross-sectional area A)
that is suspended from the ceiling (Fig. 1.9a). First we determine
the normal force caused by the weight of the bar. We cut the bar
at an arbitrary position x (Fig. 1.9b). The normal force N is equal
to the weight W ∗ of the portion of the bar below the imaginary
cut. Thus, it is given by N(x) = W ∗(x) = W (l − x)/l. Equation
(1.4) now yields the normal stress

σ(x) =
N(x)
A

=
W

A

(
1− x

l

)
.
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Accordingly, the normal stress in the bar varies linearly; it decre-
ases from the value σ(0) = W/A at the upper end to σ(l) = 0 at
the free end.

The elongation Δl of the bar due to its own weight is obtained
from (1.16):

Δl =

l∫

0

N

EA
dx =

W

EA

l∫

0

(
1− x

l

)
dx =

1
2
W l

EA
.

It is half the elongation of a bar with negligible weight which is
subjected to the force W at the free end.

We may also solve the problem by applying the differential
equation (1.20b) for the displacements u(x) of the cross sections
of the bar. Integration with the constant line load n = W/l yields

EAu′′ = − W

l
,

EAu′ = − W

l
x+ C1 ,

EAu = − W

2 l
x2 + C1 x+ C2 .

The constants of integration C1 and C2 can be determined from
the boundary conditions. The displacement of the cross section
at the upper end of the bar is equal to zero: u(0) = 0. Since the
stress σ vanishes at the free end, we have u′(l) = 0. This leads
to C2 = 0 and C1 = W . Thus, the displacement and the normal
force are given by

u(x) =
1
2
W l

EA

(
2
x

l
− x2

l2

)
, N(x) = EAu′(x) = W

(
1− x

l

)
.

Since u(0) = 0, the elongation is equal to the displacement of the
free end:

Δl = u(l) =
1
2
W l

EA
.
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The stress is obtained as

σ(x) =
N(x)
A

=
W

A

(
1− x

l

)
.

As an illustrative example of a statically indeterminate system
let us consider a bar which is placed stress-free between two rigid
walls (Fig. 1.10a). It has the cross-sectional areas A1 and A2,
respectively. We want to determine the support reactions if the
temperature of the bar is raised uniformly by an amount ΔT in
region .

The free-body diagram (Fig. 1.10b) shows the two support re-
actions B and C. They cannot be calculated from only one equi-
librium condition:

→: B − C = 0 .
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Therefore we have to take into account the deformation of the bar.
The elongations in the regions and are given by (1.16) with
N = −B = −C:

Δl1 =
N l

EA1
+ αT ΔT l , Δl2 =

N l

EA2

(the temperature in region is not changed).
The bar is placed between two rigid walls. Thus, its total elon-

gation Δl has to vanish:

Δl = Δl1 + Δl2 = 0 .

This equation expresses the fact that the geometry of the defor-
mation has to be compatible with the restraints imposed by the
supports. Therefore it is called compatibility condition.
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The equilibrium condition and the compatibility condition yield
the unknown support reactions:

N l

EA1
+αT ΔT l+

N l

EA2
= 0 → B = C = −N =

EA1A2 αT ΔT
A1 +A2

.

The problem may also be solved in the following way. In a first
step we generate a statically determinate system. This is achie-
ved by removing one of the supports, for example support C. The
action of this support on the bar is replaced by the action of the
force C = X which is as yet unknown. Note that one of the sup-
ports, for example B, is needed to have a statically determinate
system. The other support, C, is in excess of the necessary sup-
port. Therefore the reaction C is referred to as being a redundant
reaction.

Now we need to consider two different problems. First, we in-
vestigate the statically determinate system subjected to the given
load (here: the change of the temperature in region ) which is
referred to as “0“-system or primary system (Fig. 1.10c). In this
system the change of the temperature causes the thermal elon-
gation Δl(0)1 (normal force N = 0) in region ; the elongation
in region is zero. Thus, the displacement u(0)

C of the right end
point of the bar is given by

u
(0)
C = Δl(0)1 = αT ΔT l .

Secondly we consider the statically determinate system subjec-
ted only to force X . It is called “1“-system and is also shown in
Fig. 1.10c. Here the displacement u(1)

C of the right end point is

u
(1)
C = Δl(1)1 + Δl(1)2 = − X l

EA1
− X l

EA2
.

Both the applied load (here: ΔT ) as well as the force X act in
the given problem (Fig. 1.10a). Therefore, the total displacement
uC at point C follows through superposition:

uC = u
(0)
C + u

(1)
C .
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Since the rigid wall in the original system prevents a displacement
at C, the geometric condition

uC = 0

has to be satisfied. This leads to

αT ΔT l − X l

EA1
− X l

EA2
= 0 → X = C =

EA1A2 αT ΔT
A1 +A2

.

Equilibrium at the free-body diagram (Fig. 1.10b) yields the se-
cond support reaction B = C.

E1.3 Example 1.3 A solid circular steel cylinder (cross-sectional area
AS , modulus of elasticity ES , length l) is placed inside a copper
tube (cross-sectional area AC , modulus of elasticity EC , length l).
The assembly is compressed between a rigid plate and the rigid
floor by a force F (Fig. 1.11a).

Determine the normal stresses in the cylinder and in the tube.
Calculate the shortening of the assembly.
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Fig. 1.11

Solution We denote the compressive forces in the steel cylinder
and in the copper tube by FS and FC , respectively (Fig. 1.11b).
Equilibrium at the free-body diagram of the plate yields

FC + FS = F . (a)

Since equilibrium furnishes only one equation for the two unknown
forces FS and FC , the problem is statically indeterminate. We
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obtain a second equation by taking into account the deformation
of the system. The shortenings (here counted positive) of the two
parts are given according to (1.18) by

ΔlC =
FC l

EAC
, ΔlS =

FS l

EAS
(b)

where, for simplicity, we have denoted the axial rigidity ECAC of
the copper tube byEAC and the axial rigidity ESAS of the steel
cylinder by EAS .

The plate and the floor are assumed to be rigid. Therefore the
geometry of the problem requires that the shortenings of the cop-
per tube and of the steel cylinder coincide. This gives the compa-
tibility condition

ΔlC = ΔlS . (c)

Solving the Equations (a) to (c) yields the forces

FC =
EAC

EAC + EAS
F , FS =

EAS

EAC + EAS
F . (d)

The compressive stresses follow according to (1.2):

σC =
EC

EAC + EAS
F , σS =

ES

EAC + EAS
F .

Inserting (d) into (b) leads to the shortening:

ΔlC = ΔlS =
F l

EAC + EAS
.

E1.4Example 1.4 A copper tube is placed over a threaded steel bolt
of length l. The pitch of the threads is given by h. A nut fits

snugly against the tube without generating stresses in the system
(Fig. 1.12a). Subsequently, the nut is given n full turns and the
temperature of the entire assembly is increased by the amount
ΔT . The axial rigidities and the coefficients of thermal expansion
of the bolt and the tube are given.
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Determine the force in the bolt.

a b

l

nh

l−nh

X

X

1 22

1

X

X

Fig. 1.12

Solution After the nut has been turned it exerts a compressive
force X on the tube which causes a shortening of the tube. Ac-
cording to Newton’s third axiom (action = reaction) a force of
equal magnitude and opposite direction acts via the nut on the
bolt which elongates. The free-body diagrams of bolt and tube are
shown in Fig. 1.12b.

The problem is statically indeterminate since force F cannot
be determined from equilibrium alone. Therefore we have to take
into account the deformations. The length of the bolt after the
nut has been turned, see the free-body diagram in Fig. 1.12b, is
given by l1 = l − nh. Its elongation Δl1 follows from

Δl1 =
X(l− nh)
EA1

+ αT1ΔT (l− nh) .

Since nh� l, this can be reduced to

Δl1 =
X l

EA1
+ αT1ΔT l .

The change of length Δl2 of the tube (l2 = l) is obtained from

Δl2 = − X l

EA2
+ αT2ΔT l .

The length of the bolt and the length of the tube have to coincide
after the deformation. This yields the compatibility condition

l1 + Δl1 = l2 + Δl2 → Δl1 −Δl2 = l2 − l1 = nh .
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Solving the equations leads to the force in the bolt:

X

(
l

EA1
+

l

EA2

)
+ (αT1 − αT2)ΔT l = nh

→ X =
nh− (αT1 − αT2)ΔT l(

1
EA1

+
1

EA2

)
l

.

1.51.5 Statically Determinate Systems of Bars
In the preceding section we calculated the stresses and deformati-
ons of single slender bars. We will now extend the investigation to
trusses and to structures which consist of bars and rigid bodies.
In this section we will restrict ourselves to statically determinate
systems where we can first calculate the forces in the bars with
the aid of the equilibrium conditions. Subsequently, the stresses in
the bars and the elongations are determined. Finally, the displa-
cements of arbitrary points of the structure can be found. Since
it is assumed that the elongations are small as compared with the
lengths of the bars, we can apply the equilibrium conditions to
the undeformed system.

As an illustrative example let us consider the truss in Fig. 1.13a.
Both bars have the axial rigidity EA. We want to determine the
displacement of pin C due to the applied force F . First we calcu-
late the forces S1 and S2 in the bars. The equilibrium conditions,
applied to the free-body diagram (Fig. 1.13b), yield

↑ : S2 sinα− F = 0

← : S1 + S2 cosα = 0
→ S1 = − F

tanα
, S2 =

F

sinα
.

According to (1.17) the elongations Δli of the bars are given by

Δl1 =
S1 l1
EA

= − F l

EA

1
tanα

, Δl2 =
S2 l2
EA

=
F l

EA

1
sinα cosα

.
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Bar 1 becomes shorter (compression) and bar 2 becomes longer
(tension). The new position C ′ of pin C can be found as follows.
We consider the bars to be disconnected at C. Then the system
becomes movable: bar 1 can rotate about point A; bar 2 can rotate
about point B. The free end points of the bars then move along
circular paths with radii l1 +Δl1 and l2 +Δl2, respectively. Point
C′ is located at the point of intersection of these arcs of circles
(Fig. 1.13c).
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The elongations are small as compared with the lengths of
the bars. Therefore, within a good approximation the arcs of the
circles can be replaced by their tangents. This leads to the displa-
cement diagram as shown in Fig. 1.13d. If this diagram is drawn
to scale, the displacement of pin C can directly be taken from it.
We want to apply a “graphic-analytical” solution. It suffices then
to draw a sketch of the diagram. Applying trigonometric relati-
ons we obtain the horizontal and the vertical components of the
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displacement:

u = |Δl1| = F l

EA

1
tanα

,

v =
Δl2
sinα

+
u

tanα
=

F l

EA

1 + cos3 α
sin2 α cosα

.

(1.21)

To determine the displacement of a pin of a truss with the aid
of a displacement diagram is usually quite cumbersome and can
be recommended only if the truss has very few members. In the
case of trusses with many members it is advantageous to apply an
energy method (see Chapter 6).

The method described above can also be applied to structures
which consist of bars and rigid bodies.

E1.5Example 1.5 A rigid beam (weight W ) is mounted on three elastic
bars (axial rigidity EA) as shown in Fig. 1.14a.

Determine the angle of slope of the beam that is caused by its
weight after the structure has been assembled.
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Fig. 1.14

Solution First we calculate the forces in the bars with the aid of
the equilibrium conditions (Fig. 1.14b):
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S1 = S2 = − W

4 cosα
, S3 = − W

2
.

With l1 = l2 = l/ cosα and l3 = l we obtain the elongations:

Δl1 = Δl2 =
S1 l1
EA

= − W l

4EA cos2 α
, Δl3 =

S3 l3
EA

= − W l

2EA
.

Point B of the beam is displaced downward by vB = |Δl3|. To
determine the vertical displacement vA of point A we sketch a
displacement diagram (Fig. 1.14c). First we plot the changes Δl1
and Δl2 of the lengths in the direction of the respective bar. The
lines perpendicular to these directions intersect at the displaced
position A′ of point A. Thus, its vertical displacement is given by
vA = |Δl1|/ cosα.

Since the displacements vA and vB do not coincide, the beam
does not stay horizontal after the structure has been assembled.
The angle of slope β is obtained with the approximation tanβ ≈ β
(small deformations) and l = a cotα as (see Fig. 1.14d)

β =
vB − vA

a
=

2 cos3 α− 1
4 cos3 α

W cotα
EA

.

If cos3 α > 1
2

(or cos3 α < 1
2
), then the beam is inclined to the

right (left). In the special case cos3 α = 1
2
, i.e. α = 37.5◦, it stays

horizontal.

E1.6 Example 1.6 The truss in Fig. 1.15a is subjected to a force F .
Given: E = 2 · 102 GPa, F = 20 kN.

Determine the cross-sectional area of the three members so that
the stresses do not exceed the allowable stress σallow = 150 MPa
and the displacement of support B is smaller than 0.5 ‰ of the
length of bar 3.

Solution First we calculate the forces in the members. The equili-
brium conditions for the free-body diagrams of pin C and support
B (Fig. 1.15b) yield
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S1 = S2 = −
√

2
2
F , S3 =

F

2
.

The stresses do not exceed the allowable stress if

|σ1| = |S1|
A1
≤ σallow , |σ2| = |S2|

A2
≤ σallow , σ3 =

S3

A3
≤ σallow .

This leads to the cross-sectional areas

A1 = A2 =
|S1|
σallow

= 94.3 mm2 , A3 =
S3

σallow
= 66.7 mm2 . (a)

In addition, the displacement of support B has to be smaller
than 0.5 ‰ of the length of bar 3. This displacement is equal
to the elongation Δl3 = S3 l3/EA3 of bar 3 (support A is fixed).
From Δl3 < 0.5 · 10−3 l3 we obtain

Δl3
l3

=
S3

EA3
< 0.5·10−3 → A3 >

2S3

E
103 =

F

E
103 = 100mm2 .

Comparison with (a) yields the required area A3 = 100 mm2.

1.61.6 Statically Indeterminate Systems of Bars
We will now investigate statically indeterminate systems for which
the forces in the bars cannot be determined with the aid of the
equilibrium conditions alone since the number of the unknown
quantities exceeds the number of the equilibrium conditions. In
such systems the basic equations (equilibrium conditions, kinema-
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tic equations (compatibility) and Hooke’s law) are coupled equa-
tions.

Let us consider the symmetrical truss shown in Fig. 1.16a. It
is stress-free before the load is applied. The axial rigidities EA1,
EA2, EA3 = EA1 are given; the forces in the members are un-
known. The system is statically indeterminate to the first degree
(the decomposition of a force into three directions cannot be done
uniquely in a coplanar problem, see Volume 1, Section 2.2). The
two equilibrium conditions applied to the free-body diagram of
pin K (Fig. 1.16b) yield

→: − S1 sinα+ S3 sinα = 0 → S1 = S3 ,

↑: S1 cosα+ S2 + S3 cosα− F = 0→ S1 = S3 =
F − S2

2 cosα
.

(a)

The elongations of the bars are given by

Δl1 = Δl3 =
S1 l1
EA1

, Δl2 =
S2 l

EA2
. (b)

To derive the compatibility condition we sketch a displacement
diagram (Fig. 1.16c) from which we find

ba c

= +

d

"1"  System"0"  System
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��
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������������

��������������
1 32

α

α

α

1 32

1 3

α

α

K

K

S1 S3 =S1

F

Δl1Δl3

Δl2K ′

S2

l

FF X

X

K

F

Fig. 1.16
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Δl1 = Δl2 cosα . (c)

With (a), (b) and l1 = l/ cosα we obtain from (c)

(F − S2) l
2EA1 cos2 α

=
S2 l

EA2
cosα

which leads to

S2 =
F

1 + 2
EA1

EA2
cos3 α

.

The remaining two forces in the bars follow from (a):

S1 = S3 =

EA1

EA2
cos2 α

1 + 2
EA1

EA2
cos3 α

F .

Note that now the vertical displacement v of pin K can also be
written down:

v = Δl2 =
S2 l

EA2
=

F l

EA2

1 + 2
EA1

EA2
cos3 α

.

The problem may also be solved using the method of super-
position. In a first step we remove bar 2 to obtain a statically
determinate system, the “0“-system. It consists of the two bars
1 and 3 and it is subjected to the given force F (Fig. 1.16d).
The forces S(0)

1 and S(0)
3 in these bars follow from the equilibrium

conditions as

S
(0)
1 = S

(0)
3 =

F

2 cosα
.

The corresponding elongations are obtained with l1 = l/ cosα:

Δl(0)1 = Δl(0)3 =
S

(0)
1 l1
EA1

=
F l

2EA1 cos2 α
. (d)
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In a second step we consider the statically determinate system
under the action of an unknown force X (“1“-system, see also
Fig. 1.16d). Note that this force acts in the opposite direction on
bar 2 (actio = reactio). Now we get

S
(1)
1 = S

(1)
3 = − X

2 cosα
, S

(1)
2 = X ,

Δl(1)1 = Δl(1)3 = − Xl

2 EA1 cos2 α
, Δl(1)2 =

Xl

EA2
.

(e)

The total elongation of the bars is obtained through superposition
of the systems “0“ and “1“:

Δl1 = Δl3 = Δl(0)1 + Δl(1)1 , Δl2 = Δl(1)2 . (f)

The compatibility condition (c) is again taken from the displace-
ment diagram (Fig. 1.16c). It leads with (d) - (f) to the unknown
force X = S

(1)
2 = S2:

F l

2 EA1 cos2 α
− X l

2 EA1 cos2 α
=

X l

EA2
cosα

→ X = S2 =
F

1 + 2
EA1

EA2
cos3 α

.

The forces S1 and S3 follow from superposition:

S1 = S3 = S
(0)
1 + S

(1)
1 =

EA1

EA2
cos2 α

1 + 2
EA1

EA2
cos3 α

F .

A system of bars is statically indeterminate of degree n if the
number of the unknowns exceeds the number of the equilibrium
conditions by n. In order to determine the forces in the bars of
such a system, n compatibility conditions are needed in addition
to the equilibrium conditions. Solving this system of equations
yields the unknown forces in the bars.

A statically indeterminate system of degree n can also be solved
with the method of superposition. Then n bars are removed in
order to obtain a statically determinate system. The action of the
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bars which are removed is replaced by the action of the static
redundants Si = Xi. Next n + 1 different auxiliary systems are
considered. The given load acts in the “0“-system, whereas the
“i“-system (i = 1, 2, ..., n) is subjected only to the force Xi. In
each of the statically determinate auxiliary problems the forces in
the bars and thus the elongations can be calculated. Applying the
n compatibility conditions yields a system of equations for the n
unknown forces Xi. The forces in the other bars can subsequently
be determined through superposition.

E1.7Example 1.7 A rigid beam (weight negligible) is suspended from
three vertical bars (axial rigidity EA) as shown in Fig. 1.17a.

Determine the forces in the originally stress-free bars if
a) the beam is subjected to a force F (ΔT = 0),
b) the temperature of bar 1 is changed by ΔT (F = 0).

a b c

������������������

21 3 l
FΔT

Δl1 Δl2 Δl3A

S1 S2 S3
F

a
a/2 a/2

Fig. 1.17

Solution The system is statically indeterminate to the first degree:
there are only two equilibrium conditions for the three unknown
forces Sj (Fig. 1.17b). a) If the structure is subjected to force F
the equilibrium conditions are

↑ : S1 + S2 + S3 − F = 0 ,

�

A : − a

2
F + aS2 + 2 aS3 = 0 .

(a)

The elongations of the bars are given by (ΔT = 0)

Δl1 =
S1 l

EA
, Δl2 =

S2 l

EA
, Δl3 =

S3 l

EA
. (b)
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We sketch a displacement diagram (Fig. 1.17c) and find the com-
patibility condition

Δl2 =
Δl1 + Δl3

2
. (c)

Now we have six equations for the three forces Sj and the three
elongations Δlj . Solving for the forces yields

S1 =
7
12
F , S2 =

1
3
F , S3 =

1
12
F .

b) If bar 1 is heated (F = 0), the equilibrium conditions are

↑ : S1 + S2 + S3 = 0 ,

�

A : aS2 + 2aS3 = 0 ,
(a′)

and the elongations are given by

Δl1 =
S1 l

EA
+ αT ΔT l , Δl2 =

S2 l

EA
, Δl3 =

S3 l

EA
. (b′)

The compatibility condition (c) is still valid. Solving (a′), (b′) and
(c) yields

S1 = S3 = − 1
6
EAαT ΔT , S2 =

1
3
EAαT ΔT .

E1.8 Example 1.8 To assemble the truss in Fig. 1.18a, the free end of
bar 3 (length l − δ, δ � l) has to be connected with pin C.
a) Determine the necessary force F acting at pin C (Fig. 1.18b).
b) Calculate the forces in the bars after the truss has been assem-

bled and force F has been removed.

a b c
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

1 2

3

δ

1

δ

2

3

ll

C F

C∗

l

v∗
Δl3

Fig. 1.18
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Solution a) The force F causes a displacement of pin C. The
horizontal component v of this displacement has to be equal to δ
to allow assembly. The required force follows with α = 45◦ from
(1.21):

v =
F l

EA

1 +
√

2/4√
2/4

= δ → F =
EAδ

(2
√

2 + 1) l
.

b) The force F is removed after the truss has been assembled.
Then pin C undergoes another displacement. Since now a force
S3 in bar 3 is generated, pin C does not return to its original
position: it is displaced to position C∗ (Fig. 1.18c). The distance
between points C and C∗ is given by

v∗ =
S3 l

EA

1 +
√

2/4√
2/4

.

The compatibility condition

v∗ + Δl3 = δ

can be taken from Fig. 1.18c. With the elongation

Δl3 =
S3(l − δ)
EA

≈ S3l

EA

of bar 3 we reach

S3 l

EA

1 +
√

2/4√
2/4

+
S3 l

EA
= δ → S3 =

EAδ

2(
√

2 + 1)l
.

The other two forces follow from the equilibrium condition at pin
C:

S1 =
√

2 S3 , S2 = − S3 .
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1.7 1.7 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
2, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E1.9 Example 1.9 A slender bar (density ρ, modulus of elasticity
E) is suspended from its upper end as shown in Fig. 1.19. It
has a rectangular cross secti-
on with a constant depth and
a linearly varying width. The
cross section at the upper end
is A0.

Determine the stress σ(x)
due to the force F and the
weight of the bar. Calculate the
minimum stress σmin and its
location.

������ ������
A0

ρ

FF a

l
x

Fig. 1.19

Results: see (A)

σ(x) =
Fl + ρgA0

2 (x2 − a2)

A0x
, σmin = ρgx∗, x∗ =

√
2Fl
ρgA0

− a2 .

E1.10 Example 1.10 Determine the
elongation Δl of the tapered
circular shaft (modulus of ela-
sticity E) shown in Fig. 1.20
if it is subjected to a tensile
force F .

d D

l

Fig. 1.20
Result: see (A) Δl =

4Fl
πEDd

.
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E1.11Example 1.11 A slender bar (weight
W0, modulus of elasticity E, coef-
ficient of thermal expansion αT ) is
suspended from its upper end. It
just touches the ground as shown in
Fig. 1.21 without generating a con-
tact force.

���
���
���
���

���
���
���
���

xE

W0

αT

l

A
Fig. 1.21

Calculate the stress σ(x) if the temperature of the bar is uni-
formly increased by ΔT . Determine ΔT so that there is compres-
sion in the whole bar.

Results: see (A)

σ(x) =
W0

A

(
1− x

l

)
− EαT ΔT, ΔT >

W0

EAαT
.

E1.12Example 1.12 The bar (cross
sectional area A) shown in
Fig. 1.22 is composed of steel
and aluminium. It is pla-
ced stress-free between two ri-
gid walls. Given: Est/Eal =
3, αst/αal = 1/2.

��������

��
��
��

��
��
��

�
�
�
�

�
�
�
�

C

F

steel aluminium

a l − a
A B

Fig. 1.22

a) Calculate the support reactions if the bar is subjected to a
force F at point C.

b) Calculate the normal force in the whole bar if it is subjected
only to a change of temperature ΔT (F = 0).

Results: see (A)

a) NA = −F 3(l − a)
3l− 2a

, NB = F
a

3l − 2a
,

b) N = − 2l− a
3l− 2a

EstαstAΔT .
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E1.13 Example 1.13 The column in
Fig. 1.23 consists of reinfor-
ced concrete. It is subjected
to a tensile force F . Given:
Est/Ec = 6, Ast/Ac = 1/9.

Determine the stresses in
the steel and in the concrete
and the elongation Δl of the
column if

���
���
���
��� Est, Ast

cut

cross section
F

Ec, Ac

l

Fig. 1.23

a) the bonding between steel and concrete is perfect,
b) the bonding is damaged so that only the steel carries the load.

Results: see (A)

a) σst = 4
F

A
, σc =

2
3
F

A
, Δl =

2
5

Fl

EAst
,

b) σst = 10
F

A
, Δl =

Fl

EAst
.

E1.14 Example 1.14 A slender bar (density ρ, modulus of elasticity E,
length l) is suspended from its upper end as shown in Fig. 1.24. It
has a rectangular cross section
with a constant depth a. The
width b varies linearly from 2b0
at he fixed end to b0 at the free
end.

Determine the stresses σ(x)
and σ(l) and the elongation
Δl of the bar due to its own
weight.

������

x

l

2b0

b0

a
cut

b(x)

cross section

Fig. 1.24Results: see (B)

σ(x) =
1
2
ρg

(2l+ x)x
l + x

, σ(l) =
3ρgl

4
, Δl =

ρgl2

4E
(3− 2 ln 2) .
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E1.15Example 1.15 A rigid chair
(weight negligible) is sup-
ported by three bars (axi-
al rigidity EA) as shown in
Fig. 1.25. It is subjected to a
force F at point B.

a) Calculate the forces Si

in the bars and the elongati-
ons Δli of the bars.

b) Determine the displace-
ment of point C.
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3

D

C

F

B

a a

a

a

Fig. 1.25
Results: see (A)

a) S1 = F, S2 = 0, S3 = −
√

2F,

Δl1 =
Fa

EA
, Δl2 = 0, Δl3 = −2

Fa

EA
,

b) uC = 0, vC = 2
√

2
Fa

EA
.

E1.16Example 1.16 Two bars (axial
rigidity EA) are pin-connected
and supported at C (Fig. 1.26).

a) Calculate the support re-
action at C due to the force F .

b) Determine the displace-
ment of the support.

���������
���������
���������
���������

1 2 l

α

C

F

Fig. 1.26

Results: see (A) a) C =
sinα cos2 α
1 + cos3 α

F, b) vC =
1

1 + cos3 α
Fl

EA
.
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E1.17 Example 1.17 Consider a thin circular ring (modulus of elasticity
E, coefficient of thermal expansion αT , internal radius r−δ, δ � r)
with a rectangular cross section (width b, thickness t � r). The
ring is heated in order to increase its radius which makes it possible
to place it over a rigid wheel with radius r.

Determine the necessary change of temperature ΔT . Calculate
the normal stress σ in the ring and the pressure p onto the wheel
after the temperature has regained its original value.

Results: see (B) ΔT =
δ

αT r
, σ = E

δ

r
, p = σ

t

r
.

E1.18 Example 1.18 The two rods
(axial rigidity EA) shown in
Fig. 1.27 are pin-connected
at K. The system is subjec-
ted to a vertical force F .

Calculate the displacement
of pin K.

30◦

F

K

l
2l

Fig. 1.27
Results: see (B) u =

√
3
Fl

EA
, v =

Fl

EA
.

E1.19 Example 1.19 The structure
shown in Fig. 1.28 consists of
a rigid beam BC and two ela-
stic bars (axial rigidity EA).
It is subjected to a force F .

Calculate the displacement
of pin C.

a

B C
F

2
1

30◦

a

Fig. 1.28

Results: see (B) u = 0, v = 3
√

3
Fa

EA
.
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E1.20Example 1.20 Fig. 1.29 shows
a freight elevator. The cable
(length l, axial rigidity (EA)1)
of the winch passes over a
smooth pin K. A crate (weight
W ) is suspended at the end of
the cable (see Example 2.13 in
Volume 1). The axial rigidity
(EA)2 of the two bars 1 and 2
is given. ������

������
������
������
������
������
������
������

������
������
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������

30◦

winch l
K

H

W

45◦

a

1

2

Fig. 1.29

Determine the displacements of pin K and of the end of the
cable (point H) due to the weight of the crate.

Results: see (B)

u = 6.69
Wa

(EA)2
, v = 3.86

Wa

(EA)2
, f = 2.83

Wa

(EA)2
+

Wl

(EA)1
.

E1.21Example 1.21 To assemble
the truss (axial rigidity
EA of the three bars) in
Fig. 1.30 the end point P of
bar 2 has to be connected
with pin K. Assume δ � h.

Determine the forces in
the bars after the truss has
been assembled.

����������������������������

K

α α h

P

δK

α α h

P

δ

21 3

Fig. 1.30

Results: see (B)

S1 = S3 = − EAδ cos2 α
h (1 + 2 cos3 α)

, S2 =
2EAδ cos3 α
h (1 + 2 cos3 α)

.
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1.8 1.8 Summary
• Normal stress in a section perpendicular to the axis of a bar:

σ = N/A ,

N normal force, A cross-sectional area.
• Strain:

ε = du/dx , |ε| � 1 ,

u displacement of a cross section.
Special case of uniform strain: ε = Δl/l.

• Hooke’s law:

σ = E ε ,

E modulus of elasticity.
• Elongation:

Δl =

l∫

0

(
N

EA
+ αT ΔT

)
dx ,

EA axial rigidity, αT coefficient of thermal expansion,
ΔT change of temperature.
Special cases:

N = F, ΔT = 0, EA = const → Δl =
Fl

EA
,

N = 0, ΔT = const → Δl = αT ΔT l .

• Statically determinate system of bars: normal forces, stresses,
strains, elongations and displacements can be calculated con-
secutively from the equilibrium conditions, Hooke’s law and
kinematic equations. A change of the temperature does not
cause stresses.

• Statically indeterminate system: the equations (equilibrium
conditions, kinematic equations and Hooke’s law) are coupled
equations. A change of the temperature in general causes ther-
mal stresses.
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Objectives: In Chapter 1 the notion of stress in a bar
has been introduced. We will now generalize the concept of stress
to make it applicable to arbitrary structures. For this purpose
the stress tensor is introduced. Subsequently we will discuss in
detail the plane stress state that appears in thin sheets or plates
under in-plane loading. This state is fully determined by stress
components in two sections perpendicular to each other. We will
see that the normal stress and the shear stress take on extreme
values for specific directions of the section.

The students will learn how to analyse the plane stress state
and how to determine the stresses in different sections.

D. Gross et al., Engineering Mechanics 2,
DOI 10.1007/978-3-642-12886-8_2, © Springer-Verlag Berlin Heidelberg 2011
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2.12.1 Stress Vector and Stress Tensor
So far, stresses have been calculated only in bars. To be able
to determine stresses also in other structures we must generali-
ze the concept of stress. For this purpose let us consider a body
which is loaded arbitrarily, e.g. by single forces Fi and area forces
p (Fig. 2.1a). The external load generates internal forces. In an
imaginary section s – s through the body the internal area forces
(stresses) are distributed over the entire area A. In contrast to the
bar where these stresses are constant over the cross section (see
Section 1.1) they now generally vary throughout the section.

a b

n
P

ΔA

ΔF

t
s

s

F1

p

F2

F1

Fi Fi

A
τ

σ

Fig. 2.1

Since the stress is no longer the same everywhere in the section,
it must be defined at an arbitrary point P of the cross section
(Fig. 2.1b). The area element ΔA containing P is subjected to the
resultant internal force ΔF (note: according to the law of action
and reaction the same force acts in the opposite cross section
with opposite direction). The average stress in the area element
is defined as the ratio ΔF /ΔA (force per area). We assume that
the ratio ΔF /ΔA in the limit ΔA→ 0 tends to a finite value:

t = lim
ΔA→0

ΔF

ΔA
=

dF

dA
. (2.1)

This limit value is called stress vector t.
The stress vector can be decomposed into a component normal

to the cross section at point P and a component tangential to the
cross section. We call the normal component normal stress σ and
the tangential component shear stress τ .
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In general, the stress vector t depends on the location of point
P in the section area A. The stress distribution in the section
is known when the stress vector t is known for all points of A.
However, the stress state at a point P of the section is not yet
sufficiently determined by t for the following reason. If we choose
sections through P having different directions, different forces will
act in the sections because of the different orientation of the area
elements. Therefore, the stresses also depend on the orientation
of the section which is characterized by the normal vector n (cf.
stresses (1.3) in a bar for different directions of the section).

It can be shown that the stress state at point P is uniquely
determined by three stress vectors for three sections through P ,
perpendicular to each other. It is useful to choose the directions of
a Cartesian coordinate system for the respective orientations. The
three sections can most easily be visualized if we imagine them to
be the surfaces of a volume element with edge lengths dx, dy and
dz at point P (Fig. 2.2a). A stress vector acts on each of its six
surfaces. It can be decomposed into its components perpendicular
to the section (= normal stress) and tangential to the section (=
shear stress). The shear stress subsequently can be further decom-
posed into its components according to the coordinate directions.
To characterize the components double subscripts are used: the
first subscript indicates the orientation of the section by the di-
rection of its normal vector whereas the second subscript indicates
the direction of the stress component. For example, τyx is a shear
stress acting in a section whose normal points in y-direction; the
stress itself points in x-direction (Fig. 2.2a).

a b

y
dz

dx

x

z z

dy

y

dz/2

dz/2

dy/2dy/2

σzz

τyz
σyy

τzx

τyx

σz

τzy

σz

τzy

σy

τyz

σy

τyz

τzy

P

M
τxz

σxx

τxy

Fig. 2.2
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The notation can be simplified for the normal stresses. In this
case the directions of the normal to the section and of the stress
component coincide. Thus, both subscripts are always equal and
one of them can be omitted without losing information:

σxx = σx , σyy = σy , σzz = σz .

From now on we will adopt this shorter notation.
Using the introduced notation, the stress vector, for example

in the section with the normal vector pointing in y-direction, can
be written as

t = τyx ex + σy ey + τyz ez . (2.2)

The sign convention for the stresses is the same as for the stress
resultants (cf. Volume 1, Section 7.1):

Positive stresses at a positive (negative) face point in positive
(negative) directions of the coordinates.

Accordingly, positive (negative) normal stresses cause tension
(compression) in the volume element. Figure 2.2a shows positi-
ve stresses acting on the positive faces.

By means of the decomposition of the three stress vectors into
their components we have obtained three normal stresses
(σx, σy, σz) and six shear stresses (τxy , τxz, τyx, τyz , τzx, τzy).
However, not all shear stresses are independent of each other. This
can be shown by formulating the equilibrium condition for the mo-
ments about an axis parallel to the x-axis through the center of the
volume element (cf. Fig. 2.2b). Since equilibrium statements are
valid for forces, the stresses must be multiplied by the associated
area elements:

�

C : 2
dy
2

(τyz dx dz) − 2
dz
2

(τzy dx dy) = 0 → τyz = τzy .

Two further relations are obtained from the moment equilibrium
about the other axes:
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τxy = τyx , τxz = τzx , τyz = τzy . (2.3)

In words:

The shear stresses with the same subscripts in two ortho-
gonal sections (e.g. τxy and τyx) are equal.

They are sometimes called complementary shear stresses. Since
they have the same algebraic sign they are directed either towards
or away from the common edge of the cubic volume element (cf.
Fig. 2.2). As a result of (2.3) there exist only six independent
stress components.

The components of the three stress vectors can be arranged in
a matrix:

σ =

⎡
⎢⎣
σx τxy τxz

τyx σy τyz

τzx τzy σz

⎤
⎥⎦ =

⎡
⎢⎣
σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎥⎦ . (2.4)

The main diagonal contains the normal stresses; the remaining
elements are the shear stresses. The matrix (2.4) is symmetric
because of (2.3).

The quantity σ is called stress tensor (the concept tensor will
be explained in Section 2.2.1). The elements of (2.4) are the com-
ponents of the stress tensor. The stress state at a material point
is uniquely defined by the stress vectors for three sections, ortho-
gonal to each other, and consequently by the stress tensor (2.4).

2.2 2.2 Plane Stress
We will now examine the state of stress in a disk. This plane
structural element has a thickness t much smaller than its in-
plane dimensions and it is loaded solely in its plane by in-plane
forces (Fig. 2.3). The upper and the lower face of the disk are
load-free. Since no external forces in the z-direction exist, we can
assume with sufficient accuracy that also no stresses will appear
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in this direction:

τxz = τyz = σz = 0 .

Fig. 2.3

F1

F2
Fi

y

x
t

Because of the small thickness we furthermore can assume that the
stresses σx, σy and τxy = τyx are constant across the thickness of
the disk. Such a stress distribution is called a state of plane stress.
In this case, the third row and the third column of the matrix
(2.4) vanish and we get

σ =

[
σx τxy

τxy σy

]
.

In general, the stresses depend on the location, i.e. on the coor-
dinates x and y. In the special case when the stresses are inde-
pendent of the location, the stress state is called homogeneous.

2.2.1 Coordinate Transformation

Up to now only stresses in sections parallel to the coordinate axes
have been considered. Now we will show how from these stres-
ses, the stresses in an arbitrary section perpendicular to the disk
can be determined. For this purpose we consider an infinitesi-
mal wedge-shaped element of thickness t cut out from the disk
(Fig. 2.4). The directions of the sections are characterized by the
x, y-coordinate system and the angle ϕ. We introduce a ξ, η-system
which is rotated with respect to the x, y-system by the angle ϕ and
whose ξ-axis is normal to the inclined section. Here ϕ is counted
positive counterclockwise.
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σξ
τξη

τyx
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τxy
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η
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Fig. 2.4

According to the coordinate directions, the stresses in the in-
clined section are denoted as σξ and τξη . The corresponding cross
section is given by dA = dη t. The other two cross sections per-
pendicular to the y- and x-axis, respectively, are dA sinϕ and
dA cosϕ. The equilibrium conditions for the forces in ξ- and in
η-direction are

↗: σξ dA − (σx dA cosϕ) cosϕ− (τxy dA cosϕ) sinϕ

− (σy dA sinϕ) sinϕ− (τyx dA sinϕ) cosϕ = 0 ,

↖: τξη dA + (σx dA cosϕ) sinϕ− (τxy dA cosϕ) cosϕ

− (σy dA sinϕ) cosϕ+ (τyx dA sinϕ) sinϕ = 0 .

Taking into account τyx = τxy, we get

σξ = σx cos2 ϕ+ σy sin2 ϕ+ 2 τxy sinϕ cosϕ ,

τξη = − (σx − σy) sinϕ cosϕ+ τxy(cos2 ϕ− sin2 ϕ) .
(2.5a)

Additionally, we will now determine the normal stress ση which
acts in a section with the normal pointing in η-direction. The
cutting angle of this section is given by ϕ+ π/2. Therefore, ση is
obtained by replacing in the first equation of (2.5a) the normal
stress σξ by ση and the angle ϕ by ϕ+π/2. Recalling that cos(ϕ+
π/2) = − sinϕ and sin(ϕ+ π/2) = cosϕ, we obtain

ση = σx sin2 ϕ+ σy cos2 ϕ− 2 τxy cosϕ sinϕ . (2.5b)
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Usually, the Equations (2.5a, b) are written in a different form.
Using the standard trigonometric relations

cos2 ϕ =
1
2
(1 + cos 2ϕ) , 2 sinϕ cosϕ = sin 2ϕ ,

sin2 ϕ =
1
2
(1 − cos 2ϕ) , cos2 ϕ− sin2 ϕ = cos 2ϕ

we get

σξ =
1
2
(σx + σy) +

1
2
(σx − σy) cos 2ϕ+ τxy sin 2ϕ ,

ση =
1
2
(σx + σy)− 1

2
(σx − σy) cos 2ϕ− τxy sin 2ϕ ,

τξη = − 1
2
(σx − σy) sin 2ϕ+ τxy cos 2ϕ .

(2.6)

The stresses σx, σy and τxy are the components of the stress ten-
sor in the x, y -system. From these stresses, using (2.6), the com-
ponents σξ, ση and τξη in the ξ, η -system can be determined.
Equations (2.6) are called transformation relations for the com-
ponents of the stress tensor. Fig. 2.5 shows the stresses in the
x, y -system and in the ξ, η -system at the corresponding elements.
Note that the stresses in either of the coordinate systems represent
one and the same state of stress at a given point of the disk.

σy

τxy

ση

σξ

σx

τyx

τηξ

τξη

y η

x

ξϕ

Fig. 2.5

A quantity whose components have two coordinate subscripts
and which are transformed by a certain rule from one coordinate
system to a rotated coordinate system is called a second rank ten-
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sor. For the stress tensor the rule for the transition from the x, y-
system to the ξ, η-system is given by the transformation relations
(2.6). We will become familiar with other 2nd rank tensors in Sec-
tions 3.1 and 4.2. It should be mentioned that the components of
vectors also fulfill specific transformation relations. Because vec-
tor components have only one subscript, vectors are sometimes
called 1st rank tensors.

When adding the first two equations in (2.6) we obtain

σξ + ση = σx + σy . (2.7)

Thus, the sum of the normal stresses has the same value in each
coordinate system. For this reason, the sum σx + σy is called an
invariant of the stress tensor. It can also be verified by simple
algebraic manipulation that the determinant σxσy − τ2

xy of the
matrix of the stress tensor is a further invariant, that is σxσy −
τ2
xy = σξση − τ2

ξη.
We finally consider the special case of equal normal stresses

(σx = σy) and vanishing shear stresses (τxy = 0) in the x, y-
system. Equation (2.6) then yields

σξ = ση = σx = σy, τξη = 0 .

Accordingly, the normal stresses for all directions of the sections
are the same (i.e. they are independent of ϕ) whereas the shear
stresses always vanish. Such a state of stress is called hydrostatic
because it corresponds to the pressure in a fluid at rest where the
normal stress is the same in all directions.

It should be noted that a disk also can be sectioned in such a
way that the normal does not lie in the plane of the disk (slanted
section). This case is not discussed here; the reader is referred to
the literature.

2.2.2 Principal Stresses

According to (2.6) the stresses σξ, ση and τξη depend on the di-
rection of the section, i.e. on the angle ϕ. We now determine the
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angle for which these stresses have maximum and minimum values
and we calculate these extreme values.

The normal stresses reach extreme values when dσξ/dϕ = 0
and when dση/dϕ = 0, respectively. Both conditions lead to

− (σx − σy) sin 2ϕ+ 2 τxy cos 2ϕ = 0.

Hence, the angle ϕ = ϕ∗ that leads to a maximum or a minimum
is given by

tan 2ϕ∗ =
2 τxy

σx − σy
. (2.8)

The tangent function is π-periodic, that is, it satisfies
tan 2ϕ∗ = tan2(ϕ∗ + π/2). Therefore, there exist two directions
of the sections, ϕ∗ and ϕ∗ + π/2, perpendicular to each other, for
which (2.8) is fulfilled. These directions of the sections are called
principal directions.

The normal stresses which correspond to the principal direc-
tions are determined by introducing the condition (2.8) for ϕ∗

into Equation (2.6) for σξ or ση, respectively. Here, the following
trigonometric relations are used:

cos 2ϕ∗ =
1√

1 + tan2 2ϕ∗ =
σx − σy√

(σx − σy)2 + 4 τ2
xy

,

sin 2ϕ∗ =
tan2ϕ∗

√
1 + tan2 2ϕ∗ =

2 τxy√
(σx − σy)2 + 4 τ2

xy

.

(2.9)

Using the notations σ1 and σ2 for the extreme values of the stresses
we obtain

σ1,2 =
1
2
(σx + σy)±

1
2(σx − σy)2√

(σx − σy)2 + 4 τ2
xy

± 2 τ2
xy√

(σx − σy)2 + 4 τ2
xy

or



58 2 Stress

σ1,2 =
σx + σy

2
±
√(

σx − σy

2

)2

+ τ2
xy , (2.10)

respectively. The two normal stresses σ1 and σ2 are called principal
stresses. Typically, they are numbered such that σ1 > σ2 (positive
sign of the square root for σ1).

Equation (2.8) provides two values for the angles ϕ∗ and ϕ∗ +
π/2. These two angles can be assigned to the stresses σ1 and σ2,
for example, by introducing one of them into the first equation of
(2.6). Doing so, the associated normal stress, either σ1 or σ2, is
obtained.

If the angles ϕ∗ or ϕ∗+π/2, respectively, are introduced into the
third equation of (2.6), we find τξη = 0. Thus, the shear stresses
vanish in sections where the normal stresses take on their extreme
(principal) values σ1 and σ2. Inversely, when the shear stress in
a section is zero, the normal stress in this section is a principal
stress.

A coordinate system with its axes pointing in the principal
directions is called principal coordinate system. We denote the axes
by 1 and 2: the 1-axis points in the direction of σ1 (first principal
direction), the 2-axis in σ2-direction (second principal direction).
In Figs. 2.6a and b the stresses at an element in the x, y-system
and in the principal coordinate system are displayed.

b ca

σ2σy

τyx

τxy

σx

σMσ1

σMτmax

τmaxy

x

2

ϕ∗∗=ϕ∗+ π
4ϕ∗

1

Fig. 2.6

We will now determine the extreme values of the shear stresses
and the associated directions of the sections. From the condition
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dτξη

dϕ
= 0 → − (σx − σy) cos 2ϕ− 2 τxy sin 2ϕ = 0

the angle ϕ = ϕ∗∗ for an extreme value is obtained:

tan 2ϕ∗∗ = − σx − σy

2 τxy
. (2.11)

Again this equation defines the two perpendicular angles ϕ∗∗ and
ϕ∗∗+π/2 where the shear stress reaches maximum or minimum va-
lues. By comparing (2.11) with (2.8) it can be seen that tan 2ϕ∗∗ =
−1/ tan2ϕ∗. Recalling of the trigonometric identity tan(α+π/2) =
−1/ tanα this implies that the directions 2ϕ∗∗ and 2ϕ∗ are per-
pendicular to each other. As a consequence, the direction ϕ∗∗ of
the extreme shear stress is rotated by 45◦ with respect to the
direction ϕ∗ of the extreme normal stress.

The extreme shear stresses are obtained by introducing (2.11)
into (2.6) and using (2.9) to give

τmax = ±
√(

σx − σy

2

)2

+ τ2
xy . (2.12a)

Since they differ only in the sign (i.e. in the sense of direction)
both stresses are commonly called maximum shear stresses. Using
the principal stresses (2.10) the maximum shear stress τmax can
also be written as

τmax = ± 1
2
(σ1 − σ2) . (2.12b)

The sense of direction of the maximum shear stress can be
found by choosing the rotation angle of the ξ, η-system to be ϕ∗∗.
Introducing ϕ∗∗ into the third equation of (2.6) the shear stress
τξη = τmax is obtained including its correct sign.

Introducing ϕ∗∗ into the first or second equation of (2.6) leads
to a normal stress in the sections where the shear stress is maxi-
mum. We denote this stress as σM ; it is given by
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σM =
1
2
(σx + σy) =

1
2
(σ1 + σ2) . (2.13)

Therefore, the normal stresses generally do not vanish in the sec-
tions with extreme shear stresses. Fig. 2.6c shows the stresses in
the respective sections.

E2.1 Example 2.1 The homogeneous state of plane stress in a metal
sheet is given by σx = − 64 MPa, σy = 32 MPa and τxy =
−20 MPa. Fig. 2.7a shows the stresses and their directions as
they act in the sheet.

Determine
a) the stresses in a section which is inclined at an angle of 60◦ to

the x-axis,
b) the principal stresses and principal directions,
c) the maximum shear stress and the associated directions of the

sections.
Display the stresses at an element for each case.

a b

c d

σy

σ1

σ2

τxy

σx

τyx

τξη

σξ

τmax

τmax

σM

σM

y

x x

ϕ∗

1

2

y η

ξ

60◦

ϕ=− 30◦

ϕ∗∗

Fig. 2.7
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Solution a) We cut the sheet in the prescribed direction. To cha-
racterize the section, a ξ, η-system is introduced whose ξ-axis is
normal to the section (Fig. 2.7b, compare Fig. 2.5). Since it ema-
nates from the x, y -system by a clockwise rotation of 30◦, the
rotation angle is negative: ϕ = −30◦. Thus, from (2.6) we obtain
the stresses

σξ = 1
2(−64 + 32) + 1

2(−64− 32) cos(−60◦)− 20 sin(−60◦)

= −22.7 MPa ,

τξη = −1
2(−64− 32) sin(−60◦)− 20 cos(−60◦) = −51.6 MPa .

Both stresses are negative. They are directed as shown in Fig. 2.7b.
b) The principal stresses are calculated by applying (2.10):

σ1,2 =
−64 + 32

2
±
√(−64− 32

2

)2

+ (−20)2

→ σ1 = 36 MPa , σ2 = −68 MPa . (a)

One of the associated principal directions follows from (2.8):

tan 2ϕ∗ =
2(−20)
−64− 32

= 0.417 → ϕ∗ = 11.3◦ .

To decide which principal stress is associated with this principal
direction, we introduce the angle ϕ∗ into the first equation of (2.6)
and obtain

σξ(ϕ∗) = 1
2 (−64 + 32) + 1

2 (−64− 32) cos(22.6◦)

− 20 sin(22.6◦) = −68 MPa = σ2 .

Accordingly, the principal stress σ2 is associated with the angle
ϕ∗. The principal stress σ1 acts in a section perpendicular to it
(Fig. 2.7c).
c) The maximum shear stresses are determined with (a) from
(2.12b):

τmax = ±1
2
(36 + 68) = ± 52 MPa .
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The associated directions of the sections are rotated by 45◦ with
respect to the principal directions. Hence, we get

ϕ∗∗ = 56.3◦ .

The direction of τmax follows after inserting ϕ∗∗ into (2.6) from
the positive sign of τξη(ϕ∗∗). The associated normal stresses are
given according to (2.13) by

σM =
1
2
(−64 + 32) = −16 MPa .

In Fig. 2.7d the stresses are displayed with their true directions.

2.2.3 Mohr’s Circle

Using the transformation relations (2.6), the stresses σξ, ση and
τξη for a ξ, η -system can be calculated from the stresses σx, σy

and τxy. These relations also allow a simple and useful geometric
representation. For this purpose, in a first step, the relations (2.6)
for σξ and τξη are rewritten:

σξ − 1
2
(σx + σy) =

1
2
(σx − σy) cos 2ϕ+ τxy sin 2ϕ ,

τξη = − 1
2
(σx − σy) sin 2ϕ+ τxy cos 2ϕ .

(2.14)

By squaring and adding, the angle ϕ can be eliminated:
[
σξ − 1

2
(σx + σy)

]2
+ τ2

ξη =
(
σx − σy

2

)2

+ τ2
xy . (2.15)

If we use in (2.14) the corresponding equation for ση instead of
the equation for σξ, we find that in (2.15) σξ will be replaced by
ση. In what follows we therefore omit the subscripts ξ and η.

For given stresses σx, σy and τxy the right-hand side of (2.15)
is a fixed value which we abbreviate with r2:

r2 =
(
σx − σy

2

)2

+ τ2
xy . (2.16)
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With σM = 1
2 (σx + σy) and (2.16) Equation (2.15) then takes the

form

(σ − σM )2 + τ2 = r2 . (2.17)

This is the equation of a circle in the σ, τ -plane: the points (σ, τ)
lie on the stress circle , also called Mohr’s circle (Otto Mohr, 1835–
1918). It is centered at (σM , 0) and has the radius r (Fig. 2.8a).

Equation (2.16) can be rewritten as

r2 =
1
4
[
(σx + σy)2 − 4(σxσy − τ2

xy)
]
.

Note that this equation for the radius coincides with the absolute
value of the maximum shear stress given by (2.12a). That is, the
radius of Mohr’s circle graphically indicates the maximum shear
stress at a point. Moreover, since the expressions in the round
brackets are invariant (cf. Section 2.2.1), r is also an invariant.

The stress circle in the σ, τ -plane can be constructed directly
if the stresses σx, σy and τxy are known, thereby avoiding the
need to calculate σM and r. For this purpose, the stresses σx

and σy , including their signs, are marked on the σ-axis. At these
points the shear stress τxy is plotted according to the following
rule: with the correct sign at σx and with the reversed sign at
σy. This determines two points of the circle, P and P ′ (Fig. 2.8a).
The intersection of their connecting line with the σ-axis yields the
center of the circle. The circle now can be drawn using this point
as its center and extending to pass through P and P ′.

The stress state at a point of a disk is fully described by Mohr’s
circle; each section is represented by a point on the circle. For
example, point P corresponds to the section where the stresses σx

and τxy act while point P ′ represents the section perpendicular to
the former one. The stresses in arbitrary sections as well as the
extreme stresses and associated directions can be determined from
the stress circle. In particular, the principal stresses σ1, σ2 and the
maximum shear stress τmax can be directly identified (Fig. 2.8b).
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We will now show that the stresses σξ, ση and τξη in a ξ, η-
system which is rotated with respect to the x, y-system by an
angle ϕ (positive counterclockwise) are identified on Mohr’s circle
as follows: point Q, corresponding to a section with the stresses
σξ and τξη is found by plotting the doubled angle – i.e. 2ϕ – in
the reversed sense of rotation (Fig. 2.8b); point Q′ corresponding
to a section perpendicular to the first one lies opposite to Q. The
principal directions and the directions of maximum shear stress
finally are given by the angles ϕ∗ and ϕ∗∗.

To proof these statements we first find from Fig. 2.8a,b:

tan 2ϕ∗ =
2 τxy

σx − σy
,

1
2

(σx − σy) = r cos 2ϕ∗ , τxy = r sin 2ϕ∗ .

Introducing these equations into the transformation relations (2.6)
for σξ and ση yields

σξ =
1
2
(σx + σy) + r cos 2ϕ∗ cos 2ϕ+ r sin 2ϕ∗ sin 2ϕ

=
1
2
(σx + σy) + r cos (2ϕ∗ − 2ϕ) ,

τξη = − r cos 2ϕ∗ sin 2ϕ+ r sin 2ϕ∗ cos 2ϕ = r sin (2ϕ∗ − 2ϕ) .
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The same result follows from geometric relations in Fig. 2.8b, i.e.
Mohr’s circle is nothing other than the geometric representation
of the transformation relations.

If Mohr’s circle is used for the solution of specific problems,
three quantities must be known (e.g. σx, τxy, σ1) in order to draw
the circle. In graphical solutions an appropriate scale for the stres-
ses must be chosen.

In the following we finally consider three special cases. Uniaxial
tension (Fig. 2.9a) is characterized by σx = σ0 > 0, σy = 0,
τxy = 0. Since the shear stress is zero in the respective sections,
the stresses σ1 = σx = σ0 and σ2 = σy = 0 are the principal
stresses. Mohr’s circle lies just to the right of the τ -axis so that this
vertical axis is its tangent. The maximum shear stress τmax = σ0/2
acts in sections rotated 45◦ with respect to the x-axis (see also
Section 1.1).

The stress state characterized by σx = 0, σy = 0 and τxy = τ0
is called pure shear. On account of σM = 0, the center of Mohr’s
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τ

σ1=τ0

τ

σ0 σ

σ0

σ2=−τ0
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σ0
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σ2=−τ0

Fig. 2.9
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circle in this case coincides with the origin of the coordinate sys-
tem (Fig. 2.9b). The principal stresses are σ1 = τ0 and σ2 = −τ0;
they act in sections at 45◦ with respect to the x-axis.

In the case of a hydrostatic stress state the stresses are σx =
σy = σ0 and τxy = 0. Mohr’s circle then is reduced to a single
point on the σ-axis (Fig. 2.9c). The normal stresses for all section
directions have the same value σξ = ση = σ0 and no shear stresses
appear (cf. Section 2.2.1).

E2.2 Example 2.2 A plane stress state is given by σx = 50 MPa, σy =
−20 MPa and τxy = 30 MPa.

Using Mohr’s circle, determine
a) the principal stresses and principal directions,
b) the normal and shear stress acting in a section whose normal

forms the angle ϕ = 30◦ with the x-axis.
Display the results in sketches of the sections.

Solution a) After having chosen a scale, Mohr’s circle can be
constructed from the given stresses (in Fig. 2.10a the given stresses
are marked by green circles). From the circle, the principal stresses
and directions can be directly identified:

σ1 = 61 MPa , σ2 = −31 MPa , ϕ∗ = 20◦ .
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b) To determine the stresses in the inclined section we introduce
a ξ, η-coordinate system whose ξ-axis coincides with the normal
of the section. The unknown stresses σξ and τξη are obtained by
plotting in Mohr’s circle the angle 2ϕ in the reversed direction to
ϕ. Doing so we obtain:

σξ = 58.5 MPa , τξη = −15.5 MPa .

The stresses with their true directions and the associated sections
are displayed in Fig. 2.10b.

E2.3Example 2.3 The two principal stresses σ1 = 40 MPa and σ2 =
−20 MPa of a plane stress state are known.

Determine the orientation of a x, y-coordinate system with re-
spect to the principal axes for which σx = 0 and τxy > 0. Calculate
the stresses σy and τxy.

Solution Using the given principal stresses σ1 and σ2, the properly
scaled Mohr’s circle can be drawn (Fig. 2.11a). From the circle
the orientation of the unknown x, y-system can be obtained: the
counterclockwise angle 2ϕ (from point σ1 to point P ) in Mohr’s
circle corresponds to the clockwise angle ϕ between the 1-axis and
the x-axis. The angle and the stresses are found as

2ϕ = 110◦ → ϕ = 55◦ , σy = 20 MPa , τxy = 28 MPa .

The stresses and the coordinate systems are shown in Fig. 2.11b.
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2.2.4 The Thin-Walled Pressure Vessel

As an important application of plane stress we first consider a thin-
walled cylindrical vessel with radius r and wall thickness t � r

(Fig. 2.12a). The vessel is subjected to an internal gage pressure
p that causes stresses in its wall which need to be determined
(Fig. 2.12b).

d

c

a b

2r

p

σϕ
σϕ

σx

t

p

σx

σϕ

Δl

2r

t
p

Fig. 2.12

At a sufficient distance from the end caps of the vessel, the
stress state is independent of the location (homogeneous stress
state). Given that t � r, the stresses in radial directions can be
neglected. Thus, within a good approximation a plane stress state
acts locally in the wall of the vessel (note: although the element
in Fig. 2.12b is curved, it is replaced by a plane element in the
tangent plane). The stress state can be described by the stresses
in two sections perpendicular to each other.

First, the vessel is cut perpendicularly to its longitudinal axis
(Fig. 2.12c). Since the gas or fluid pressure is independent of the
location, the pressure on the section area πr2 (of the gas or fluid)
has the constant value p. Assuming that the longitudinal stress
σx is constant across the wall thickness because of t � r, the
equilibrium condition yields (Fig. 2.12c)
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σx2 π r t− p π r2 = 0 → σx =
1
2
p
r

t
. (2.18)

As illustrated in Fig. 2.12d we now separate a half-circular part
of lengthΔl from the vessel. The horizontal sections of the wall are
subjected to the circumferential stress σϕ, also called hoop stress,
which again is constant across the thickness. These stresses will
counteract the force p 2 rΔl, exerted from the gas onto the half-
circular part of the vessel. Equilibrium in the vertical direction
yields

2 σϕ tΔ l − p 2 rΔl = 0 → σϕ = p
r

t
. (2.19)

We notice that the hoop stress is twice the longitudinal stress.
This is why a cylindrical vessel under internal pressure usually
fails by cracking in the longitudinal direction. A simple example
is an overcooked hot dog which splits in the longitudinal direction
first.

The two equations (2.18) and (2.19) for σx and σϕ sometimes
are called vessel formulas. Because of t� r it can be seen that σx,
σϕ � p. Therefore, the initially made assumption that the stresses
σr in radial direction may be neglected is justified (| σr |≤ p).
Generally, a vessel may be called thin-walled when it fulfills the
condition r > 5 t.

The vessel formulas are also applicable to a vessel subjected to
external pressure. In this case only the sign of p has to be changed,
i.e. the wall is then under a compressive stress state.

Since no shear stresses are present in both sections (symmetry),
the stresses σx and σϕ are principal stresses: σ1 = σϕ = p r/t,
σ2 = σx = p r/(2t). According to (2.12b) the maximum shear
stress is given by

τmax =
1
2
(σ1 − σ2) =

1
4
p
r

t
;

it acts in sections inclined under 45◦. It should be noted that in
the vicinity of the end caps more complex stress states are present
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which cannot be determined with an elementary theory.
Now we consider a thin-walled spherical vessel of radius r, sub-

jected to a gage pressure p (Fig. 2.13a). Here, the stresses σt and
σϕ act in the wall (Fig. 2.13b). When we cut the vessel into half
(Fig. 2.13c), we obtain σt from the equilibrium condition:

σt 2 π r t− p π r2 = 0 → σt =
1
2
p
r

t
.

A cut, perpendicular to the first one, similarly leads to

σϕ 2 π r t− p π r2 = 0 → σϕ =
1
2
p
r

t
.

Thus,

σt = σϕ =
1
2
p
r

t
. (2.20)

Therefore, the stress in the wall of a thin-walled spherical vessel
has the value p r/(2 t) in any arbitrary direction. As in the fore-
going case, this formula is also valid for an external pressure in
which case p is negative.

ca b

σt

t

p

r

p

σt

σϕ

Fig. 2.13

2.3 2.3 Equilibrium Conditions
According to Section 2.1 the stress state at a material point of a
body is determined by the stress tensor; its components are shown
in Fig. 2.2a. In general, these components vary from point to point
and these variations are not independent of each other: they are
connected via the equilibrium conditions.
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To derive the equilibrium conditions we first consider in Fig. 2.14
the stresses acting on an infinitesimal element under plane stress
which is cut out from a disk of thickness t. Since the stresses in
general depend on x and y, they are not the same at the opposite
sections: they differ by infinitesimal increments. For example, the
left face is subjected to the normal stress σx whereas the stress

σx +
∂σx

∂x
dx (first terms of the Taylor-expansion, see e.g. Secti-

on 3.1) acts on the right face. The symbol ∂/∂x denotes the par-
tial derivative with respect to x. Furthermore, the element may
be loaded by the volume force f with the components fx and fy .

Fig. 2.14

x

y

σx+ ∂σx

∂x
dx

τyx

τxy

σy

σx

σy+
∂σy

∂y
dy

τxy+
∂τxy

∂x
dx

τyx+
∂τyx

∂y
dy

dx

dy
fx

fy

The equilibrium condition in x-direction yields

− σx dy t− τyx dx t +
(
σx +

∂σx

∂x
dx
)

dy t

+
(
τyx +

∂τyx

∂y
dy
)

dx t+ fx dx dy t = 0

i.e., after division by dxdy

∂σx

∂x
+
∂τyx

∂y
+ fx = 0 . (2.21a)

Similarly, from the equilibrium condition in y-direction we obtain

∂τxy

∂x
+
∂σy

∂y
+ fy = 0 . (2.21b)
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Equations (2.21a, b) are called equilibrium conditions. In the
considered case of plane stress, they consist of two coupled par-
tial differential equations for the three components σx, σy and
τxy = τyx of the stress tensor. The stress state cannot be uni-
quely determined from these equations: the problem is statically
indeterminate.

For a spatial (three dimensional) stress state the corresponding
equilibrium conditions are obtained as

∂σx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ fx = 0 ,

∂τxy

∂x
+
∂σy

∂y
+
∂τzy

∂z
+ fy = 0 ,

∂τxz

∂x
+
∂τyz

∂y
+
∂σz

∂z
+ fz = 0 .

(2.22)

These are three coupled partial differential equations for the six
components of the stress tensor.

The components of the stress tensor are constant in a homo-
geneous stress state . In this case all partial derivatives in (2.21a,
b) and (2.22), respectively, vanish. The equilibrium conditions are
then only fulfilled if fx = fy = fz = 0. Thus, a homogeneous stress
state under the action of volume forces is not possible.

It should be mentioned that from the equilibrium of moments,
applied to the element, the symmetry of the stress tensor follows
even when the stress increments are taken into account (cf. Secti-
on 2.1).



2.4 Supplementary Examples 73

2.42.4 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
2, Springer, Berlin 2010 or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E2.4Example 2.4 The stresses σx = 20
MPa, σy = 30 MPa and τxy = 10
MPa in a metal sheet are known
(Fig. 2.15).

Determine the principal stres-
ses and their directions.

σx

τxy

σy

τyx

y

x

Fig. 2.15

Results: see (A) σ1 = 36.2 MPa, σ2 = 13.8 MPa,

ϕ∗
1 = 58.3◦, ϕ∗

2 = 148.3◦.

E2.5Example 2.5 A plane stress state is given by the principal stresses
σ1 = 30 MPa and σ2 = −10 MPa (Fig. 2.16).

a) Determine the stress com-
ponents in a ξ, η-coordinate sys-
tem which is inclined by 45◦ with
respect to the principal axes.

b) Using Mohr’s circle, deter-
mine the rotation angle α of
an x, y-coordinate system where
σy = 0 and τxy < 0. Calculate σx

and τxy.

σ2

σ1

1

2
ξ

η

Fig. 2.16

Results: see (B)
a) σξ = 10 MPa, ση = 10 MPa, τξη = −20 MPa.

b) α = 30◦, σx = 20 MPa, τxy = −17.3 MPa.
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E2.6 Example 2.6 A thin-walled
tube is subjected to ben-
ding and torsion such that
the following stresses act
at points A and B:

σA,B
x = ±25 MPa, σA,B

s = 50 MPa, τA,B
xs = 50 MPa .

Determine the principal stresses and their directions at A and B.

s

xA

B

Fig. 2.17

Results: see (A) Point A
σ1 = 89.0 MPa, σ2 = −14.0 MPa, ϕ∗

1 = 52.0◦, ϕ∗
2 = −38.0◦.

Point B
σ1 = 75.0 MPa, σ2 = −50.0 MPa, ϕ∗

1 = 63.4◦, ϕ∗
2 = −26.6◦.

E2.7 Example 2.7 A thin-walled bathy-
sphere (radius r = 500 mm, wall-
thickness t = 12.5 mm) is lowered
to a depth of 500 m under the wa-
ter surface (pressure p = 5 MPa).

Determine the stresses in the
wall.

waterp

r

t

Fig. 2.18

Result: see (A) σt = −100 MPa (in any section).

E2.8 Example 2.8 A thin-walled cylin-
drical vessel has the radius r = 1
m and wall-thickness t = 10 mm.

Determine the maximum in-
ternal pressure pmax so that the
maximum stress in the wall does
not exceed the allowable stress σallow = 150 MPa.

r

t

p

Fig. 2.19

Result: see (A) pmax = 1.5 MPa.
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2.52.5 Summary
• The stress state at a point of a body is determined by the stress

tensor σ. In the spatial case it has 3× 3 components (note the
symmetry). In the plane stress state it reduces to

σ =

[
σx τxy

τyx σy

]
where τxy = τyx .

• Sign convention: positive stresses at a positive (negative) face
point in positive (negative) directions of the coordinates.

• Transformation relations (plane stress):

σξ = 1
2
(σx + σy) + 1

2
(σx − σy) cos 2ϕ+ τxy sin 2ϕ ,

ση = 1
2 (σx + σy)− 1

2 (σx − σy) cos 2ϕ− τxy sin 2ϕ ,

τξη = − 1
2 (σx − σy) sin 2ϕ+ τxy cos 2ϕ .

The axes ξ, η are rotated with respect to x, y by the angle ϕ.
• Principal stresses and directions (plane stress):

σ1,2 = 1
2
(σx + σy)±

√
1
4
(σx − σy)2 + τ2

xy ,

tan 2ϕ∗ =
2τxy

σx − σy
→ ϕ∗

1, ϕ
∗
2 = ϕ∗

1 ± π/2 .

Principal stresses are extreme stresses; the shear stresses vanish
in the corresponding sections.

• Maximum shear stresses and their directions (plane stress):

τmax =
√

1
4(σx − σy)2 + τ2

xy , ϕ∗∗ = ϕ∗ ± π/4 .
• Mohr’s circle allows the geometric representation of the coor-

dinate transformation.
• Equilibrium conditions for the stresses (plane stress):

∂σx

∂x
+
∂τyx

∂y
+ fx = 0 ,

∂τxy

∂x
+
∂σy

∂y
+ fy = 0 .

In the spatial case there are three equilibrium conditions.
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Objectives: In Chapter 1 the deformation of a bar has
been characterized by the strain and the displacement. We will
now generalize these kinematic quantities to the plane and the
spatial cases. For this purpose, we introduce the displacement vec-
tor and the strain tensor, the latter describing length and angle
changes. In addition, we will extend the already known Hooke’s
law from the uniaxial case to the two and three-dimensional cases.
Finally, we will discuss the so-called strength hypotheses in order
to assess the exertion of the material under multiaxial stress. The
students shall learn how to calculate the stresses from the strains
or displacements and vice versa.

D. Gross et al., Engineering Mechanics 2,
DOI 10.1007/978-3-642-12886-8_3, © Springer-Verlag Berlin Heidelberg 2011
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3.13.1 State of Strain
To characterize the uniaxial deformation of a tension bar, the ki-
nematic quantities displacement u and strain ε= du/dx have been
introduced (Section 1.2). We will now explore how the deforma-
tion of a plane or spatial structure can be described. Here, we
first restrict our attention to the deformation in a plane. To this
end we consider a disk where two squares and are marked
such that they are tilted against each other (Fig. 3.1). When the
disk is loaded, e.g. by a normal stress σ, point P experiences a
displacement u from its initial position to the new position P ′.
Since the displacement vector u depends on the location, the side
lengths (square ) and the side lengths and angles (square ),
respectively, are changed during the deformation.

Fig. 3.1 �
�
�
�
�
�
�

�
�
�
�
�
�
� deformed plateundeformed plate

P ′P

u

σ

1 2

In the discussions that follow we consider the changes of side
lengths and angles under the assumption of small deformations.
Figure 3.2 shows an infinitesimal rectangle PQRS of side lengths
dx and dy in the undeformed state. During the deformation it is
transformed into the new position P ′Q′R′S′. The displacement
vector u(x, y) of point P (x, y) has the components u(x, y) and
v(x, y) in x- and in y-direction, respectively. The displacement of
a point, adjacent to P , can be described with the help of Taylor-
expansions. For the functions u and v, which depend on the two
variables x and y, we obtain

u(x+ dx, y + dy) = u(x, y) +
∂u(x, y)
∂x

dx+
∂u(x, y)
∂y

dy + . . . ,

v(x+ dx, y + dy) = v(x, y) +
∂v(x, y)
∂x

dx+
∂v(x, y)
∂y

dy + . . . .
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Here ∂/∂x and ∂/∂y denote partial derivatives with respect to x
and y, respectively.

x

u
β

dy

y

∂u
∂y

dy

S R

α

u

dx

P ′

Q′

S′

Q

R′

v+ ∂v
∂x

dx

∂v
∂x

dx

P

u+ ∂u
∂y

dy

u+ ∂u
∂x

dx

v

v+ ∂v
∂y

dy

π/2 −γxy

Fig. 3.2

The series are simplified for pointsQ and S. Taking into account
that the y-coordinate does not change (dy = 0) when advancing
from P to Q and neglecting higher order terms, the displacements
of Q in x- and in y-direction are given by u + ∂u/∂xdx and v +
∂v/∂xdx, respectively (Fig. 3.2). Similarly, because of dx = 0,
the displacement components for point S are u + ∂u/∂y dy and
v + ∂v/∂y dy.

During the deformation, the line PQ is transformed into line
P ′Q′. Since we assume small deformations (β � 1), the lengths of
P ′Q′ and of its projection onto the x-axis are approximately the
same (Fig. 3.2):

P ′Q′ ≈ dx+
(
u+

∂u

∂x
dx
)
− u = dx+

∂u

∂x
dx.

If we introduce, analogously to Section 1.2, the normal strain εx

in the x-direction as the ratio of length increment to initial length,
we obtain

εx =
P ′Q′ − PQ

PQ
=

(
dx+

∂u

∂x
dx
)
− dx

dx
=
∂u

∂x
.
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Similarly, the line PS is transformed into line

P ′S′ ≈ dy +
(
v +

∂v

∂y
dy
)
− v = dy +

∂v

∂y
dy .

Thus, the strain εy in y-direction is given by

εy =
P ′S′ − PS

PS
=

(
dy +

∂v

∂y
dy
)
− dy

dy
=
∂v

∂y
.

Therefore, the two normal strains

εx =
∂u

∂x
, εy =

∂v

∂y
(3.1)

exist in a plane region.
According to Fig. 3.2, the change of the initially right angle

during the deformation is described by α and β. The following
geometric relations hold:

tanα =

∂u

∂y
dy

dy +
∂v

∂y
dy

, tanβ =

∂v

∂x
dx

dx+
∂u

∂x
dx

.

They can be simplified by taking into account the assumption of
small deformations, i.e. α, β � 1, εx, εy � 1, which leads to

α =
∂u

∂y
, β =

∂v

∂x
.

Denoting the total change of the angle as γxy, we obtain

γxy = α+ β → γxy =
∂u

∂y
+
∂v

∂x
. (3.2)

The quantity γ is called shear strain. The subscripts x and y in-
dicate that γxy describes the angle increment in the x, y-plane. If
x and y as well as u and v are interchanged, we find γyx = γxy.

The notion of strains comprises the normal strains as well as the
shear strains. They are connected with the displacements through
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the kinematic relations (3.1) and (3.2). When the displacements
are known, the strains can be determined by differentiation from
(3.1) and (3.2).

The values of εx, εy and γxy determine the plane strain state
at point P . It can be shown that the normal strains εx, εy and
half the angle change εxy = γxy/2 are components of a symmetric
tensor ε. This tensor is called strain tensor. In matrix form it can
be written as

ε =

⎡
⎣ εx εxy

εyx εy

⎤
⎦ =

⎡
⎣ εx

1
2γxy

1
2
γxy εy

⎤
⎦ .

The main diagonal contains the normal strains whereas the entries
of the secondary diagonal are half the shear strains.

The properties of the stress tensor in the case of plane stress
as described in Section 2.2 may analogously be transferred to the
strain tensor in the case of plane strain. The components εξ, εη and
εξη = γξη / 2 in a ξ, η -coordinate system, rotated by the angle ϕ
(positive counterclockwise) against the x, y -system, are obtained
from the components εx, εy and γxy / 2 by using the transforma-
tion relations (2.6). The stresses must simply be replaced by the
strains:

εξ = 1
2
(εx + εy) + 1

2
(εx − εy) cos 2ϕ+ 1

2
γxy sin 2ϕ ,

εη = 1
2
(εx + εy)− 1

2
(εx − εy) cos 2ϕ− 1

2
γxy sin 2ϕ ,

1
2
γξη = − 1

2
(εx − εy) sin 2ϕ+ 1

2
γxy cos 2ϕ .

(3.3)

The strain tensor (as the stress tensor) has two principal direc-
tions, perpendicular to each other, which in analogy to (2.8) can
be determined from the equation

tan 2ϕ∗ =
γxy

εx − εy
. (3.4)
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The principal strains ε1 and ε2 are given by (cf. (2.10))

ε1,2 =
εx + εy

2
±
√(

εx − εy

2

)2

+
(

1
2
γxy

)2

. (3.5)

In analogy to Mohr’s stress circle, a Mohr’s strain circle may be
drawn. Here, the stresses σ and τ must be replaced by the strains
ε and γ/2.

A spatial deformation state can be described by the changes
of the edge lengths and angles of infinitesimal cubes. The displa-
cement vector u in space has the components u, v and w which
depend on the three coordinates x, y and z. From these, the nor-
mal strains

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
(3.6a)

and the shear strains

γxy =
∂u

∂y
+
∂v

∂x
, γxz =

∂u

∂z
+
∂w

∂x
, γyz =

∂v

∂z
+
∂w

∂y
(3.6b)

can be derived. They are the components of the symmetric strain
tensor ε which, as the stress tensor (2.4), can be arranged in a
matrix:

ε =

⎡
⎢⎢⎢⎢⎣

εx εxy εxz

εyx εy εyz

εzx εzy εz

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

εx
1
2
γxy

1
2
γxz

1
2γxy εy

1
2γyz

1
2
γxz

1
2
γyz εz

⎤
⎥⎥⎥⎥⎦
. (3.7)

The main diagonal again contains the normal strains and the re-
maining elements are half the angle changes.

It should be mentioned that the second and third equations in
(3.6a) and (3.6b) can be obtained from the respective first equa-
tion also by cyclic permutation. Here x is replaced by y, y by z, z
by x and u by v, v by w, w by u.
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3.2 3.2 Hooke’s Law
The strains in a structural member depend on the external loading
and therefore on the stresses. According to Chapter 1, stresses and
strains are connected by Hooke’s law. In the uniaxial case (bar)
it takes the form σ = E ε where E is Young’s modulus.

We will now formulate Hooke’s law for the plane stress state.
Here we restrict our attention to materials which are homogeneous
and isotropic. A homogeneous material has the same properties
at each material point. For an isotropic material these properties
are independent of the direction. In contrast, for an anisotropic
material the properties depend on the direction. An example of an
anisotropic material is wood: on account of its fiber structure the
stiffness in the direction of the fibers is different from the stiffness
perpendicular to the fibers.

y

x

σx σx

Fig. 3.3

To derive Hooke’s law for plane stress we consider a rectangular
domain (Fig. 3.3) which is cut out from a disk and which is loaded
only by the normal stress σx. Then, according to (1.8)

εx =
1
E
σx

holds.
Experiments show that the tensile stress σx causes not only an

increase of length but also a reduction of width of the rectangle.
Thus, also a strain εy in y-direction appears. This phenomenon is
called lateral contraction or Poisson effect (Siméon Denis Poisson,
1781–1840). The lateral strain εy is proportional to the axial strain
εx and can be written as

εy = − ν εx . (3.8)

The dimensionless parameter ν is called Poisson’s ratio. It is a
material constant which is determined from experiments. Most
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metallic materials exhibit values about ν ≈ 0.3. Generally it can
be shown that Poisson’s ratio must be in the range of −1 ≤ ν ≤ 1

2 .
As just discussed, the stress σx induces the strains εx = σx/E

and εy = −ν σx/E. Analogously, a stress σy induces the strains
εx = −ν σy/E and εy = σy/E. When both stresses, σx as well as
σy, are acting, the total strains are obtained by superposition:

εx =
1
E

(σx − ν σy) , εy =
1
E

(σy − ν σx) . (3.9)

It should be noted that the stresses σx and σy also induce a
lateral contraction in the z-direction:

εz = − ν

E
σx − ν

E
σy = − ν

E
(σx + σy) .

Thus, a plane stress state leads to a spatial strain state. Since in
this section we are only interested in studying the in-plane defor-
mation, we will not consider further these strains in z-direction.

Fig. 3.4

y

x

τxy

τxy

π/2 −γxy

If a disk (Fig. 3.4) is loaded solely by shear stresses τxy (pure
shear), a linear relationship between the angle change γxy and the
shear stress τxy is experimentally observed:

τxy = Gγxy . (3.10)

The proportionality constant G is called shear modulus. It is a
material parameter which can be experimentally determined in a
shear test or a torsion test. The shear modulus G has the same
dimension as Young’s modulus E, i.e. force/area, and it is usually
expressed in MPa or GPa (1 GPa = 103 MPa = 106 N/mm2).
It can be shown that there exist only two independent materi-
al constants for isotropic, linear elastic materials. The following
relationship holds between the three constants E, G and ν:
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G =
E

2(1 + ν)
. (3.11)

The relationships (3.9) and (3.10) are Hooke’s law for the plane
stress state:

εx =
1
E

(σx − ν σy) ,

εy =
1
E

(σy − ν σx) ,

γxy =
1
G
τxy .

(3.12)

If we introduce (3.12) in conjunction with (3.11) into (3.4) to
determine the principal directions of the strain tensor, we obtain

tan 2ϕ∗ =

1
G
τxy

1
E

(σx − ν σy)− 1
E

(σy − ν σx)
=

E τxy

G(1 + ν)(σx − σy)

=
2 τxy

σx − σy
.

By comparison with (2.8) it can be recognized that (for an isotro-
pic elastic material) the principal directions of the strain tensor
coincide with those of the stress tensor.

Hooke’s law (3.12) is valid in any arbitrary cartesian coordinate
system. Specifically in the principal coordinate system it takes the
form

ε1 =
1
E

(σ1 − ν σ2) , ε2 =
1
E

(σ2 − ν σ1). (3.13)

We finally formulate Hooke’s law in the three-dimensional space
without going into the details of its derivation. Here, also tempe-
rature changes will be taken into account. Experiments show that
a temperature change ΔT in an isotropic material causes only
normal strains which are equal in all directions, i.e.

εxT = εyT = εzT = αT ΔT
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where αT is the coefficient of thermal expansion (see Chapter 1).
No shear strains are induced by ΔT . Then, as a generalization of
(3.12), Hooke’s law can be written as

εx =
1
E

[σx − ν(σy + σz)] + αT ΔT ,

εy =
1
E

[σy − ν(σz + σx)] + αT ΔT ,

εz =
1
E

[σz − ν(σx + σy)] + αT ΔT ,

γxy =
1
G
τxy , γxz =

1
G
τxz , γyz =

1
G
τyz .

(3.14)

E3.1Example 3.1 By using a strain gage rosette, the strains εa = 12 ·
10−4, εb = 2 · 10−4 and εc = −2 · 10−4 have been measured in a
steel sheet in the directions a, b and c (Fig. 3.5a).

Calculate the principal strains, the principal stresses and the
principal directions.

strain gages

ba

b
ϕ∗

45◦

a

c η

2

x

45◦

ϕ=− 45◦

y

1

ξ

Fig. 3.5

Solution We introduce the two coordinate systems x, y and ξ, η
according to Fig. 3.5b. Inserting the angle ϕ = −45◦ into the first
and second transformation equation (3.3), we obtain

εξ =
1
2
(εx + εy)− 1

2
γxy, εη =

1
2
(εx + εy) +

1
2
γxy .
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Addition and subtraction, respectively, yields

εξ + εη = εx + εy, εη − εξ = γxy.

With εξ = εa, εη = εc and εx = εb we get

εy = εa + εc − εb = 8 · 10−4, γxy = εc − εa = −14 · 10−4 .

The principal strains and principal directions are determined ac-
cording to (3.5) and (3.4):

ε1,2 = (5±√9 + 49)·10−4 → ε1 = 12.6 · 10−4, ε2 = −2.6 · 10−4 ,

tan 2ϕ∗ =
−14
2− 8

= 2.33 → ϕ∗ = 33.4◦ .

Introducing the angle ϕ∗ into (3.3) shows that it is associated
with the principal strain ε2. The principal directions 1 and 2 are
plotted in Fig. 3.5b.

Solving (3.13) for the stresses yields

σ1 =
E

1− ν2
(ε1 + ν ε2), σ2 =

E

1− ν2
(ε2 + ν ε1) .

With E = 2.1 · 102 GPa and ν = 0.3 we obtain

σ1 = 273 MPa, σ2 = 27 MPa .

E3.2 Example 3.2 A steel cuboid with a quadratic base area (h = 60
mm, a = 40 mm) fits in the unloaded state exactly into an opening
with rigid walls (Fig. 3.6a).

Determine the change of height of the cuboid when it is

a) loaded by the force F = 160 kN or
b) heated uniformly by the temperature ΔT = 100◦ C.

Assume that the force F is uniformly distributed across the top
surface and that the cuboid can slide without friction along the
contact faces.



3.2 Hooke’s Law 89

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

ba

z

xh

F

a

y

σz

σx

Fig. 3.6

Solution a) A homogeneous spatial stress state acts in the cuboid.
The stress σz in the vertical direction, generated by the compres-
sive force F (cf. Fig. 3.6b), is known:

σz = − F

a2
.

Since the body cannot undergo strains in x- and in y-direction on
account of the deformation constraints, the conditions

εx = 0 , εy = 0

must be fulfilled. Introducing them into the first and second equa-
tion of Hooke’s law (3.14) yields with ΔT = 0

σx − ν (σy + σz) = 0

σy − ν (σz + σx) = 0
→ σx = σy =

ν

1− ν σz .

Thus, the strain in the vertical direction is obtained from the third
equation (3.14):

εz =
1
E

[σz − ν(σx + σy)] =
σz

E

(
1− 2 ν2

1− ν
)

= − F

a2E

(1 + ν)(1 − 2 ν)
1− ν .

Since the strain εz is constant, it can also be written as the ratio
of height change Δh versus height h (cf. Section 1.2): εz = Δh/h.
From that, with E = 2.1 ·105 MPa and ν = 0.3, the change
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of height is calculated:

Δh = εzh = − F h

a2 E

(1 + ν)(1 − 2 ν)
1− ν = −0.02 mm .

b) Now the cuboid is heated by ΔT while no compressive force
is acting on the top surface (F = 0). Therefore, the stress in the
vertical direction vanishes:

σz = 0 .

Since the cuboid again cannot deform in x- and in y-direction,
the conditions εx = 0, εy = 0 still hold. The first and the second
equation of Hooke’s law (3.14) now yield

σx − ν σy + E αT ΔT = 0

σy − ν σx + E αT ΔT = 0
→ σx = σy = − E αT ΔT

1− ν .

Thus, from the third equation (3.14), the strain in the vertical
direction is given as

εz = − ν

E
(σx + σy) + αT ΔT =

1 + ν

1− ν αT ΔT .

With αT = 1.2 · 10−5/◦ C this leads to the change of height

Δh = εz h =
1 + ν

1− ν αT ΔT h = 0.13 mm .

3.3 3.3 Strength Hypotheses
For a bar under tensile loading one can conclude from the stress-
strain diagram at which stress (or strain) failure will occur, e.g.
on account of plastic flow or fracture. To prevent such a failure,
an allowable stress σallow is introduced and it is postulated that
the stress σ in the bar must not exceed σallow, i.e.: σ ≤ σallow (cf.
Chapter 1).

In an arbitrary structural member, a spatial stress state is pre-
sent. Also here it is necessary to determine the circumstances un-
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der which the load carrying capacity is lost and the material starts
to fail. Since there exists no experimental setup which can provide
a general answer, hypotheses on the basis of specific experiments
are used. These so-called strength hypotheses allow us to calculate,
according to a specific rule, an equivalent stress σe from the nor-
mal and shear stresses (or strains). It is assumed that the stress
σe, when applied to the uniaxial case of a bar, has the same ef-
fect regarding failure through plastic flow or fracture as the given
spatial stress state in the body under consideration. Since the
stress states in the body and in a tensile bar are then said to be
equivalent, the stress σe is called equivalent stress. Therefore, if a
structural element shall not lose its load carrying capacity, the
equivalent stress must not exceed the allowable stress:

σe ≤ σallow . (3.15)

In the following we will present three different strength hypo-
theses where we restrict ourselves to plane stress states.

1) Maximum-normal-stress hypothesis: It is assumed that the
material starts to fail when the largest principal stress reaches a
critical value. Thus,

σe = σ1 . (3.16)

This hypothesis may be applied to brittle materials under a pre-
dominating tensile stress state.

2) Maximum-shear-stress hypothesis: This hypothesis is based
on the assumption that failure occurs when the maximum shear
stress reaches a critical value. According to (2.12b), the maximum
shear stress in a plane stress state is given by τmax = 1

2 (σ1 − σ2)
whereas in a bar under tensile stress σe, the maximum shear stress
is τmax = 1

2σe (see (1.3)). Equating yields

τmax =
1
2
(σ1 − σ2) =

1
2
σe → σe = σ1 − σ2 .

Introducing (2.10) we obtain

σe =
√

(σx − σy)2 + 4 τ2
xy . (3.17)
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This hypothesis is applicable to materials where failure occurs
predominantly through plastic flow. It was first formulated 1864
by Henri Édouard Tresca (1814–1885) and is usually named af-
ter him (note: the relation σe = σ1 − σ2 for plane stress is only
valid if both stresses have different algebraic signs. Otherwise the
maximum absolute stress value, σ1 or σ2, must be chosen for σe).

3) Von Mises hypothesis (maximum-distortion-energy hypothe-
sis): Here it is assumed that the material state becomes criti-
cal when the energy needed for the “ distortion ” of a material
element (volume remains unchanged) reaches a critical value. Wi-
thout going into the details of the derivation, we state that the
equivalent stress is given by

σe =
√
σ2

1 + σ2
2 − σ1σ2

or, after introducing (2.10),

σe =
√
σ2

x + σ2
y − σxσy + 3τ2

xy . (3.18)

It is usually called von Mises stress (Richard von Mises, 1883–
1953). This hypothesis was developed independently also by Ma-
xymilian Tytus Huber (1872–1950) and Heinrich Hencky (1885–
1951). Since it agrees well with experiments on ductile materials,
it is preferably used to characterize the onset of plastic flow.

In Example 5.3 the von Mises hypothesis is applied to dimen-
sion a shaft subjected to bending and torsion.

3.4 3.4 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
2, Springer, Berlin 2010 or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E3.3 Example 3.3 In a structure the following plane displacement field
has been found from experiments:
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u(x, y) = u0 + 7 · 10−3x+ 4 · 10−3y ,

v(x, y) = v0 + 2 · 10−3x− 1 · 10−3y .

a) Determine the strains.
b) Calculate the principal strains and
their directions with respect to x.
c) Determine the maximum shear
strain γmax.

v u

P u

x

y

P ′

Fig. 3.7

Results: see (A)
a) εx = 7 · 10−3, εy = −1 · 10−3, γxy = 6 · 10−3.

b) ε1 = 8 · 10−3, ε2 = −2 · 10−3, ϕ∗
1 = 36.9◦, ϕ∗

2 = 126.9◦.

c) γmax = 1 · 10−2.

E3.4Example 3.4 Two quadratic plates
made of different materials (side
lengths a) are pressed into a rigid
opening whose width l is smaller
than 2a (Fig. 3.8).

Determine the stresses and the
changes of the side lengths. Assu-
me that the contact faces can slide
without friction.
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a
E1 , ν1

1

E2 , ν2

2

a

l

1 2

x

y

a

Fig. 3.8

Results: see (A)

σx = −2a− l
a

E1E2

E1 + E2
, σy = 0 , τxy = 0 ,

Δu1 = −(2a− l) E2

E1 + E2
, Δu2 = −(2a− l) E1

E1 + E2
,

Δv1 = −ν1Δu1 , Δv2 = −ν2Δu2 .
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E3.5 Example 3.5 The stresses σx = 30
MPa and τxy = 15 MPa act on a rec-
tangular metal sheet (Young’s mo-
dulus E = 2.1 · 102 GPa, Poisson’s
ratio ν = 0.3) as shown in Fig. 3.9.

Calculate the strain εAB in the di-
rection of the diagonal.

σx

τxy

B

30◦
A x

y

Fig. 3.9

Result: see (B) εAB = 1.8 · 10−4.

E3.6 Example 3.6 A strain gage rosette is bonded to the surface of
a wrench (Young’s modulus
E = 2.1 · 102 GPa, Posson’s ra-
tio ν = 0.3) as shown in Fig. 3.10.
The strain gage readings give the
normal strains εq = 5.8 · 10−4,
εr = −1.0 · 10−4 and εs = 1.2 ·
10−4 in the directions q, r, s.

Assume a plane stress state and determine the maximum nor-
mal stress at the location of the strain rosette.

60◦
60◦

q

r

s

Fig. 3.10

Result: see (B) σmax = 125 MPa.

E3.7 Example 3.7 A thin-walled spherical vessel is heated by hot gas
(ΔT = 200◦ C) and loaded by a gage
pressure (p = 1 MPa).

Vessel data: r = 2 m, t = 10 mm,
E = 2.1 · 102 GPa, ν = 0.3, αT =
12 · 10−6 /◦C.

Determine the change in radius of
the vessel.

p

r

ΔT

t

Fig. 3.11

Result: see (A) Δr = 5.5 mm.
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3.53.5 Summary
• The deformation state at a point of a body is described by the

displacement vector u and the strain tensor ε. In the spatial
case the strain tensor has 3× 3 components (note the symme-
try). In the plane strain state it reduces to

ε =

[
εx εxy

εyx εy

]
=

[
εx

1
2
γxy

1
2
γyx εy

]
where εxy = εyx .

• Relationships between displacements u, v, normal strains εx,
εy and shear strain γxy:

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
.

• The transformation relations as well as the equations to de-
termine the principal strains and principal directions are ana-
logous to those of the stresses. The same is valid for Mohr’s
strain circle.

• The principal directions for stresses and strains coincide in the
case of an isotropic elastic material.

• Hooke’s law (spatial case):

Eεx = σx − ν(σy + σz) + EαT ΔT , Gγxy = τxy .

Respective further equations are obtained by cyclic permuta-
tion of the coordinate indices.

• Relation between G, E and ν for isotropic materials:

G =
E

2(1 + ν)
.

• To assess the stressing of the material, i.e. the criticality against
material failure in the two- and three-dimensional cases, an
equivalent stress σe, based on a strength hypothesis, is intro-
duced.
Example: von Mises hypothesis in a plane stress state

σe =
√
σ2

x + σ2
y − σxσy + 3τ2

xy .
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Objectives: In this chapter the bending of beams is in-
vestigated. We will derive the equations which enable us to de-
termine the stresses and the deformations during bending. The
theory also makes it possible to analyse statically indeterminate
systems. The students will learn how to apply the equations to
specific problems.
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4.14.1 Introduction
Beams are among the most important elements in structural engi-
neering. A beam has the geometrical shape of a straight bar, i.e.,
the dimensions of its cross-sectional area are much smaller than its
length. However, in contrast to the members of a truss it is loaded
by forces which are perpendicular to its axis. Due to the applied
loads, the originally straight beam deforms (Fig. 4.1a). This is
referred to as the bending of the beam. As a consequence, inter-
nal forces (= stresses) are generated in the beam, the resultants
of which are the shear force V and the bending moment M (see
Volume 1). It is the aim of the bending theory to derive equations
that allow the determination of the stresses and the deformations.

deformed beam

undeformed beam

d

b

a

dA

x

A

σ

y

q

z

z

x

σ

a a

x

z

C
z

c

M
y x

=̂

y

FFF

Fig. 4.1

Let us consider the beam in Fig. 4.1b where the z-axis is an axis
of symmetry. In accordance with Volume 1, the x-axis coincides
with the axis of the beam and passes through the centroid C of the
cross-sectional area A. The reason for this particular choice of the
location of the x-axis will become apparent in Section 4.3. The z-
axis points downward and the orientation of the y-axis is chosen
in such a way that the axes x, y and z represent a right-hand
system.
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In the following discussion, the load is assumed to cause a ben-
ding moment M only (no shear force and no normal force). The
beam is then said to be in a state of pure bending. This is the case,
for example, in the region between the two forces F acting at the
beam in Fig. 4.1c. In pure bending there are only normal stresses
σ which act in the direction of the x-axis in the cross-sectional
areas (Figs. 4.1b, d). They are independent of the y-coordinate
and they are linearly distributed in the z-direction (this will be
explained in Sections 4.3 and 4.4). Therefore, the normal stresses
may be written as

σ (z) = c z (4.1)

where c is as yet an unknown factor of proportionality.
The bending moment M is statically equivalent to the sum of

the moments of the distributed normal stresses with respect to the
y-axis (Fig. 4.1d). The infinitesimal force dF = σ dA causes the
infinitesimal moment dM = z dF = z σ dA (Fig. 4.1b). Integration
leads to

M =
∫
z σ dA . (4.2)

Inserting of (4.1) yields

M = c

∫
z2 dA .

The quantity

I =
∫
z2 dA (4.3)

is called moment of inertia. With (4.3), the above equation can
be written as c = M/I, and (4.1) yields a relation between the
stresses and the bending moment:

σ =
M

I
z . (4.4)

Hence, the stress at a fixed value of z depends not only on the
bending momentM but also on the moment of inertia I. The term
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“ inertia ” is used since there is a similarity between the definition
of the moments of inertia of an area and the definition of the
mass moments of inertia (see Volume 3). The moment of inertia
is a purely geometrical quantity which is related to the shape of
the area. It plays an important role in the bending of beams. In
the following section, the properties of moments of inertia will be
discussed in detail.

4.24.2 Second Moments of Area

4.2.1 Definitions

Fig. 4.2 shows an area A in the y, z-plane. The axes and their
directions (z downward, y to the left) are chosen in accordance
with the axes in the cross section of a beam. The origin 0 is located
at an arbitrary position.

Fig. 4.2

r

y

z

0

A

zy

dA

The coordinates of the centroid C of an area may be obtained
from yc = 1

A

∫
y dA and zc = 1

A

∫
z dA (see Volume 1, Section 4.3).

The integrals

Sy =
∫
z dA, Sz =

∫
y dA (4.5)

are called first moments of area since the distances y and z, re-
spectively, appear linearly in (4.5).

Integrals which contain the square of the distances of the ele-
ment dA or the distances as a product are called second moments
of area. They are also referred to as moments of inertia of the area.
These integrals are purely geometrical quantities without physical
significance. They are defined as follows:
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Iy =
∫
z2 dA, Iz =

∫
y2 dA , (4.6a)

Iyz =
∫
Izy = − ∫ y z dA , (4.6b)

Ip =
∫
r2 dA =

∫
(z2 + y2) dA = Iy + Iz . (4.6c)

The integrals Iy and Iz in (4.6a) are referred to as rectangular
moments of inertia, Iyz is called the product of inertia and Ip is
the polar moment of inertia. The second moments of area have
the dimension length4; they are given, for example, in the unit
cm4.

The magnitude of a moment of inertia depends on the location
of the origin and on the orientation of the axes. Whereas Iy, Iz
and Ip are always positive (the integrals involve the squares of the
distances), the product of inertia Iyz may be positive, negative
or zero (the integrals contain the product of y and z which need
not be positive). In particular, Iyz = 0 if one of the axes is an
axis of symmetry of the area A. Let, for example, the z-axis be
an axis of symmetry (Fig. 4.3a). Then for every infinitesimal area
dA located at a positive distance y, there exists a corresponding
element located at a negative distance. Therefore, the integral
(4.6b) is zero.

In some cases it is practical to use the radii of gyration instead
of the second moments of area. They have the dimension “ length”

a b

y
zz

0

z

A

z

y
0

+y

A2

A1

A4

A3

−y
dAdA

Fig. 4.3
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and are defined by

rgy =

√
Iy
A
, rgz =

√
Iz
A
, rgp =

√
Ip
A
. (4.7)

These equations yield, for example, the relation Iy = r2gyA. The-
refore, one may interpret the radius rgy as the distance from the
y-axis at which the area A can be imagined to be “concentrated”
in order to have the moment of inertia Iy .

Frequently, an area A is composed of several parts Ai, the mo-
ments of inertia of which are known (Fig. 4.3b). In this case, the
moment of inertia about the y-axis, for example, is obtained as the
sum of the moments of inertia Iyi of the individual parts about
the same axis:

Iy =
∫

A

z2 dA =
∫

A1

z2 dA+
∫

A2

z2 dA+ . . . =
∑

Iyi .

The other moments of inertia can also be found by summation
from similar expressions:

Iz =
∑

Izi , Iyz =
∑

Iyzi .

The methods to calculate the second moments of area either
by integration (in particular, the considerations of how to choose
an infinitesimal area dA) or by summation (in the case of a com-
posite area) are quite analogous to those discussed in Volume 1,
Chapter 4, for the determination of centroids, i.e., first moments
of area.

As a first example we consider a rectangular area (width b,
height h). The coordinate system with the origin at the centroid
C is given; the y-axis is parallel to the base (Fig. 4.4a). In order to
determine Iy, we select an infinitesimal area dA = bdz according
to Fig. 4.4b. Then every point of the element has the same distance
z from the y-axis. Thus, we obtain

Iy =
∫
z2 dA =

+h/2∫

−h/2

z2 (b dz) =
b z3

3

∣∣∣
+h/2

−h/2
=

b h3

12
. (4.8a)
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a b

hC
y

dz

z̄

ȳ
b

z z

z

+h/2

y

−h/2

dA=bdz

Fig. 4.4

Exchanging b and h yields

Iz =
h b3

12
. (4.8b)

Since the z-axis is an axis of symmetry, the product of inertia Iyz

is zero:

Iyz = 0 . (4.8c)

(Note that in this example the y-axis is also an axis of symmetry.)
The polar moment of inertia is calculated with the aid of (4.6c)
and the already known quantities Iy and Iz:

Ip = Iy + Iz =
b h3

12
+
h b3

12
=
b h

12
(h2 + b2). (4.8d)

The radii of gyration follow with the area A = b h and the
length d =

√
b2 + h2 of the diagonal of the rectangular area from

(4.7):

rgy =
h

2
√

3
, rgz =

b

2
√

3
, rgp =

d

2
√

3
. (4.8e)

In a second example we calculate the moments of inertia and
the radii of gyration of a circular area (radius R), the origin of
the coordinate system being at the centroid C (Fig. 4.5a). Due to
the symmetry of the problem, the moments of inertia about every
axis through C are equal. Therefore, according to (4.6c),

Iy = Iz =
1
2
Ip . (4.9)
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Fig. 4.5

The product of inertia Iyz is zero (symmetry). To determine the
polar moment Ip, we choose an infinitesimal circular ring with the
area dA = 2π r dr (every point of this ring has the same distance
r from the center C), see Fig. 4.5b. Then we obtain

Ip =
∫
r2dA =

∫ R

0

r2(2 π r dr) =
π

2
R4, (4.10a)

and (4.9) yields

Iy = Iz =
π

4
R4 . (4.10b)

With the area A = πR2, the radii of gyration follow as

rgy = rgz =
R

2
, rgp =

R√
2
. (4.10c)

The results for the circular area can be used to find the moments
of inertia of a circular ring with outer radius Ra and inner radius
Ri (Fig. 4.5c). Subtraction leads to

Ip =
π

2
R4

a −
π

2
R4

i =
π

2
(R4

a −R4
i ) ,

Iy = Iz =
π

4
R4

a −
π

4
R4

i =
π

4
(R4

a −R4
i ).

(4.11)
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If we introduce the radius Rm = 1
2 (Ra +Ri) (= arithmetic mean

value of the radii Ri and Ra) and the thickness t = Ra − Ri of
the ring, we can write the terms in the parentheses in (4.11) in
the form R4

a − R4
i = 4R3

mt(1 + t2/(4R2
m)). If the thickness t is

small as compared with the radius Rm (i.e., t � Rm), the term
t2/(4R2

m) may be neglected. Therefore, the moments of inertia of
a thin circular ring (Fig. 4.5d) are

Ip ≈ 2 πR3
m t, Iy = Iz ≈ π R3

m t . (4.12)

Additional moments of inertia for a number of typical areas can
be found in Table 4.1

E4.1 Example 4.1 Determine the second moments of area and the ra-
dii of gyration of an ellipse for the coordinate system as given in
Fig. 4.6a.

a

c d

b

y
Ma

b

z

y yz
dy

dA

za
p

1−(z/b)2 z

y z

a
p

1−(z/b)2

dA

z

b
p

1−(y/a)2

dA

Fig. 4.6

Solution The area is defined by the equation (y/a)2 + (z/b)2 = 1
of the ellipse. First we determine Iy and use three different ways
to choose the infinitesimal area dA.

a) If we choose the element dA = dy dz as shown in Fig. 4.6b, we
have to integrate over the two variables y and z (double integral).
First we integrate over y (the variable boundaries ±a√1− (z/b)2

follow from the equation of the ellipse) and then we integrate over
z (with the fixed boundaries ±b):
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Iy =
∫
z2 dA =

+b∫

−b

z2

⎧
⎪⎪⎨
⎪⎪⎩

+a
√

1−(z/b)2∫

−a
√

1−(z/b)2

dy

⎫
⎪⎪⎬
⎪⎪⎭

dz = 2a

+b∫

−b

z2
√

1− (z/b)2 dz .

Using the substitution z = b sin ϕ
2
, we obtain

Iy = a b3
+π∫

−π

sin2 ϕ

2
cos2

ϕ

2
dϕ =

π

4
a b3 . (a)

b) The integration over y may be avoided if the infinitesimal strip
according to Fig. 4.6c is used. Every point of this element has the
same distance z from the y-axis. With dA = 2a

√
1− (z/b)2 dz

we immediately obtain the integral

Iy =
∫
z2 dA = 2 a

+b∫

−b

z2
√

1− (z/b)2 dz ,

which as before leads to the result (a).

c) We will now consider the ellipse to be composed of infinitesimal
rectangular areas as shown in Fig. 4.6d. Each area element has the
width dy and the height 2b

√
1− (y/a)2. Therefore, according to

(4.8a), its moment of inertia is given by

dIy =
1
12

8 b3(1− y2/a2)3/2 dy .

The moment of inertia of the ellipse follows from the summation
(= integration) of the infinitesimal moments of inertia (substitu-
tion: y = a sinψ):

Iy =
∫

dIy =
8
12
b3

+a∫

−a

(1− y2/a2)3/2dy

=
2
3
b3a

+π/2∫

−π/2

cos4 ψ dψ =
π

4
a b3 .
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The moment of inertia Iz is obtained from Iy by exchanging a
and b:

Iz =
π

4
b a3. (b)

The coordinate axes y and z are axes of symmetry. Therefore,
Iyz = 0. The polar moment of inertia is determined from (4.6c):

Ip = Iy + Iz =
π

4
a b(a2 + b2) .

The area of an ellipse is given by A = π a b. Thus, the Equations
(4.7) yield the radii of gyration:

rgy =
b

2
, rgz =

a

2
, rgp =

1
2

√
a2 + b2 .

4.2.2 Parallel-Axis Theorem

Let us now consider two different coordinate systems, namely,
y, z and ȳ, z̄, as shown in Fig. 4.7. The axes of the two systems
are assumed to be parallel and the origin of the y, z-system is the
centroid C of the area. In the following we shall investigate how the
second moments of area with respect to the different coordinate
systems are related.

dA

z C

z̄c

y

z z̄

ȳc

ȳ

y

Fig. 4.7

From Fig. 4.7 we take the relations

ȳ = y + ȳc, z̄ = z + z̄c .
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Then the second moments of area with respect to the ȳ, z̄-system
are given by

Iȳ =
∫
z̄2 dA =

∫
(z + z̄c)2 dA =

∫
z2 dA+ 2 z̄c

∫
z dA+ z̄2

c

∫
dA,

Iz̄ =
∫
ȳ2 dA =

∫
(y + ȳc)2 dA =

∫
y2 dA+ 2 ȳc

∫
y dA+ ȳ2

c

∫
dA,

Iȳz̄ = −∫ ȳz̄dA = −∫ (y + ȳc)(z + z̄c)dA = −∫ y z dA− ȳc

∫
z dA

− z̄c

∫
y dA− ȳcz̄c

∫
dA .

The first moments of area
∫
z dA and

∫
y dA about the axes y

and z through the centroid C are zero (see Volume 1, Chapter 4).
With A =

∫
dA and Iy =

∫
z2 dA etc we thus obtain

Iȳ = Iy + z̄2
c A ,

Iz̄ = Iz + ȳ2
c A ,

Iȳz̄ = Iyz − ȳcz̄cA .

(4.13)

These are the relations between the moments of inertia with re-
spect to the axes through the centroid C and the moments of iner-
tia with respect to axes which are parallel to them. The Equations
(4.13) are known as the parallel-axis theorem. Note that when ap-
plying the parallel-axis theorem one of the two axes must be a
centroidal axis. The terms z̄2

cA and ȳ2
cA are always positive. The-

refore, the moments of inertia with respect to centroidal axes are
always smaller than those with respect to axes parallel to them.
The term ȳcz̄cA which appears in the expression for Iȳz̄ may be
positive, negative or zero, depending on the location of the respec-
tive axes.

As an example we determine the moments of inertia with re-
spect to the axes ȳ, z̄ for the rectangle shown in Fig. 4.4a. Since
the moments of inertia with respect to centroidal axes are given
by (4.8), we obtain from (4.13)

Iȳ =
b h3

12
+
(
h

2

)2

b h =
b h3

3
,
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Iz̄ =
h b3

12
+
(
b

2

)2

b h =
h b3

3
,

Iȳz̄ = 0− b

2
h

2
b h = − b

2h2

4
.

E4.2 Example 4.2 Determine the moments of inertia for the I-profile
shown in Fig. 4.8a. Simplify the results for d, t� b, h.

a b

d

t

y y
h/2

h/2

C3
(h+t)/2

z

C2

C1

z

b/2 b/2

t
(h+t)/2

2

3

1

Fig. 4.8

Solution We consider the area to be composed of three rectangles
(Fig. 4.8b). According to (4.13), the moments of inertia of each
part consist of the moments of inertia with respect to the centro-
idal axes (see (4.8)) and the corresponding additional terms:

Iy =
d h3

12
+ 2

[
b t3

12
+
(
h

2
+
t

2

)2

b t

]
=
d h3

12
+
b t3

6
+
h2b t

2

+ t2h b+
b t3

2
=
d h3

12
+

2 b t3

3
+
h2b t

2
+ t2h b ,

Iz =
h d3

12
+ 2

t b3

12
.

In the case of d, t � b, h the terms which contain d, t quadra-
tically or to the third power may be neglected as compared with
the terms that are linear in d and t:

Iy ≈ d h3

12
+
h2b t

2
, Iz ≈ t b3

6
.
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One can see that in the case of a thin-walled profile the moments
of inertia 2bt3/12 of the flanges about their respective centroidal
axis may be neglected when calculating Iy . Calculating Iz , we may
neglect the moment of inertia h d3/12 of the web.

4.2.3 Rotation of the Coordinate System, Principal Moments of

Inertia

Let us now consider two coordinate systems y, z and η, ζ (Fig. 4.9).
Their relative orientation is given by the angle ϕ. In order to derive
relations between the respective moments of inertia, we use the
geometrical relations

η = y cosϕ+ z sinϕ, ζ = −y sinϕ+ z cosϕ

(see Fig. 4.9). Then the moments of inertia with respect to the
axes η, ζ are given by

Iη =
∫
ζ2 dA = sin2 ϕ

∫
y2 dA+ cos2 ϕ

∫
z2 dA

− 2 sinϕ cosϕ
∫
y z dA,

Iζ =
∫
η2 dA = cos2 ϕ

∫
y2 dA+ sin2 ϕ

∫
z2 dA

+ 2 sinϕ cosϕ
∫
y z dA,

Iηζ = − ∫ η ζ dA = sinϕ cosϕ
∫
y2 dA− cos2 ϕ

∫
y z dA

+ sin2 ϕ
∫
y z dA− sinϕ cosϕ

∫
z2 dA .

With the moments of inertia about the axes y,z according to
(4.6) and the trigonometrical relations sin2 ϕ = 1

2(1 − cos 2ϕ),

y

z

0ϕ

ζ

η

y

z

0
y

η

y
ζzz

ϕ

ϕ

z sinϕ
y cosϕ

z cosϕ

y sinϕ

ϕ

dA

η
ηζ

ζ
ϕ

Fig. 4.9
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cos2 ϕ = 1
2 (1 + cos 2ϕ) and 2 sinϕ cosϕ = sin 2ϕ we obtain the

transformation equations

Iη = 1
2 (Iy + Iz) + 1

2 (Iy − Iz) cos 2ϕ+ Iyz sin 2ϕ ,

Iζ = 1
2 (Iy + Iz)− 1

2 (Iy − Iz) cos 2ϕ− Iyz sin 2ϕ ,

Iηζ = − 1
2 (Iy − Iz) sin 2ϕ+ Iyz cos 2ϕ .

(4.14)

If the moments of inertia with respect to the y, z-coordinate sys-
tem are known, the moments of inertia with respect to the inclined
system η, ζ can be determined from (4.14).

If we add the first two equations in (4.14) and use (4.6c), we
obtain

Iη + Iζ = Iy + Iz = Ip . (4.15)

Hence, the sum of the moments of inertia Iy and Iz (= polar
moment of inertia) is independent of the angle ϕ. Therefore, Iη+Iζ
is referred to as an invariant of the coordinate transformation (=
rotation of the coordinate system). One may verify that another
invariant is given by [12 (Iη − Iζ)]2 + I2

ηζ .
According to (4.14), the magnitude of a moment of inertia de-

pends on the angle ϕ. The moments Iη or Iζ have a maximum or
a minimum value if the conditions dIη/dϕ = 0 or dIζ/dϕ = 0 are
satisfied. Both conditions lead to the same result:

−1
2
(Iy − Iz) sin 2ϕ+ Iyz cos 2ϕ = 0 .

Therefore, the angle ϕ = ϕ∗ which makes the moments of inertia
a maximum or a minimum is given by

tan 2ϕ∗ =
2 Iyz

Iy − Iz . (4.16)

Because of tan 2ϕ∗ = tan 2 (ϕ∗+π/2) there exist two perpendicu-
lar axes with the directions given by the angles ϕ∗ and ϕ∗ + π/2
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for which the moments of inertia become an extremum. These
axes are called principal axes. We obtain the corresponding prin-
cipal moments of inertia if we insert (4.16) into (4.14). Using the
trigonometrical relations

cos 2ϕ∗ =
1√

1 + tan2 2ϕ∗ =
Iy − Iz√

(Iy − Iz)2 + 4 I2
yz

,

sin 2ϕ∗ =
tan 2ϕ∗

√
1 + tan2 2ϕ∗ =

2 Iyz√
(Iy − Iz)2 + 4 I2

yz

we find

I1,2 =
Iy + Iz

2
±
√(

Iy − Iz
2

)2

+ I2
yz . (4.17)

The positive (negative) sign corresponds to the maximum (mini-
mum) moment of inertia.

We will now determine the angle for which the product of iner-
tia Iηζ vanishes. If we introduce the condition Iηζ = 0 into (4.14)
we obtain the same angle ϕ∗ as given by (4.16). Thus, the pro-
duct of inertia with respect to the principal axes is zero. As already
mentioned in Section 4.2.1, the product of inertia is zero with re-
spect to an axis of symmetry. Therefore, an axis of symmetry and
the axis perpendicular to it are principal axes.

As an example we consider the rectangular area in Fig. 4.10.
Since Iyz = 0 (see (4.8c)), the axes y and z are principal axes
and the moments of inertia Iy = b h3/12 and Iz = h b3/12 are the

Fig. 4.10

y

b

z

hC

η

ζ

ϕ
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principal moments of inertia. The moments of inertia with respect
to the η, ζ-coordinate system are determined from (4.14):

Iη =
b h

24
[(h2 + b2) + (h2 − b2) cos 2ϕ] ,

Iζ =
b h

24
[(h2 + b2)− (h2 − b2) cos 2ϕ] ,

Iηζ = −b h
24

(h2 − b2) sin 2ϕ .

In the special case of a square (h = b) we obtain Iη = Iζ = h4/12
and Iηζ = 0. These results are independent of the angle ϕ. Hence,
in the case of a square each inclined coordinate system represents
principal axes.

Note that the moments of inertia are components of a tensor.
Therefore, the transformation relations (4.14) and the resulting
equations (4.15) - (4.17) are analogous to the corresponding equa-
tions for the stress tensor (see Section 2.2). In analogy to Mohr’s
circle for the stresses, a circle for the moments of inertia can be
constructed. In doing so, the normal stresses σx, σy have to be
replaced with Iy, Iz and the shear stress τxy has to be replaced
with the product of inertia Iyz.

E4.3 Example 4.3 Determine the principal axes and the principal mo-
ments of inertia for the thin-walled area with constant thickness
t (t� a) shown in Fig. 4.11a.

a b

principal axis 1 (I1)

principal axis 2 (I2)z
a

t

y

z

y

aa

aa

a

ϕ∗
2

ϕ∗
1

Fig. 4.11
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Solution First we determine the moments of inertia about the
axes y and z. If we divide the area into several rectangular parts
and neglect terms of higher order in the thickness t, we obtain

Iy =
1
12

t(2 a)3 + 2
{

1
3
t a3 + a2(a t)

}
=

10
3
t a3 ,

Iz = 2
{

1
3
t a3 + a2(a t)

}
=

8
3
t a3 ,

Iyz = 2
{
−
[a
2
a(a t)

]
−
[
a
a

2
(a t)

]}
= − 2 t a3 .

The orientation of the principal axes follows from (4.16)

tan 2ϕ∗ =
2 Iyz

Iy − Iz = − 2 · 2 · 3
10− 8

= − 6

which leads to

ϕ∗
1 = − 40.3◦ , ϕ∗

2 = ϕ∗
1 + 90◦ = 49.7◦ . (a)

The principal moments of inertia are calculated from (4.17):

I1,2 =
t a3

3

⎡
⎣10 + 8

2
±
√(

10− 8
2

)2

+ (−6)2

⎤
⎦ =

(
3±
√

37
3

)
t a3

→ I1 = 5.03 t a3 , I2 = 0.97 t a3 . (b)

The principal axes are shown in Fig. 4.11b. In order to decide
which principal moment of inertia (b) corresponds to which direc-
tion (a), we may insert (a) into (4.14). However, in this example
one can see by inspection that the maximum moment of inertia
I1 belongs to the angle ϕ∗

1 since the distances of the area elements
from the corresponding axis are larger than those for the angle
ϕ∗

2.

4.34.3 Basic Equations of Ordinary Bending Theory
We will now derive the equations which enable us to determine the
stresses and the deformations due to the bending of a beam. In
the following we restrict ourselves to ordinary (uniaxial) bending,
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c

ba

d
∂u
∂z

∂w
∂x

du=εdx

V +dV

x+dx

M+dMM
V

x
z

w

P

dx

z

τ
σ

dz

z

x

P ′

z

dA

zx x

u=zψ

ψ

dx

dx

dz

dz

q

Fig. 4.12

i.e., we assume that the axes y and z are the principal axes of
the cross sectional area (Iyz = 0). In addition, the applied loads
are assumed to cause only a shear force V in the z-direction and
a bending moment M about the y-axis. These assumptions are
satisfied, for example, if the z-axis is an axis of symmetry of the
cross section and the applied forces act in the x, z-plane.

We have to use three different types of equations: equations
from statics, geometrical (kinematic) relations and Hooke’s law.
The equations from statics are the equilibrium conditions formu-
lated for a beam element as shown in Fig. 4.12a. They are taken
from Volume 1, Section 7.2.2:

dV
dx

= − q, dM
dx

= V . (4.18)

The bending moment M and the shear force V are the resultants
of the normal stresses σ (acting in the x-direction) and the shear
stresses τ (acting in the z-direction), respectively (see Fig. 4.12b):

M =
∫
z σ dA, V =

∫
τ dA . (4.19a,b)
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The normal force

N =
∫
σ dA (4.19c)

is zero due to the assumptions. Since only one normal stress and
one shear stress are needed here, we have omitted the subscripts
of the stress components: (σ = σx, τ = τxz).

The kinematic relations between the strain components and the
displacements are taken from Section 3.1:

ε =
∂u

∂x
, γ =

∂w

∂x
+
∂u

∂z
. (4.20)

Here, u and w are the displacements in the x-direction (axis of the
beam) and in the z-direction, respectively. Since no other strain
components are needed, the subscripts are also omitted: ε = εx,
γ = γxz. The strain ε and the shear strain γ describe the defor-
mation of an arbitrary element of the beam with length dx and
height dz (Fig. 4.12b). This is illustrated in Fig. 4.12c.

We assume that the normal stresses σy and σz in the beam are
small as compared with σ = σx and therefore may be neglected.
Then Hooke’s law is given by (compare Section 3.2)

σ = E ε, τ = Gγ . (4.21)

It is not possible to uniquely determine the stresses and displa-
cements with the aid of Equations (4.18) - (4.21). Therefore, we
have to introduce additional assumptions. They concern the dis-
placements of the points of a cross section at an arbitrary position
x (Fig. 4.12d):

a) The displacement w is independent of z:

w = w(x) . (4.22a)

Hence, every point of a cross section undergoes the same deflection
in the z-direction. This implies that the height of the beam does
not change due to bending: εz = ∂w/∂z = 0.
b) Plane cross sections of the beam remain plane during the ben-
ding. In addition to the displacement w, a cross section undergoes
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a rotation. The angle of rotation ψ = ψ(x) is a small angle; it is
counted as positive if the rotation is counterclockwise. Thus, the
displacement u of a point P which is located at a distance z from
the x-axis is given by

u(x, z) = ψ(x) z . (4.22b)

Experiments show that the assumptions a) and b) lead to results
which are sufficiently accurate in the case of a slender beam with
a constant cross section or with a slight taper.

Introducing (4.22a, b) and (4.20) into (4.21) yields

σ = E
∂u

∂x
= E ψ′ z , (4.23a)

τ = G

(
∂w

∂x
+
∂u

∂z

)
= G(w′ + ψ) (4.23b)

where d( )/dx = ( )′ and w′ represents the slope of the deformed
axis of the beam. Since |w′| � 1, the slope is equal to the an-
gle between the deformed axis of the beam and the x-axis. Using
(4.23a), the Equations (4.19a) and (4.19c) yield the stress resul-
tants

M = E ψ′
∫
z2 dA, N = E ψ′

∫
z dA .

It was assumed that the normal force is zero: N = 0. Hence,
according to the second equation, we obtain Sy =

∫
z dA = 0,

which implies that the y-axis has to be a centroidal axis (see Vo-
lume 1, Section 4.3). This is the reason for the particular choice of
the coordinate system mentioned in Section 4.1. Introducing the
second moment of area I = Iy =

∫
z2 dA, the first equation can

be written in the form

M = EI ψ ′ . (4.24)

Thus, the change dψ of the angle ψ in the x-direction is propor-
tional to the bending moment M . The corresponding deformation
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of a beam element of length dx is illustrated in Fig. 4.13a. Equa-
tion (4.24) is a constitutive equation for the bending moment. The
quantity EI is referred to as flexural rigidity or bending stiffness.

Equation (4.23b) represents a shear stress τ which is constant
in the cross section. This result is due to the simplifying assump-
tions a) and b). In reality, however, the shear stress is not evenly
distributed as will be shown in Section 4.6.1. In particular, τ = 0
at the outer fibers of the cross section. This can easily be shown
with the fact that, according to (2.3), the shear stresses in two
perpendicular planes are equal (complementary shear stresses).
Note that there are no shear stresses at the upper and the lower
surface of the beam acting in the direction of the beam axis (no
applied loads in this direction). Therefore, the shear stress also
has to be zero at the extreme fibers of a cross section which is
orthogonal to the surfaces of the beam. The actual distribution
of the shear stress τ may approximately be taken into account
by introducing a factor κ, called the shear correction factor, when
(4.23b) is inserted into (4.19b):

V = κGA(w′ + ψ) . (4.25)

This is a constitutive equation for the shear force. An element of
the beam undergoes a shear deformation w′ +ψ under the action
of a shear force V (Fig. 4.13b). The quantity κGA = GAS is
called the shear stiffness and AS = κA is referred to as the “shear
area ” (compare Sections 4.6.2 and 6.1).

a b

VMM

V

dψ

x

ψ

x

w′

dxdxFig. 4.13
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4.4 4.4 Normal Stresses
If ψ′ = M/EI according to (4.24) is introduced into (4.23a), the
normal stresses in the cross section of a beam are obtained (com-
pare (4.4)):

σ =
M

I
z . (4.26)

This equation is called the bending formula. It shows that the
normal stresses, which are also referred to as the flexural or ben-
ding stresses, are linearly distributed in z-direction as shown in
Fig. 4.14. If the bending moment M is positive, the stresses are

σmax

zmax σ(z)
x

z Fig. 4.14

positive (tensile stresses) for z > 0 and they are negative (com-
pressive stresses) for z < 0. For z = 0 (i.e., in the x, y-plane) we
have σ = 0. Since ε = σ/E, the strain ε is also zero in the x, y-
plane: the fibers in this plane do not undergo any elongation or
contraction. Therefore, this plane is called the neutral surface of
the beam. The intersection of a cross section of the beam with the
neutral surface (i.e., the y-axis) is called the neutral axis. The ben-
ding stresses (tensile or compressive) attain their maximum values
at the extreme fibers. With the notation zmax for the maximum
value of z (often also denoted by c) and

W =
I

|z|max
(4.27)

we obtain the maximum tensile or compressive stress, respectively:

σmax =
M

W
. (4.28)
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The quantity W (often also denoted by S) is called the section
modulus.

If the state of stress in a beam is investigated, it often suffices
to determine only the normal stresses since the shear stresses are
usually negligibly small (slender beams!). There are several dif-
ferent types of problems arising in this context. If, for example,
the bending moment M , the section modulus W and the allowa-
ble stress σallow are known, one has to verify that the maximum
stress σmax satisfies the requirement

σmax ≤ σallow → M

W
≤ σallow .

This is called a stress check.
On the other hand, if M and σallow are given, the required

section modulus can be calculated from

Wreq =
M

σallow
.

This is referred to as the design of a beam.
Finally, if W and σallow are given, the allowable load can be

calculated from the condition that the maximum bending moment
Mmax must not exceed the allowable moment Mallow = W σallow:

Mmax ≤W σallow .

E4.4Example 4.4 The cross section of a cantilever beam (l = 3 m)
consists of a circular ring (Ri = 4 cm, Ra = 5 cm), see Fig. 4.15.
The allowable stress is given by σallow = 150 MPa.

Determine the allowable value of the load F .
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Fig. 4.15
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Solution The maximum bending moment is located at the clam-
ping; it has the magnitude

Mmax = l F .

The maximum stress is then determined by

σmax =
Mmax

W
=
l F

W
.

To obtain the allowable force F , we use the condition σmax ≤
σallow:

l F

W
≤ σallow → F ≤ Wσallow

l
.

According to (4.11), the moment of inertia of a circular ring is
given by I = Iy = π(R4

a −R4
i )/4. This yields the section modulus

(zmax = Ra):

W =
I

zmax
=
π(R4

a −R4
i )

4Ra
= 58 cm3 .

With σallow =150 MPa and l = 3 m we obtain the allowable force:

F ≤ 2.9 kN .

E4.5 Example 4.5 The simply supported beam (length l = 10 m) carries
the force F = 200 kN (Fig. 4.16).

Find the required side length c of the thin-walled quadratic
cross section such that the allowable stress σallow = 200 MPa is
not exceeded. The thickness t = 15 mm of the profile is given.

l/3

c

c

t

l

F

y

z
Fig. 4.16
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Solution The side length has to be chosen such that the condition

W ≥ M

σallow
(a)

is satisfied. The maximum bending moment (located at the point
of application of F ) is given by

M =
2
9
l F . (b)

The moment of inertia of the cross section (t� c) is obtained as

I ≈ 2
[
t c3

12
+
( c

2

)2

c t

]
=

2
3
t c3 .

This yields the section modulus

W =
I

zmax
≈ I

c/2
=

4
3
t c2 . (c)

Introducing (b) and (c) into (a) leads to

4
3
t c2 ≥ 2 l F

9 σallow
→ c ≥

√
l F

6 t σallow

or

c ≥ 333 mm .

4.54.5 Deflection Curve

4.5.1 Differential Equation of the Deflection Curve

The Equations (4.18), (4.24) and (4.25) represent four differential
equations for the stress resultants V , M and the kinematic quan-
tities ψ, w. They can be further simplified if we assume that the
shear rigidity is very large. Assuming κGA → ∞ (and the shear
force to be finite), Equation (4.25) reduces to

w ′ + ψ = 0 . (4.29)
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In this case, an element of the beam does not undergo a shear
deformation due to the shear force: γ = 0. The beam is then
referred to as being rigid with respect to shear. Equation (4.29) al-
lows a simple geometrical interpretation: a cross section which is
perpendicular to the undeformed axis of the beam (the x-axis)
remains perpendicular to the deformed beam axis during the ben-
ding (Fig. 4.17). This statement and the assumption that plane
cross sections remain plane, see assumption b) in Section 4.3, are
called the Bernoulli assumptions (Jakob Bernoulli, 1655–1705).
They yield sufficiently accurate results for slender beams; in the
special case of pure bending (V = 0) they are exact. A beam who-
se behaviour is investigated according to this theory is referred to
as a Bernoulli beam.

z
w

x

−ψ

w′

Fig. 4.17

Given the load q(x), the Equations (4.18), (4.24) and (4.29)
are four differential equations of first order for the four unknown
functions V , M , ψ and w:

V ′ = − q, M ′ = V, ψ ′ =
M

EI
, w ′ = − ψ . (4.30)

If we eliminate ψ from the third and the fourth equation, we obtain
the differential equation of the deflection curve:

w ′′ = − M

EI
. (4.31)
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Provided the bending moment M and the flexural rigidity EI

are known, integration of (4.31) yields the slope w′(x) and the
deflection w(x), also called the elastic line.

The curvature κB of the deformed axis of the beam is given by

κB =
w ′′

(1 + w′ 2)3/2
. (4.32a)

In the case of a small slope (w ′ 2 � 1) the relation (4.32a) reduces
to

κB ≈ w ′′ . (4.32b)

The curvature of the deformed axis of the beam is therefore pro-
portional to the bending moment (see (4.31)). It is negative for
M > 0 and positive for M < 0 (Fig. 4.18).

negative curvature positive curvature

M

M

M> 0 M< 0

M

M

x

z

Fig. 4.18

If we use the first and the second equation of (4.30), we obtain
a different form of the differential equation of the elastic line. We
first differentiate M = −EIw′′ and insert the result into V = M ′.
This yields

V = −(EI w ′′) ′ . (4.33)

Then we differentiate once more and use the relation V ′ = −q to
obtain a differential equation of fourth order:

(EI w ′′)′′ = q . (4.34a)

In the special case of EI = const, (4.34a) reduces to

EI wIV = q . (4.34b)
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Table 4.2. Boundary conditions

Support w w′ M V

pin
0 �= 0 0 �= 0

parallel motion

�
�
�

�
�
�

�= 0 0 �= 0 0

fixed end

�
�
�
� 0 0 �= 0 �= 0

free end
�= 0 �= 0 0 0

If the load q and the flexural rigidity EI are given, the deflection
w can be determined through integration of the above differential
equation.

The constants of integration are determined from boundary
conditions (compare Volume 1, Section 7.2.3). We distinguish bet-
ween geometrical and statical boundary conditions. Geometri-
cal boundary conditions are statements concerning the geometri-
cal (kinematic) quantities w or w ′, respectively. Statical boundary
conditions are statements referring to the stress resultants V orM .
Consider, for example, a beam that is supported by a pin at one
end. Then the deflection w and the bending moment M are zero
at this point. No statement concerning the slope w ′ or the shear
force V , respectively, can be made. At a clamping, the deflection
and the slope are zero; the shear force and the bending moment
are unknown. Note that two boundary conditions can be formula-
ted at each end point of a beam. Table 4.2 displays the boundary
conditions for various supports (cf. Volume 1, Equation (7.11)).
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Equation (4.31) can be applied to statically determinate pro-
blems only, since only in this case the bending moment can be cal-
culated from equilibrium conditions in advance. The two constants
of integration which appear through the integration of (4.31) are
determined from geometrical boundary conditions; the statical
boundary conditions are satisfied automatically. If the problem is
statically indeterminate, the differential equation (4.34) has to be
used since the bending moment is unknown in this case. The four
constants of integration are calculated from geometrical and/or
statical boundary conditions.

4.5.2 Beams with one Region of Integration

We will now show with the aid of several examples how the diffe-
rential equations (4.31) or (4.34) can be used to obtain the deflec-
tion curve. In this section we restrict ourselves to beams where
the integration can be performed in one region, i.e., we assume
that each of the quantities q(x), V (x), M(x), w′(x) and w(x) is
given by one function for the entire length of the beam.

Let us first consider a cantilever beam (flexural rigidity EI)
subjected to a concentrated force F (Fig. 4.19a). Since the system
is statically determinate, the bending moment can be calculated
from the equilibrium conditions (compare Volume 1, Section 7.2).
With the coordinate system as shown in Fig. 4.19b, we obtain
M = −F (l − x). Introducing into (4.31) and integrating yields

EI w ′′ = F (− x+ l) ,

EI w ′ = F
(
− x2

2
+ l x

)
+ C1 ,

EI w = F
(
− x3

6
+
l x2

2

)
+ C1 x+ C2 .

The geometrical boundary conditions

w ′(0) = 0, w(0) = 0

lead to the constants of integration:

C1 = 0, C2 = 0 .
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Fig. 4.19

Hence, the slope and the deflection are obtained as

w ′(x) =
F l2

2EI

(
− x2

l2
+ 2

x

l

)
,

w(x) =
F l3

6EI

(
− x3

l3
+ 3

x2

l2

)
.

The maximum slope and the maximum deflection (at x = l, see
Fig. 4.19b) are

w ′
max =

F l2

2EI
, wmax =

F l3

3EI
.

Let us now consider three beams (bending stiffness EI) subjec-
ted to a constant line load q0 (Figs. 4.20a-c). The supports in the
three cases are different; the systems in the Figs. 4.20a and b are
statically determinate, the system in Fig. 4.20c is statically inde-
terminate. Since in the latter case the bending moment can not be
calculated from equilibrium conditions, we will use the differenti-
al equation (4.34b) in all three cases. We introduce a coordinate
system and integrate (4.34b):

EI wIV = q = q0 ,

EI w′′′ = − V = q0 x+ C1 ,

EI w′′ = −M =
1
2
q0 x

2 + C1 x+ C2 ,

EI w′ =
1
6
q0 x

3 +
1
2
C1 x

2 + C2 x+ C3 ,

EI w =
1
24
q0 x

4 +
1
6
C1 x

3 +
1
2
C2 x

2 + C3 x+ C4 .

These equations are independent of the supports and therefore
are valid for all three cases. Different boundary conditions lead to
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Fig. 4.20

different constants of integration:

a) w ′(0) = 0 → C3 = 0 ,

w(0) = 0 → C4 = 0 ,

V (l) = 0 → q0 l + C1 = 0 → C1 = − q0 l ,

M(l) = 0 → 1
2
q0 l

2 + C1 l + C2 = 0 → C2 =
1
2
q0 l

2 ,

b) M(0) = 0 → C2 = 0 ,

M(l) = 0 → 1
2
q0 l

2 + C1 l = 0 → C1 = − 1
2
q0 l ,

w(0) = 0 → C4 = 0 ,

w(l) = 0 → 1
24
q0 l

4 +
1
6
C1 l

3 + C3 l=0 → C3 =
1
24
q0 l

3,

c) w′(0) = 0 → C3 = 0 ,

w(0) = 0 → C4 = 0 ,

M(l) = 0 → 1
2
q0 l

2 + C1 l+ C2 = 0 ,

w(l) = 0 → 1
24
q0 l

4 +
1
6
C1 l

3 +
1
2
C2 l

2 = 0

→ C1 = − 5
8
q0 l , C2 =

1
8
q0 l

2 .
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Hence, we obtain the elastic lines (Figs. 4.20a–c)

a) w(x) =
q0 l

4

24EI

[(x
l

)4

− 4
(x
l

)3

+ 6
(x
l

)2
]
,

b) w(x) =
q0 l

4

24EI

[(x
l

)4

− 2
(x
l

)3

+
(x
l

)]
,

c) w(x) =
q0 l

4

24EI

[(x
l

)4

− 5
2

(x
l

)3

+
3
2

(x
l

)2
]
.

The maximum deflection in the case a) is given by

wmax = w(l) =
q0 l

4

8EI

and in case b) it is

wmax = w

(
l

2

)
=

5
384

q0 l
4

EI
.

After having determined the constants of integration we also
know the slope w ′, the bending moment M(x) and the shear force
V (x). For example,

V (x) = − q0 l

8

[
8
(x
l

)
− 5
]
,

M(x) = − q0 l
2

8

[
4
(x
l

)2

− 5
(x
l

)
+ 1
]

for the statically indeterminate beam in case c). The support re-
actions can be taken from the stress resultants:

A = V (0) =
5 q0 l

8
, B = − V (l) =

3 q0 l
8

,

MA = M(0) = − q0 l
2

8
.

As a check we verify that the equilibrium conditions

↑: A+B − q0 l = 0,
�

A : −MA + l B − l

2
q0 l = 0

are satisfied.
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E4.6Example 4.6 A simply supported beam (bending stiffness EI) is
loaded by a moment M0 (Fig. 4.21a).

Determine the location and magnitude of the maximum deflec-
tion.

ba

M0

A B

M0

BA
l

EI x

z

Fig. 4.21

Solution The beam is statically determinate. Therefore we can
determine the bending moment from the equilibrium conditions.
Using the coordinate system in Fig. 4.21b and the support reac-
tions A = −B = M0/l we find

M(x) = xA = M0
x

l
.

Substitution into (4.31) followed by two integrations yield

EI w′′ = − M0

l
x ,

EI w′ = − M0

2 l
x2 + C1 ,

EI w = − M0

6 l
x3 + C1 x+ C2 .

The constants of integration can be calculated from the geometri-
cal boundary conditions:

w(0) = 0 → C2 = 0 ,

w(l) = 0 → − M0

6 l
l3 + C1 l = 0 → C1 =

M0 l

6
.

Thus, we obtain the elastic line

w(x) =
1
EI

[
− M0

6 l
x3 +

M0 l

6
x

]
=
M0 l

2

6EI

[
−
(x
l

)3

+
(x
l

)]
.
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The maximum deflection is characterized by a vanishing slope:

w′ = 0 → − M0

2 l
x2 +

M0 l

6
= 0 → x∗ =

1√
3
l .

Hence,

wmax = w(x∗) =
M0 l

2

6EI

[
− 1

3
√

3
+

1√
3

]
=
√

3M0 l
2

27EI
.

E4.7 Example 4.7 The beam in Fig. 4.22 is subjected to a concentrated
force F .

Find the deflection at A and the moment MB at the clamped
end B.
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��
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��

l

A

F

B
EI

z

x

Fig. 4.22

Solution The system is statically indeterminate. Therefore we
have to use Equation (4.34b). Integration with q(x) = 0 yields

EI wIV = 0 ,

EI w′′′ = − V = C1 ,

EI w′′ = −M = C1 x+ C2 ,

EI w′ =
1
2
C1 x

2 + C2 x+ C3 ,

EI w =
1
6
C1 x

3 +
1
2
C2 x

2 + C3 x+ C4 .

The constants of integration are determined from the boundary
conditions:
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V (0) = − F → C1 = F ,

w′(0) = 0 → C3 = 0 ,

w′(l) = 0 → 1
2
C1 l

2 + C2 l = 0 → C2 = − 1
2
F l ,

w(l) = 0 → 1
6
C1 l

3 +
1
2
C2 l

2 + C4 = 0 → C4 =
1
12
F l3 .

The deflection curve and the bending moment can now be evalua-
ted as

w(x) =
F l3

12EI

[
2
(x
l

)3

− 3
(x
l

)2

+ 1
]
,

M(x) = − F l

2

[
2
(x
l

)
− 1
]
.

The deflection at A and the moment MB are

wA = w(0) =
F l3

12EI
, MB = M(l) = − F l

2
.

E4.8Example 4.8 The beam in Fig. 4.23a carries a linearly varying line
load.

Determine the shear force and the bending moment.

a

b

quadratic parabola

��
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��

��
��
��

�
�
�

�
�
�

cubic parabola

7
20 q0l

q0l
2

30
q0l2

20

B

l

A

q0

EI

3
20 q0l

M

V

z

x∗=
p

3/10 l

x

Fig. 4.23
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Solution The beam is statically indeterminate. If we use the coor-
dinate system in Fig. 4.23a, we can write q(x) = q0 x/l. Integration
of (4.34b) yields

EI wIV =
q0
l
x ,

EI w ′′′ = − V =
1
2
q0
l
x2 + C1 ,

EI w ′′ = −M =
1
6
q0
l
x3 + C1 x+ C2 ,

EI w ′ =
1
24
q0
l
x4 +

1
2
C1 x

2 + C2 x+ C3 ,

EI w =
1

120
q0
l
x5 +

1
6
C1 x

3 +
1
2
C2 x

2 + C3 x+ C4 .

The constants of integration are determined from the boundary
conditions:

w ′(0) = 0 → C3 = 0 ,

w(0) = 0 → C4 = 0 ,

w ′(l) = 0 → 1
24
q0 l

3 +
1
2
C1 l

2 + C2 l = 0 }

w(l) = 0 → 1
120

q0 l
4 +

1
6
C1 l

3 +
1
2
C2 l

2 = 0

→ C1 = − 3
20
q0 l , C2 =

1
30
q0 l

2 .

Thus, the shear force and bending moment distributions are given
by (Fig. 4.23b)

V (x) =
q0 l

20

[
−10

(x
l

)2

+ 3
]
,

M(x) =
q0 l

2

60

[
−10

(x
l

)3

+ 9
(x
l

)
− 2
]
.

The maximum bending moment is characterized by the condi-
tion of a vanishing shear force. It is therefore located at x∗ =√

3/10 l. The support reactions can be taken from the diagrams
(Fig. 4.23b):
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A = V (0) =
3
20
q0 l , B = − V (l) =

7
20
q0 l ,

MA = M(0) = − q0 l
2

30
, MB = M(l) = − q0 l

2

20
.

E4.9Example 4.9 The cantilever beam (modulus of elasticity E) in
Fig. 4.24 has a rectangular cross section. It is loaded by a constant
line load q0.

Given the constant width b, determine the height h(x) such
that the maximum bending stress at each cross section has the
same value σ0. Find the deflection w(0) at the free end in this
case.

��
��
��

��
��
��

b

h(x)

l

q0

E

z

yx
z

Fig. 4.24

Solution The maximum bending stress at each cross section is
equal to σ0 if, according to (4.28),

σ0 =
|M |
W

.

The bending moment is given by

M(x) = − 1
2
q0 x

2 (a)

and the section modulus for a rectangular cross section is

W =
I

h/2
=
b h3 2
12 h

=
b h2

6
.

This yields the required height distribution:

σ0 =
q0 x

2 6
2 b h2

→ h(x) =
√

3 q0
b σ0

x .

The moment of inertia follows as
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I(x) =
b h3

12
=

b

12

(
3 q0
b σ0

)3/2

x3 = I0
x3

l3
, (b)

where I0 = b h3(l)/12 is the reference value at x = l, that is,
I0 = I(l). If we introduce (a) and (b) into the differential equation
(4.31) and integrate twice, we obtain

w ′′ = − M

EI
=

q0 l
3

2EI0
1
x
,

w ′ =
q0 l

3

2EI0
ln

x

C1
,

w =
q0 l

3

2EI0

[
x ln

x

C1
− x+ C2

]
.

The constants of integration are determined from the boundary
conditions:

w ′(l) = 0 → ln
l

C1
= 0 → C1 = l ,

w(l) = 0 → l ln 1− l + C2 = 0 → C2 = l .

Thus, introducing the dimensionless coordinate ξ = x/l, the de-
flection curve is given by

w(ξ) =
q0 l

4

2EI0

[
ξ ln ξ − ξ + 1

]
.

The deflection at the free end (ξ = 0) can be calculated with the
help of the limit expression lim

ξ→0
ξ ln ξ = 0 to give

w(0) =
q0 l

4

2EI0
.

Note that it is four times the deflection of a cantilever with a
constant moment of inertia I0.

4.5.3 Beams with several Regions of Integration

Frequently, one or several of the quantities q, V , M , w ′, w or the
flexural rigidity EI are given through different functions of x in
different portions of the beam. In this case the beam must be di-
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vided into several regions and the integration has to be performed
separately in each of these regions. The constants of integration
can be calculated from both, boundary conditions and matching
conditions, also called continuity conditions (compare Volume 1,
Section 7.2.4). The treatment of such problems will be illustrated
by means of the following example.

E4.10Example 4.10 A simply supported beam is subjected to a concen-
trated force F at x = a (Fig. 4.25).

Determine the deflection w at the location x = a.

Fig. 4.25

b

l

a

A B

z

III F

EIx

Solution In this example, the shear force V has a jump (disconti-
nuity) at x = a and the bending moment is given by

M(x) =

⎧
⎪⎪⎨
⎪⎪⎩

F
b

l
x for 0 ≤ x ≤ a ,

F
a

l
(l − x) for a ≤ x ≤ l .

Introduction into (4.31) and integration in the regions I
(0 ≤ x ≤ a) and II (a ≤ x ≤ l), respectively, yields

I : EI w′′
I = − F b

l
x,

EI w′
I = − F b

l

x2

2
+ C1,

EI wI = − F b
l

x3

6
+ C1 x+ C2,

II : EI w′′
II = − F a

l
(l − x),
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EI w′
II = F

a

l

(l − x)2
2

+ C3,

EI wII = − F a
l

(l − x)3
6

− C3(l − x) + C4.

It is practical to use the distance (l − x) from support B as the
variable in region II.

We now have to determine the four constants of integration.
There are two boundary conditions:

wI(0) = 0 → C2 = 0,

wII(l) = 0 → C4 = 0 .

In addition, we can use two matching conditions. Since there are
no jumps in the deflection or the slope, these quantities are con-
tinuous at x = a:

wI(a) = wII(a) → − F b
l

a3

6
+ C1 a = − F a

l

b3

6
− C3 b,

w′
I(a) = w′

II(a) → − F
b

l

a2

2
+ C1 = F

a

l

b2

2
+ C3,

→ C1 =
F a b(a+ 2 b)

6 l
, C3 = − F a b(b+ 2 a)

6 l
.

This yields the elastic line

w(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F b l2

6EI
x

l

[
1−
(
b

l

)2

−
(x
l

)2
]

for 0 ≤ x ≤ a,

F a l2

6EI
(l − x)
l

[
1−
(a
l

)2

−
(
l − x
l

)2
]

for a ≤ x ≤ l.

The deflection at x = a is found to be

w(a) =
F a2 b2

3EI l
.
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4.5.4 Method of Superposition

The differential equation of the elastic line is linear, see Equations
(4.31) or (4.34), and the deflection depends linearly on the load.
Therefore, it is possible to superimpose solutions for different load
cases. Let us, for example, consider the beam in Fig. 4.26 which
is subjected to a line load q1 and a force F2. The deflection w is
obtained through a superposition of the deflections w1 (due to the
load q1) and w2 (due to the force F2): w = w1 +w2. Analogously,
we find the slope w′ = w′

1 + w′
2, the bending moment M = M1 +

M2, and the shear force V = V1 + V2.

+=

q1 q1

w2w
w1

F2 F2

z z z

x x x

Fig. 4.26

Table 4.3 displays several solutions for statically determinate
beams with a constant flexural rigidity EI. They can be used to
find the solutions for combined loadings without having to inte-
grate the differential equation of the elastic line.

It is often useful to apply the method of superposition to stati-
cally indeterminate systems. In order to illustrate the procedure
let us consider the beam in Fig. 4.27a. It is statically indeter-
minate to the first degree. If we remove support B, we obtain a
statically determinate system. This system subjected to the given
load only is called “ 0“-system or primary system. The deflection
w(0) of the beam in the “ 0“-system can be taken from Table 4.3.
In particular, the deflection at the free end (at point B) is given
by

w
(0)
B =

q0 l
4

8EI
.

Let us now consider the statically determinate system subjected
only to an initially unknown force X (“1“-system). This force acts
at the point where the support was removed (here point B). It
corresponds to the support reaction B in the given system and is
as yet unknown. The deflection at the free end of the beam can
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Table 4.3. Elastic lines (see explanations at the end of the table)

Nr. load EI w′
A EI w′

B

1
A

b
F

a
x B

l
F l2

6
(β − β3) −F l

2

6
(α− α3)

2

q0

x B

l

A
q0 l

3

24
− q0 l

3

24

3

xA B

q0

ba
l

q0 l
3

24
(1 − β2)2

q0 l
3

24
[ 4(1 − β3)

−6(1 − β2)

+(1 − β2)2]

4

q0

xA B

l
7 q0 l

3

360
− q0 l

3

45

5
xA B

l

a
M0

b M0 l

6
(3β2 − 1)

−M0 l

6
for b = 0

M0 l

6
(3α2 − 1)

M0 l

3
for b = 0

6 �
�
�
�

F
ba

x
l

BA

0
F a2

2

7
�
�
�
�

�
�
�
� q0

x
l

BA

0
q0 l

3

6
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EI w(x) EI wmax

F l3

6
[βξ(1 − β2 − ξ2) + 〈ξ − α〉3]

F l3

48

for a = b = l/2

q0 l
4

24
(ξ − 2ξ3 + ξ4)

5 q0 l
4

384

q0 l
4

24
[ξ4 − 〈ξ − α〉4 − 2(1 − β2)ξ3 + (1 − β2)2ξ]

q0 l
4

360
(7ξ − 10 ξ3 + 3 ξ5)

M0 l
2

6
[ξ(3β2 − 1) + ξ3 − 3〈ξ − α〉2]

√
3M0 l

2

27

for a = 0

F l3

6
[3 ξ2α− ξ3 + 〈ξ − α〉3]

F l3

3

for a = l

q0 l
4

24
(6 ξ2 − 4 ξ3 + ξ4)

q0 l
4

8
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Table 4.3. (continued)

Nr. load EI w′
A EI w′

B

8 ��
��
��

��
��
��

l

q0

BxA
ba

0
q0 l

3

6
β(β2 − 3β + 3)

9
�
�
�

�
�
�

x
l

BA

q0

0
q0 l

3

24

10
�
�
�
�

�
�
�

x
l

BA
a

M0
b

0 M0 a

Explanations: ξ = x
l
; α = a

l
; β = b

l
; EI = const; w′ = dw

dx
;

be taken from Table 4.3:

w
(1)
B = − X l3

3EI
.

The original system is obtained as a superposition of the sys-
tems “0“ and “1“. Since there is a support at B, the deflection at
this point has to be zero:

w
B

= w
(0)

B
+ w

(1)

B
= 0.

This condition of compatibility yields

q0 l
4

8EI
− X l3

3EI
= 0 → X = B =

3
8
q0 l.

Now the elastic line w = w(0) +w(1), the slope w′ = w′(0) +w′(1),
the shear force V = V (0) + V (1) and the bending moment M =
M (0) + M (1) are also known. For example, the bending moment
is obtained by combining M (0) = − 1

2q0(l − x)2, M (1) = X(l − x)
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EI w(x) EI wmax

q0 l
4

24
[〈ξ − α〉4 − 4β ξ3 + 6 β(2 − β) ξ2]

q0 l
4

120
(10 ξ2 − 10 ξ3 + 5 ξ4 − ξ5)

q0 l
4

30

M0 l
2

2
(ξ2 − 〈ξ − α〉2)

M0 l
2

2

for a = l

〈ξ − α〉n =

{
(ξ − α)n for ξ > α ,

0 for ξ < α .

with the known value of X to give (compare Section 4.5.2)

M = − 1
2
q0(l − x)2 +X(l − x) = − q0 l

2

8

[
4
(x
l

)2

− 5
(x
l

)
+ 1
]
.

=

b

+

"1" System"0" System

= +

a

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

z

w
′(0)
A

q0

l

w(0)

B

q0q0

w(0)
X

w(1)
w

(1)
B

A

w
(0)
B

EIx

w(1)

X

w
′(1)
A

Fig. 4.27
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In particular, the moment at the clamped end A of the beam is

MA = M(0) = − q0 l
2

8
.

A statically indeterminate system to the first degree has one
excess support reaction. This additional reaction is called redun-
dant.

There are various possible ways to choose a statically determi-
nate “0“-system, i.e., to choose the redundant support reaction. In
the present example we may replace the clamping A by a hinged
support as shown in Fig. 4.27b instead of removing the support B.
In order to replace the constraint that was removed, the beam is
subjected to a momentX in the “1“-system. Since the superpositi-
on has to yield the original system, the condition of compatibility
requires a vanishing slope at the clamped end:

w′
A = w

′(0)
A + w

′(1)
A = 0.

We take the slopes w′(0)
A = q0 l

3/24EI and w′(1)
A = X l/3EI from

Table 4.3 and obtain again the moment at the clamped end as

X = MA = − q0 l
2

8
.

The problem can be treated with essentially the same procedure
if the right-hand end of the beam is supported by a strut (axial
rigidity EA, length a) instead of a simple support (Fig. 4.28). If
we remove the strut, we obtain a “0“-system which corresponds
to the one as shown in Fig. 4.27a. Thereby the strut is unloaded;
its change of length is zero: Δa(0) = 0. The “1“-system consists
of the beam and the strut, both subjected to the unknown force
X = S. Note that this force acts in opposite directions at the
beam and the strut (actio = reactio). Now the strut experiences
a shortening Δa(1) = Xa/EA. Since the beam and the strut are
connected in the original system, their displacements at B have
to coincide. Therefore the condition of compatibility is given by

wB = Δa → w
(0)
B + w

(1)
B = Δa(1).
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Fig. 4.28

With w(0)
B = q0 l

4/8EI and w(1)
B = −X l3/3EI (see Table 4.3) we

obtain

q0 l
4

8 EI
− X l3

3 EI
=
X a

EI
→ X = S =

3
8
q0 l

1

1 +
3EI a
EA l3

.

Once we have determined the force in the strut, the elastic line of
the beam and the stress resultants can easily be calculated. In the
special case of 3EIa/EA l3 � 1, this fraction may be neglected.
Hence, if EA → ∞, the force in the strut becomes X = 3 q0 l/8.
This result coincides with the result for support B in the system
shown in Fig. 4.27a.

In the case of a statically indeterminate system to the first de-
gree, we remove one constraint to obtain a statically determinate
“0“-system. The auxiliary “1“-system is then subjected to a load
according to the constraint that was removed. If the system is
statically indeterminate of degree n, it has n redundant support
reactions. Therefore, we have to remove n constraints in order to
obtain the “0“-system. In addition, we have to consider n auxilia-
ry systems which are subjected to a force or a moment, according
to the constraints that were removed. These n forces/moments
can be determined from n conditions of compatibility (compare
Section 1.6).

As an example let us consider the beam shown in Fig. 4.29.
It is statically indeterminate to the second degree. To obtain the
statically determinate “0“-system, we remove the supports B and
C. The auxiliary systems “1“ and “2“ are subjected to the forces
X1 = B and X2 = C, respectively. Since the deflections are zero
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"1" System "2" System
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�
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�
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z
l/2

w
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l/2
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w
(1)
B

w
(1)
C

w
(2)
B

X1 X2

EIB

w
(0)
B

q0

A C

w
(0)
C Fig. 4.29

at B and C in the original system, the compatibility conditions
are

wB = 0 → w
(0)
B + w

(1)
B + w

(2)
B = 0,

wC = 0 → w
(0)
C + w

(1)
C + w

(2)
C = 0.

From Table 4.3 we take

w
(0)
B =

14 q0 l4

384EI
, w

(1)
B = − 2X1 l

3

48EI
, w

(2)
B = − 5X2 l

3

48EI
,

w
(0)
C =

41q0 l4

384EI
, w

(1)
C = − 5X1 l

3

48EI
, w

(2)
C = − 16X2 l

3

48EI
.

Solving for the unknowns yields

X1 = B =
19
56
q0 l, X2 = C =

12
56
q0 l.

The method of superposition may also be applied to investigate
the deformations of frames by combining the deformations of the
individual beams making up the frame. Note, however, that the
deformation of a beam has an effect on the displacement of the
adjacent one.

As an example we determine the vertical displacement wC of
the angled member at point C (Fig. 4.30a). First, we consider only
the deformation of part and its effect on the displacement of
part (which is assumed to be rigid in the first step). Part
is subjected to the internal moment M = b F and the axial load
F at its end B (Fig. 4.30b). The moment M causes a deflection
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2
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Fig. 4.30

w1 and a slope w′
1 at B. If we assume the axial rigidity to be

infinite (EA → ∞) the force F does not cause any deformation.
This leads to a vertical displacement b w′

1 at point C of part
(small angles!). In a second step we consider part to be rigid
and part to be elastic. This is equivalent to a clamping at B
and yields the deflection w2 of a cantilever (Fig. 4.30c). Taking
the individual terms from Table 4.3, the total deflection at C is
given by

wC = b w′
1 + w2 = b

(b F ) a
EI

+
F b3

3EI
=
F b2

3EI
(3 a+ b).

If the axial rigidity EA is finite, part of the structure will
be shortened by an amount Fa/EA. Then the total deflection of
point C is

wC =
F b2

3EI
(3 a+ b) +

F a

EA
.

Usually, the second term is small as compared with the term re-
sulting from the bending.

E4.11Example 4.11 Determine the support reactions and the deflection
at point D for the beam in Fig. 4.31a.

Solution The system is statically indeterminate to the first de-
gree. In order to obtain a simple “0“-system we cut the beam and
introduce a pin at the support B (Fig. 4.31b). According to the
removed constraint, both parts of the original beam are subjected
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Fig. 4.31

to a moment X in the “1“-system.
There is no pin at B in the original system. Therefore the slopes

in both parts of the system have to coincide at B. This leads to
the compatibility condition

w′
B1

= w′
B2

→ w
′(0)
B1

+ w
′(1)
B1

= w
′(0)
B2

+ w
′(1)
B2

.

The support reactions (counted as positive upwards), the de-
flection at D and the slope at B are taken from Table 4.3. They
are given by

A(0) =
F

2
, B(0) =

F

2
+ F =

3
2
F, C(0) = F,

w
(0)
D =

F a3

3EI
, w

′(0)
B1

= − F a2

4EI
, w

′(0)
B2

=
2F a2

4EI

for the “0“-system and

A(1) = − X

2 a
, B(1) =

X

2 a
+
X

2 a
=
X

a
, C(1) = − X

2 a
,

w
(1)
D = − X a2

4EI
, w

′(1)
B1

=
2X a

3EI
, w

′(1)
B2

= − 2X a

3EI
.

for the “1“-system. Substitution into the compatibility condition
yields

− F a2

4EI
+

2X a

3EI
=

2F a2

4EI
− 2X a

3EI
→ X =

9
16
aF.

Thus, we obtain the support reactions and the deflection at D for
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the given system:

A = A(0) +A(1) =
7
32

F , B = B(0) +B(1) =
66
32

F,

C = C(0) + C(1) =
23
32

F, wD = w
(0)
D + w

(1)
D =

37F a3

192EI
.

4.64.6 Influence of Shear

4.6.1 Shear Stresses

In Section 4.3 it was shown that the assumptions concerning the
displacements lead to shear stresses that are constant in a cross
section (recall (4.23b)). This constant distribution of the shear
stresses is only a first approximation. A better result can be obtai-
ned with the aid of the normal stresses (4.26) and the equilibrium
conditions. At first, we restrict our attention to prismatic beams
with solid cross sections, where the y-axis and the z-axis are as-
sumed to be principal axes. In addition, we make the following
assumptions:

a) Only the component in z-direction of the shear stress τ is re-
levant (see Fig. 4.32a).

b) The shear stress τ is independent of y, i.e., τ = τ(z), analo-
gously to the normal stress σ = σ(z).

Both assumptions are not exactly satisfied in reality. First, the
shear stress always has the direction of the tangent to the bounda-
ry of an arbitrarily shaped cross section (Fig. 4.32b), and secondly,
the shear stress depends to a certain degree on y. Therefore, the
shear stress which is obtained using the above assumptions is only
an average shear stress over the width b(z).

In order to determine the shear stresses, we separate an element
of length dx from the rest of the beam. Then we isolate a part
of this element by an additional cut perpendicular to the z-axis
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at an arbitrary position z (Fig. 4.32c). Let us now consider the
forces acting on this subelement. The unknown shear stresses τ(z)
act in z-direction at its front face. According to Section 2.1, the-
se shear stresses are accompanied by shear stresses of equal ma-
gnitude acting in areas perpendicular to the front face (comple-
mentary shear stresses). Hence, the top face of the subelement is
also acted upon by τ(z), see Fig. 4.32c. Since only the forces in
x-direction are needed in the following derivation, only the cor-
responding stresses are shown in Fig. 4.32c. The resultant of the
shear stresses at the top surface is given by τ(z) b(z)dx; it points
into the direction of the negative x-axis. The two areas which are
perpendicular to the x-axis (front and back surface) are subjec-
ted to the resultant forces

∫
A∗ σdA and

∫
A∗ (σ + (∂σ/∂x)dx)dA.

Here, the area A∗ is the area of the front surface of the subele-
ment, i.e., it is that portion of the cross sectional area A which lies
beyond the level z at which the shear stress is being evaluated, see
Fig. 4.32d. The bottom face of the element (outer surface of the be-
am) is not subjected to a load. Hence, the equilibrium condition in
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x-direction yields

− τ(z) b(z)dx−
∫

A∗

σ dA+
∫

A∗

(
σ +

∂σ

∂x
dx
)

dA = 0

or

τ(z) b(z) =
∫

A∗

∂σ

∂x
dA.

We denote the distance of the area element dA from the y-axis by
ζ (Fig. 4.32c). Then the flexural stress is given by σ = (M/I)ζ,
see (4.26). The bending moment M is independent of y and z.
Therefore, ∂M/∂x = dM/dx. With dM/dx = V , we get

∂σ

∂x
=
V

I
ζ (4.35)

and therefore

τ(z) b(z) =
V

I

∫

A∗

ζ dA.

The integral on the right-hand side is the first moment S of the
area A∗ with respect to the y-axis:

S(z) =
∫

A∗

ζ dA. (4.36)

Hence, the shear stress distribution over a cross section is found
to be

τ(z) =
V S(z)
I b(z)

. (4.37)

This equation is called the shear formula. It can be used to cal-
culate the shear stress at any point of a beam with a solid cross
section.

As an example we determine the distribution of the shear stress
due to a shear force in a rectangular cross section (Fig. 4.33a).
The width b, the height h, the cross sectional area A = bh and
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the moment of inertia I = b h3/12 of the entire cross section (see
(4.8a)) are known. The first moment of the area A∗ with respect
to the y-axis is obtained as

S(z) =

h/2∫

z

ζ(b dζ) =
b

2
ζ2

∣∣∣∣∣
h/2

z

=
b h2

8

(
1− 4 z2

h2

)

(see Volume 1, Section 4.3). This yields the distribution of the
shear stress in the cross section:

τ(z) =
V

8
b h2 12
b h3 b

(
1− 4 z2

h2

)
=

3
2
V

A

(
1− 4 z2

h2

)
. (4.38)

It has the shape of a parabola as shown in Fig. 4.33b. The ma-
ximum shear stress τmax = 3

2
V/A is located at z = 0; it is 50 %

larger than the average shear stress τ̃ = V/A. The shear stress
is zero at the extreme fibers (z = ±h/2). This is due to the fact
that there are no stresses acting at the outer surfaces (top and
bottom) of the beam. Therefore, the shear stress in the extreme
fibers also has to be zero (complementary shear stresses!).

Since the shear strain is given by γ = τ/G, its distribution
over the cross section is also parabolic. This implies that the cross
sections do not remain plane during the bending: they will warp
(Fig. 4.34). Therefore the hypothesis of Bernoulli that the cross
sections remain plane is only a first approximation and the shear
strain w ′ + ψ (see (4.25)) is an average shear strain γ̃.

It should be noted again that in addition to the vertical shear
stresses in the cross sections there are horizontal shear stresses
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Fig. 4.34
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that act between horizontal layers of the beam (complementary
stresses). This fact can easily be demonstrated with the aid of two
smooth beams and lying on top of each other (Fig. 4.35).
During bending, the beams move relative to each other in the
area of contact (smooth surfaces!). This relative sliding may be
prevented if the beams are bonded together by welding, gluing
or riveting. This will generate shear stresses in the contact area
which have to be supported by the bonding (e.g. the weld seam).

F

1

2

Fig. 4.35

We will now determine the shear stresses in beams with thin-
walled cross sections, restricting ourselves to open cross sections.
We assume that the shear stresses τ at a position s of the cross
section are constant across the thickness t and that they are paral-
lel to the boundary (Fig. 4.36a). The magnitude and the direction
of the shear stresses and the thickness may depend on the coor-
dinate (arc length) s. As in the case of a solid cross section we
apply the equilibrium condition to an isolated element of the beam
(Fig. 4.36b):

τ(s) t(s) dx =
∫

A∗

∂σ

∂x
dxdA.

With (4.35) we obtain
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τ(s) =
V S(s)
I t(s)

. (4.39)

Here, S(s) =
∫

A∗
ζ dA is the first moment of the area A∗ with

respect to the y-axis.
As an example we determine the shear stresses due to a shear

force V in the thin-walled cross section shown in Fig. 4.37a. The
moment of inertia of the entire cross section (note that t � a) is
obtained as

I =
t(2 a)3

12
+ 2[a2(a t)] =

8
3
t a3.

The first moments of the areas A∗ (green areas in the Figs. 4.37b,
c) are found to be

S(s) = z∗sA
∗ = a(t s) = a t s

for the bottom flange and

S(z) = a(t a) +
a+ z

2
[(a− z)t] =

t

2
(3 a2 − z2)

for the web. Thus, (4.39) yields the shear stresses

τ(s) =
3V a t s
8 t a3 t

=
3V
8 t a

s

a
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in the bottom flange and

τ(z) =
3V t (3 a2 − z2)

8 t a3 t 2
=

3V
16 t a

(
3− z2

a2

)

in the web. The shear stresses in the top flange are distributed
as those in the bottom flange; however, they act in the opposite
direction. Fig. 4.37d shows the distribution of the shear stresses:
linear in the flanges and quadratic in the web.

As can be seen by inspection of Fig. 4.37d, the shear stresses
cause a resultant moment about the x-axis. This is due to the fact
that the cross section is not symmetrical with respect to the z-
axis. In order that the shear force V is statically equivalent to the
shear stresses, i.e., that it has the same moment, its line of action
has to be located to the left of the z-axis. In the present example,
the resultant of the shear stresses in the upper flange is given by
Pu = 1

2 ( 6
16V/t a)a t = 3

16V ; it points to the left (Fig. 4.38a). The
resultant Pl = 3

16V in the lower flange has the same magnitude;
it points to the right. Finally, the resultant force in the web is
Pw = V . The condition of the equivalence of the moments (the
lever arms can be taken from Fig. 4.38a) yields

yO V = a
3
16
V +

a

4
V + a

3
16
V → yO =

5
8
a.

The point O on the y-axis is called the shear center. In order to
prevent a torsion of the beam (see Chapter 5) the applied forces
F have to act in a plane that has the distance yO from the x, z-
plane (Fig. 4.38b). Only then the bending moment and the shear
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Fig. 4.38

force are in equilibrium with the applied loads and a torque is not
caused by the loads.

E4.12 Example 4.12 Determine the distribution of the shear stresses due
to a shear force in a solid circular cross section with radius r
(Fig. 4.39).

z∗c
y r

z

z

C∗

αα

A∗
b

Fig. 4.39

Solution The first moment S of the circular segment A∗ (shown in
green) is obtained as the product of the area A∗ and the distance
z∗c of its centroid C∗ from the y-axis (Fig. 4.39). Introducing the
auxiliary angle α we have

A∗ =
r2

2
(2α− sin 2α), z∗c =

4 r
3

sin3 α

2α− sin 2α
,

(see Volume 1, Table 4.1). Thus,

S = z∗c A
∗ =

2
3
r3 sin3 α.

With I = π r4/4 (see Table 4.1), b = 2 r sinα, A = π r2, and
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z = r cosα we obtain from (4.37)

τ =
V S

I b
=

4
3
V

π r2
sin2 α =

4
3
V

A

(
1− z2

r2

)
.

The maximum shear stress τmax = 4
3V/A is located at z = 0.

E4.13Example 4.13 Fig. 4.40a shows a welded thin-walled wide-flange
cantilever beam (t� h, b) subjected to the force F .

Determine the shear stress in the weld seam at the bottom of
the web.

�
�
�

�
�
�

b

t

t

F

a

h

b

t

t

y

z
A∗

Fig. 4.40

Solution The shear force is constant in the beam: V = F . The
first moment of the area A∗ of the lower flange (Fig. 4.40b) is
given by

S(z =
h

2
) =

h

2
t b .

The moment of inertia of the entire cross section is taken from
Example 4.2:

I =
t h3

12
+ 2

[(
h

2

)2

t b

]
=
t h2

12
(h+ 6 b) .

With the width t at the weld seam (lower end of the web) we
obtain from (4.39)

τ =
V S

I t
=

12F h t b
2 t h2 (h+ 6 b)t

=
6F b

t h (h+ 6 b)
.
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E4.14 Example 4.14 Determine the shear stresses in a thin-walled open
circular ring (Fig. 4.41a) due to a shear force V . Locate the shear
center.

c d

b

α

yO
z

τ (α)

t

dα
αO

V

ϕ
r

2
π
V
rt

r sinϕ

y

τ(α) dA= trdα

dϕ

dA= trdϕ
A∗

y

C

zza

y

Fig. 4.41

Solution The shear stresses follow from (4.39). The first moment
of the area A∗ is obtained as (see Fig. 4.41b)

S =
∫ α

0

(r sin ϕ)(t r dϕ) = r2 t(1− cos α).

The moment of inertia I = π r3 t is taken from Table 4.1. This
yields the distribution of the shear stresses τ as a function of α
(Fig. 4.41c):

τ =
V S

I t
=
V (1− cos α)

π r t
.

To locate the shear center O we use the condition that the moment
of the shear force with respect to O has to coincide with the
moment of the shear stresses (Fig. 4.41d):

yO V =
∫

r τ dA =

2 π∫

0

r
V (1− cos α)

π r t
(t r dα) → yO = 2 r.
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4.6.2 Deflection due to Shear

The average shear strain γ̃ = w′ + ψ is proportional to the shear
force V (see (4.25)):

w′ + ψ =
V

GAS
. (4.40)

In Section 4.5, the deflections of beams were determined with the
assumption that the beams are rigid with respect to shear, i.e., the
right-hand side of (4.40) was set equal to zero (Bernoulli beam).
Now we want to verify that this assumption is justified for slender
beams by investigating the effect of the shear strain (caused by
the shear force) on the deflection. If we introduce the notations
w′

B = −ψ (see (4.29)) and

w′
S =

V

GAS
(4.41)

we can write (4.40) in the form

w′ = w′
B + w′

S . (4.42)

Hence, the slope w′ of the beam is the sum of the slopes w′
B of

the Bernoulli beam and w′
S due to shear. Similarly, the deflection

w is written as

w = wB + wS . (4.43)

In order to obtain an estimate of the deflection wS due to shear
we consider a cantilever beam with a rectangular cross section
subjected to a force F (Fig. 4.42a). Integration of (4.41) with

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

a b

F F

l

wS (l)

wS

x x

Fig. 4.42
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V = F yields

wS =
F

GAS

x+ C.

The boundary condition wS (0) = 0 leads to C = 0 and to (see
Fig. 4.42b)

wS =
F

GAS

x. (4.44)

The total deflection w is the sum of the deflections
wB = (F l3/6EI)[−x3/l3 + 3 x2/l2] (see Section 4.5.2) and the
deflection wS , given by (4.44). The deflection at the free end is
therefore found to be

w(l) = wB (l) + wS (l) =
F l3

3EI
+

F l

GAS

=
F l3

3EI

(
1 +

3EI
GAS l2

)
.

If we introduce the relation G = E/2(1+ν), the moment of inertia
I = r2g A (rg = radius of gyration) and AS = κA (κ = shear
correction factor), we obtain

w(l) =
F l3

3EI

[
1 +

6(1 + ν)
κ

r2g
l2

]
=
F l3

3EI

[
1 +

c

λ2

]
.

The second term in the brackets represents the influence of the
shear. It depends on the slenderness ratio λ = l/rg and on the
constant c = 6(1 + ν)/κ. In Section 6.1 it will be shown that
the shear correction factor for a rectangular cross section has the
value κ = 5/6. With the radius of gyration rg = h/2

√
3 (see

(4.8e)) and Poisson’s ratio ν = 1/3 we obtain c/λ2 = 4 h2/5 l2

for the rectangular cross section. As a numerical example, if we
choose the ratio l/h = 5, we get c/λ2 ≈ 0.03. In this example, the
deflection due to shear is only about 3 % of the deflection due to
the bending moment.

The influence of the shear decreases if the slenderness λ of the
beam increases. In general, the deflection due to shear may be
neglected if the length of the beam is larger than five times the
height of the cross section.
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4.74.7 Unsymmetric Bending
Frequently a beam undergoes a deflection w in z-direction as well
as a deflection v in y-direction. In this case the bending is referred
to as unsymmetric bending. This type of bending occurs if the be-
am carries loads in z- as well as in y-direction or if the cross section
is not symmetrical. These cases give rise to the shear forces Vy, Vz

and the bending moments My, Mz (see Volume 1, Section 7.4).
We will restrict ourselves to Bernoulli beams (i.e., we neglect the
influence of shear) and we will distinguish between the following
two cases.
Case 1: We assume that y and z are the principal axes of the
cross section. Then we can use the results of the ordinary bending
(Sections 4.4 and 4.5) if we consider the loads in z- and y-directions
separately. The load in z-direction causes normal stresses σ and
deflections w. They are given by (see (4.26) and (4.31))

σ =
My

Iy
z, w′′ = − My

EIy
.

Analogously, the load in y-direction leads to

σ = − Mz

Iz
y, v′′ =

Mz

EIz
.

The different algebraic signs are due to the sign convention (see
Volume 1, Section 7.4): positive moments at a positive face point
into the direction of the positive coordinate axes (Fig. 4.43). Su-
perposition yields the total normal stresses:

σ =
My

Iy
z − Mz

Iz
y . (4.45)

top viewside view

My
x Mz

z

Mz
y

My

y

z

x x
z

y

Fig. 4.43
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The deflections w and v are independent of each other. They are
obtained through integration of

w′′ = − My

EIy
, v′′ =

Mz

EIz
. (4.46)

side view top view

Vz

Mz

My My+dMy

Vy

Vy+dVyVz +dVz

Mz+dMz

xx

z

zy

y dxdx

qz qy

Fig. 4.44

Case 2: Now we assume that y and z are not principal axes of the
cross section. To derive the relevant equations we proceed as in the
case of ordinary bending. Let us consider the forces and moments
that act on an element (length dx) of the beam. They are shown
in Fig. 4.44 (note the sign convention of the stress resultants). The
conditions of equilibrium are

dVz

dx
= − qz, dVy

dx
= − qy,

dMy

dx
= Vz,

dMz

dx
= − Vy.

(4.47)

As in case 1, we assume that the deflections v and w are inde-
pendent of y and z: v = v(x), w = w(x). In addition, we apply
the hypotheses of Bernoulli (see Section 4.5.1): the cross sections
remain plane and stay perpendicular to the deformed axis of the
beam. Now we introduce the angles of rotation ψy and ψz of the
cross section about the y-axis and the z-axis, respectively (po-
sitive sense of rotation according to the cork-screw rule). In the
following, we first determine the displacement u in axial direction
of an arbitrary point P of the cross section with the coordinates
y, z (Fig. 4.45). Due to a small rotation ψy only, this point is dis-
placed by an amount z ψy in the positive x-direction. Similarly, a
small rotation ψz leads to the displacement −y ψz. Therefore, the
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top viewside view

v′

z

ψz

−yψz

w

P ′
P ′

y

ψy

y

zψy

−w′

v

y

z

xz
P P

x

Fig. 4.45

total displacement is obtained as

u = z ψy − y ψz.

With the relations

ψy = − w′, ψz = + v′

(see Fig. 4.45 and note that the cross section is perpendicular to
the deformed axis of the beam) we get

u = − (w′ z + v′ y).

The strain ε = ∂u/∂x is therefore given by

ε = − (w′′ z + v′′ y), (4.48)

and Hooke’s law σ = E ε finally yields

σ = − E(w′′ z + v′′ y). (4.49)

The bending moments My and Mz are the resultant moments
of the normal stresses σ in the cross section (note the senses of
rotation):

My =
∫

z σ dA, Mz = −
∫

y σ dA. (4.50)
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With (4.49) we obtain

My = − E [w′′
∫

z2 dA+ v′′
∫

y z dA
]
,

Mz = E
[
w′′
∫

y z dA+ v′′
∫

y2 dA
]
.

We now introduce the moments of inertia Iy =
∫
z2 dA, Iz =∫

y2 dA and the product of inertia Iyz = − ∫ y z dA (see (4.6))
and solve for w′′ and v′′:

E w′′ =
1
Δ

[−My Iz +Mz Iyz ],

E v′′ =
1
Δ

[Mz Iy −My Iyz ] .
(4.51)

Here, Δ = Iy Iz − I2
yz. The deflections w and v can be determi-

ned from (4.51) through integration if the bending moments are
known.

If we insert (4.51) into (4.49) we obtain the normal stress:

σ =
1
Δ

[(My Iz −Mz Iyz) z − (Mz Iy −My Iyz) y] . (4.52)

Thus, the distribution of the normal stress is linear in y and z

((4.52) is the equation of a plane). The normal stress is zero for

z

y
=
Mz Iy −My Iyz

My Iz −Mz Iyz
. (4.53a)

This equation defines the neutral axis in the cross section. The
maximum normal stress σmax is located at the point that has the
maximum distance from the neutral axis.

In the special case that y and z are the principal axes of the
cross section, the product of inertia vanishes: Iyz = 0. Then (4.51)
and (4.52) reduce to (4.46) and (4.45), respectively, and the neu-
tral axis is given by

z

y
=
Mz Iy
My Iz

. (4.53b)



4.7 Unsymmetric Bending 167

We may use the equations of either case 1 or those of case 2
to treat unsymmetric bending. In the first case we have to de-
termine the principal axes of the cross section and then resolve
the applied loads and the bending moments in the corresponding
coordinate system. The normal stress and the displacements are
given by (4.45) and (4.46) with respect to the principal axes. In
case 2, the stress and the displacements are determined by (4.52)
and (4.51) in an arbitrary coordinate system.

E4.15Example 4.15 The beam in Fig. 4.46a is supported by ball-and-
socket joints and subjected to a force F that acts at an angle
α = 30◦ to the vertical. It has a rectangular cross section (width
b, height h = 2b).

Determine the normal stresses and the deflections at the center
of the beam.

c
neutral axis

b

F

l/2 l/2

h

f

a

F

α

v

w

A

B

b

z

z

yy

y

z

Fig. 4.46

Solution The normal stresses can be determined from (4.45) since
y and z are the principal axes of the cross section. We resolve the
force F into its components in y- and z-direction:

Fy = F sin α =
F

2
, Fz = F cos α =

√
3

2
F .



168 4 Bending of Beams

This yields the bending moments

My =
l

2
Fz

2
=
√

3 l F
8

, Mz = − l

2
Fy

2
= − l F

8
(a)

at the center of the beam (note the algebraic signs). The moments
of inertia are given by (compare Table 4.1)

Iy =
b h3

12
=

2
3
b4, Iz =

h b3

12
=

1
6
b4. (b)

Inserting (a) and (b) into (4.45) we obtain

σ =
√

3 l F 3
8 · 2 b4 z +

l F 6
8 b4

y =
3 l F
4 b4

(√
3

4
z + y

)
.

The neutral axis follows from the condition σ = 0 as

y = −
√

3
4
z.

This axis is shown in Fig. 4.46b. As can be seen by inspection, the
points A and B are at maximum distance from the neutral axis.
With the coordinates yA = b/2, zA = b of point A we obtain the
maximum normal stress (tension)

σmax =
3 l F
4 b4

(√
3

4
b+

b

2

)
=

3 l F
8 b3

(√
3

2
+ 1

)
.

The normal stress at point B has the same magnitude but it is a
compressive stress.

The displacements w and v at the center of the beam are taken
from Table 4.3. The force component Fz causes the displacement

w =
Fz l

3

48EIy
=
√

3F l3

64E b4
.

Analogously, the force component Fy leads to the displacement

v =
Fy l

3

48EIz
=

4F l3

64E b4
.
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The total displacement f (see Fig. 4.46c) is obtained as

f =
√
w2 + v2 =

√
19F l3

64E b4
.

E4.16Example 4.16 A cantilever beam with a thin-walled cross section
(t� a) carries a force F that acts in z-direction (Fig. 4.47a).

Determine the deflection at the free end B. Locate and deter-
mine the maximum bending stress.

a

cb

neutral axis

�
�
�

�
�
�

A B

wB

B

fB

vB

t
a a

a

aa
y

z

z

y

z

a

C

y

D

l

F

F

x

Fig. 4.47

Solution The bending moments are given by

My = − F (l − x), Mz = 0. (a)

The moments of inertia of the cross section are taken from Exam-
ple 4.3:

Iy =
10
3
t a3, Iz =

8
3
t a3, Iyz = − 6

3
t a3. (b)
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Since Iyz �= 0, the axes y and z are not the principal axes of the
cross section. Therefore, we determine the displacements w and v
with the aid of (4.51). With (a), (b) and Δ = Iy Iz−I2

yz = 44
9
t2 a6,

the differential equations for the deflections are

E w′′ = − My Iz
Δ

=
6F

11 t a3
(l − x),

E v′′ = − My Iyz

Δ
= − 9F

22 t a3
(l − x).

We integrate twice, use the boundary conditions w(0) = 0,
w′(0) = 0, v(0) = 0, v′(0) = 0 and obtain the deflections (re-
call Section 4.5.2)

w(x) =
F l3

11E t a3

[
3
(x
l

)2

−
(x
l

)3
]
,

v(x) = − 3F l3

44E t a3

[
3
(x
l

)2

−
(x
l

)3
]
.

This yields

wB =
2F l3

11E t a3
, vB = − 3F l3

22E t a3

at the free end B (x = l), and the total deflection fB is found to
be (Fig. 4.47b)

fB =
√
w2

B + v2
B =

5F l3

22E t a3
.

If we insert (a), (b) and Δ into (4.52) we obtain the normal stress

σ =
My

Δ
(Iz z + Iyz y) = − 3F (l− x)

22 t a3
(4 z − 3 y) .

The maximum stress is located at the clamping (x = 0) at those
points of the cross section that have the maximum distance from
the neutral axis. The neutral axis is determined from the condition
σ = 0 which yields y = 4

3 z. Fig. 4.47c shows that the points C
and D are at the maximum distance from the neutral axis. With
the coordinates yC = 0, zC = −a of point C we get
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σmax =
6F l

11 t a2
.

The normal stress at D has the same magnitude but is a compres-
sive stress.

4.84.8 Bending and Tension/Compression
The bending moments My and Mz in a system of principal axes
lead to the bending stresses

σ =
My

Iy
z − Mz

Iz
y

(see (4.45)). If a member is subjected to a normal force N only,
the normal stress is constant in the cross section (see (1.1)):

σ =
N

A
.

If bending moments as well as a normal force exist, the resulting
stress is obtained through superposition:

σ =
N

A
+
My

Iy
z − Mz

Iz
y . (4.54a)

In the case of ordinary bending about the y-axis (Mz = 0), Equa-
tion (4.54a) reduces to (My = M, Iy = I)

σ =
N

A
+
M

I
z . (4.54b)

The superposition of the terms resulting from bending and from
tension/compression is also valid for the deformation. The bending
moments cause the deflections w(x) and v(x), whereas the normal
force causes only a displacement u(x) in the direction of the beam
axis. These deformations may be superimposed.
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Note that the deformation due to the normal force is usually
much smaller than the deformation caused by the bending mo-
ments. Consequently the change in length of the beam may be
neglected and the beam may be considered to be rigid with re-
spect to tension/compression.

compression tension

���������� �����
�����
�����
�����

ba cA

B

FF
MB =rF

xx

x

y z z z

σ(z)

σmax

y

2r

Fig. 4.48

As an example let us consider a column with a circular cross
section (radius r) that is subjected to an eccentrically acting for-
ce F (Fig. 4.48a). This is statically equivalent to the system of
the same force F with the action line equal to the x-axis and the
moment MB = r F (Fig. 4.48b). If we neglect the weight of the co-
lumn, then the stress resultants N and My = MB are independent
of x:

N = − F, M = MB = r F.

The bending moment about the z-axis is equal to zero: Mz = 0
(ordinary bending). With A = π r2 and I = π r4/4 (see Table 4.1),
the normal stress follows from (4.54b):

σ = − F

π r2
+
r F 4
π r4

z =
F

π r2

[
− 1 + 4

z

r

]
.

It is shown in Fig. 4.48c. The maximum stress is found at z = −r:

|σ|max =
5F
π r2

.
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According to (1.18), the change of length Δl of the beam due
to the compressive force F is given by

Δl = − F l

EA
.

The deflection of point B due to the moment M0 = r F can be
taken from Table 4.3:

wB = − M0 l
2

2EI
= − r F l2

2EI
.

Inserting A and I, the ratio between Δl and wB is found to be

Δl
wB

=
r

2 l
.

As a numerical example, we choose l/r = 20 which yields Δl/wB =
1/40. Hence, the shortening of the beam is small as compared with
the deflection.

E4.17Example 4.17 A simply supported beam with a thin-walled cross
section (t � a) carries a constant line load q0 that acts in the
x, z-plane (Fig. 4.49a).

Determine the maximum normal stress.

a b

q0

x
BC

z

α

l

a

t
a

q0l

CV α

B

t

CH

y

z

Fig. 4.49

Solution In a first step we calculate the support reactions (Fig. 4.49b):

�

C : − l

2
q0 l + l B cos α = 0 → B =

q0 l

2 cos α
,

�

B : − l CV +
l

2
q0 l = 0 → CV =

q0 l

2
,

→: CH −B sin α = 0 → CH = B sin α=
q0 l

2
tan α.
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The normal force is constant: N = −CH = − 1
2
q0 l tan α; the

maximum bending moment is located at x = l/2: Mmax = q0 l
2/8.

With

A = 4 t a, I = 2
[
t a3

12
+
(a

2

)2

a t

]
=

2
3
t a3

we obtain the distribution of the normal stress at x = l/2 from
(4.54b):

σ = − q0 l tan α
2 · 4 t a +

q0 l
2 3

8 · 2 t a3
z

=
q0 l

8 t a

(
− tan α+

3 l z
2 a2

)
.

For tanα > 0 (i.e., 0 < α < π/2) the maximum stress (compres-
sive stress) is located at z = −a/2:

|σ|max =
q0 l

8 t a

(
tan α+

3 l
4 a

)
.

4.9 4.9 Core of the Cross Section
Let us consider a rod or a column that is loaded by an eccentrically
acting compressive force F whose point of application in the cross
section is given by yF

, z
F

(Fig. 4.50a, b). With N = −F , My =
−z

F
F , Mz = y

F
F and the radii of gyration r2gy = Iy/A, r2gz =

Iz/A, the normal stress in the cross section is obtained as (see
(4.54a))

σ = − F

A

[
zF

r2gy

z +
y

F

r2gz

y + 1
]
.

The neutral axis (σ = 0) is therefore given by the straight line

zF

r2gy

z +
yF

r2gz

y + 1 = 0 or
z

z0
+

y

y0
= 1 (4.55)
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Fig. 4.50

where the quantities

y0 = − r2gz

y
F

, z0 = − r2gy

z
F

(4.56)

are determined by the intersections of the neutral axis with the
coordinate axes (Fig. 4.50b).

The neutral axis may lie outside the cross section. In this case
the stresses throughout the entire cross section are compressive
stresses. This is an important consideration if the material of the
column (e.g., concrete) is very weak in tension. We now want to
determine the allowable region of the points of application yF

, z
F

of the force so that only compressive stresses are caused in the
cross section. This region is called the core of the cross section.
To find the core of the cross section we assume that the neutral
axis g − g is a tangent to the cross section (Fig. 4.50c). Then the
quantities y0, z0 correspond to a point P on the boundary of the
core. According to (4.56) the coordinates of this point are

yF = − r2gz

y0
, zF = − r2gy

z0
. (4.57)

The tangents to the cross section determine the boundary of the
core. If the point of application of the force F lies inside the core,
the neutral axis lies outside the cross section and the column is
subjected to compression only.
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As an example let us consider a rectangular cross section (Fig.
4.51a). Here, r2gy = h2/12 and r2gz = b2/12. First we choose the
straight line g1 to be the neutral axis. Then y0 → ∞, z0 = h/2.
Equation (4.57) yields the point P1 (coordinates yF = 0, zF =
−h/6) on the boundary of the core (Fig. 4.51b). Similarly, the
neutral axes g2 . . . g4 lead to the points P2 . . . P4 on the y-axis or
the z-axis, respectively, that have the distances b/6 or h/6 from
the x-axis. In addition, it can be shown that the neutral axes gi at
the corners of the cross section correspond to points of application
of the force along the straight lines between P1 and P2, between
P2 and P3, etc. Therefore, the core of the rectangular cross section
is a rhombus.

a b c

P1

P3

P2P4
y

z

h

b

y

zz

b/6 b/6

h/6

h/6y
a

a/4

gi

g1

g3

g2 g4

Fig. 4.51

As a second example consider a circular cross section with ra-
dius a (Fig. 4.51c). With r2gy = a2/4, z0 = a and with symmetry
considerations the core is obtained to be an inner circle of radius
a/4.

4.10 4.10 Thermal Bending
A change in temperature causes a material to expand or to con-
tract. If the change of the temperature is constant throughout
the cross section of a beam it changes the length of the beam (if
this is not prevented by constraints, see Section 1.4). However, if
the change of the temperature is not evenly distributed, it will al-
so cause a thermal bending. In the following we will determine the
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stresses and deformations caused by a “ thermal load ”, restricting
ourselves to ordinary bending of a Bernoulli beam.

�
�
�
� x

Tlz

Tl
x

z

Tu Tm

h

Tu

Fig. 4.52

Let us consider a straight cantilever beam which undergoes a
rise of its originally constant temperature. For the sake of simpli-
city we assume that the distribution ΔT (z) of this change over
the height h is linear in z-direction (Fig. 4.52):

ΔT = Tm + (Tl − Tu)
z

h
. (4.58)

Here, Tl and Tu are the temperature changes at the extreme lower
fiber and the extreme upper fiber, respectively. The constant term
Tm = 1

A

∫
ΔTdA (average change in the cross section) only causes

a change of the length of the beam. Therefore, we investigate only
the effect of the linear term

ΔT ∗ = (Tl − Tu)
z

h
. (4.59)

Hooke’s law is given by (1.12):

σ = E ε− E αT ΔT = E ε− E αT (Tl − Tu)
z

h
. (4.60)

With ε = ∂u/∂x and the assumptions of Bernoulli u = z ψ, ψ =
−w′ (recall (4.22b), (4.29)) we obtain

σ = − E w′′ z − E αT (Tl − Tu)
z

h
. (4.61)

The bending moment M is the resultant of the normal stresses:

M =
∫

z σ dA.
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If we insert (4.61) and I =
∫
z2 dA, we find

M = − EI w′′ − EIαT
Tl − Tu

h

or

w′′ = − M

EI
− αT

Tl − Tu

h
. (4.62)

This is the differential equation of the deflection curve.
One can see that the difference Tl − Tu of the temperature

causes a curvature of the beam axis, just as the bending moment
M does. Therefore, we introduce the notion of a “ temperature
moment ”

MΔT = EI αT

Tl − Tu

h
. (4.63)

Then (4.62) can be written in the form

w ′′ = − M +MΔT

EI
. (4.64)

In the special case MΔT = 0, (4.64) reduces to (4.31).
If we eliminate w′′ from (4.61) and (4.62), we find the stress

distribution in the cross section (recall (4.26)):

σ =
M

I
z.

As an illustrative example let us consider the clamped beam in
Fig. 4.53a. We will assume that the temperature difference Tl −
Tu is independent of x. Then the temperature moment MΔT is
constant. Since there is no applied force, the bending moment M
and the normal stress σ are zero. The elastic curve is determined

�
�
�
�

�
�
�
�

a b
z z

x x

Tu

Tl

w(x)

Fig. 4.53
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through integration of (4.64):

w′′ = − MΔT

EI
= const,

w′ = − MΔT

EI
x+ C1,

w = − MΔT

EI

x2

2
+ C1 x+ C2.

The boundary conditions w′(0) = 0 and w(0) = 0 lead to C1 = 0
and C2 = 0. Hence, the elastic curve is given by (Fig. 4.53b)

w = − MΔT

2EI
x2 = − αT (Tl − Tu)

2 h
x2. (4.65)

Let us now consider the beam in Fig. 4.54. Since there is a
redundant support at B, the system is statically indeterminate.
We can obtain the elastic curve with the method of superpositi-
on. The deflection w(0) of the “0“-system (redundant support B
removed) is given by (4.65). In particular, at point B we have

w
(0)
B = − αT (Tl − Tu)

2 h
l2.

The elastic curve w(1) of the “1“-system (cantilever subjected to
the redundant force X = B) can be taken from Table 4.3. In
particular,

w
(1)
B = − X l3

3EI
.

Substitution into the compatibility conditionw(0)
B +w(1)

B = 0 yields

"1" System

=

"0" System

+
�
�
�

�
�
�

�
�
�
�

��
��
��
��

TlTl

l

TuTu
w(0)

w
(0)
B

A x B

z

w(1)

X

w
(1)
B

Fig. 4.54
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X = B = − 3EI αT (Tl − Tu)
2 h l

.

This determines the elastic curve w = w(0) + w(1). The bending
moment M is obtained by combining M (0) = 0, M (1) = X(l− x)
and the known value of X to give

M = M (0) +M (1) = − 3EI αT (Tl − Tu)
2 h l

(l − x).

4.11 4.11 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
2, Springer, Berlin 2010 or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E4.18 Example 4.18 Calculate the
principal moments of inertia
for the thin-walled cross sec-
tion (t � a) about its cen-
troidal axes (Fig. 4.55). Find
the principal axes.

t

a a a

aC
y

z

2

1

ϕ∗

Fig. 4.55

Results: see (B) I1 = 3.3 a3t , I2 = 0.7 a3t , ϕ∗ = 65◦.

E4.19 Example 4.19 A quarter-circular
area (radius a) and two sets of coor-
dinate axes (centroidal axes y, z)
are given in Fig. 4.56.

Calculate
a) Iȳ, Iz̄ , Iȳz̄,
b) Iy, Iz , Iyz and the principal axes
and principal moments of inertia. z

y

ȳ

z̄

a
C

Fig. 4.56
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Results: see (A)

Iȳ = Iz̄ =
π a4

16
, Iȳz̄ = −a

4

8
,

Iy = Iz =
( π

16
− 4

9π

)
a4, Iyz =

(
−1

8
− 4

9π

)
a4 ,

ϕ∗
1 = π/4 , ϕ∗

2 = 3 π/4 ,

I1 =
( π

16
− 1

8

)
a4 , I2 =

( π
16
− 8

9π
+

1
8

)
a4 .

E4.20Example 4.20 Calculate the
moments of inertia Iy , Iz
and the product of inertia
Iyz for the unsymmetrical,
thin-walled Z-section (t �
b, h) as shown in Fig 4.57.

2b

h/2

h/2

t

y

z

b
Fig. 4.57Results: see (A)

Iy = b th2
(3

4
+

1
12

h

b

)
, Iz = 3 t b3 , Iyz =

5
4
t b2h .

E4.21Example 4.21 A cantilever beam with a thin-walled cross section
(t � b) is subjected to a uniform line load q0 (Fig. 4.58). The
allowable stress σallow is given.

Determine the allowable length
lallow of the beam.

�
�
�
�
�

�
�
�
�
�

q0 t b

b

q0

section

l
cross sectionFig. 4.58
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Result: see (B) lallow ≤ b
√
t σallow

q0
.

E4.22 Example 4.22 A compound beam
consists of a steel I-beam which
is bonded to a concrete beam
(width b, height h), see Fig. 4.59.
The system is subjected to a
bending moment M .

a) Determine the width b so that
only compressive stresses act in
the concrete part (Con) and only
tensile stresses in the steel part
(St).
b) How large are then the stresses
at the extreme fibers?

M

b

h

2h

h

Fig. 4.59

Given:
M = 2000 kNm,
ECon = 3.5 · 104 MPa,
ESt = 2.1 · 105 MPa,
h = 500 mm,
ASt = h2/6, ISt = h4/18.

Results: see (A)

a) b = 2h = 1000 mm ,

b) σCon = −8 MPa , σSt = 96 MPa .

E4.23 Example 4.23 The column
in Fig. 4.60 consists of
three layers with different
Young’s moduli. It is sub-
jected to a vertical force
F1 and a horizontal force
F2.

Determine the distribu-
tion of the normal stress
at the clamped cross sec-
tion.

��������

F1

F2

z

h

6

h

b
zE4E 4E

y

l

h

6

2 1 2

x

Fig. 4.60
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Results: see (A) Selected values:

Material : σ1(
h

3
) = − F1

2bh
− 9F2l

7bh2
,

Material : σ2(
h

2
) = −2F1

bh
− 54F2l

7bh2
.

E4.24Example 4.24 A beam (flexural rigidity EI) is clamped at its left
end and supported by a line-
ar torsion spring (spring con-
stant kT ) at its right end as
shown in Fig. 4.61.

Determine the deflection
curve due to the moment M0

applied at the right end.

�
�
�
�

�
�
�
�

�
�
�
� kT

M0
x

a

Fig. 4.61

Result: see (B) w(x) =
( kTa

EI + kT a
− 1
) M0

2EI
x2 .

E4.25Example 4.25 A beam (flexural rigidityEI) is supported as shown
in Fig. 4.62. The stiffnesses of the torsion spring at A (kA = EI/a)
and of the linear spring at
B (kB = EI/a3) are given.
In the unloaded case both
springs are unstretched.

Calculate the moment MA

in the spring at A and the for-
ce FB in the spring at B if the
beam is loaded at its middle
by a force F . ��

��
��
��
��
��
��

��
��
��
��
��
��
��F

A

kA

kB

B

a a

Fig. 4.62

Results: see (B) MA = −11Fa
42

, FB =
5F
14

.

E4.26Example 4.26 Fig. 4.63 shows a leaf spring. The cross section has
the constant height t and the variable width b = b0 l/(l+ x). The
spring is loaded by a line load q0 whose resultant is F = q0b0/2.
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Calculate the deflection at
the free end.

�������
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�������
�������

q0b
t

E

l

b0 x

Fig. 4.63Result: see (A) w(l) = 5
Fl3

Eb0t3
.

E4.27 Example 4.27 Two cantilever beams (flexural rigidity EI) are
connected with a bar (axial ri-
gidity EA, coefficient of ther-
mal expansion αT ) as shown
in Fig. 4.64.

Determine the internal force
S in the bar which is caused
by a change ΔT of its tempe-
rature and by the force F ap-
plied at point C.

��
��
��

��
��
��

��
��
��

��
��
��

F

C

b

aa

ΔT

Fig. 4.64

Result: see (B) S =
Fa3

3EI − αT ΔT b

2a3

3EI + b
EA

.

E4.28 Example 4.28 Two parallel
beams (flexural rigidity EI,
length a) are clamped to a
wall at a distance l (Fig.
4.65). A bar (axial rigidity
EA, length l+ δ with δ � l)
is squeezed between the can-
tilever beams at the distance
a/2 from the wall.
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δ � l

a/2 a/2

l l + δ

Fig. 4.65
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a) Determine the force S in the bar.
b) Calculate the change e of the distance l of the two free ends.

Result: see (A) Selected value: e =
5
24

a3EA

lEI

δ

1 + a3EA
12 l EI

.

E4.29Example 4.29 The temporary bridge shown in Fig. 4.66 is pin sup-
ported at both ends and loaded with a uniform line load q0. In
addition, it rests on a pontoon which has the shape of a rectan-
gular block (horizontal cross section A).

Investigate how far (depth f) the pontoon becomes immersed in
the water due to the load q0. Assume that the upper surface of the
pontoon stays above the surface of the water. Note that the water
exerts a buoyant force Fb on
the pontoon. This force is
equal to the weight of the dis-
placed water: Fb = ρgfA.
Given: EI/Al3ρg = 1/12.

ρ

q0

A

EI

l l

Fig. 4.66Result: see (A) f =
5
72

q0l
4

EI
.

E4.30Example 4.30 A column
with a thin-walled cross
section (t � a) is clam-
ped at its base and sub-
jected to a horizontal
force F at its free end as
shown in Fig. 4.67.

������
������
������
������

a

a

z

y

F

t

l

F
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30◦

Fig. 4.67
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Determine the maximum normal stress and its location. Calcu-
late the displacement of the free end of the column.

Results: see (B) σmax =
3
4
F l

a2t
, v =

√
3

6
F l3

Eta3
, w =

1
2
F l3

Eta3
.

σmax at the clamping in the parts of the profile in the first and
the third quadrant.

E4.31 Example 4.31 A cantilever beam with a thin-walled cross section
(t � b) is subjected to a uniform line load q0 (Fig. 4.68, recall
Example 4.21).

Determine the distribution of the shear stress in the cross sec-
tion. Calculate the ratio τmax/σmax between the maximum shear
stress and the maximum normal stress.

�
�
�
�

�
�
�
�

q0 t b

b

q0

section

l
cross section Fig. 4.68

Result: see (B) Selected value: τmax/σmax = 2b/3l.

E4.32 Example 4.32 Locate the shear
center O of the thin-walled
cross section (t � r) as shown
in Fig. 4.69. O

t

4a

4a
7a

7a

8ad

Fig. 4.69

Result: see (B) d = 4.85 a.
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4.124.12 Summary
• Moments of inertia:

Iy =
∫
z2dA , Iz =

∫
y2dA , Iyz = Izy = −

∫
yzdA .

The transformation relations for a rotation of the coordina-
te system are analogous to those for the stress tensor. The
parallel-axis theorem relates the moments of inertia for a cen-
troidal axis and an axis parallel to it.

• Ordinary bending:

Normal stress σ(z) =
M

I
z , σmax =

M

W
,

Shear stress τ(z) =
V S(z)
I b(z)

(solid cross section) ,

DE deflection curve EIw′′ = −M or (EIw′′)′′ = q .

• Integration of the differential equation of the deflection curve
leads to constants of integration. They are determined with
the aid of boundary conditions and, if applicable, matching
(continuity) conditions.

• Frequently, the solution of statically indeterminate problems
can be found through a superposition of known solutions (Ta-
ble 4.3).

• The shear deformation can be neglected for slender beams.
• Unsymmetric bending (y, z principal axes):

Normal stress σ =
My

Iy
z − Mz

Iz
y ,

DEs deflection curve EIyw
′′ = −My , EIzv

′′ = Mz .

• If a beam is subjected to bending and tension/compression, the
stresses and deformations are obtained through superposition
of the solutions for the different loads.

• A nonuniform change of the temperature across the cross sec-
tion causes a temperature moment leading to a curvature of
the beam axis.
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Objectives: In this chapter we investigate shafts that are
twisted by external torques. As in the previous chapters, we calcu-
late the deformations and stresses that are caused by the loading.
For simplicity, we restrict ourselves to shafts with circular cross
sections and to thin-walled shafts. By reading this chapter stu-
dents will become familiar with the basic equations of torsion.
They will also learn how to apply the theory to solve statically
determinate and indeterminate problems.

D. Gross et al., Engineering Mechanics 2,
DOI 10.1007/978-3-642-12886-8_5, © Springer-Verlag Berlin Heidelberg 2011
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5.15.1 Introduction
In the previous chapters we considered two different types of loa-
ding which may be applied to slender straight members. In the ca-
se of external forces acting in the direction of the longitudinal axis
the only internal forces are the normal forces. The corresponding
stresses and deformations were already discussed in Chapter 1.
If a beam is subjected to forces perpendicular to its longitudinal
axis or to moments about axes perpendicular to its longitudinal
axis, then shear forces and bending moments act in the beam. In
Chapter 4 we derived the formulas needed to calculate the stresses
and deformations caused by bending. Now we want to analyse the
case of an external moment which acts to twist a member about
the longitudinal axis. This type of loading is associated with a
torque acting on the cross section of the member.
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Fx
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C
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C
Fy

C
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+ +=

My

b

c
Mz

Mx

h

b

a

z

x

P

y

F

Fig. 5.1

In general, combinations of all these different types of loading
will occur. For example, an eccentric load in the longitudinal di-
rection causes a normal force and a bending moment (cf. Secti-
on 4.8). Let us consider a second example in order to demonstrate
the possible coupling between the different types of stressing. For
this purpose, we consider a cantilever with a rectangular cross sec-
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tion. At point P of the free end it is subjected to a load F that
acts in an arbitrary direction (Fig. 5.1a). First, we decompose the
load into its Cartesian components Fx, Fy and Fz (Fig. 5.1b).
Then we move the action lines of the components without chan-
ging their directions until they pass through the centroid of the
cross section at the free end. To avoid changing the effect of the
force components on the cantilever, the respective moments of
the forces have to be taken into account in addition to the force
components (cf. Volume 1, Section 3.1.2). Therefore, the single
eccentric force F is equivalent to the three force components ac-
ting at the centroid of the cross section and the three moments,
see Fig. 5.1c. Here the individual forces and moments have been
separated according to their different mechanical meanings:

1) The transverse load Fz and the external moment My = h
2Fx

lead to symmetric bending (cf. Section 4.3).
2) If, in addition, the transverse load Fy and the external moment
Mz = − b

2Fx are acting, we have unsymmetric bending (cf.
Section 4.7).

3) The longitudinal load Fx causes tension in the bar (cf. Chap-
ter 1). The external moment Mx = b

2Fz − h
2Fy causes torsion

of the member.

This example shows how a single force simultaneously can lead to
the three typical loadings of a bar: tension, bending and torsion.

In the following we will derive the formulas which are needed
to calculate the stresses and deformations due to torsion. The
theory of torsion for arbitrarily shaped cross sections is rather
complicated, therefore we restrict ourselves to specical cases. As
an introductory problem we examine the torsion of a circular shaft
in the next section.

5.2 5.2 Circular Shaft
We consider a straight circular shaft with a constant radiusR. The
shaft is clamped at one end and subjected to an external torque
Mx (acting about the longitudinal axis) at its free end (Fig. 5.2a).
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To derive the basic equations, we need to combine relations
from kinematics, statics and Hooke’s law. We start by making the
following kinematical assumptions:

a) The cross sections remain unchanged during torsion, i.e. all
the points of a cross section undergo the same twist. Points on
a straight line within the cross section before twisting remain
on a straight line after the deformation: radial lines of a cross
section remain straight.

b) Plane cross sections remain plane, i.e. they do not warp. The-
refore, we do not observe any deformation perpendicular to the
cross sections.
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Fig. 5.2

With the aid of the theory of elasticity it can be shown that these
assumptions are exactly fulfilled for a circular shaft (see Volume 4,
Chapter 2.6.3). Therefore, an infinitesimal cylinder with arbitrary
radius r isolated from the circular shaft remains a cylinder after
twisting. We solely observe a relative rotation of two adjacent
cross sections (distance dx) by an infinitesimal angle of twist dϑ
(Fig. 5.2b). Thereby, the angle of twist is positive if it rotates
according to the right-hand rule (corkscrew rule), i.e. if we look
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in the direction of the positive x-axis, a positive angle of twist
rotates the cross section clockwise. For small deformations the
relation between the infinitesimal angle of twist dϑ and the shear
strain γ is (see Fig. 5.2b)

r dϑ = γ dx → γ = r
dϑ
dx

. (5.1)

A linear distribution of the shear strain γ corresponds to a li-
near distribution of the shear stress τ along any radial line of
the cross section. At the boundary of the cross section the ra-
dial components of the shear stresses vanish since there are no
applied forces at the boundary (symmetry of the stress tensor:
complementary stresses, cf. (2.3)). Therefore, the shear stresses
are tangential to the outer surface and also perpendicular to any
radial line on the cross section. The shear stresses acting on an
element isolated from the shaft are depicted in Fig. 5.2d. Using
Hooke’s law τ = Gγ (cf. (3.10)) and inserting (5.1) yields

τ = Gr
dϑ
dx

= Gr ϑ′ , (5.2)

where we have used the abbreviation ϑ′ = dϑ
dx

. Hence, the shear
stress τ varies linearly from zero at r = 0 to a maximum value at
the outer surface r = R of a circular shaft (Fig. 5.2e).

The torque MT must be statically equivalent to the moment
resulting from the shear stresses shown in Figs. 5.2c, that is:

MT =
∫
r τ dA . (5.3)

The torque is positive if it points in the positive direction of the
coordinate at a positive face (cf. Volume 1, Section 7.4).

Inserting (5.2) into (5.3) yields

MT = Gϑ′
∫
r2 dA = Gϑ′ Ip . (5.4)

The integral Ip in (5.4) is a purely geometrical quantity and is
known as the polar moment of inertia, see (4.6c). In order to ensure
that we use a consistent notation when dealing with arbitrary
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cross sections, we now identify this geometrical quantity as torsion
constant IT (cf. Table 5.1). In the case of a circular shaft we have
IT = Ip and (5.4) can be rewritten as

GIT ϑ
′ = MT . (5.5)

The quantity GIT is known as torsional rigidity. Given the torque
MT and the torsional rigidity GIT , we can calculate the angle of
twist ϑ from (5.5). Note that IT �= Ip in the case of a non-circular
cross section (see Section 5.4).

Let us consider again a circular shaft which is clamped at one
end and subjected to a torque Mx at the free end, see Fig. 5.2a.
In each arbitrary section perpendicular to the x-axis the stress
resultant is a torque MT , which is constant over the length l of
the member and equal to the external moment:

MT = Mx . (5.6)

The total angle of twist ϑl at the free end in the case of constant
GIT is found through integration:

ϑl =

l∫

0

ϑ′dx → ϑl =
MT l

GIT
. (5.7)

A comparison with (1.18) shows an analogy between the the ten-
sile and the torsional member.

If we eliminate ϑ′ from (5.2) with the aid of (5.5) we obtain the
torsion formula which gives the distribution of the shear stress:

τ =
MT

IT
r . (5.8)

The maximum value appears at the outer boundary, i.e. at r = R:

τmax =
MT

IT
R ,
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see Fig. 5.2e. In order to obtain an analogy to bending (cf. (4.28)),
we introduce the so-called section modulus of torsion WT :

τmax =
MT

WT
. (5.9)

For the circular shaft WT = IT /R holds. Using (4.10a) we obtain

IT = Ip =
π

2
R4 , WT =

π

2
R3 . (5.10)

The formulas (5.1) to (5.9) do not only hold for solid but also
for hollow circular cross sections. In this case the torsion constant
IT and the section modulus of torsion WT are

IT =
π

2
(R4

a −R4
i ) , WT =

π

2
R4

a −R4
i

Ra
, (5.11)

where Ra andRi denote the outer and the inner radius, respective-
ly. For a thin walled circular tube with wall thickness t = Ra−Ri

and mean radius Rm = (Ra + Ri)/2 we can derive the following
approximations (cf. (4.12))

IT ≈ 2 π R3
m t , WT ≈ 2 π R2

m t . (5.12)

��
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��
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x
b

dx

MT
mT

x+dx
a

mT (x)

MT +dMT
x

Fig. 5.3

If a distributed torque per unit length mT (x) acts along the
longitudinal axis of a rod (Fig. 5.3a), we obtain

dMT +mT dx = 0

or

dMT

dx
= M ′

T = − mT . (5.13)
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This relation is a consequence of the moment equilibrium conditi-
on at an infinitesimal rod element (Fig. 5.3b). Hence, for mT = 0
we get MT = const.

Differentiating (5.5) with respect to x and inserting (5.13) yields
the second-order differential equation for the angle of twist:

(GIT ϑ′)′ = − mT . (5.14)

Two integration constants appear after the integration over the en-
tire length of the shaft. They can be calculated from the boundary
conditions (one for each boundary): at a given boundary we can
either prescribe the angle of twist ϑ or the torque MT = GIT ϑ

′.
For example, ϑ vanishes at a clamped boundary, or if the free end
of a shaft is subjected to an applied torqueMx we haveMT = Mx.
A comparison of (5.14) with (1.20) shows again the analogy bet-
ween tension and torsion.

Let us now apply the formulas derived above to calculate the
spring constant k of a coil spring. We assume that the spring is
tightly wound, i.e. the helix angle (angle of inclination) is appro-
ximately zero. Furthermore, we assume that the diameter d of the
cross section of the spring wire (Fig. 5.4a) is small compared to
the radius a of the spring winding (d� a).

a

a

d

F

F

a

b

a

F

Q

dϑ

dfMT

c

Fig. 5.4
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The spring is subjected to a force F acting on its axis. In order
to compute the elongation of the spring we take an imaginary cut
at an arbitrary position (Fig. 5.4b). Evaluating the equilibrium
conditions yields a constant shear force V = F and an internal
torque MT = aF . Let us now assume that only an element of
length ds of the spring wire is elastic, whereas the remaining part
of the spring is rigid. Then the relative angle of twist between
the cross sections at the ends of the infinitesimal element is dϑ.
Therefore the lower part of the helical spring undergoes a displa-
cement df = a dϑ (Fig. 5.4c). Substituting dϑ = (MT /GIT )ds in
the aforementioned equation yields (cf. (5.5))

df = a
MT

GIT
ds =

F a2

GIT
ds .

In the case of a flat spring with n windings the total length of the
spring wire is approximately (2 π a)n. Therefore the total elonga-
tion of the spring is obtained through integration over the total
length of the spring wire:

f =
∫

df =
F a3

GIT
2 π n .

Inserting the torsion constant as given in (5.10) with R = d/2, we
obtain the spring constant

k =
F

f
=

GIT
2 π a3 n

→ k =
Gd4

64 a3 n
.

This result shows that the spring constant decreases with an in-
creasing number of windings n and an increasing radius a, whereas
the spring constant increases with an increasing diameter d of the
wire.

E5.1 Example 5.1 A homogeneous shaft with a circular cross section
(diameter d) is clamped at point A and subjected to two external
torques M0 and M1 at points B and C (Fig. 5.5a).
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a) The external torque M0 is given. Determine M1 so that the
angle of twist is zero at the free end C.

b) Calculate the maximum shear stress and its location in this
case.

��
��
��

��
��
��

a

M0 M1

A B C
1
3
l

2
3
l

MT

b

1
3
M0

2
3
M0

Fig. 5.5

Solution a) The region AB is subjected to the torque M0 +M1,
whereas the region BC is subjected to M1. The angle of twist
ϑC at the free end follows from the superposition of the angles of
twist of both parts of the shaft according to (5.7) as

ϑC =ϑAB+ϑBC =
M0 +M1

GIT

2
3
l+

M1

GIT

l

3
=

l

3GIT
(2M0+3M1) .

This angle is zero for

M1 = − 2
3
M0 .

Fig. 5.5b depicts the corresponding moment diagram.
b) The maximum shear stress occurs in the cross sections where
the maximum torque appears. According to Fig. 5.5b, the shaft is
subjected to the maximum stressing in the region BC:

|M |max =
2
3
M0.

Thus, according to (5.8), we find the maximum stress as

τmax =
Mmax

WT
=

2
3
M0

WT
.

With the section modulus of torsion WT = πR3/2 for a circular
shaft (cf. (5.10)) and with R = d/2 we obtain

τmax =
32
3
M0

πd3
.
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E5.2 Example 5.2 A compound shaft (torsional rigidities GIT1 and
GIT2 , respectively) is loaded by a torque per unit length mT

(Fig. 5.6a).
Determine the moment diagram.
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x1 x2

MT

ba

ba ca

mT

1 2

GIT2GIT1

Fig. 5.6

Solution The shaft is clamped at both ends and thus statically
indeterminate. We want to solve the problem by integration over
each part of the shaft and therefore introduce the coordinates x1

and x2 (Fig. 5.6b). We apply (5.14) and obtain for both segments

GIT1ϑ
′′
1 = − mT , GIT2ϑ

′′
2 = 0,

GIT1ϑ
′
1 = − mT x1 + C1, GIT2ϑ

′
2 = C3,

GIT1ϑ1 = − mT

x2
1

2
+ C1 x1 + C2, GIT2ϑ2 = C3 x2 + C4 .

The four constants of integration follow from two boundary and
two matching conditions:

ϑ1(x1 = 0) = 0 → C2 = 0,

ϑ2(x2 = b) = 0 → C3 b+ C4 = 0,

ϑ1(x1 =a) = ϑ2(x2 =0) → 1
GIT1

(
−mT

a2

2
+ C1 a

)
=

C4

GIT2

,

MT1(x1 =a) = MT2(x2 =0)→ GIT1ϑ
′
1(x1 =a) = GIT2ϑ

′
2(x2 =0)

→ − mT a+ C1 = C3 .
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Solving these equations yields

C1 =
mT a

2
aGIT2 + 2 bGIT1

aGIT2 + bGIT1

, C3 = −mT a

2
aGIT2

aGIT2 + bGIT1

,

C4 =
mT a

2
b

aGIT2

aGIT2 + bGIT1

.

Thus, we obtain the moments in both segments:

MT1 = − mT

(
x1 − a

2
aGIT2 + 2 bGIT1

aGIT2 + bGIT1

)
,

MT2 = − mT a

2
aGIT2

aGIT2 + bGIT1

.

The diagram of the internal torque is qualitatively given in Fig. 5.6c.

E5.3Example 5.3 A circular shaft (length a) is subjected to a force F
by means of a lever (length b), see Fig. 5.7a.

Determine the required radius R using the criteria of the maxi-
mum distortion energy for the given parameters a = 3 m, b = 1 m,
F = 5 · 103 N and σallow = 180 MPa.
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a

F

b

a

2R

b

x

z

y
F

MT =bF

Fig. 5.7

Solution The force F at the free end of the lever is statically
equivalent to a force F and a moment MT = b F at the end of
the straight circular shaft (Fig. 5.7b). The shaft is subjected to
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bending (cf. Chapter 4) by the force F in Fig. 5.7b which cau-
ses normal stresses σ. The maximum stress is found at the outer
radius (z = ±R) at the fixed end (x = 0) and has, according to
(4.28), the value

σmax =
|M |max

W

with |M |max = aF and W = π R3/4. The moment MT subjects
the circular shaft to torsion and causes shear stresses τ . Their
maximum value is found at the boundary of the cross section and
is constant along the length of the shaft. With the help of (5.9)
and (5.10) we obtain

τmax =
MT

WT
with WT = π R3/2 .

To determine the required radius Rrequired of the shaft we cal-
culate the equivalent stress σe according to (3.18) at the locations
of the maximum stresses (upper and lower point of the boundary
of the cross section at the fixed end). With σx = σmax, τxy = τmax

and σy = 0 we obtain

σemax
=

√( |M |max

W

)2

+ 3
(
MT

WT

)2

.

The condition σemax
≤ σallow, see (3.15), leads to

√
16a2F 2

π2R6
+ 3

4 b2 F 2

π2R6
≤ σallow .

Thus,

R6 ≥ 4F 2(4 a2 + 3 b2)
π2 σ2

allow

.

Inserting the given parameters yields the required radius

Rrequired = 48 mm .
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5.35.3 Thin-Walled Tubes with Closed Cross
Sections

The theory of torsion for arbitrary cross sections is rather compli-
cated, as already mentioned in the introduction to this chapter. An
exception besides the circular shaft is the thin-walled tube with
closed cross sections. For this type of geometries, we can derive
useful formulas for approximate solutions based on a few suita-
ble assumptions for the stress distributions. Now we will focus on
this type of cross sections, since they are of major importance in
practical applications (box girder in bridge constructions, wing
constructions in aeronautics, etc.).

We assume that the dimensions of the thin-walled tubes with
closed cross sections (= hollow cylinders) do not vary along x, i.e.
we consider tubes with constant yet arbitrary thin-walled cross
sections. Furthermore, we assume that the cross sections are sub-
jected to a constant torque MT (Fig. 5.8a). As a coordinate along
the center line (also called median line) of the profile (Fig. 5.8c)
we introduce the arc length s. The wall thickness of the tube may
vary with the arc length: t = t(s).

The applied torque causes shear stresses in the cross sections.
No loads are applied at the outer and inner boundaries of the
cross section. Therefore we conclude that the shear stresses must
be tangential to the boundaries. Since the wall thickness is small,
we assume that the shear stresses are uniformly distributed across
the thickness of the tube (= average shear stress). Hence, we can
express them by a resulting force quantity, namely the shear flow

T = τ t . (5.15)

The shear flow T has the dimension force/length and is acting
tangential to the median line of the profile (Fig. 5.8c).

Let us now consider a rectangular element of the tube having
the infinitesimal length dx and height ds as depicted in Fig. 5.8b.
The left face (at x) is subjected to the shear flow T and the right
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face (at x + dx) is subjected to the shear flow T + (∂T/∂x)dx.
There are no normal stresses in the s-direction. Therefore the
equilibrium condition in this direction yields

c

a

dx

ds

b

centerline of profile

ds
T+

∂T

∂x
dx

r⊥

s

T

0

xMT

t(s)

dAm

x+dxx

T+
∂T

∂s
ds

T

T ds
dx

s

s+ds

τ

Fig. 5.8

↓:
(
T +

∂T

∂x
dx
)

ds− T ds = 0 → ∂T

∂x
= 0 .

Hence, the shear flow is constant in the x-direction. If we further
assume that there are also no normal stresses in the x-direction
(free warping of the cross section), then we obtain from the equi-
librium condition in x-direction:

→:
(
T +

∂T

∂s
ds
)

dx− T dx = 0 → ∂T

∂s
= 0 .

Thus, the shear flow has the same value at every point s of the
cross section, i.e.

T = τ t = const . (5.16)

We will now derive a relation between the torque MT and the
shear flow T . According to Fig. 5.8c the shear flow generates a
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force Tds acting on the centerline of the tube’s wall. The infini-
tesimal moment with respect to an arbitrarily chosen point 0 is
given by

dMT = r⊥ T ds .

Here, r⊥ is the moment arm of the force with respect to point 0.
The total moment generated by the shear flow is identical to the
applied torque MT :

MT =
∮

dMT = T

∮
r⊥ds . (5.17)

The line integral (circle at the integral sign) means that, starting
from an arbitrary point s = 0, we have to perform the integration
along the arc length s of the whole boundary of the cross section.
It can be seen from Fig. 5.8c that r⊥ds (= height × base line) is
twice the area of the green triangle: r⊥ds = 2 dAm. Thus the line
integral yields
∮
r⊥ ds = 2Am . (5.18)

Here, Am is the area enclosed within the boundary of the median
line of the profile. One must be careful not to confuse this geo-
metrical quantity with the area A =

∮
t ds of the cross section.

Inserting (5.18) into (5.17) yields

MT = 2Am T . (5.19)

Using (5.16) the shear stresses follow as

τ =
T

t
=

MT

2Am t
. (5.20)

This relation is known as Bredt’s first formula (Rudolf Bredt, 1842–
1900) or as torsion formula for thin-walled tubes.

The largest shear stress appears at the point with the smal-
lest wall thickness tmin: τmax = T/tmin = MT /2Am tmin. If we
introduce, in analogy to (5.9), a torsional section modulus WT we
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obtain

τmax =
MT

WT
with WT = 2Am tmin . (5.21)

In the case of a thin-walled circular tube with mean radius Rm

we obtain Am = πR2
m and for a constant wall thickness t we obtain

the same value for WT as in (5.12).
In order to calculate the shear stresses according to (5.20) we

have made two statical assumptions:

a) the shear stresses are constant across the wall thickness of the
tube,

b) in the sections at x = const no normal stresses occur.

The second assumption is correlated to kinematic requirements,
which have to be additionaly introduced when computing the twist
of the shaft. We assume that

c) the form of the cross section does not change during the defor-
mation (as was assumed for the circular shaft),

d) in contrast to the circular shaft we observe longitudinal displa-
cements in x-direction for an arbitrary profile: the cross section
warps (bulges). This warping is assumed not to be restricted.

If the warping is restrained by supports (or if MT varies along x),
additional normal stresses occur. The evaluation of these is the
subject of the theory of warping torsion, which cannot be covered
within this introductory book.

The displacements of an arbitrary point P on the centerline of
the profile in x- or s-direction are denoted by u and v, respec-
tively. If the cross section rotates about the infinitesimal angle dϑ
(the shape of the profile remains unchanged due to the first kine-
matic assumption), point P is shifted by r dϑ to the position P ′

(Fig. 5.9). The component of this displacement in the direction
of the tangent at the centerline of the profile is dv = r dϑ cosα.
Here α denotes the angle between the line orthogonal to r and the
tangent of the centerline of the profile. The same angle occurs bet-
ween r and the perpendicular distance r⊥ of the tangent in P (the
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sides of the angle are pairwise perpendicular). Using r⊥ = r cosα
we obtain

dv = r⊥dϑ . (5.22)

median line of profile

r⊥
rdϑ

α

P ′

P

dv

0

dϑ

α

r

Fig. 5.9

The shear strain γ of an element of the tube wall is given by
γ = ∂v/∂x+ ∂u/∂s by analogy to (3.2). Hooke’s law τ = Gγ (cf.
(3.10)) relates the shear stress τ with the shear strain. Eliminating
the shear stress in

τ

G
= γ =

∂v

∂x
+
∂u

∂s

with the shear flow according to (5.20) and taking into account
(5.22), we obtain

T

G t
= r⊥ϑ′ +

∂u

∂s
. (5.23)

This equation still contains the longitudinal displacement u in
x-direction, which is as yet unknown. In order to eliminate this
displacement we integrate ∂u/∂s along the arc length s from an
initial point A to a final point E:

sE∫

sA

∂u

∂s
ds = uE − uA .

If we integrate along the whole perimeter, then the initial point
and the final point coincide. In this case, the gap uE − uA has to
vanish for tubes with closed cross sections, i.e.

∮
(∂u/∂s)ds = 0.
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Therefore, we obtain from (5.23)
∮

T

G t
ds = ϑ′

∮
r⊥ds .

Solving this equation for ϑ′ and using (5.18) and (5.19) yields

ϑ′ =

∮
MT

2AmGt
ds

2Am
=

MT

∮
ds
t

4GA2
m

.

This relation can be written in the form

ϑ′ =
MT

GIT
(5.24)

with the abbreviation

IT =
(2Am)2∮

ds
t

. (5.25)

The relation (5.25) for the torsion constant IT is also referred to
as Bredt’s second formula. According to (5.24) we can determine
the angle of twist ϑ of a thin-walled tube exactly like the one of
a circular shaft (cf. (5.5)), if we insert for IT the value obtained
in (5.25). In particular, the relative angle of twist of two cross
sections of distance l is given by (cf. (5.7))

ϑl =
MT

GIT
l . (5.26)

In the special case t = const and denoting the circumference of
the profile U =

∮
ds in (5.25), we obtain the torsion constant

IT =
(2Am)2 t

U
. (5.27)

If we apply this formula to a thin-walled tube with a circular
cross section of mean radius Rm and constant thickness t, with



5.3 Thin-Walled Tubes with Closed Cross Sections 209

U = 2 π Rm and Am = π R2
m we obtain the torsion constant

IT =
(2 π R2

m)2 t
2 πRm

= 2 πR3
m t ,

in accordance with (5.12).
Using (5.24) we can compute the angle of twist of a bar under

torsion through integration. In order to calculate the axial displa-
cements u (= warping) of the points of an arbitrary thin-walled
cross section, we start from (5.23):

∂u

∂s
=

T

G t
− r⊥ϑ′ .

Integration with respect to s (the quantities G, T and ϑ′ are in-
dependent of s) yields

u =
T

G

∫
ds
t
− ϑ′

∫
r⊥ds+ C . (5.28)

For instance, let us now determine the axial displacements u
(the warping function) of a thin-walled tube having a rectangular
cross section subjected to a torque MT as depicted in Fig. 5.10a.
To evaluate (5.28) we first compute the shear flow according to
(5.19) with Am = b h:

T =
MT

2Am
=
MT

2 b h
.

b
B

u=0
CD

A
s1

s2

h
thth

a

b

tb

tb

uC

uB

uA

uD

u(s)

c

0

Fig. 5.10
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The torsion constant

IT =
(2Am)2∮

ds
t

=
4 b2 h2

2
(
b

tb
+
h

th

)

follows from (5.25), and the evaluation of (5.24) yields

ϑ′ =
MT

GIT
=

2 b h T · 2
(
b

tb
+
h

th

)

4 b2 h2G
=

T

Gb h

(
b

tb
+
h

th

)
.

Now we introduce ϑ′ in (5.28) and start the integration around the
entire profile at the center of the edgeDA (Fig. 5.10b) where u = 0
at this point due to antisymmetry and therefore the constant of
integration C is zero. With the reference point 0 at the centroid of
the rectangle and with r⊥ = b/2 the displacements of the points
along the edge DA are

u1 =
T

G

s1∫

0

ds̄1
th
− T

Gb h

(
b

tb
+
h

th

) s1∫

0

b

2
ds̄1

=
T

G

[
1
th
− 1

2h

(
b

tb
+
h

th

)]
s1 .

The displacements vary linearly with s1. At the corner A (s1 =
h/2) we obtain

uA =
T

4G

(
h

th
− b

tb

)
.

Along the edge AB we find (at s2 = 0 we have u2 = uA)

u2 = uA +
T

G

s2∫

0

ds̄2
tb
− ϑ′

s2∫

0

h

2
ds̄2

and the value at the corner B is

uB = u2(s2 = b) = uA +
T

G

b

tb
− ϑ′ h

2
b = − uA .
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Analogous calculations yield

uC = uA and uD = uB .

The warping of the whole cross section is depicted in Fig. 5.10c.
The warping vanishes for h/th = b/tb. Therefore, in the case of

a constant wall thickness tb = th we obtain the relation h = b: a
thin-walled tube having a square cross section and a constant wall
thickness exhibits no warping. It should be noted that this fact
does not hold for thick-walled tubes or solid square cross sections.

E5.4Example 5.4 An element of a bridge construction is made of a
thin-walled tube (t � b) and subjected to an eccentric force F
(Fig. 5.11).

Determine the maximum shear stresses, the angle of twist of
the cross section at the free end and the deflection of the point of
application of the force.

�
�
�
� t t

y

2t

b

z

2b

b

F

l

F

Fig. 5.11

Solution The beam is subjected to a constant torque of magnitude
MT = bF . The median line of the profile encloses a trapezoid with
the area Am = 1

2 (2 b + b)b = 3
2b

2. With tmin = t we obtain from
(5.21) the maximum shear stresses

τmax =
MT

WT
=

b F

3 b2 t
=

1
3
F

b t
.

They occur in the bottom chord and in the webs which have the
same wall thickness t. It should be noted that normal stresses due
to bending are also present in the beam. They can be calculated
using (4.26).
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The angle of twist ϑl at the free end follows from the torsion
constant evaluated according to (5.25)

IT =
4
(

3
2
b2
)2

2 b
2 t

+
b

t
+ 2 · 1

2

√
5
b

t

=
9 b3 t

2 +
√

5

and substituted into (5.26) to give:

ϑl =
(b F ) l
GIT

=
2 +
√

5
9

Fl

G b2 t
.

The deflection of the point of application of F consists of two
parts. The deflection fT as a consequence of torsion (small angle
of twist) is

fT = b ϑl =
F b2 l

GIT
.

The deflection fB due to bending is listed in Table 4.3:

fB =
F l3

3EI
.

With the moment of inertia I, see Section 4.2, the final result is

f = fT + fB =
F b2 l

GIT
+
F l3

3EI
.

5.4 5.4 Thin-Walled Shafts with Open Cross
Sections

As a further special case which can be treated with an elementary
analysis, we consider thin-walled shafts with open cross sections.
Here we restrict ourselves to profiles with sectionally constant wall
thicknesses; this is typical for so-called T-, L-, U- or Z-profiles.
All such profiles can be composed from narrow rectangles. Such
a rectangle (t� h) is segmented in individual thin-walled hollow
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sections. A typical hollow section is depicted by the green area in
Fig. 5.12a. We assume that the shear stresses (which are constant
in each individual hollow section) vary linearly with y from zero at
its center to a maximum value τ0 at its outer surface (Fig. 5.12b):

τ(y) = τ0
y

t/2
. (5.29)

Fig. 5.12

hy

z

t

y

z

τ(y)ba

τ0

τ

dy

Am

Now we apply Bredt’s first formula (5.20) to every hollow sec-
tion of thickness dy. If we neglect the small deviations due to the
“redirection” of the shear flow at the lower and upper ends of
the rectangle, we can approximate Am(y) with Am = 2 y h, see
Fig. 5.12b. The infinitesimal shear flow dT = τ(y)dy yields the
infinitesimal torque

dMT = 2Am dT = 8
τ0
t
h y2 dy

associated with a hollow section. An integration performed over
the entire cross section leads to

MT =

t/2∫

y=0

dMT =
1
3
τ0 h t

2 . (5.30)

According to (5.29) we obtain the maximum shear stress at the
outer boundary: τmax = τ(y = t/2) = τ0. As in (5.9) we introduce
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a section modulus of torsion WT . For a narrow rectangle (5.30)
then gives

τmax =
MT

WT
with WT =

1
3
h t2 . (5.31)

Performing an analogous analysis we can determine the torsion
constant using (5.25) to write

dIT =
4(2 y h)2

2
h

dy

= 8 h y2 dy ,

which yields

IT =

t/2∫

0

dIT → IT =
1
3
h t3 . (5.32)

We can generalize (5.32) to profiles which are composed of nar-
row rectangles and obtain

IT ≈ 1
3

∑
hi t

3
i . (5.33)

Here we have to perform the summation over the individual rec-
tangles with lengths hi and thicknesses ti. Omitting the derivation,
we state that the corresponding section modulus of torsion is

WT ≈ 1
3

∑
hi t

3
i

tmax
. (5.34)

Thus, the maximum shear stress occurs in the part of the profile
which has the largest wall thickness (compare Table 5.1). If a part
of the profile has a curved median line (e.g. half circle profile), the
corresponding length hi can be approximated by the length of the
curved median line.

Solid noncircular shafts cannot be analysed with the aforemen-
tioned relations. To determine the shear stress distributions in
such cross sections we have to apply the theory of torsion named
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after de Saint Venant (1797–1886). This leads to the so-called po-
tential theory, where the fundamental relations are described by a
second-order partial differential equation. The underlying analysis
requires a deeper mathematical background. Therefore, we omit
the derivations in this text and refer to Volume 4, Section 2.6.

To conclude this chapter we summarize the most important
formulas needed for the solution of torsional problems in Table 5.1.
All formulas in the table are valid for constant IT . They can also
be applied to problems with slightly varying GIT .

Table 5.1 Basic formulas for torsion

�
�
�

�
�
�

MTx −→
ϑ τmax =

MT

WT
,

dϑ

dx
=

MT

GIT

Cross section WT IT Remarks

solid circle

r R

πR3

2

πR4

2

τ (r) =
MT

IT
r

Maximum shear

stress at boundary

r = R

solid ellipse

b
a

π ab2

2

π a3 b3

a2 + b2

Maximum shear

stress at end points

of minor semi

axis

solid square

a

a

0, 208 a3 0, 141 a4

Maximum shear

stress in the middle

of boundary edges

thick-walled

circular tube
Ra

Ri

α =
Ri

Ra

πR3
a

2
(1−α4)

πR4
a

2
(1−α4)

Maximum shear

stress at outer

boundary Ra
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Table 5.1 (Continuation)

Cross section WT IT Remarks

thin-walled

tube with

closed

cross section
tmin

2Am tmin
(2Am)2I

ds

t

Am is the

area enclosed by

profile median line.H
ds/t is the

line integral along

profile median line.

Shear flow

T =
MT

2Am
= const .

Maximum shear stress

at point with smallest

wall thickness tmin.

thin-walled

circular tube

t = const
t

Rm

2π R2
m t 2π R3

m t

narrow

rectangle

h

t

1

3
h t2

1

3
h t3

profile com-

posed from

narrow

rectangles

h2

t1

t2

h1

≈ 1

3

P
hi t

3
i

tmax
≈ 1

3

X
hi t

3
i

Maximum shear

stress at largest

wall thickness

tmax.
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E5.5Example 5.5 A torque acts a) on a closed thin-walled circular tube
and b) on a thin-walled circular tube with a slit (Fig. 5.13). Both
tubes are made of the same material and have the same length.

Determine the ratios of the maximum shear stresses and angles
of twist at the free ends.

Fig. 5.13

t

Rm

t

Rm

Solution For a closed thin-walled circular tube – subscript c – we
obtain from Table 5.1 (compare with (5.12)):

WTc = 2 π R2
m t, ITc = 2 π R3

m t .

For an open thin-walled circular tube – subscript o – we have to
apply the formulas for open cross sections. With h = 2 πRm we
obtain from (5.31) and (5.32)

WTo =
1
3
t2 2 πRm and ITo =

1
3
t3 2 π Rm .

A comparison of both cases yields the shear stress ratio

τmaxc

τmaxo

=
WTo

WTc

=
1
3 t

2 2 πRm

2 π R2
m t

=
1
3

t

Rm

and the ratio of the angles of twist

ϑc

ϑo
=
ITo

ITc

=
1
3
t3 2 πRm

2 πR3
m t

=
1
3

(
t

Rm

)2

.

These results show that for the profile with the closed cross section
the stresses are t/Rm-times smaller and the angles of twist are
even (t/Rm)2-times smaller than those for the profile with the
open cross section. Therefore, it is useful to make use of closed
profiles in problems with torsion.
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E5.6 Example 5.6 A horizontal frame is clamped at A, simply supported
at B and loaded by a torque MD at D (Fig. 5.14a). The ratios of
the bending stiffnesses and torsional rigidity are EI2 = 2EI1 and
GIT = EI1/2. Assume b = l/3.

Determine the support reactions.

��
��
��
��

"0" System "1" System

A

B

EI2

D= +

C
B

MD

D
MD

y

C B

x

MD

X

A
y
x

z z

A

b

l

2

l

2
EI1, GIT

a b c d

MAy
Az

MAx

Fig. 5.14

Solution The frame has one degree of static indeterminacy. We
first determine one support reaction with the method of superpo-
sition. If we remove the support at B, we obtain the “0“-system
depicted in Fig. 5.14b. As a result of the loading MD the cross
section at C exhibits the same rotation as the cross section at D.
With the help of (5.7) we obtain

ϑC =
MD

GIT

l

2
.

The attached beam BC rotates as a rigid body. Therefore point
B exhibits the vertical deflection (small rotations)

w
(0)
B = b ϑC =

MD l

2GIT
b .

The vertical displacement w(1)
B in the “1“-system (Fig. 5.14c)

consists of three parts:
a) deflection w(1)

B1
of the beam BC,

b) deflection w(1)
B2

(= deflection wC of the beam AC),
c) deflection w(1)

B3
as a result of the rotation of cross section C.
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In order to calculate the deflections we use the formulas in Ta-
ble 4.3 (deflection curves). With

w
(1)
B1

= − X b3

3EI2
, w

(1)
B2

= − X l3

3EI1
, w

(1)
B3

= − (X b)l
GIT

b

we obtain

w
(1)
B = −

(
b3

3EI2
+

l3

3EI1
+

b2 l

GIT

)
X .

The vertical displacement of point B is zero in the original system.
Therefore, we are able to determine the unknown support reaction
X = B by using the compatibility condition

w
(0)
B + w

(1)
B = 0 .

Solving for X yields

X = B =

MD l

2GIT
b

b3

3EI2
+

l3

3EI1
+

b2 l

GIT

=
54
91
MD

l
.

Evaluating the force equilibrium condition in z-direction and
the equilibrium of moments about the x- and the y-axis yield the
support reactions at A (Fig. 5.14d):

Az −B = 0 → Az =
54
91
MD

l
,

MAx −MD + bB = 0 → MAx =
73
91
MD ,

MAy + l B = 0 → MAy = − 54
91
MD .
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5.5 5.5 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
2, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E5.7 Example 5.7 The solid circular
shaft in Fig. 5.15 consists of
three segments. The radii of
the segments 1 and 3 are
constant; segment 2 has a li-
near taper. The shaft is subjec-
ted to a torque M0.

Determine the angle of twist
ϑE at the free end.

�
�
�
�

�
�
�
�

l l3l

2r0

M0

r0

1 2 3

Fig. 5.15

Result: see (B) ϑE =
62M0 l

π G r40
.

E5.8 Example 5.8 A thin-walled
tube (Fig. 5.16) is subjec-
ted to a torque MT . Gi-
ven: a = 20 cm, t = 2 mm,
τallow = 40 MPa, l = 5m,
G = 0.8 · 105 MPa.

Determine the allowa-
ble magnitude MTallow of
the torque and the corre-
sponding angle of twist ϑ
for a) a closed cross sec-
tion and b) an open cross
section.

MT MT

t

2t2t 2t

a

t

2t

l

a

t t

Fig. 5.16

Results: see (A) a) MTallow = 6400 Nm, ϑ = 1.07◦,
b) MTallow = 96 Nm, ϑ = 35.8◦.
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E5.9Example 5.9 The assembly shown in Fig. 5.17 consists of a thin-
walled elastic tube (shear modulus G) and a rigid lever. The lever
is subjected to a couple.

Calculate the displacement of point D.

3a
2a

a

P

P

D

cut

b

3b/2

cross section

t

2t

x
z

y

Fig. 5.17

Result: see (B) wD = 7
P a3

Gb3 t
.

E5.10Example 5.10 A rectangular lever has the thin-walled closed
cross section (wall thickness t = h/20) shown in Fig. 5.18. It is
loaded by a force F at the free end.

Determine the equivalent stress σe at point P . Use the maxi-
mum-shear-stress theory.

l/2

2l

F
l/2

P 2h

t

P

h

Fig. 5.18

Result: see (B) σe = 20.2
F l

h3
.
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E5.11 Example 5.11 A leaf spring
(t � b) is subjected to an ec-
centrically acting force F as
shown in Fig. 5.19.

Determine the displace-
ment f of the point of appli-
cation of F . Calculate the ma-
ximum normal stress and the
maximum shear stress.

�
�
�

�
�
�

z
y

A
E,G

F

F

x t

x

l

b

Fig. 5.19

Results: see (A) f =
4F l3

E b t3

(
1 +

3E b2

16G l2

)
,

σmax =
3F l
b t2

{
1 +

√
1 +

b2

4 l2

}
, τmax =

3F l
b t2

√
1 +

b2

4 l2
.

E5.12 Example 5.12 The thin-walled cantilever beam (length l = 20b,
wall thickness t) shown in Fig. 5.20 is subjected to an eccentrically
acting uniform line load q0.

Determine the components of the stress tensor at point P . Cal-
culate the principal stresses and the principal directions.

�
�
�
�

�
�
�
�

q0

Px
z

y

l/2

l

y
x
C

zt
b

b

q0

P

Fig. 5.20

Results: see (B) σx = 0, σz = 0, τxz = − q0 l
4 t2

,

σ1,2 = ± q0 l
4 t2

, ϕ∗ = 45◦.
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E5.13Example 5.13 A thin-walled tube with a closed quadratic cross
section (Fig. 5.21) is subjected to a torque MT .

Determine the warping of the cross section.

x

s
2

1

4

3

t

2t2t

t

2a

z
y

Fig. 5.21

Results: see (A) Selected values: u1(s) = − MT

32Ga2 t
s,

u2(s) =
MT

32Ga2 t
(s− 2a).

E5.14Example 5.14 The solid shaft in Fig. 5.22 is made from two seg-
ments with circular cross sections. It is fixed at its ends A and B
and subjected to a torque M0.

Calculate the support reactions MA and MB due to the applied
torque and the angle of twist ϑC at point C.

Fig. 5.22

�
�
�

�
�
�

�
�
�
�

�
�
�
�

C

B

2r22r1

M0A

a b

Results: see (A) MA = M0
1

1 + r4
2 a

r4
1 b

, MB = M0
1

1 + r4
1 b

r4
2 a

,

ϑC =
2M0 a b

π G (b r41 + a r42)
.
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E5.15 Example 5.15 A steel frame (E/G ≈ 8/3) consists of three solid
circular beams (radius r), see Fig. 5.23.

Calculate the support reactions due to an applied force F .

����

F

2l

B

l

A

y

z

x

2l

Fig. 5.23

Results: see (B) B = 29F/89, A = 60F/89,

MAx = 60F l/89, MAy = 62F l/89.

E5.16 Example 5.16 The system shown
in Fig. 5.24 consists of a circular
tube 1 and a solid circular shaft
2 . They are connected with a

bolt at point A.
Determine the torque MT ac-

ting in the system and the angle
β of the bolt (see the figure) if
the ends of the two parts make
the angle α in the stress-free state
(i.e., before the bolt is attached).

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

GIT2

1 2

α β

GIT1

A

a b

Fig. 5.24

Results: see (A) MT = GIT1

α

a

1

1 + b
a

IT1
IT2

, β =
α

1 + b
a

IT1
IT2

.
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E5.17Example 5.17 Two rigid levers 1 and 2 are attached to the free
end of a thin-walled rectangular tube (shear modulus G), see Fig.
5.25. The end points of the levers are at a distance a from the end
points of two springs (spring constant c).

Determine the torque MT in the tube and the maximum shear
stress τmax if the springs are connected to the levers.

��
��
��

��
��
�� a

a

c

c

c

c

21

2t

t

h h

2h 2h

a

a
h/2

h/2

l

1

2

Fig. 5.25

Results: see (B) MT =
4 a c h

1 + 2 c l
G h t

, τmax =
a cG

Gh t+ 2 c l
.

E5.18Example 5.18 The shaft shown
in Fig. 5.26 consists of a tu-
be (shear modulus G2) which is
bonded to a core (shear modu-
lus G1). It is subjected to a tor-
que MT at its free end.

Determine the maximum she-
ar stresses in the core 1 and
in the tube 2 and the angle of
twist.

�
�
�
�

MT

l

r1

r2
2

1

Fig. 5.26

Results: see (A) τmax1 =
MTG1r1

G1Ip1 +G2Ip2

, τmax2 =
MTG2r2

G1Ip1 +G2Ip2

,

ϑ =
MT l

G1Ip1 +G2Ip2

.
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E5.19 Example 5.19 The assembly shown in Fig. 5.27 consists of a thin-
walled elastic tube (shear modulus G) and a rigid lever. The lever
is subjected to a couple.

Given the allowable shear stress τallow, calculate the allowable
forces and the corresponding angles of twist for the cross sections
1 and 2 .

1 2

b

b

l

t
F

F

a

t

t

t
t

2 a

Fig. 5.27

Results: see (A) Fallow1 =
π

2
a2t

b
τallow, Fallow2 =

a2t

b
τallow,

Δϑ1 =
2 + π

π

l τallow
aG

, Δϑ2 = (1+
√

2)
l τallow
aG

.

E5.20 Example 5.20 A solid circular
shaft has a linear taper from
4a at the left end to 2a at the
right end (Fig. 5.28). A tor-
que MT is applied at its free
end.

Determine the angle of
twist ϑ and the maximum
shear stress τmax in the shaft
at a location x along the
shaft’s axis.

�
�
�
�
�
�

�
�
�
�
�
�

MT

2a

l

4a x

r(x)

Fig. 5.28

Results: see (A) ϑ(x) =
MT l

12 πGa4

⎧⎪⎨
⎪⎩

1(
1− x

2l

)3 − 1

⎫⎪⎬
⎪⎭

,

τmax(x) =
MT

WT
=

2MT

π a3
(
2− x

l

)3 .
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E5.21Example 5.21 Determine the torsion constant IT and the section
modulus of torsion WT for each of the depicted thin-walled cross
sections (t� b). Calculate the ratio τmax,o/τmax,c of the maximum
shear stresses for the open cross sections (o) and the closed cross
sections (c) assuming that the sections are subjected to a torque
MT .

2t

b

b

2t

t

b

t

2t

bb

b

b

t

2t 2t

b

2t

bb

t

a b

c d

Fig. 5.29

Results: see (B) a,b,c) IT =
17
3
bt3 , WT =

17
6
bt2 ,

d) IT =
3
8
b3t , WT =

√
3

2
b2t ;

τmax,o

τmax,c
=

3
√

3b
17 t

.
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5.6 5.6 Summary
• Maximum shear stress:

τmax =
MT

WT
,

MT torque, WT section modulus of torsion.
• The angle of twist ϑ is obtained through integration of

ϑ′ =
MT

GIT
,

GIT torsional rigidity.

Special case MT = const, GIT = const: ϑl =
MT l

GIT
.

• Solid circular shaft:

τ =
MT

IT
r , IT =

π

2
R4 , WT =

π

2
R3 .

• Thin-walled closed cross section:

� Bredt’s first formula:

τ(s) =
MT

2Amt(s)
,

Am area enclosed by profile median line, s arc length.
The maximum shear stress τmax = MT /WT occurs at the
point with the smallest wall thickness tmin.

� Bredt’s second formula:

IT =
4A2

m∮
ds
t

.

� Noncircular shafts warp.

• Thin-walled open cross section:

IT =
1
3

∑
hi t

3
i , WT =

1
3

∑
hi t

3
i

tmax
.

The maximum shear stress τmax = MT/WT occurs at the point
with the largest wall thickness tmax.
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Objectives: It is often convenient to determine displa-
cements/rotations or forces/moments with the aid of energy me-
thods. The pertinent equations are presented in this chapter. For
example, it will be shown how the displacement of an arbitrary
point of a structure can be calculated using energy methods. These
methods also enable us to calculate redundant support reactions
of statically indeterminate systems in a simple way. The students
will learn how to apply these methods to specific problems.

D. Gross et al., Engineering Mechanics 2,
DOI 10.1007/978-3-642-12886-8_6, © Springer-Verlag Berlin Heidelberg 2011
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6.16.1 Introduction
In the preceding chapters we have always applied three different
types of equations to determine forces/stresses or deformations:

a) The equilibrium conditions establish a relation between the ap-
plied loads and the internal forces (stress resultants).

b) Kinematic equations connect the displacements and the strains.
c) The constitutive equations (Hooke’s law) connect the stresses

and the strains.

Table 6.1 shows the corresponding equations for the three ca-
ses tension/compression, bending and torsion. In addition, the
bottom row presents the differential equations for the displace-
ments/rotations, assuming constant rigidities, that follow from
the three types of equations given in the rows above.

Table 6.1. Basic Equations of Elastostatics

Tension/ Bending Torsion

Compression

Equilibrium N ′ = −n M ′ − V = 0 M ′
T = −mT

V ′ = −q

Kinematics ε = u′
κB = −ψ′

κT = ϑ′

ψ = −w′

Hooke’s Law N = EAε M = −EI κB MT = GIT κT

EAu′′ = −n EI wIV = q GIT ϑ
′′ = −mT

cf. (1.20b) cf. (4.34b) cf. (5.14)

In Volume 1 it was shown how the equilibrium of a rigid bo-
dy can be investigated with the aid of energy considerations: the
principle of virtual work is equivalent to the equilibrium conditi-
ons (Volume 1, Section 8.2). Since there are no real displacements
in the statics of rigid bodies, we introduced virtual displacements
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(i.e., imaginary displacements) in order to be able to apply the
principle of virtual work. In contrast, the points of elastic structu-
res undergo real displacements. To calculate these displacements
it is often advantageous to use energy methods. These methods
will be derived in the following sections.

6.2 6.2 Strain Energy and Conservation of Energy
Let us first consider a bar that is subjected to an external tensile
force. We assume that the magnitude of this force “slowly“ (qua-
sistatically, no dynamic effects due to motion) increases from the
initial value zero to its final value F . An arbitrary value between
0 and F is denoted by F̄ . After the loading process the point of
application of the force is displaced by the amount u (Fig. 6.1a).
Therefore, the work done by the force is given by

Ue =
u∫
0

F̄ dū (6.1)

(the subscript “e” refers to “external” force). If the functional
relation between the force F̄ and the corresponding displacement
ū is known, the integral in (6.1) can be evaluated. In this chapter
it is always assumed that the material behaviour is linearly elastic.
Then this relation is given by (1.18) for a bar with length l and
constant axial rigidity EA:

ū =
F̄ l

EA
→ F̄ =

EA

l
ū. (6.2)

����

u

F̄

F
F

uu

dū

ū

εdx

a b c

F

EA

N

N

dx
l

Fig. 6.1
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Inserting (6.2) into (6.1) yields

Ue =
EA

l

u2

2
=

1
2
F 2 l

EA
=

1
2
F u. (6.3)

The load-displacement diagram is shown in Fig. 6.1b. It illustrates
the result (6.3): the integral over the elements of work dUe = F̄dū
is equal to the area 1

2
Fu of the triangle.

We will now determine the work Ui that is done by the internal
forces in the bar. An element of length dx changes its length by the
amount ε dx under the action of the normal force N (Fig. 6.1c).
This force also slowly increases from the initial value of zero to
its final value. Since the relation between force and elongation is
linear, the work done by the internal forces is (compare to (6.3))

dUi =
1
2
N ε dx. (6.4)

The work done by internal forces (here: the normal forceN) is cal-
led internal work or strain energy. The strain energy is stored in
the structure just as the potential energy V is stored in a spring
(see Volume 1, Equation (8.9)). Note that the strain energy is
always positive (also in the case of compression). With the con-
stitutive equation ε = N/EA (see Table 6.1) we obtain

dUi =
1
2
N2

EA
dx = Ui

∗ dx

where

Ui
∗ =

1
2
N2

EA
(6.5)

is the strain energy per unit length. Integration of (6.5) over the
length of the bar yields the total strain energy

Ui =

l∫

0

Ui
∗dx =

1
2

l∫

0

N 2

EA
dx. (6.6)

In the special case of a constant axial rigidity and a constant
normal force N = F we find
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Ui =
1
2
F 2

EA

l∫

0

dx =
1
2
F 2 l

EA
. (6.7)

Comparison of (6.7) and (6.3) leads to

Ue = Ui . (6.8)

This equation represents the principle of conservation of energy. It
was derived for the particular case of a bar under tension or com-
pression; however, it is valid for an arbitrary elastic system (note
that only mechanical energy is considered here; energy developed
by heat, chemical reactions etc, is disregarded). In words: the work
Ue done by the external loads is stored as strain energy Ui in the
elastic system. It is regained in the process of unloading: no energy
is lost. The principle (6.8) which states that the work done by the
external loads is equal to the strain energy is also referred to as
Clapeyron’s theorem (Benoit Paul Emile Clapeyron, 1799–1864).

In order to be able to apply (6.8) to an arbitrary elastic system,
we need expressions for the work Ue of the external loads and the
strain energy Ui. A force F that is applied to a structure does the
work

Ue =
1
2
F f (6.9a)

(compare to (6.3)), where f is the displacement component in
the direction of the force at the point where the force is applied
(Fig. 6.2a). In the case of an external couple moment M0, the
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work is given by

Ue =
1
2
M0 ϕ (6.9b)

where ϕ is the angle of rotation in the direction of M0 at the point
of application of M0 (Fig. 6.2b).

In contrast to the work of the external loads, the strain energy
is obtained using different equations for different types of loading,
i.e., for members subjected to a normal force, a bending moment
or a torque. We will now derive the corresponding equation for
the case of bending. Consider a beam element of length dx. The
two end cross sections undergo a relative rotation dψ due to the
bending moment M (Fig. 6.2c). The bending moment does the
work

dUi =
1
2
M dψ =

1
2
M ψ′ dx (6.10)

during the rotation. If we insert the constitutive equation M =
EIψ′ (see (4.24)) we obtain the strain energy per unit length

dUi =
1
2
M2

EI
dx = Ui

∗ dx → Ui
∗ =

1
2
M2

EI
. (6.11)

Integration over the length l of the beam yields the strain energy

Ui =

l∫

0

Ui
∗ dx =

1
2

l∫

0

M2

EI
dx. (6.12)

Analogous considerations can be applied to torsion and shear.
With the torsional moment (torque) MT = GIT ϑ

′ (see (5.5)) and
the shear force V = GAS γ̃ (compare to (4.41)) we obtain the
strain energies per unit length

Ui
∗ =

1
2
M2

T

GIT
and Ui

∗ =
1
2
V 2

GAS
. (6.13)

Various forms of the strain energies for different types of loading
are presented in Table 6.2.

Note that it is assumed that only one load acts on the structure.
This load may cause different stress resultants in a member, e.g.,
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Table 6.2. Strain Energy Ui
∗ per Unit Length

Tension Bending Shear Torsion

1

2
N ε

1

2
M ψ′ 1

2
V γ̃

1

2
MT ϑ

′

1

2
EAε2

1

2
EI ψ′ 2 1

2
GAS γ̃

2 1

2
GIT ϑ

′ 2

1

2

N2

EA

1

2

M2

EI

1

2

V 2

GAS

1

2

M2
T

GIT

a bending moment M and a shear force V (see Example 6.1) or
a bending moment M and a torque MT (see Example 6.2). In
this case we can use the principle of superposition to obtain the
strain energy. Hence, the total strain energy of a member which
experiences bending, torsion and tension is given by

Ui =
1
2

∫
M2

EI
dx+

1
2

∫
M2

T

GIT
dx+

1
2

∫
N2

EA
dx. (6.14)

If the structure is composed of different parts, the total strain
energy is the sum of the strain energies of the various parts. Note,
however, that the total strain energy due to more than one load
is not the sum of the strain energies due to the individual loads
acting separately (the strain energy is not a linear function of the
loads).

The principle of conservation of energy in the form (6.8) can
be applied to statically determinate systems that are subjected
to only one force or one couple moment. It allows only the deter-
mination of the displacement at the point and in the direction of
the external force or the angle of rotation at the point and in the
direction of the external couple moment. Therefore, its import-
ance in solving practical problems is rather limited. Frequently,
structures are subjected to more than only one load and the dis-
placements/rotations have to be determined at arbitrary points
of a structure. For these more general cases we have to use an
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extension of the strain-energy method (6.8) which is also based
on the principle of conservation of energy. This method will be
derived in Section 6.3.

As an example for the application of (6.8) let us consider the
cantilever beam in Fig. 6.2a. The deflection f at the point where
the force F is applied follows with (6.9a) and (6.12):

Ue = Ui → 1
2
F f =

1
2

l∫

0

M2

EI
dx. (6.15a)

Here, M is the bending moment due to the external force F .
Similarly, (6.9b) and (6.12) yield the angle of slope at the point
of application of the external couple moment M0 (Fig. 6.2b):

Ue = Ui → 1
2
M0 ϕ =

1
2

l∫

0

M2

EI
dx (6.15b)

where M is the bending moment caused by M0.
In a truss, the only internal forces (stress resultants) are the nor-

mal forces Ni = Si in the individual members, which are constant.
The strain energy in the i-th member is given by 1

2S
2
i li/EiAi.

Consider a truss which consists of n members and which is sub-
jected to only one force F . Then the displacement at the point
and in the direction of the force follows from

Ue = Ui → 1
2
F f =

1
2

n∑
i=1

S2
i li
EAi

. (6.16)

Here, the axial rigidity EiAi is denoted by EAi.
As an example we can calculate the vertical displacement v of

the point of application of the force F for the two-bar truss shown
in Fig. 6.3a. According to (6.16) this displacement follows from

1
2
F v =

1
2

(
S2

1 l1
EA

+
S2

2 l2
EA

)
.
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The forces in the members can be taken from the force triangle in
Fig. 6.3b. The law of sines yields

S1 = F
sinβ

sin(α+ β)
, S2 = − F sinα

sin(α+ β)
.

If we also insert the lengths l1 = h/ sinα and l2 = h/ sinβ of the
members we obtain

v =
F

EA

h

sin2(α + β)

(
sin2 β

sinα
+

sin2 α

sinβ

)
.

A graphic-analytical method to determine the displacement of
one of the pins of a truss was given in Section 1.5. It can be seen
that the strain-energy method avoids the often quite cumbersome
geometrical considerations.

We will now show how one can obtain an approximation for
the shear correction factor κ of the cross section of a beam with
the aid of energy considerations. The shear correction factor was
introduced in the constitutive equation (4.25) for the shear force
(see also Section 4.6):

V = GκA(w′ + ψ) = GAS (w′ + ψ). (6.17)

It was assumed that the shear force causes the average shear strain
γ̃ = w′ + ψ in the cross section. The shear area AS = κA is now
obtained by equating the strain energy Ui

∗
V due to the shear force

and the strain energy Ui
∗
τ due to the shear stress τ that acts in



6.2 Strain Energy and Conservation of Energy 239

the cross section. According to Table 6.2 we have

Ui
∗
V =

1
2
V γ̃ =

1
2
V 2

GAS
. (6.18)

Similarly, the force τ dA that acts on an element dA of the cross
section leads (with τ = Gγ) to

dUi
∗
τ =

1
2
(τ dA) γ =

1
2
τ2

G
dA.

Integration over the cross section yields the strain energy per unit
length

Ui
∗
τ =

1
2

∫
τ2

G
dA. (6.19)

We now equate (6.18) and (6.19):

1
2
V 2

GAS
=

1
2

∫
τ2

G
dA. (6.20)

If the distribution of the shear stress τ in the cross section is
known, the integral in (6.20) can be evaluated and thus the shear
area AS and the shear correction factor κ can be calculated.

To illustrate the method we consider a rectangular cross section.
According to (4.39) the distribution of the shear stress is given by

τ =
3
2
V

A

(
1− 4

z2

h2

)

(see Fig. 4.35b). Inserting τ into (6.20) and using dA = b dz and
A = b h yields

1
AS

=
9
4

1
A2

h/2∫

−h/2

(
1− 4

z2

h2

)2

b dz =
6
5

1
b h
.

Hence, we obtain

AS =
5
6
b h, κ =

AS

A
=

5
6

(6.21)
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for a rectangular cross section. The average shear strain

γ̃ = w′ + ψ =
V

GAS
= 1.2

V

GA

is therefore 20% larger than the shear strain that would be caused
by a uniform distribution τ = V/A of the shear stress.

Similar considerations lead to values between 0.8 and 0.9 of the
shear correction factor κ for solid cross sections. In the case of an
I-beam (see Fig. 4.42), the shear force is essentially supported by
the web. Therefore we have to a good approximation

AS ≈ Aweb = t h.

For a thin-walled circular cross section Equation (6.20) leads to

AS =
1
2
A with A = 2 π r t.

It should be noted that the values of the shear correction factor
vary considerably depending on the type of the cross section, e.g.,
solid cross section, thin-walled open or thin-walled closed cross
section.

E6.1 Example 6.1 A cantilever beam is subjected to a force F as shown
in Fig. 6.4a.

Calculate the deflection f at the free end taking into account
the shear deformation.

�
�
�

�
�
�

F lx

l

F

b

M
F

V

EI,GAS

a Fig. 6.4

Solution The principle of conservation of energy (6.8) reads

1
2
F f =

1
2

∫
M 2

EI
dx+

1
2

∫
V 2

GAS
dx
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where the integrals are taken from Table 6.2. Using the coordi-
nate x as shown in Fig. 6.4a, the stress resultants are given by
(Fig. 6.4b)

V = − F, M = − F x.
Since the rigidities EI and GAS are constant, we obtain

1
2
F f =

1
2

l∫

0

F 2 x2

EI
dx+

1
2

l∫

0

F 2

GAS
dx

=
1
2
F 2 l3

3EI
+

1
2
F 2 l

GAS
→ f =

F l3

3EI
+

F l

GAS
.

This problem was already solved in Section 4.6.2 with the aid of
the differential equations for the deflection of the Bernoulli beam
and the deflection due to shear, respectively. Also, the influence
of the shear rigidity was discussed there.

E6.2Example 6.2 An angled member carries a load F at the free end
(Fig. 6.5a).

Determine the deflection at the point of application of the force.
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Solution Part of the structure is subjected to bending; part
is subjected to bending and torsion. Therefore, the principle of
conservation of energy (6.8) is given by

1
2
F f =

1
2

∫
M 2

EI
dx+

1
2

∫
M2

T

GIT
dx.

We use the coordinates x1 and x2 as shown in Fig. 6.5a. Then, the
stress resultants are the bending moment M1 = −F x1 in beam
and the bending moment M2 = −F x2 and the torque MT2 = F a

in beam (Fig. 6.5b). Thus,

1
2
F f =

1
2

a∫

0

F 2 x2
1

EI1
dx1 +

1
2

l∫

0

F 2 x2
2

EI2
dx2 +

1
2

l∫

0

F 2 a2

GIT
dx2

=
1
2
F 2

EI1

a3

3
+

1
2
F 2

EI2

l3

3
+

1
2
F 2

GIT
a2 l

and the deflection is obtained as

f = F

{
a3

3EI1
+

l3

3EI2
+

a2 l

GIT

}
.

6.3 6.3 Principle of Virtual Forces and Unit Load
Method

The principle of conservation of energy (6.8) enables us to cal-
culate the displacement in the direction of an external force. For
example, the vertical displacement v of the pin of the two-bar truss
in Fig. 6.3 under the action of the vertical force F follows from
(see (6.16))

Ue = Ui → 1
2
F v =

1
2

∑ S2
i li
EAi

. (6.22)

If a horizontal force Q is applied to the same truss instead of the
vertical force F , the horizontal displacement u can be obtained
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from

1
2
Qu =

1
2

∑ S2
i li
EAi

, (6.23)

where now Si are the internal forces in the members due to the
force Q. However, we also want to be able to determine the hori-
zontal displacement caused by the vertical force F and the vertical
displacement due to the horizontal forceQ. In order to achieve this
goal we introduce virtual forces. These are fictitious forces which
are introduced only for the purpose of the calculation. Just as we
may determine real forces with the aid of virtual displacements
(see Volume 1, Section 8.2), we will be able to determine real
displacements with the aid of virtual forces.
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In this section we restrict ourselves to statically determinate
systems and illustrate the method with the example of the two-
bar truss in Fig. 6.6a. The truss is subjected to the vertical for-
ce F as shown; the internal forces in the members are called Si

(Fig. 6.6b). If we want to determine the displacement of the pin in
the horizontal direction, we first subject the truss only to the vir-
tual force “1“ in the horizontal direction (Fig. 6.6c). This force is
assumed to be gradually increasing to its final magnitude 1. A for-
ce triangle (Fig. 6.6d) yields the corresponding internal forces S̄i.
Here and in what follows, forces or kinematical quantities due to
a virtual force are always marked by a bar. The horizontal virtual
force causes a displacement of the pin; its horizontal component
is denoted by ū. During the displacement, the force “1“ does the
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work

Ue,1 =
1
2
· 1 · ū. (6.24)

Subsequently, in addition to the already acting virtual force “1“,
we apply the vertical force F . Then the corresponding displace-
ment of the pin has the vertical component v and the force F does
the work

Ue,2 =
1
2
F v. (6.25)

The horizontal component of the displacement due to F is u.
Since the virtual force “1“ has been applied before and therefore
has the constant magnitude 1 (and since the force “1“ and the
displacement u have the same direction), it does the work

Ue,3 = 1 · u (6.26)

during the displacement. The total work of the forces during the
process described above is given by the sum of the three terms:

Ue =
1
2
· 1 · ū+

1
2
F v + 1 · u. (6.27)

According to the principle of superposition, the total internal
forces in the bars are S̄i +Si. Thus, the total strain energy in the
truss is (compare (6.16))

Ui =
1
2

∑ (S̄i + Si)2 li
EAi

=
1
2

∑ S̄2
i li
EAi

+
1
2

∑ S2
i li
EAi

+
∑ Si S̄i li

EAi
(6.28)

and the principle of conservation of energy (6.8) yields

1
2
· 1 · ū+

1
2
F v+ 1 · u =

1
2

∑ S̄2
i li
EAi

+
1
2

∑ S2
i li
EAi

+
∑ Si S̄i li

EAi
.

According to (6.22), the second term on the left-hand side is equal
to the second term on the right-hand side. Similarly, if we use
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(6.23) and set Q = 1, we see that the first terms are equal. This
leaves the result

1 · u =
∑ Si S̄i li

EAi
. (6.29)

Thus, the virtual force “1“ in the horizontal direction enables us
to determine the real horizontal displacement u due to the vertical
force F .

"1"
α

a b

VI

F

f

α

Fig. 6.7

Similar considerations lead to the displacement component in
any given direction of an arbitrary pin of a general truss. Assume,
for example, that the displacement component f of pin VI of the
truss in Fig. 6.7a has to be determined (the direction of f is given
by the angle α). In the first step, the forces Si in the members due
to the applied load F have to be calculated. In the second step,
the truss is subjected only to the virtual force “1“ at pin VI in
the direction of f (Fig. 6.7b) and the corresponding forces S̄i are
calculated. Then, (6.29) yields

f =
∑ Si S̄i li

EAi
. (6.30)

To obtain (6.30) we have divided (6.29) by the force 1. Thus, the
forces S̄i in (6.30) are due to a dimensionless force 1; hence, they
are from now on also dimensionless quantities. Note that they
must have the dimension of a force in (6.28) so that Si and S̄i can
be added.

According to the principle of superposition, Equation (6.30) is
valid for a truss subjected to arbitrarily many forces. In general,
the quantities Si are the forces in the members due to the total
loading. Equation (6.30) is called the principle of virtual forces and
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its use for the evaluation of displacements is known as the unit
load method. In summary: if we want to determine the component
f of the displacement in a given direction at an arbitrary pin k

of the truss, then we have to apply a virtual force “1“ in this
direction at pin k. The displacement f is obtained from (6.30),
where Si are the forces in the members due to the external forces,
S̄i are the forces in the members due to the virtual force “1“ and
li, EAi are the lengths and the axial rigidities of the individual
members.

In general, we do not know the direction of the displacement of
a pin. Therefore we have to apply the method twice: a horizontal
force “1“ yields the horizontal component of the displacement; a
vertical force “1“ yields the vertical component. A vector addition
of the components leads to the displacement of the pin.

"1"

M̄iMk

F

b c

a

F

i k i k i k

Fig. 6.8

The principle of virtual forces may also be applied to beams,
frames, arches, etc. We will now derive the method for the bending
of a beam with the aid of an example, namely, the simple beam
in Fig. 6.8a subjected to a force at point k. We want to determine
the deflection f at point i. For the sake of clarity we will use
double subscripts: fik is the deflection at point i due to the force
F at point k. In order to determine this deflection, we first apply a
virtual force “1“ at point i (Fig. 6.8c). Subsequently, the external
force F is applied at point k. Using the same arguments as in the
case of a truss, we obtain the total work of these two forces:

Ue =
1
2
· 1 · fii +

1
2
F fkk + 1 · fik. (6.31a)
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The force “1“ causes the bending moment M̄i, the force F causes
the bending moment Mk (Fig. 6.8b, c). Therefore, the total ben-
ding moment is given by M̄i +Mk (here, M̄i has the dimension of
a moment). This yields the strain energy

Ui =
1
2

∫
(M̄i +Mk)2

EI
dx

=
1
2

∫
M̄2

i

EI
dx+

1
2

∫
M2

k

EI
dx+

∫
M̄iMk

EI
dx . (6.31b)

According to (6.15a), the first and the second terms, respectively,
in Ue and Ui are equal. Therefore, the principle of conservation of
energy (6.8) results in

fik =
∫
M̄iMk

EI
dx. (6.32)

Again, we have divided by the force 1. Thus, the moment M̄i

now has the dimension “length”. Equation (6.32) represents the
principle of virtual forces or unit load method for the bending of
a beam: the deflection fik at point i due to a force F at point
k is obtained by calculating the bending moment M̄i due to the
dimensionless force “1“ at point i and the bending moment Mk

due to the given force F at point k. Equation (6.32) then leads to
fik.

The principle of virtual forces (6.32) is also valid for an arbitrary
loading of the beam (several forces, couple moments, line loads).
Then Mk is the bending moment due to all the given external
loads. In this case, the subscripts i and k are omitted and (6.32)
is written in the form

f =
∫
MM̄

EI
dx . (6.33)

Here, M is the bending moment due to the given loads and M̄

(dimension: length) is the bending moment due to the dimension-
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less force “1“ which acts at the point where the deflection is to be
determined.

If we want to calculate the angle ϕ of the slope of the deflection
curve at a given point, we apply a dimensionless virtual couple mo-
ment “1“ at this point. The angle ϕ is then obtained from (6.33),
where now M̄ is the bending moment (dimensionless quantity)
due to the virtual couple moment.
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To illustrate the method we consider the cantilever beam sub-
jected to a force F as depicted in Fig. 6.9a. We will calculate the
deflection and the angle of slope at the free end. If we use the
coordinate x shown in Fig. 6.9a, the bending moment caused by
the given force F is (Fig. 6.9b)

M = − F [x− (l − a)] for x ≥ l − a.
In order to determine the deflection at the free end we apply the
virtual force “1“ at this point. This yields the bending moment
(Fig. 6.9c)

M̄ = − 1 · x for x ≥ 0.

The bending moment M̄ has the dimension “length”. The deflec-
tion follows from (6.33) (note that the bending moment M is zero
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in the region 0 ≤ x ≤ l − a:

f =
∫
MM̄

EI
dx =

1
EI

l∫

l−a

(−F )[x− (l − a)](−x) dx

=
F

EI

[
x3

3
− (l − a)x

2

2

]l

l−a

=
F l3

6EI

[
3
(a
l

)2

−
(a
l

)3
]
. (6.34)

To determine the angle of slope at the free end we apply the
virtual couple moment “1“ at this point. The corresponding ben-
ding moment is given by M̄ = 1 (Fig. 6.9d); it is dimensionless.
Equation (6.33) yields

ϕ =
∫
MM̄

EI
dx =

1
EI

l∫

l−a

(−F )[x− (l − a)] · 1 dx

= − F

EI

[
x2

2
− (l − a)x

]l

l−a

= − F

EI

a2

2
. (6.35)

The negative sign indicates that the direction of the actual rota-
tion is opposite to the direction that was chosen for the virtual
moment.

In many problems the bending moments are linear, quadratic
or cubic functions of x, respectively. Then the integrals in (6.33)
can be computed in advance provided that the flexural rigidity is
constant, and they can be listed in a table. Results of the integra-
tions are presented in Table 6.3. Note that in order to evaluate
the integrals, it is irrelevant which of the bending moments is due
to the external loads and which one is caused by the virtual load.
Therefore, the bar which is used to characterize the quantities
due to virtual loads is omitted in Table 6.3. Now the subscripts i
and k characterize two bending moments under the integral sign:∫
MiMk dx. For example, if Mi is represented by a quadratic pa-

rabola and Mk is linear, the notation used in Fig. 6.10 implies

Mi = 4 i
[
x

s
−
(x
s

)2
]
, Mk = k

x

s
.
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Table 6.3. Integrals
R
Mi Mk dx

Mk

Mi
s

kk

s

k

s

k

s
k2

k1

1
s

ii sik
1

2
sik

1

2
sik

1

2
si(k1 + k2)

2
s

i
1

2
sik

1

3
sik

1

6
sik

1

6
si(k1 + 2 k2)

3
s

i2
i1

1

2
s(i1+

i2)k

1

6
s(i1+

2 i2)k

1

6
s(2 i1+

i2)k

1

6
s(2 i1 k1+

2 i2 k2 + i1 k2+

i2 k1)

4

quad. parabola

s

i
2

3
sik

1

3
sik

1

3
sik

1

3
si(k1 + k2)

5

quad. parabola

s

i
2

3
sik

5

12
sik

1

4
sik

1

12
si(3 k1 + 5 k2)

6

quad. parabola

s

i
1

3
sik

1

4
sik

1

12
sik

1

12
si(k1 + 3 k2)

7

cub. parabola

s

i
1

4
sik

1

5
sik

1

20
sik

1

20
si(k1 + 4 k2)

8

cub. parabola

s

i
3

8
sik

11

40
sik

1

10
sik

1

40
si(4 k1 + 11 k2)

9

cub. parabola

s

i
1

4
sik

2

15
sik

7

60
sik

1

60
si(7 k1 + 8 k2)

Quadratic parabola: ◦ indicates maximum
Cubic parabola: ◦ indicates zero value of the triangular load
Trapezium: i1 and i2 (k1 and k2) may have different algebraic signs
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The integral is then obtained as
s∫

0

MiMk dx =

s∫

0

4 i
[
x

s
−
(x
s

)2
]
k
x

s
dx

= 4
i k

s2

(
s3

3
− s3

4

)
=

1
3
s i k.

This result can be taken directly from Table 6.3 without the need
to integrate. It can be found in the fourth row/second column:
1
3s i k.

xx

MkMi

k

s

i

sFig. 6.10

The principle of virtual forces can also be applied to more ge-
neral types of loading. In the case of a member being subjected
to bending, torsion and tension, the deflection is obtained from

f =
∫
MM̄

EI
dx+

∫
MT M̄T

GIT
dx+

∫
NN̄

EA
dx (6.36)

where M,MT and N are the bending moment, torque and normal
force due to the given load. The virtual force “1“ which is applied
at the point where the displacement is to be determined leads to
the stress resultants M̄, M̄T and N̄ . The integrals in (6.36) have
to be evaluated for the entire system. If the rigidities GIT and
EA, respectively, are constant in a member, the corresponding
integrals
∫

MT M̄T dx,
∫

N N̄ dx

can also be taken from Table 6.3.
Let us now consider a truss where the i-th member undergoes

a change ΔTi of its temperature. Then, in analogy with (1.17),
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the change αTi ΔTi li of the length caused by the change of the

temperature has to be added to the elongation
Si li
EAi

due to the

internal force Si in (6.30):

f =
∑ Si S̄i li

EAi
+
∑

S̄i αTi ΔTi li.

Similarly, a moment MΔT due to the temperature change (see
(4.63)) has to be added to the bending moment M in (6.33) if a
beam is subjected to a thermal load (see Section 4.9):

f =
∫

(M +MΔT ) M̄
EI

dx.

E6.3 Example 6.3 The truss in Fig. 6.11a consists of 17 members (axial
rigidity EA).

Determine the vertical displacement fV of pin V.

"1"

b

1
3

135 1711
15

0
7 9

4 128 16
F F

A=F B=F

0
2 6 10 14

0
0

0

0

c

0 0

a
F F

V

a

a

Truss subjected to given load

Ā=
1
2

B̄=
1
2

Truss subjected to virtual force

Fig. 6.11
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Solution The truss has j = 10 joints, m = 17 members and r =
3 support reactions. Therefore, the necessary isostatic condition
2 j = m+ r is satisfied (see Volume 1, Section 6.1).

We determine the displacement with the aid of (6.30). In the
first step, the internal forces Si in the members due to the given
loads (Fig. 6.11b) are calculated by the method of joints (Volu-
me 1, Section 6.3.1). The results are presented in a table.

i Si S̄i li Si S̄i li

1 0 0 a 0

2 0 0 a 0

3 −√2F −
√

2/2
√

2 a
√

2F a
4 F 1/2 a Fa/2

5 F 0 a 0

6 −F −1 a F a

7 0
√

2/2
√

2 a 0

8 F 1/2 a Fa/2

9 0 0 a 0
10 −F −1 a F a

11 0
√

2/2
√

2 a 0

12 F 1/2 a F a/2

13 F 0 a 0

14 0 0 a 0

15 −√2F −
√

2/2
√

2 a
√

2F a
16 F 1/2 a F a/2

17 0 0 a 0P
Si S̄i li = (4 + 2

√
2)F a

Subsequently, the truss is subjected only to a vertical virtual
force “1“ at pin V (Fig. 6.11c). The resulting internal forces S̄i are
also recorded in the same table. The products Si S̄i li (li: length
of the member i) are given in the last column of the table. With
EAi = EA, the displacement fV follows from (6.30):

fV =
∑ Si S̄i li

EA
= (4 + 2

√
2)
F a

EA
.
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E6.4 Example 6.4 Determine the horizontal and the vertical components
of the displacement of pin B of the truss in Fig. 6.12a. The axial
rigidity of the members 1-3 is given by EA; member 4 has the
rigidity 2EA.
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3
2 2

3 0

0

4

2

b c da
l F

B

F

Fig. 6.12

Solution The truss is statically determinate. The internal forces Si

in the members due to the force F (Fig. 6.12b) can be calculated
with the aid of the method of joints (Volume 1, Section 6.3.1).

To determine the horizontal displacement of B, we apply a
horizontal force “1“ at this point (Fig. 6.12c). The corresponding
internal forces are denoted by S̄iH . Similarly, a vertical force “1“
at B (Fig. 6.12d) produces the internal forces S̄iV and leads to the
vertical displacement. All the internal forces are given in a table.

i li Si S̄iH S̄iV Si S̄iH li Si S̄iV li

1 l
F√
2

0 0 0 0

2
√

2 l −F
2

1
2

√
2 −1

2

√
2 −1

2
F l

1
2
F l

3 l
F√
2

0 0 0 0

4
√

2 l
F

2
1
2

√
2

1
2

√
2

1
2
F l

1
2
F l

The components of the displacement at B follow from (6.30) (note
the different axial rigidities of the members):
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fH =
∑ Si S̄iH li

EAi
= − 1

2
F l

EA
+

1
2

F l

2EA
= −1

4
F l

EA
,

fV =
∑ Si S̄iV li

EAi
=

1
2
F l

EA
+

1
2

F l

2EA
=

3
4
F l

EA
.

The negative sign of fH indicates that the horizontal displacement
(to the left) is directed in the opposite direction to the force “1“.
The vertical displacement is three times as large as the horizontal
displacement.

E6.5Example 6.5 The frame in Fig. 6.13a (flexural rigidity EI, axial
rigidity EA → ∞) is subjected to a constant line load q0 and a
force F .

Calculate the horizontal displacement uB of the support B.

"1"
B

q0

h

a

q0

1·h

1·h 1·h

1·h

F

a

M M̄
b c

Fh

F

Fh

2

1 3

q0a
2

8

Fig. 6.13

Solution In the first step we determine the bending moment due
to the external loads. It is advantageous for the integration that
follows to present the moments due to q0 and F in part of the
frame in separate graphs (Fig. 6.13b).
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Then we subject the frame only to the virtual force “1“ at B
and determine the corresponding bending moment (Fig. 6.13c).

The displacement uB is obtained according to (6.33) by multi-
plying the bending moments and integrating over the total frame:
Part : triangle and triangle
∫
MM̄ dx =

1
3
h(−F h)(1 · h) = − 1

3
F h3

Part : rectangle and triangle
∫
MM̄ dx =

1
2
a(−F h)(1 · h) = − 1

2
F ah2

rectangle and quadratic parabola
∫
MM̄ dx =

2
3
a
q0 a

2

8
(1 · h) =

1
12
q0 a

3 h

Part :
∫
MM̄ dx = 0 since M = 0.

Equation (6.33) yields the displacement:

EI uB =
1
12
q0 a

3 h− 1
6
F h2(2 h+ 3 a).

The algebraic signs indicate that the support is displaced to the
right due to q0 and to the left due to F .

E6.6 Example 6.6 The structure shown in Fig. 6.14a consists of the
angled member BCD (flexural rigidity EI) and the two bars 1
and 2 (axial rigidity EA). A couple moment M0 is applied at
point C.

Determine the displacement vB of the support B and the rota-
tion ϕC at point C.

Solution First we calculate the bending moment M (Fig. 6.14b)
and the forces S1 = M0/2 a and S2 = −M0/2 a in the bars due
to the external load M0. In order to find the displacement at B,
we apply a virtual force “1“ in the direction of the displacement
(Fig. 6.14c) which leads to M̄ = 0, S̄1 = 0 and S̄2 =

√
2. Equation

(6.36) yields
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"1"

"1"M0

b

M

M0

1

2

M0/2

a

c

M̄

1/2

M̄

d

a

45◦

2a

B

C

D

A

a

Fig. 6.14

vB =
S2 S̄2 l2
EA

= − M0

2 a

√
2

2 a
EA

= − √2
M0

EA
.

To obtain the rotation at C we apply a virtual couple mo-
ment “1“ at this point (Fig. 6.14d). This leads to M̄ according to
Fig. 6.14d and to S̄1 = 1/2 a and S̄2 = −1/2 a. From

ϕC =
∫
MM̄

EI
dx+

∑ Si S̄i li
EA

(see (6.30) and (6.36)), we obtain the rotation with the aid of
Table 6.3:

ϕC =
1
EI

[
1
3

(
−M0

2

)(
−1

2

)
a+

1
3
M0

2
1
2

√
2 a
]

+
1
EA

[
M0

2 a
1

2 a
a+
(
−M0

2 a

)(
− 1

2 a

)
2 a
]

=
M0 a

12EI

[
1 +
√

2 + 9
EI

EAa2

]
.
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E6.7 Example 6.7 Determine the displacement of point C for the frame
in Fig. 6.15a.
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y
z

x

M0

M0

M0
l

D

1

M0

2

1·l

1·h
1·l

1·l

1·h

h

3

2r

M

MT

a

B

B

C

M0

A

A

A

A

2a

cut A - A

a

cut B - B

M̄

M̄T

b c
Fig. 6.15

Solution The parts and are subjected to bending; part
is subjected to torsion. One can see by inspection that point C
undergoes a displacement v in the y-direction.

In the first step we determine the bending moment M and the
torqueMT caused by the external couple moment M0 (Fig. 6.15b).
Note that the algebraic signs for the stress resultants in the in-
dividual parts of the system may be chosen arbitrarily. However,
the same sign convention has to be applied to the system with
the virtual force “1“. The stress resultants M̄ and M̄T due to the
virtual force in the y-direction are given in Fig. 6.15c. Integration
(see (6.36)) leads to
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v =
∫
MM̄

EI
dx+

∫
MT M̄T

GIT
dx

=
1
2
M0 l

EI1
l +

1
2
M0 l

EI3
l +

M0 l

GIT2
h.

Inserting the moments of inertia

I1 = I3 =
a (2 a)3

12
=

2
3
a4, IT2 =

Π
2
r4

yields

v =
3
2
M0 l

2

E a4
+

2M0 l h

GΠ r4
.

E6.8Example 6.8 Determine the displacement of point A of the lamp
(weight W ) in Fig. 6.16a. The weight of the arch (flexural rigidity
EI) is negligible.

������ ������ ����

"1"

"1"

������

��
��
��
��

A

4a W

a

W

b

W

M̄v

2Wa 2a 4ac d e

M M̄u

a

ϕ

x

Fig. 6.16
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Solution We introduce the dashed line (see Volume 1, Section 7.1)
and the coordinates x and ϕ according to Fig. 6.16b. Then the
bending moment M due to the load W is given by (see Fig. 6.16c)

M =

{ −Wa(1− cosϕ), 0 ≤ ϕ ≤ π,

−W2a, 0 ≤ x ≤ 4a.

In order to find the vertical displacement v of point A, we ap-
ply a vertical virtual force “1“ at A (Fig. 6.16d). We obtain the
bending moment M̄v if we replace W with “1“ in M :

M̄v =

{ − a(1− cosϕ), 0 ≤ ϕ ≤ π,

− 2a, 0 ≤ x ≤ 4a.

Integration yields

v =
∫
MM̄v

EI
ds =

1
EI

π∫

0

−Wa(1− cosϕ)[− a(1− cosϕ)]a dϕ

+
1
EI

4a∫

0

(−2 aW )(−2 a)dx

=
Wa3

EI

π∫

0

(1 − 2 cosϕ+ cos2 ϕ) dϕ+
4Wa2

EI
4 a

=
Wa3

EI

(
3 π
2

+ 16
)
≈ 20, 7

Wa3

EI
.

To determine the horizontal displacement u, we apply a ho-
rizontal force “1“ at A (Fig. 6.16e). The corresponding bending
moment M̄u is given by

M̄u =

{
a sinϕ, 0 ≤ ϕ ≤ π,

− x, 0 ≤ x ≤ 4a.
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Integration leads to

u =
∫
MM̄u

EI
ds =

1
EI

π∫

0

−Wa(1− cosϕ)a sinϕa dϕ

+
1
EI

4a∫

0

(−2 aW )(−x)dx

=
Wa3

EI
(−2 + 16) = 14

Wa3

EI
.

The total displacement fA is therefore found to be

fA =
√
u2 + v2 ≈ Wa3

EI

√
429 + 196 = 25

Wa3

EI
.

Note that the vertical load W causes a large horizontal displace-
ment.

6.46.4 Influence Coefficients and Reciprocal
Displacement Theorem

In Section 6.3 it was shown that the deflection fik of a beam at an
arbitrary point i due to a force Fk at point k can be determined
with the aid of the principle of virtual forces (see (6.32)). If the
force Fk is the only external load, the deflection of the beam is
proportional to this force. Therefore, we can write

fik = αik Fk. (6.37)

The proportionality factor αik is called the influence coefficient.
It is equal to the deflection at point i due to the force “1“ at
point k. As an illustrative example consider the cantilever beam in
Fig. 6.9a which is subjected to a force F at point a. The influence
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coefficient for the deflection at the free end is obtained from (6.34):

αla =
f

F
=

l3

6EI

[
3
(a
l

)2

−
(a
l

)3
]
.

Similarly, the influence coefficient for the deflection at point x
for the beam subjected to the couple moment M0 in Example 4.6
is found to be

αxl =
w(x)
M0

=
l2

6EI

[(x
l

)
−
(x
l

)3
]
.

Note that the two influence coefficients given here have different
dimensions.

If a beam is subjected to n forces Fk, the deflection f at point
i is obtained through superposition:

f =
∑

k

fik = αi1 F1 + αi2 F2 + αi3 F3 + . . .+ αin Fn.

Let us now consider a beam that is subjected to two forces as
shown in Fig. 6.17a: force Fi acts at point i, force Fk acts at point
k. If we first apply Fk and subsequently apply Fi (see Fig. 6.17b),
then the total work done by the external forces is given by

U =
1
2
fkk Fk +

1
2
fii Fi + Fk fki

=
1
2
αkk F

2
k +

1
2
αii F

2
i + Fk(αki Fi). (6.38a)

fikfii
fkk

fkk

fki

fii
ki

b

Fi

Fi Fi

c

Fk

FkFk
a

Fi Fk

Fig. 6.17
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If we first apply Fi and subsequently Fk (Fig. 6.17c), the total
work is

U =
1
2
fii Fi +

1
2
fkk Fk + Fi fik

=
1
2
αii F

2
i +

1
2
αkk F

2
k + Fi(αik Fk). (6.38b)

The total strain energy after the two forces have been applied is
independent of the sequence of the application. According to the
principle of conservation of energy (6.8), the total work of the
external forces is also independent of this sequence. We therefore
can equate the first lines of (6.38a) and (6.38b) to obtain

Fk fki = Fi fik . (6.39)

This is referred to as the reciprocal work theorem or Betti’s theorem
(Enrico Betti, 1823–1892 and Lord Rayleigh, 1842–1919). It tells
us that the work done by the force Fk during the displacement
fki (which is caused by Fi) is equal to the work done by the
force Fi during the displacement fik (which is caused by Fk).
This statement can be generalized to arbitrary elastic systems.

If we equate the second lines of (6.38a) and (6.38b) we obtain
the reciprocal displacement theorem, also called Maxwell’s recipro-
cal theorem (James Clerk Maxwell, 1831–1879):

αik = αki . (6.40)

It implies that the deflection αik at point i due to a force “1“ at
point k is equal to the deflection αki at point k due to a force “1“
at point i.

Equation (6.40) can also be applied to a system that is subjec-
ted to a couple moment. Let us consider, for example, the beam
in Fig. 6.18a which is subjected to a force F at point and to a
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"1"

"1"

1
2

c d
l

l/2

a

F

b
α21

α12

M0

Fig. 6.18

moment M0 at point . This moment causes the deflection

f12 = α12M0 = − l2

6

{
1
2

[
3
(
d

l

)2

− 1

]
+

1
8

}
M0

EI
(6.41)

at point (see Table 4.3, Nr. 5, ξ = 1/2, β = d/l).
Now we determine the angle of slope of the deflection curve at

point which is caused by F . From Table 4.3, Nr. 1, we find the
slope at an arbitrary point ξ through differentiation:

EI w′ =
F l2

6
[β(1 − β2 − 3 ξ2) + 3〈ξ − α〉2].

In the present example we have to choose α = β = 1/2 to obtain

EI w′ =
F l2

6
[1
2
(1− 1

4
− 3 ξ2) + 3〈ξ − 1

2
〉2].

The angle has to be taken as positive if its sense of rotation coinci-
des with the sense of rotation of the momentM0. Thus, ϕ21 = −w′

at point . With ξ = c/l we obtain

ϕ21 = α21 F = − l2

6EI

[
1
2

(
3
4
− 3
(c
l

)2
)

+ 3
((c

l

)
− 1

2

)2
]
F

= − l2

6EI

[
3
2

(c
l

)2

− 3
(c
l

)
+

9
8

]
F.
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Using c = l − d, this can be written in the form

ϕ21 = α21 F = − l2

6EI

{
1
2

[
3
(
d

l

)2

− 1

]
+

1
8

}
F. (6.42)

Comparison of (6.41) and (6.42) yields

α12 = α21.

That is, the displacement α12 at point due to the moment “1“
at point is equal to the rotation α21 at point due to the force
“1“ at point (Fig. 6.18b). Note that α12 (displacement) and α21

(rotation) here have the same dimension.
Maxwell’s reciprocal theorem has many useful applications. No-

te that knowing α12 (see (6.41)) in the preceding example, then
α21 and therefore ϕ21 are also known according to (6.40). Thus,
the rather cumbersome calculation to obtain ϕ21 in (6.42) was
actually unnecessary.

6.56.5 Statically Indeterminate Systems
Statically indeterminate systems were investigated with the aid of
the principle of superposition in the Sections 1.4, 1.6 and 4.5.4. In
the case of a system which is externally statically indeterminate to
the first degree, we removed one of the supports in order to obtain
a statically determinate system. In the “0“-system we calculated
the displacement v(0) due to the given load at the point where the
support was removed. This displacement will now be denoted by
α10, i.e., v(0) = α10. The new notation is similar to the notation
used for the influence coefficients (see Section 6.4). Subsequently,
the statically determinate structure was subjected only to the as
yet unknown force “X“ (the redundant) at the point of the remo-
ved support. This system was referred to as the “1“-system. The
displacement caused by the force X is v(1) = X α11, where α11 is
the displacement caused by the force X = 1. The displacement in
the given statically indeterminate structure has to be zero due to
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the actual support:

v = v(0) + v(1) = 0. (6.43)

This compatibility condition yields the redundant force:

α10 +X α11 = 0 → X = − α10

α11
. (6.44)

Analogous considerations are used if a statically indeterminate
beam is made statically determinate by introducing a joint at a
point G. In this case we have to apply a moment at G, and the
displacement v in (6.43) has to be replaced with the angle ϕG

(see Examples 4.11 and 6.12). Similar considerations are valid for
a statically indeterminate truss with one redundant bar (inter-
nal statical indeterminacy). Then the redundant bar is removed
and the displacements in the systems “0“ and “1“ are determi-
ned. Compatibility now requires that the change of the distance
between the two joints from which the bar was removed is equal
to the change of the length of this bar. The force in the statically
redundant bar can also be calculated from (6.44), where the coef-
ficients αik now are the corresponding influence coefficients of the
truss (see (6.46)).

In this section we will also apply the principle of superposition,
but in contrast to the calculations in the Sections 1.4, 1.6 and
4.5.4, we will now determine the displacements (rotations) with
the aid of the principle of virtual forces.

As an illustrative example we consider the beam in Fig. 6.19a;
it is statically indeterminate to the first degree. We first remove
the support B and replace it with the as yet unknown support
reaction X . This leads to the two systems “0“ and “1“ as shown
in Fig. 6.19b. In the following derivations we will change the no-
tation: bending moments in a “0“-system are called M0 from now
on and bending moments in a “1“-system are referred to as M̄1 (in
Section 4.5.4 they were called M (0) and M (1) = XM̄1). According
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"1"

"0" System "1" System

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

M0

+

1
6
q0l

2

l

q0

q0

X

q0

xEI
=

b

c

A

a

B

M̄1

l

Fig. 6.19

to (6.44) the redundant support reaction X is obtained from

X = − α10

α11
= −

∫
M̄1M0

EI
dx

∫
M̄2

1

EI
dx

. (6.45)

We use the coordinate x as shown in Fig. 6.19a. Then the ben-
ding moments in the systems “0“ and “1“ are given by

M0 = − 1
2
x
(
q0
x

l

) x
3

= − q0
6 l
x3, M̄1 = x.

They lead to

α10 =
∫
M̄1M0

EI
dx =

1
EI

l∫

0

x
(
− q0

6 l
x3
)

dx = − q0 l
4

30EI
,

α11 =
∫
M̄2

1

EI
dx =

1
EI

l∫

0

x2 dx =
l3

3EI
.
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Note that these results could also have been taken from Table 6.3
without performing the integrations. Equation (6.45) yields

X = B = − α10

α11
=
q0 l

10
.

The bending moment in the beam is obtained by superposition:

M = M0 +X M̄1 = − q0
6 l
x3 +

q0 l

10
x.

In particular, the moment at the clamped support (x = l) is found
to be

MA = M(l) = − q0 l
2

15
.

We may also solve this problem using a different “0“-system: the
clamped support is now replaced with a joint (Fig. 6.20). Then
we have to apply a moment “1“ at this point and the bending
moments are given by

M0 =
q0
6
l x− q0

6 l
x3, M̄1 =

x

l
.

Compatibility analogous to (6.43) requires a vanishing slope w′
A

at the left-hand side of the beam and leads to the moment at the

"1" System"0" System

"1"

�
�
�
�
�

�
�
�
�
�

M0

x

q0

q0

1

M̄1

l

Fig. 6.20
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clamping:

X = MA = − α10

α11
= −

∫
M̄1M0

EI
dx

∫
M̄2

1

EI
dx

=

l∫

0

x

l

(q0
6
l x− q0

6 l
x3
)

dx

l∫
0

(x
l

)2

dx

= − q0 l
2

15

In the case of a truss which is statically indeterminate to the
first degree, we may also use (6.44). The coefficients α10 and α11

follow according to (6.30):

X = −
∑ S̄i S

(0)
i li

EAi

∑ S̄2
i li
EAi

. (6.46)

Here, S(0)
i are the forces in the members of the “0“-system and S̄i

are the forces in the members of the “1“-system.
If there are bending moments, torques and variable normal

forces acting in a structure, the redundant follows from (see (6.14))

X = −

∫
M̄1M0

EI
dx+

∫
M̄T1MT0

GIT
dx +

∫
N̄1N0

EA
dx

∫
M̄2

1

EI
dx+

∫
M̄2

T1

GIT
dx+

∫
N̄2

1

EA
dx

. (6.47)

After having determined the unknown X , the other support
reactions, the stress resultants and the displacements can be cal-
culated.

Finally, we want to indicate the procedure in the case of a sys-
tem with a statical indeterminacy of degree n. In this case we
have to remove n constraints in order to obtain a statically deter-
minate “0“-system. In addition, we have to consider n auxiliary
systems to determine the n unknown redundants Xi which can be
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calculated from n compatibility conditions (see Example 6.12):

α10 +X1 α11 + . . .+Xn α1n = 0,

α20 +X1 α21 + . . .+Xn α2n = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

αn0 +X1 αn1 + . . .+Xn αnn = 0.

(6.48)

The displacements in the “0“-system follow from

αr0 =
∫
M̄r M0

EI
dx

and the displacements in the auxiliary systems are given by

αri =
∫
M̄r M̄i

EI
dx.

Here, M0 is the bending moment in the “0“-system caused by the
given load and M̄i are the bending moments in the same system
due to the virtual forces (moments) acting at the points i (i =
1, 2, . . . , n).

E6.9 Example 6.9 Determine the forces in the members of the truss in
Fig. 6.21a. The axial rigidity EA of the members is given.

"0" System "1" System

"1"

"1"

a

a

a

F

b

F F

F F

c

50

1

3

1

3

2 6 442 6
5

2 4

3

1

6

Fig. 6.21

Solution The truss consists of m = 6 members and j = 4 joints;
it has r = 3 supports. According to Volume 1, Section 6.1, it is
statically indeterminate to the first degree: m + r − 2j = 1. We
obtain a statically determinate truss if we remove one of the bars.
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We choose member 5 which leads to the “0“-system in Fig. 6.21b.
Next we subject member 5 to the virtual force “1“ (“1“-system,
Fig. 6.21c). According to Newton’s third law (action equals reac-
tion), forces of the same magnitude act at the joints. The forces
in the members of the “0“-system and of the “1“-system, respec-
tively, are calculated and given in the following table.

i S
(0)
i S̄i li S̄i S

(0)
i li S̄2

i li Si

1 F −1/
√

2 a −F a/√2
1
2
a + 0.40F

2 F −1/
√

2 a −F a/√2
1
2
a + 0.40F

3 F −1/
√

2 a −F a/√2
1
2
a + 0.40F

4 0 −1/
√

2 a 0
1
2
a − 0.60F

5 0 1
√

2 a 0
√

2 a + 0.85F

6 −√2F 1
√

2 a −2 aF
√

2 a − 0.56F

The unknown force in member 5 is obtained with
∑
S̄i S

(0)
i li =

(−2− 3/
√

2)F a and
∑
S̄2

i li = 2(1 +
√

2)a from (6.46):

X = S5 = −

(
−2− 3√

2

)
F a

2(1 +
√

2) a
=

3 + 2
√

2
2(2 +

√
2)
F ≈ 0.85F.

The forces in the other members follow from

Si = S
(0)
i +XS̄i.

They are given in the last column of the table.
Note that the support reactions can be calculated in advance

in the case of a truss which is internally statically indeterminate.
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E6.10 Example 6.10 The structure in Fig. 6.22a consists of an angled
member (flexural rigidity EI) and two bars (axial rigidity EA).
It is subjected to the force F .

Determine the bending moment in the angled member and the
forces in the bars.

"0" System "1" System

"1"

a a

M0M aCH

Fa

Fa

C(0)
V =2F

S
(0)
2 =−F

S
(0)
1 =
√

2FF

a

C̄V = 1

S̄2 =−2

S̄1 =
√

2

Fa

Fa

a

a

M̄1

b

e fd

a

C

EI
F

1

2

c

EA

Fig. 6.22

Solution The structure is statically indeterminate to the first de-
gree. To obtain a “0“-system we replace the hinged support at C
with a roller support which can move in the horizontal direction.
The equilibrium conditions in the “0“-system (Fig. 6.22b) yield

C
(0)
V = 2F, S

(0)
1 =

√
2F, S

(0)
2 = − F.

Now we apply a horizontal virtual force “1“ at C (“1“-system,
Fig. 6.22c) and obtain

C̄V = 1, S̄1 =
√

2, S̄2 = − 2.
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The resulting bending moments M0 and M̄1 are shown in the
Figs. 6.22e, f. Since the structure consists of beams and bars, the
redundant force CH follows from (6.47):

X = CH = −

∫
M̄1M0

EI
dx+

∑
S̄i
S

(0)
i li
EA∫

M̄2
1

EI
dx+

∑
S̄2

i

li
EA

.

We use Table 6.3 (triangles with triangles) to calculate the inte-
grals and introduce the parameter κ = EAa2/EI to obtain

X = CH = −

1
6
a(−F a) a

EI
+

(√
2
√

2F
a
√

2
EA

+ (−2)(−F )
a

EA

)

2 · 1
3
a
a2

EI
+
√

2
√

2
√

2 a
EA

+ (−2)(−2)
a

EA

=
κ − 12(

√
2 + 1)

4 κ + 12(
√

2 + 2)
F.

The forces in the bars follow from Si = S
(0)
i +X S̄i:

S1 =
√

2F +
κ − 12(

√
2 + 1)

4 κ + 12(
√

2 + 2)

√
2F =

5
√

2 κ + 12(
√

2 + 1)
4 κ + 12(

√
2 + 2)

F,

S2 = − F +
κ − 12(

√
2 + 1)

4 κ + 12(
√

2 + 2)
(−2)F =

− 6 κ + 12
√

2
4 κ + 12(

√
2 + 2)

F .

The bending moment is given byM = M0+X M̄1 and is displayed
in Fig. 6.22d.

Frequently, the stiffness parameter κ is a large number. This
is the case, for example, if the beams and the bars are made of
the same material and their cross sectional areas are roughly the
same. Then, κ ∼ (a/rg)2. Since the length a is much larger than
the radius of gyration rg, we have κ � 1. In such a case we use
κ →∞ to obtain
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CH =
F

4
, CV =

9
4
F, S1 =

5
4

√
2F, S2 = − 3

2
F.

These are the support reactions and the forces in the bars if the
bars are considered to be rigid (EA→∞).

E6.11 Example 6.11 The beam (flexural rigidity EI) in Fig. 6.23a is
subjected to a moment MD and a constant line load q0.

Calculate the moment MA at the clamped end A.
"1" System

"1"

"0" System

�
�
�

�
�
�

M0

M0

Ā B̄ C̄C(0)A(0) B(0)

1
MD

2
MD

2
MD

2

1
2

1
2

q0
a2

8

+

q0q0

a aa a

CB

M̄1

e

d

c

MD

b

a

MD

A

Fig. 6.23

Solution The beam is statically indeterminate to the first degree
(see Volume 1, Section 5.3.3). To obtain a statically determinate
“0“-system, we remove the clamping and replace it with a hinged
support. The equilibrium conditions yield the support reactions
(Fig. 6.23b)

A(0) =
MD

2 a
, B(0) =

MD

a
+

1
2
q0 a, C(0) = − MD

2 a
+

1
2
q0 a.

The corresponding bending moment M0 is displayed in Fig. 6.23d,
where the moments caused by MD and q0 are given in separate
graphs.
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The moment “1“ in the “1“-system (Fig. 6.23c) causes the sup-
port reactions

Ā =
1

2 a
, B̄ =

1
a
, C̄ =

1
2 a

.

The corresponding bending moment M̄1 is shown in Fig. 6.23e.
To determine the unknown moment MA we apply (6.44): X =

−α10/α11. The coefficients αik are calculated with the aid of Ta-
ble 6.3. This gives
◦ due to q0 (parabola and triangle):

EI α10q =
∫
M̄1M0q dx =

1
3
a

(
−1

2

)
q0 a

2

8
= − 1

48
q0 a

3,

◦ due to MD (triangle and trapezium, triangles and triangles):

EI α10M =
∫
M̄1M0M dx =

1
6
a

(
−MD

2

)(
1 + 2 · 1

2

)

+
1
3
a
MD

2
1
2

+
1
3
a

(
−MD

2

)(
−1

2

)

+
1
3
a

(
−MD

2

)(
−1

2

)
=

1
12
MD a,

◦ due to “1“ (triangles and triangles):

EI α11 =
∫

M̄2
1 dx =

1
3
· 1 · 1 · 2 a+

1
3
· 1
2
· 1
2
· a

+
1
3
· 1
2
· 1
2
· a =

5
6
a.

With α10 = α10q + α10M we obtain

X = MA = − α10

α11
= −

− q0 a3

48
+

1
12
MD a

5
6
a

=
q0 a

2

40
− MD

10
.
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E6.12 Example 6.12 Determine the support reactions for the frame (fle-
xural rigidity EI) in Fig. 6.24a.

"0" System

"1"

"1"

"1" System "2" System

"1"

h

h

h

a

M0

A
(0)
H

Ā
(2)
V

A
(0)
V

B
(0)
V

Ā
(1)
V

Ā
(1)
H

B̄
(2)
VB̄

(1)
V

M
(0)
A

M̄
(2)
A

M̄
(1)
A

h

Ā
(2)
H

1

1

q0

q0
a2

8

q0
C

M̄2M̄1

e f

b c d

B
A

g

a

Fig. 6.24

Solution The frame has five support reactions (clamping and hin-
ged support). Therefore it is statically indeterminate to the second
degree. In order to obtain a statically determinate “0“-system, we
replace the hinged support B with a roller support (which can
move in the horizontal direction) and we introduce a hinge at the
corner C.

The support reactions in the “0“-system (Fig. 6.24b) are obtai-
ned as

A
(0)
V = B

(0)
V =

q0 a

2
, M

(0)
A = 0, A

(0)
H = 0.

The corresponding bending moment M0 is depicted in Fig. 6.24e.
Since we have two redundancies, we need two auxiliary systems.

In the “1“-system (Fig. 6.24c) we apply the horizontal force “1“
at point B. The support reactions
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Ā
(1)
V = − B̄(1)

V =
h

a
, M̄

(1)
A = − h, Ā

(1)
H = 1

lead to the bending moment M̄1 which is displayed in Fig. 6.24f.
The virtual moment “1“ (see Example 4.11) at the corner C in
the “2“-system (Fig. 6.24d) causes the support reactions

Ā
(2)
V = − B̄(2)

V = − 1
a
, M̄

(2)
A = 1, Ā

(2)
H = 0

and the bending moment M̄2 (Fig. 6.24g).
The two redundant reactions X1 = BH and X2 = MC can be

determined from two compatibility conditions:

a) the horizontal displacement wB at B has to be zero,
b) the right angle at C must remain unchanged (Δw′

C = 0).

These conditions are written as (see (6.48))

wB = α10 +X1 α11 +X2 α12 = 0,

Δw′
C = α20 +X1 α21 +X2 α22 = 0.

We calculate the coefficients αik with the aid of Table 6.3:

EI α10 =
∫
M̄1M0 dx =

1
3
a h

q0 a
2

8
=

1
24
q0 a

3 h,

EI α20 =
∫
M̄2M0 dx =

1
3
a
q0 a

2

8
=

1
24
q0 a

3,

EI α11 =
∫
M̄2

1 dx =
1
3
(h · h2 + a h2 + h · h2) =

h2

3
(2 h+ a),

EI α22 =
∫
M̄2

2 dx = h+
1
3
a,

EI α12 =
∫
M̄1 M̄2 dx =

1
2
(−h)h+

1
6
a h

=
1
6
h(a− 3 h) = EI α21.
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Thus, we obtain the system of equations

1
24
q0 a

3 h+X1
h2

3
(2 h+ a) +X2

1
6
h(a− 3 h) = 0,

1
24
q0 a

3 +X1
1
6
h(a− 3 h) +X2(h+

1
3
a) = 0

which has the solution

X1 = BH = − 1
4
q0 a

3 9 h+ a

15 h3 + 26 a h2 + 3 h a2
,

X2 = MC = − 1
4
q0 a

3 7 h+ a

15 h2 + 26 a h+ 3 a2
.

The superposition of the three systems yields (A(0)
H = 0, M (0)

A =
0, A(2)

H = 0)

AV = A
(0)
V +X1 Ā

(1)
V +X2 Ā

(2)
V =

15 h2 + 25 a h+ 3 a2

15 h2 + 26 a h+ 3 a2

q0 a

2
,

AH = X1 Ā
(1)
H = − 1

4
9 h+ a

15 h3 + 26 a h2 + 3 h a2
q0 a

3 = BH ,

MA = X1 M̄
(1)
A +X2 M̄

(2)
A =

1
4

2 h
15 h2 + 26 a h+ 3 a2

q0 a
3,

BV = B
(0)
V +X1 B̄

(1)
V +X2 B̄

(2)
V =

15 h2 + 27 a h+ 3 a2

15 h2 + 26 a h+ 3 a2

q0 a

2
.
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6.66.6 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
2, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E6.13Example 6.13 The truss in
Fig. 6.25 consists of five bars
(axial rigidity EA) of equal
length l.

Determine the forces in
the bars that are caused by
the external load F .

F

1 2

34

5 l

Fig. 6.25

Results: see (B) S1 = S2 = −3F
5
, S3 = S4 =

2F
5
, S5 = −2F

5
.

E6.14Example 6.14 The structure shown in Fig. 6.26 consists of six
elastic bars (axial rigidity EA) of negligible weight and a rigid
beam (weight W ).

Calculate the support
reaction at B due to the
weight W .

A

W

B C

3a 3a 3a 3a

4a

Fig. 6.26

Result: see (B) B =
179W
304

.
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E6.15 Example 6.15 The structure in
Fig. 6.27 consists of a beam (axi-
al rigidity EA → ∞, flexural ri-
gidity EI) and two bars (axial ri-
gidity EA). It is subjected to a
force F .

Determine the displacement of
the point of application of F .

��
��
��
��

2

1

EI

a

a

F

a

EA

Fig. 6.27

Results: see (A) fH =
Fa3

2EI
− Fa
EA

, fV =
4
3
Fa3

EI
+

(
1 + 2

√
2
)
Fa

EA
.

E6.16 Example 6.16 The truss in Fig. 6.28 is subjected to a force F .
The members of the truss have
axial rigidity EA.

Determine the magnitude of
F so that the vertical displace-
ment of the point of application
of F has the given value f0.

�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

������

aa a

a

F
Fig. 6.28

Result: see (A) F =
9EAf0

4
(
5 + 3

√
2
)
a
.

E6.17 Example 6.17 Determine the support reaction B of the beam
(flexural rigidity EI) and the angle of slope ϕB due to the applied
moment MA (Fig. 6.29).

A B C

a

MA

a
Fig. 6.29

Results: see (B) B =
3MA

2a
, ϕB = −MAa

12EI
.
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E6.18Example 6.18 A circular
arch is subjected to a force
F as shown in Fig. 6.30.

Determine the displace-
ment of the point of app-
lication of the force due to
bending.

��
��
��
��

EI

s

F

R

Fig. 6.30

Results: see (A) fH =
FR3

4EI
, fV =

πFR3

4EI
.

E6.19Example 6.19 The two beams (modulus of elasticity E) of the
frame shown in Fig. 6.31 have rectangular cross sections with con-
stant width b. The depth h is constant (h = h0) in region AB,
whereas in region BC it has a linear taper (h = h(x)). A constant
line load q0 acts in region BC.

Calculate the vertical displacement wC of point C. Neglect axial
deformations.

��������

q0

cross section D

b

cross section H

h0

b

h(x)

cut D

B
C

A

x

h0

h0

2l

q0
h0/2

cut H

l

Fig. 6.31

Result: see (B) wC = 1.2
q0l

4

EI0
.
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E6.20 Example 6.20 A rectangular
frame (flexural rigidity EI,
axial rigidity → ∞) is sub-
jected to a uniform line load
q0 (Fig. 6.32).

Determine the bending
moment in the frame.

2b

q0

2a

q0

A

C

Fig. 6.32

Results: see (B) Selected values:

MA =
(
a2 + 2ab− 2b2

)
q0/6, MC =

(
a2 − ab+ b2

)
q0/3 .

E6.21 Example 6.21 The assembly shown in Fig. 6.33 consists of a frame
(flexural rigidity EI, torsional rigidity GIT = 3EI/4, negligible
weight) and a wheel (weight W1 = W , radius r = a/4). The
wheel is attached in a fixed manner to the frame at point C. A
rope which is wrapped around the wheel carries a barrel (weight
W2 = 8W ).

Determine the
support reac-
tions and the
vertical displace-
ment of point C
due to the load. W1

r
B

W2

a a

a

C

Ay

z
x

Fig. 6.33

Results: see (B)

Az = −13W, B = 4W, MAx = 5Wa, MAy = 15Wa,

wC = 15
Wa3

EI
.
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E6.22Example 6.22 The structure shown in Fig. 6.34 consists of a beam
(flexural rigidityEI) and
three bars (axial rigidity
EA). It is subjected to a
force F .

Find the vertical dis-
placement w of the point
of application of F .

�
�
�
�
�
�
�

�
�
�
�
�
�
�

a

F

a a

a

Fig. 6.34

Result: see (B) w = 18
(
1 +
√

2
) Fa
EA

+
Fa3

EI
.

E6.23Example 6.23 The structure in
Fig. 6.35 consists of a frame
(axial rigidity EA → ∞, flexu-
ral rigidity EI) and a bar (axial
rigidity EA). It is subjected to
a uniform line load q0.

Determine the force S in the
bar.

�
�
�
�
�
�
�
�
����������������

��
��
��
��
��
��
��

a

q0

EA

2a

EI

EI

EI

Fig. 6.35

Result: see (A) S =
15
64

(
1 +

3EI
4EAa2

)−1

q0a .

E6.24Example 6.24 A rope S (axial rigidity EA2) is attached to a can-
tilever beam (flexural rigidity
EI1) as shown in Fig. 6.36.

Calculate the force S in the
rope due to an applied force F
at the free end of the cantile-
ver. Disregard axial deformati-
ons of the beam.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

C

S

α
F

B

l

2

l

2
Fig. 6.36

Result: see (B) S =
5F sinα cosα

2 sin2 α cosα+ 24 (EI)1
l2(EA)2

.
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E6.25 Example 6.25 The continuous beam in Fig. 6.37 is subjected to
a force F at point G.

a) Determine the deflections fD and fG at points D and G.
b) Calculate the total deflection f at point G if, in addition to

force F , a force 2F acts at point D.

�������
�
�
�
�
�
�
�

���������� ��
��
��
��
�
�
�
�

������

a

2

a

2

A BD G C

FEI

a a

Fig. 6.37

Results: see (A) a) fD = − 1
64
Fa3

EI
, fG =

5
48
Fa3

EI
,

b) f =
7
96
Fa3

EI
.

E6.26 Example 6.26 Determine
the forces Si in the mem-
bers (axial rigidity EA)
of the truss shown in
Fig. 6.38. Calculate the
vertical displacement fF

of the point of application
of the force F .

������
��
��
���
�
�
�
��
��
��
��

����
��
��
��
��

�����
�
�
�
��
��
��
����

��

a

2

3

4

6

9

7
A

B C

F

5 81

a a

Fig. 6.38

Results: see (A) Selected values:

S1 =
4 + 2

√
2

7 + 4
√

2
F, S2 =

1
7 + 4

√
2
F, S3 = −4 + 4

√
2

7 + 4
√

2
F,

fF =
20 + 14

√
2

7 + 4
√

2
Fa

EA
.
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E6.27Example 6.27 The beam in
Fig. 6.39 (flexural rigidity
EI) is pin-supported at its
left end and suspended by a
rope (axial rigidity EA). It is
subjected to a force F .

Determine the vertical dis-
placement f of the point of
application of F . Disregard
axial deformations of the be-
am.

�
�
�
�
�
�

�
�
�
�
�
�

a a

EA
a

FEI

Fig. 6.39

Results: see (A) f =
2
3
Fa3

EI
+ 8
√

2
Fa

EA
.
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6.7 6.7 Summary
• Principle of conservation of energy

Ue = Ui ,

Ue =
1
2
Ff work of a force F acting on a linear-elastic bar/beam

(analogous relations in the case of an applied moment),

Ui =
1
2

∫
M 2

EI
dx strain energy in bending (analogous relati-

ons for torsion, tension/compression).

• Principle of virtual forces (Unit load method)

� Statically determinate beam under bending (analogous re-
lations for torsion, tension/compression):

f =
∫
MM̄

EI
dx ,

M bending moment due to the applied load,
M̄ bending moment due to a virtual force (moment) “1“.

Special case truss: f =
∑ SiS̄ili

EAi
.

� Determination of the redundant X of a beam being stati-
cally indeterminate to the first degree:

X = − α10

α11
, α10 =

∫
M̄1M0

EI
dx , α11 =

∫
M̄2

1

EI
dx .

M0 bending moment in the “0“-system,
M̄1 bending moment in the “1“-system.
If a system is subjected to bending, torsion and tension/compression,
the appropriate terms have to be considered.

• Influence coefficients
� αik displacement at x due to a load “1“ at k.
� Reciprocal displacement theorem

αik = αki .
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Objectives: In this chapter we analyse the stability of
equilibrium positions of bars under compressive loads. Methods
are presented which will enable us to determine the so-called cri-
tical load under which a bar deflects due to buckling. The aim is
to enable students to apply the appropriate methods in order to
determine critical loads.
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7.17.1 Bifurcation of an Equilibrium State
If a bar is subjected to a tensile force, the relationship between the
external load and the elongation of the bar is unique (cf. (1.18)).
Thereby, the deformations are so small that the equilibrium con-
ditions can be formulated with respect to the undeformed system.
In contrast, a bar under a compressive force need not lead to a
unique relationship between the load and the deformation. At a
certain value of the compressive force, further equilibrium states
emerge which are associated with lateral deflections. This phe-
nomenon, which is especially observed in slender bars, is called
buckling. In the following sections, we will determine the associa-
ted critical loads. In such problems, the equilibrium conditions
have to be formulated with respect to the deformed configuration.

As an introduction to buckling, we will first consider a rigid
rod on an elastic support. In Volume 1, Example 8.8, we alrea-
dy investigated the behavior of such a rod, held on each side by
a spring, and we found that it may possess several equilibrium
positions for the same compressive force. Now we consider a pin
supported rigid column, held by an elastic torsion spring (stiff-
ness kT ), which is subjected to a compressive force F (Fig. 7.1a).
Since we assume that the force remains vertical during a lateral
deflection, the force is said to be conservative, see Fig. 7.1b.

MT =kT ϕ

cb

unstable

stable

stable

d

l

a

ϕ
Fcrit

F

kT

F

ϕ

F

F

ϕ

Fig. 7.1

In order to determine the equilibrium positions and to analyse
their stability we use the total potential of the system. Choosing
the zero-level of the potential of F at the height of the pin support,
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the potential of the system, rotated about ϕ (Fig. 7.1b), is given
by

V = F l cos ϕ+
1
2
kT ϕ

2.

The equilibrium positions can be determined from (see Volume 1,
Equation (8.13))

V ′ =
dV
dϕ

= 0 → − F l sin ϕ+ kT ϕ = 0. (7.1)

This equation is always fulfilled for ϕ = 0, i.e. regardless of the
values of the parameters F, l and kT we obtain as the first equi-
librium state the vertical position which is characterized by no
lateral displacement, that is

ϕ1 = 0. (7.2)

According to (7.1), a second equilibrium position follows from

ϕ2

sin ϕ2
=
F l

kT

. (7.3)

If ϕ2 �= 0 we have ϕ2/ sin ϕ2 > 1. Thus, a deformed position ϕ2

can only occur for F l/kT > 1. For F l/kT = 1 we get sin ϕ2 =
ϕ2 = 0, i.e. both equilibrium states coincide.

In order to analyse the stability of the equilibrium positions we
determine the second derivative of the total potential:

V ′′ =
d2V

dϕ2
= − F l cos ϕ+ kT . (7.4)

First, we introduce the solution ϕ1 = 0 of the first equilibrium
position into (7.4):

V ′′(ϕ1) = − F l+ kT = kT

(
1− F l

kT

)
.

The algebraic sign of V ′′ and therefore the stability of this equili-
brium state depends on the algebraic sign of the bracketed term.
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Therefore,

V ′′(ϕ1) > 0 for
F l

kT

< 1 → stable position,

V ′′(ϕ1) < 0 for
F l

kT

> 1 → unstable position.

Inserting the second equilibrium position ϕ2 from (7.3) into (7.4),
we obtain

V ′′(ϕ2) = − F l cos ϕ2 + kT = kT

(
1− ϕ2

tan ϕ2

)
.

Since ϕ2/ tan ϕ2 < 1, the condition V ′′(ϕ2) > 0 always holds: the
second equilibrium position is always stable.

The special case F l/kT = 1 (corresponding to the angle ϕ2 =
ϕ1 = 0) characterizes the critical load:

Fcrit =
kT

l
. (7.5)

Let us summarise the results: when the rod is loaded by a suf-
ficiently small force F , it remains in its original vertical position
ϕ1 = 0 (Fig. 7.1c). If we increase the load to the value Fcrit, see
(7.5), a bifurcation into a second equilibrium position ϕ2 takes
place. A further increase of the load leads to increasing deflec-
tions ϕ2 and we obtain three possible positions for F > Fcrit:
an unstable position ϕ1 = 0 and two stable positions ±ϕ2 (since
ϕ2/ sin ϕ2 is an even function, (7.3) has the second solution −ϕ2

in addition to ϕ2). Usually, in engineering applications only the
critical load is of interest since the large deflections that occur
after Fcrit is exceeded need to be avoided in most cases.

The critical load can also be obtained directly from the equili-
brium conditions (without using the potential). If the rod is sub-
jected to Fcrit, it may undergo a slight lateral deflection. There-
fore, we consider the rod in a position which is adjacent to the
original vertical position. This adjacent position ϕ �= 0 is also an
equilibrium state. Thus, from the moment equilibrium condition
with respect to the pin support (Fig. 7.1d) we again obtain (7.5)
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for small values of ϕ (adjacent equilibrium position!):

F l ϕ = kT ϕ → F = Fcrit =
kT

l
.

This procedure can be generalized. If we want to determine the
critical load of an arbitrary structure, we have to consider the
originally stable equilibrium position and an adjacent configura-
tion. If the adjacent configuration is an equilibrium position, the
associated load is the critical load.

7.2 7.2 Critical Loads of Bars, Euler’s Column
In the previous section we considered a rigid rod. We now want to
analyse an elastic rod which can deform due to its elasticity. Our
first example will be a bar with a roller support on the left and a
pin support on the right end, subjected to an applied compressive
load F , see Fig. 7.2a. We assume that the unloaded bar is perfect-

adjacent equilibrium position

w≡0
equilibrium position

w �≡0

M

w
x

l

F

a b

F

c

F

F
EI

Fig. 7.2

ly straight and that the line of action of the external force passes
through the centroid of the cross section. If the bar is subjected
to the critical load Fcrit, there exists (in addition to the undefor-
med configuration w ≡ 0) an adjacent equilibrium position with
a lateral deflection w �= 0 (Fig. 7.2b). In order to determine Fcrit

we must formulate the equilibrium conditions for the deflected
position, i.e. based upon the geometry of the deformed system.
Thereby, we can neglect the axial deformation of the bar.

Let us now pass an imaginary section perpendicular to the axis
of the deformed bar at a point x (Fig. 7.2c). Evaluating the mo-
ment equilibrium condition at the deflected position we obtain

M = F w. (7.6)
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Note that there exists no vertical force in the roller support under
the horizontal force F .

Inserting (7.6) into the differential equation EI w′′ = −M of
the deflection curve for the Euler-Bernoulli beam yields

EI w′′ = − F w or EI w′′ + F w = 0 . (7.7a)

With the abbreviation

λ2 = F/EI

we obtain the differential equation for the critical load

w′′ + λ2 w = 0. (7.7b)

This is a homogeneous, second-order, linear differential equation
with constant coefficients. Its general solution is

w = A cos λx+B sin λx. (7.8)

The two constants of integration A and B can be determined from
the boundary conditions. The deflections are zero at the supports
(x = 0, l):

w(0) = 0 → A = 0,

w(l) = 0 → B sin λ l = 0.

In addition to the trivial solutionB = 0 (no deflection), the second
equation has the solution

sin λ l = 0 → λn l = nπ with n = 1, 2, 3, . . . . (7.9)

Thus, we get an infinite number of values λn and the correspon-
ding forces Fn for which non-trivial (i.e., deflected) equilibrium
positions exist. The quantities λn are called the eigenvalues of the
problem. Note that for n = 0 we have λ = 0 and hence F = 0.
This solution is of no interest.

The only eigenvalue of technical interest is the smallest one,
namely λ1. The corresponding force F1 causes the bar to buckle.
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We therefore find the critical load Fcrit from λ1 l = π as

Fcrit = λ2
1 EI = π2EI

l2
. (7.10)

According to (7.8) the associated buckled shape, also called the
mode shape, is

w1 = B sin λ1 x = B sin π
x

l

since A = 0. When the bar buckles it takes the shape of a sinus
half-wave, where the amplitude B remains indeterminate. This
solution is also denoted as eigenmode or eigenfunction.

When the critical force is exceeded, the theory of small deflec-
tions is no longer sufficient to calculate the deflection of the bar.
We must then apply a higher order theory (cf. Volume 4, Chap-
ter 5.4.1). Within this basic course, however, we will not go into
further detail.

z

a

dx

∼V +dV

∼ V dψ

dψ

V +dV

∼N+dN
dψ

N+dN

N+dN

M+dM

c

N

b

dψ

M

V +dV

C
V

w

x

∼Ndψ

Fig. 7.3

We can describe the buckling of a bar with pinned ends by
means of the differential equation (7.7a) and its solution (7.8).
In order to determine the critical loads of bars with arbitrary
supports we have to derive a more general differential equation.
Here we have to take into account that shear forces may occur.
Fig. 7.3b shows the free-body diagram of a beam element of infi-
nitesimal length dx (Fig. 7.3a) in a buckled configuration w �= 0.
The equilibrium conditions must be formulated with respect to
the deformed configuration. For this purpose we assume that the
deformations are small, in particular the slope w′ = −ψ of the
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elastic curve is small, and the length of the deformed element is
approximately the same as its original length. The directions of
the normal forces N and N + dN (and of the shear forces V and
V + dV ), respectively, do not coincide at the positive and the ne-
gative face of the infinitesimal element (see Fig. 7.3b). Therefore,
we have to take into account the components Ndψ and V dψ (cf.
Fig. 7.3c) when writing down the equilibrium conditions:

→: dN + V dψ = 0,

↓: dV −N dψ = 0,
�

C : dM − V dx = 0.

After inserting the third equation into the first equation and using
the differential equation (4.24) for the deflection curve of a beam,
we obtain

dN
dx

= − V dψ
dx

= − dM
dx

dψ
dx

= − d
dx

(
EI

dψ
dx

)
dψ
dx

.

On the right-hand side we have a product of infinitesimal kinema-
tic quantities which is “small of higher order” compared with the
left-hand side. Thus, we can neglect this “higher order” term and
find that the derivative of the normal force is zero: dN/dx = 0. If
we take into account that a compressive force F is applied to the
bar, we get

N = const = − F. (7.11)

Inserting this result into the second equilibrium condition and ap-
plying the relations V = dM/dx, M = EI dψ/dx in combination
with the kinematic relation ψ = −w ′ (cf. (4.30)) leads to the
homogeneous differential equation

(EI w ′′) ′′ + F w ′′ = 0 . (7.12)

Note that (7.12) may also be found by taking the second derivative
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of (7.7a). In the case of a constant bending stiffness EI we obtain,
with the abbreviation λ2 = F/EI, the differential equation

wIV + λ2 w′′ = 0 . (7.13)

This equation is a fourth-order, linear differential equation, just
as the differential equation (4.34b) for the deflection curve of a
beam. The general solution of (7.13) is

w = A cos λx+B sin λx+ C λx+D. (7.14)

Note that the factor λ in the third term is introduced for conve-
nience. Since λx is a dimensionless quantity, the constants A to
D have the same dimension [l].

��
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EIx

a

F

cb

F

π/2

4.49

π 3π/2

λl

tanλl

λl

buckled
mode shape

l

Fig. 7.4

The four constants of integration can be determined from the
boundary conditions: two conditions at each boundary. In order to
illustrate the procedure, let us consider a statically indeterminate
bar as depicted in Fig. 7.4a. From (7.14) we obtain

w ′ = − Aλ sin λx+B λ cos λx+ C λ,

w ′′ = − Aλ2 cos λx −B λ2 sin λx.

Applying the relationship EI w ′′ = −M , the boundary conditions
are given by
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w(0) = 0 → A+D = 0,

w ′(0) = 0 → B + C = 0,

w(l) = 0 → A cos λ l +B sin λ l + C λ l +D = 0,

M(l) = 0 → A cos λ l +B sin λ l = 0.

(7.15)

Using the first two equations, the constants C and D can be eli-
minated from the third equation. Thus, we obtain the system of
equations

(cos λ l − 1)A+ (sin λ l − λ l)B = 0,

cos λ lA+ sin λ l B = 0
(7.16)

for the two unknowns A and B. This homogeneous system of
equations has a non-trivial solution if the determinant Δ of the
coefficient matrix vanishes:

Δ = (cos λ l − 1) sin λ l − cos λ l (sin λ l − λ l) = 0,

that is

λ l cos λ l − sin λ l = 0 → tan λ l = λ l. (7.17)

A graphical solution of this transcendental equation, called the
buckling equation, is depicted in Fig. 7.4b; the smallest eigenvalue
is λ1 l ≈ 4.49. Thus the critical load is given by

Fcrit = λ2
1EI = (4.49)2

EI

l2
. (7.18)

Introducing (7.17) into (7.15) leads to B = −A/λ l, C = −B =
A/λ l and D = −A. Substituting these relations into (7.14) yields
the corresponding buckled shape

w = A

(
cos λx− sin λx

λ l
+
x

l
− 1
)
,

which is depicted in Fig. 7.4c for λ = λ1.
The Swiss mathematician Leonhard Euler (1707-1783) was the

first scientist to analyse the buckling of columns. Therefore, the
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critical loads (7.10) and (7.18), see the cases II and III in Fig. 7.5,
are called Euler loads. We also refer to the critical loads of the
cases I and IV as Euler loads. In addition to the critical loads,
Fig. 7.5 illustrates the mode shapes of the four cases. One can
show that the cases I, II and IV are interrelated. For example, the
buckled shape of case I (one fourth of a sine wave) is contained
twice in the buckled shape of case II (half of a sine wave). If we
therefore replace the length l with 2 l in the formula for the critical
load of case II, we obtain the critical load of a column of length l
fixed at its base and free at the top (case I). If we introduce the
so-called column’s effective length le, we are able to write down
the critical loads in analogy to the second case as

Fcrit = π2EI

l2e
. (7.19)

The effective lengths of the four columns (Euler cases) are also
given in Fig. 7.5.

������

���� ����������

III III IV

π2EI

l2
(1.43)2 π2EI

l2
4π2 EI

l2
Fcrit =

π

4

2EI

l2

l

F F FF

le = 2l l l/2l/1.43
Fig. 7.5

In the preceding discussion we assumed that the material beha-
ves linearly elastic before buckling, i.e. the stresses remain below
the proportional limit. In particular, for columns with a small ef-
fective slenderness ratio, defined by le/rg (effective length/small-
est radius of gyration), the critical stress in the column may ex-
ceed the yield point of the material before buckling begins. Within
this basic course we cannot go into details regarding the inelastic
buckling of columns. Furthermore, in this introductory course we
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cannot analyse buckling due to torsion (torsional buckling) or the
lateral buckling of a compression flange when a beam is loaded
in flexure (lateral-torsional buckling). We also do not discuss the
energy method which can be used for the determination of critical
loads by analysing the change of the total potential of the system
(potential of the external loads and internal elastic energy). This
method is analogous to the procedure presented in Section 7.1.

It should be noted that the factors of safety specified by the
codes have to be taken into account in the stability analysis and
design of structures. Moreover, columns may undergo inadmissibly
large deformations under loads below the critical value Fcrit due
to imperfections (e.g. unavoidable eccentricities in the application
of the load and initial curvature of the column).

E7.1Example 7.1 An elastic bar (flexural rigidity EI) is pin-
supported at the left end and elastically clamped (spring constant
kT ) at the right end, see Fig. 7.6.

Determine the buckling equation and calculate the critical load
for kT l/EI = 10.

Fig. 7.6

x EI

l

F
kT

Solution We introduce the coordinate x as shown in Fig. 7.6. The
general solution of the differential equation for the critical load,
cf. (7.14), is

w = A cos λx+B sin λx+ Cλx+D.

The four constants of integration are determined from the four
boundary conditions

w(0) = 0 → A+D = 0
}

→ A = D = 0,
M(0) = 0 → λ2A = 0

w(l) = 0 → B sin λ l + C λ l = 0,

M(l) = kT w
′(l) → EI λ2B sin λ l = kT λ(B cos λ l + C).
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The elimination of C yields the buckling equation

(
EI λ2 +

kT

l

)
sinλ l − kTλ cosλ l = 0 → tanλ l =

kT l

EI
(λ l)

(λ l)2 +
kT l

EI

. (a)

For the given stiffness ratio kT l/EI = 10 we obtain the nu-
merical approximation of the smallest eigenvalue as λ1 l = 4.132.
Therefore the critical load is

Fcrit = λ2
1 EI = 17.07

EI

l2
= (1.31)2π2EI

l2
.

The buckling condition (a) includes the special cases
a) kT = 0 (equivalent to a pin support)

tanλ l = 0 → Fcrit = π2EI

l2
(second Euler case),

b) kT →∞ (equivalent to a clamped support)

tanλ l = λ l → Fcrit = (1.43)2π2EI

l2
(third Euler case).

E7.2 Example 7.2 A stress-free bar, supported as depicted in Fig. 7.7,
is uniformly heated.

Determine the increase ΔT of the temperature at which the
bar buckles.

��
��
��
��

�
�
�
�

EI, αT
l Fig. 7.7

Solution If we heat an unrestrained bar, a thermal expansion εT

occurs, cf. (1.10). In the present example, the bar cannot expand
due to the supports at both ends. The thermal expansion εT must
therefore be compensated by a compression caused by a stress σT .
Since ε = 0, the thermal stress follows from (1.12) as

σT = −E αT ΔT.
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Thus we obtain the force

F = σT A = EAαT ΔT.

The buckling analysis of the bar subjected to this compressive
force yields the critical increase of the temperature.

The general solution of the differential equation for the critical
load, cf. (7.14), is

w = A∗ cos λx+B sin λx+ C λx+D.

(An asterisk was added to the first constant of integration in order
to avoid confusion with the cross sectional area A.) We introduce
a coordinate system, where x starts at the left end of the bar. The
evaluation of the boundary conditions yields with λ2 = F/EI

w(0) = 0 → A∗ +D = 0,

w′(0) = 0 → B + C = 0,

w′(l) = 0 → − A∗ sin λ l +B cos λ l + C = 0,

Q(l) = 0 → − A∗ sin λ l +B cos λ l = 0.

After inserting C = −B, we obtain the two equations

sin λ l A∗ − (cos λ l − 1)B = 0,

sin λ l A∗ − cos λ l B = 0

for the two unknowns A∗ and B. This homogeneous system of
equations has a non-trivial solution if the determinant of the
coefficient matrix vanishes: sin λ l = 0. The smallest eigenvalue
λ1 = π/l yields the critical load

Fcrit = π2EI

l2
.

With the radius of gyration r2g = I/A, we obtain the critical in-
crease of the temperature:

ΔTcrit =
Fcrit

EAαT

= π2
(rg
l

)2 1
αT

.
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Note that the increase of temperature is independent of Young’s
modulus. In order to get an idea of the magnitude of the tempe-
rature which causes the buckling of the bar, we consider a steel
bar (αT = 1.2 · 10−5/◦ C) with a slenderness ratio l/rg = 100. It
buckles at an increase of temperature of ΔTcrit ≈ 80◦ C.

7.3 7.3 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
2, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E7.3 Example 7.3 The structure in
Fig. 7.8 consists of an arch
AB and an elastic column
BC (h � a, Young’s modu-
lus E).

Calculate the weight
Wcrit that causes buckling of
the column.
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3a

2h

h

Fig. 7.8

Result: see (B) Wcrit =
7 π2h4E

750 a2
.
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E7.4Example 7.4 The two systems
shown in the Figs. 7.9a,b con-
sist of rigid bars and elastic
springs (spring constant c).

Determine the critical loads.

F

c c

c

F

a

b

a a

a aa

Fig. 7.9

Results: see (A)

a) Fcrit =
5 c a
2

, b) Fcrit =
c a

3
.

E7.5Example 7.5 The bar shown in
Fig. 7.10 is composed of a rigid
part and an elastic part (flexu-
ral rigidity EI). It is subjected
to a force F .

Find the buckling equation
and the critical load.

rigid EI F

a a

Fig. 7.10

Results: see (A) λa+ tanλa = 0, Fcrit = 4.12
EI

a2
.

E7.6Example 7.6 The bars depicted
in Fig. 7.11 have different fle-
xural rigidities. The structure is
subjected to a force F .

Assume EI2 = 2EI1. Which
bar buckles first if the load is
increased?

�
�
�

�
�
�

EI1

F

EI2EI1

3

21

a 2aa

a

Fig. 7.11

Result: see (A) bar 1.
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E7.7 Example 7.7 The truss in
Fig. 7.12 consists of two
equal elastic bars (h � l,
Young’s modulus E). A ver-
tical force applied at pin
K causes the bars to snap
through from the upper po-
sition to the lower position
(indicated by the broken li-
nes in the figure).

Determine the maxi-
mum angle α for which the
bars do not buckle.

cross section

h

2h

section

α

l l

K

F

Fig. 7.12Result: see (B) α <
πh√
6 l
.

E7.8 Example 7.8 An elastic column
(flexural rigidity EI) is clamped
at the base and pin-supported at
the top by a spring (spring con-
stant c), see Fig. 7.13.

Derive the buckling equation.
Determine the critical loads Fcrit

for a) c = 0, b) c = EI/l3,
c) c→∞.

F
c

l

Fig. 7.13

Results: see (A and B) λl − tanλl − (λl)3
EI

cl3
= 0 ,

a) Fcrit = 2.47
EI

l2
(Euler case I), b) Fcrit = 3.27

EI

l2
,

c) Fcrit = 20.2
EI

l2
(Euler case III).
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7.47.4 Summary
• If a structure is subjected to the critical load Fcrit, there exists

an adjacent equilibrium position in addition to the undeformed
configuration.

• The critical load of a system consisting of rigid rods and springs
can be determined by two methods:

1. Analysis of the stability of the original position by evalua-
tion of the total potential V of the system (energy method,
time consuming).

2. Formulation of the equilibrium conditions with respect to
an adjacent position (applying the equilibrium conditions,
usually advisable).

• Differential equation for the critical load of an elastic column:

(EI w′′)′′ + F w′′ = 0 .

• Special case EI = const:

wIV + λ2 w′′ = 0 , λ2 = F/EI .

General solution:

w = A cosλx+B sinλx+ Cλx+D .

The boundary conditions lead to a homogeneous system of
equations for the four constants of integration. The condition
for non-trivial solutions (determinant of the coefficient matrix
equal to zero) yields the characteristic equation which is used
to compute the eigenvalues λi. The critical load Fcrit follows
from the smallest non-zero eigenvalue λmin.

• Column with constant cross section and pinned ends (Euler
case II):

Fcrit = π2 EI

l2
.

• The critical load of a column with arbitrary boundary condi-
tions can be computed by replacing the length l of the rod by
the effective length le.
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Index
allowable stress 10, 90

angle of twist 193

axial rigidity 20

axis 7

bending 99, 117

–, pure 100

–, thermal 176

–, unsymmetric 163

– formula 122

– stiffness 121

– stress 122

– theory 99

Bernoulli assumptions 126

– beam 126

Betti’s theorem 263

boundary conditions 21, 128

Bredt’s first formula 205

– second formula 208

buckled shape 294

buckling 289

– equation 297

bulge 206

circumferential stress 69

Clapeyron’s theorem 234

coefficient of thermal expansion 18

compatibility condition 24, 34

constitutive equation for the ben-

ding moment 121

– for the shear force 121

constitutive law 15, 20

core 175

corkscrew rule 193

critical load 291, 294, 298

–, differential equation 293

curvature 127

design 123

differential equation for the criti-

cal load 293

– of the deflection curve 126

dimensioning 10

disk 52

displacement 14

– diagram 30

– vector 79

displacements, virtual 243

effective length 298

eigenfunction 294

eigenmode 294

eigenvalues 293

elastic body 1

– line 127

elongation 13, 20

energy, strain 233

equilibrium condition 19, 70, 72

equivalent stress 91

Euler load 298

flexural rigidity 121

– stress 122

flexure formula 122

forces, conservative 289

–, virtual 243

geometrical boundary conditions

128

hollow circular cross section 196

Hooke’s law 17, 19, 86

hoop stress 69

influence coefficient 261

invariant 56, 114

kinematic quantity 14

– relation 14, 19, 82
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lateral contraction 16, 84

longitudinal stress 68

matching conditions 139

material, homogeneous 84

–, isotropic 84

– behaviour, linearly elastic 16

– behaviour, plastic 16

– constants 17

maximum shear stres 59

Maxwell’s reciprocal theorem 263

mode shape 294

modulus of elasticity 17

Mohr’s circle 63

moment of inertia 100, 101

necking 16

neutral axis, 122

– surface 122

normal strain 80

– stress 7, 49

– stress hypothesis 91

parallel-axis theorem 109

Pascal 7

plastic strain 16

Poisson’s ratio 84

polar moment of inertia 102

primary system 25, 141

principal axes 58, 115

– coordinate system 58

– directions of stress state 57

– moments of inertia 115

– stresses 58

principle of conservation of energy

234

– of virtual forces 245

product of inertia 102

proportional limit 15

radius of gyration 102

reciprocal displacement theorem 263

– work theorem 263

rectangular moment of inertia 102

redundant 146

– reaction 25

right-hand rule 193

Saint-Venant’s principle 9

second moment of area 101

section modulus 123

shear, pure 65

– center 157

– flow 203

– formula 153

– modulus 85

– stiffness 121

– strain 81

– stress 8, 49

– stress hypothesis 91

sign convention 51

slenderness ratio 162, 298

statical boundary conditions 128

statically determinate 21

– indeterminate 21

strain 13

–, plastic 16

–, thermal 18

– circle 83

– energy 233

– hardening 16

– state, plane 82

– tensor 82

–, normal 80

–, shear 81

strains 81

strength hypothesis 91

stress 7

–, allowable 10, 90

–, circumferential 69

–, conventional 16
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–, engineering 16

–, equivalent 91

–, hoop 69

–, nominal 16

–, normal 7, 49

–, physical 16

–, shear 8, 49

–, true 16

–, yield 15

– check 123

– circle 63

– concentration 9

– state 50, 52

– state, homogeneous 53

– state, hydrostatic 56, 66

– state, plane 53

– tensor 52, 55

– vector 49

–, longitudinal 68

stress-strain diagram 15

stresses, principal 58

superposition 25, 35, 141

tensor 52, 116

–, strain 82

–, stress 52, 55

thermal bending 176

– strain 18

– strains 21

– stresses 21

torque 191

torsion 192

– section modulus of 196

– constant 195

– formula 195

torsional rigidity 195

transformation equations 114

– relations for stresses 55

twist

, angle of 193

unit load method 246

unsymmetric bending, 163

vessel formulas 69

virtual displacements 243

– forces 243

von Mises hypothesis 92

– stress 92

warp 154, 206

warping torsion 206

work, internal 233

yield limit 15

– stress 15

Young’s modulus 17
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