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Preface

Statics is the first volume of a three-volume textbook on Engi-

neering Mechanics. Volume 2 deals with Mechanics of Materials;

Volume 3 contains Particle Dynamics and Rigid Body Dynamics.

The original German version of this series is the bestselling text-

book on mechanics for more than two decades and its 10th edition

has just been published.

It is our intention to present to engineering students the basic

concepts and principles of mechanics in the clearest and simp-

lest form possible. A major objective of this book is to help the

students to develop problem solving skills in a systematic manner.

The book developed out of many years of teaching experience

gained by the authors while giving courses on engineering me-

chanics to students of mechanical, civil and electrical engineering.

The contents of the book correspond to the topics normally co-

vered in courses on basic engineering mechanics at universities

and colleges. The theory is presented in as simple a form as the

subject allows without being imprecise. This approach makes the

text accessible to students from different disciplines and allows for

their different educational backgrounds. Another aim of the book

is to provide students as well as practising engineers with a solid

foundation to help them bridge the gaps between undergraduate

studies, advanced courses on mechanics and practical engineering

problems.

A thorough understanding of the theory cannot be acquired

by merely studying textbooks. The application of the seemingly

simple theory to actual engineering problems can be mastered

only if the student takes an active part in solving the numerous

examples in this book. It is recommended that the reader tries to

solve the problems independently without resorting to the given

solutions. To demonstrate the principal way of how to apply the

theory we deliberately placed no emphasis on numerical solutions

and numerical results.



VI

As a special feature the textbook offers the TM-Tools. Students

may solve various problems of mechanics using these tools. They

can be found at the web address <www.springer.com/engineering/

grundlagen/tm-tools>.

We gratefully acknowledge the support and the cooperation of

the staff of Springer who were responsive to our wishes and helped

to create the present layout of the books.

Darmstadt, Essen, Munich and Vancouver, D. Gross

June 2009 W. Hauger

J. Schröder

W.A. Wall
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Introduction

Mechanics is the oldest and the most highly developed branch

of physics. As important foundation of engineering, its relevance

continues to increase as its range of application grows.

The tasks of mechanics include the description and determi-

nation of the motion of bodies, as well as the investigation of the

forces associated with the motion. Technical examples of such mo-

tions are the rolling wheel of a vehicle, the flow of a fluid in a duct,

the flight of an airplane and the orbit of a satellite. “Motion” in

a generalized sense includes the deflection of a bridge or the de-

formation of a structural element under the influence of a load.

An important special case is the state of rest; a building, dam or

television tower should be constructed in such a way that it does

not move or collapse.

Mechanics is based on only a few laws of nature, which have

an axiomatic character. These are statements based on numerous

observations and regarded as being known from experience. The

conclusions drawn from these laws are also confirmed by experi-

ence. Mechanical quantities such as velocity, mass, force, momen-

tum or energy describing the mechanical properties of a system are

connected within these axioms and within the resulting theorems.

Real bodies or real technical systems with their multifaceted

properties are neither considered in the basic principles nor in

their applications to technical problems. Instead, models are in-

vestigated that possess the essential mechanical characteristics of

the real bodies or systems. Examples of these idealisations are a

rigid body or a mass point. Of course, a real body or a structural

element is always deformable to a certain extent. However, they

may be considered as being rigid bodies if the deformation does

not play an essential role in the behaviour of the mechanical sys-

tem. To investigate the arc of a thrown stone or the orbit of a

planet in the solar system, it is usually sufficient to view these

bodies as being mass points, since their dimensions are very small

compared with the distances covered.

In mechanics we use mathematics as an exact language. Only

mathematics enables precise formulation without reference to a
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certain place or a certain time and allows to describe and compre-

hend mechanical processes. If an engineer wants to solve a tech-

nical problem with the aid of mechanics he or she has to replace

the real technical system with a model that can be analysed ma-

thematically by applying the basic mechanical laws. Finally, the

mathematical solution has to be interpreted mechanically and eva-

luated technically.

Since it is essential to learn and understand the basic princip-

les and their correct application from the beginning, the question

of modelling will be mostly left out of this text, since it requi-

res a high degree of competence and experience. The mechanical

analysis of an idealised system in which the real technical system

may not always be easily recognised is, however, not simply an

unrealistic game. It will familiarise students with the principles

of mechanics and thus enable them to solve practical engineering

problems independently.

Mechanics may be classified according to various criteria. De-

pending on the state of the material under consideration, one

speaks of the mechanics of solids, hydrodynamics or gasdynamics.

In this text we will consider solid bodies only, which can be clas-

sified as rigid, elastic or plastic bodies. In the case of a liquid one

distinguishes between a frictionless and a viscous liquid. Again,

the characteristics rigid, elastic or viscous are idealisations that

make the essential properties of the real material accessible to

mathematical treatment.

According to the main task of mechanics, namely, the investi-

gation of the state of rest or motion under the action of forces, me-

chanics may be divided into statics and dynamics. Statics (Latin:

status = standing) deals with the equilibrium of bodies subjected

to forces. Dynamics (Greek: dynamis = force) is subdivided into

kinematics and kinetics. Kinematics (Greek: kinesis = movement)

investigates the motion of bodies without referring to forces as a

cause or result of the motion. This means that it deals with the

geometry of the motion in time and space, whereas kinetics relates

the forces involved and the motion.

Alternatively, mechanics may be divided into analytical mecha-

nics and engineering mechanics. In analytical mechanics, the ana-
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lytical methods of mathematics are applied with the aim of gaining

principal insight into the laws of mechanics. Here, details of the

problems are of no particular interest. Engineering mechanics con-

centrates on the needs of the practising engineer. The engineer has

to analyse bridges, cranes, buildings, machines, vehicles or com-

ponents of microsystems to determine whether they are able to

sustain certain loads or perform certain movements.

The historical origin of mechanics can be traced to ancient

Greece, although of course mechanical insight derived from expe-

rience had been applied to tools and devices much earlier. Several

cornerstones on statics were laid by the works of Archimedes (287–

212): lever and fulcrum, block and tackle, center of gravity and

buoyancy. Nothing more of great importance was discovered until

the time of the Renaissance. Further progress was then made by

Leonardo da Vinci (1452–1519), with his observations of the equi-

librium on an inclined plane, and by Simon Stevin (1548–1620),

with his discovery of the law of the composition of forces. The first

investigations on dynamics can be traced back to Galileo Galilei

(1564–1642) who discovered the law of gravitation. The laws of

planetary motion by Johannes Kepler (1571–1630) and the nume-

rous works of Christian Huygens (1629–1695), finally led to the

formulation of the laws of motion by Isaac Newton (1643–1727).

At this point, tremendous advancement was initiated, which went

hand in hand with the development of analysis and is associated

with the Bernoulli family (17th and 18th century), Leonhard Eu-

ler (1707–1783), Jean Lerond D’Alembert (1717–1783) and Joseph

Louis Lagrange (1736–1813). As a result of the progress made in

analytical and numerical methods – the latter especially boosted

by computer technology – mechanics today continues to enlarge

its field of application and makes more complex problems accessi-

ble to exact analysis. Mechanics also has its place in branches of

sciences such as medicine, biology and the social sciences, through

the application of modelling and mathematical analysis.
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Objectives: Statics is the study of forces acting on bo-

dies that are in equilibrium. To investigate statics problems, it is

necessary to be familiar with some basic terms, formulas, and work

principles. Of particular importance are the “method of sections”,

the “law of action and reaction”, and the “free-body diagram”, as

they are used to solve nearly all problems in statics.
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1.11.1 Force
The concept of force can be taken from our daily experience. Al-

though forces cannot be seen or directly observed, we are familiar

with their effects. For example, a helical spring stretches when a

weight is hung on it or it is pulled. Our muscle tension conveys

a qualitative feeling of the force in the spring. Similarly, a stone

is accelerated by gravitational force during free fall, or by muscle

force when it is thrown. Also, we feel the pressure of a body on

our hand when we lift it. Assuming that gravity and its effects

are known to us from experience, we can characterize a force as a

quantity that is comparable to gravity.

In statics, bodies at rest are investigated. From experience we

know that a body subject solely to the effect of gravity falls. To

prevent a stone from falling, to keep it in equilibrium, we need to

exert a force on it, for example our muscle force. In other words:

A force is a physical quantity that can be brought into equi-

librium with gravity.

1.21.2 Characteristics and Representation of a Force
A single force is characterized by three properties: magnitude,

direction, and point of application.

The quantitative effect of a force is given by its magnitude.

A qualitative feeling for the magnitude is conveyed by different

muscle tensions when we lift different bodies or when we press

against a wall with varying intensities. The magnitude F of a force

can be measured by comparing it with gravity, i.e., with calibrated

or standardized weights. If the body of weight G in Fig. 1.1 is

in equilibrium, then F = G. The “Newton”, abbreviated N (cf.

Section 1.6), is used as the unit of force.

From experience we also know that force has a direction. While

gravity always has an effect downwards (towards the earth’s cen-

ter), we can press against a tabletop in a perpendicular or in an

inclined manner. The box on the smooth surface in Fig. 1.2 will
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move in different directions, depending on the direction of the

force exerted upon it. The direction of the force can be described

by its line of action and its sense of direction (orientation). In

Fig. 1.1, the line of action f of the force F is inclined under the

angle α to the horizontal. The sense of direction is indicated by

the arrow.

Finally, a single force acts at a certain point of application. De-

pending on the location of point A in Fig. 1.2, the force will cause

different movements of the box.

A

A

F
F

A
FA F

Fig. 1.2

A quantity determined by magnitude and direction is called a

vector. In contrast to a free vector, which can be moved arbitrarily

in space provided it maintains its direction, a force is tied to its line

of action and has a point of application. Therefore, we conclude:

The force is a bound vector.

According to standard vector notation, a force is denoted by a

boldfaced letter, for example by F , and its magnitude by |F | or

simply by F . In figures, a force is represented by an arrow, as

shown in Figs. 1.1 and 1.2. Since the vector character usually is

uniquely determined through the arrow, it is usually sufficient to

write only the magnitude F of the force next to the arrow.

In Cartesian coordinates (see Fig. 1.3 and Appendix A.1), the

force vector can be represented using the unit vectors ex, ey, ez

G
α

f

F

Fig. 1.1
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Fig. 1.3

y

F z

γ

β

z

x

F

F x
F y

eyex

α

ez

by

F = F x + F y + F z = Fx ex + Fy ey + Fz ez . (1.1)

Applying Pythagoras’ theorem in space, the force vector’s magni-

tude F is given by

F =
√

F 2
x + F 2

y + F 2
z . (1.2)

The direction angles and therefore the direction of the force follow

from

cos α =
Fx

F
, cos β =

Fy

F
, cos γ =

Fz

F
. (1.3)

1.31.3 The Rigid Body
A body is called a rigid body if it does not deform under the influ-

ence of forces; the distances between different points of the body

remain constant. This is, of course, an idealization of a real bo-

dy composed of a reasonably stiff material which in many cases

is fulfilled in a good approximation. From experience with such

bodies it is known that a single force may be applied at any point

on the line of action without changing its effect on the body as a

whole (principle of transmissibility).

This principle is illustrated in Fig. 1.4. In the case of a de-

formable sphere, the effect of the force depends on the point of



10 1 Basic Concepts

deformable
body

F

F

F

F
rigid body

f

f f

fA1 A2

A2A1
Fig. 1.4

application. In contrast, for a rigid sphere the effect of the force

F on the entire body is the same, regardless of whether the body

is pulled or pushed. In other words:

The effect of a force on a rigid body is independent of the

location of the point of application on the line of action. The

forces acting on rigid bodies are “sliding vectors”: they can

arbitrarily be moved along their action lines.

A parallel displacement of forces changes their effect considera-

bly. As experience shows, a body with weight G can be held in

equilibrium if it is supported appropriately (underneath the cen-

ter of gravity) by the force F , where F = G (Fig. 1.5a). Displacing

force F in a parallel manner causes the body to rotate (Fig. 1.5b).

a b

G

F

G

f

F

f

Fig. 1.5

1.4 1.4 Classification of Forces, Free-Body Diagram
A single force with a line of action and a point of application,

called a concentrated force, is an idealization that in reality does

not exist. It is almost realized when a body is loaded over a thin

wire or a needlepoint. In nature, only two kinds of forces exist:

volume forces and surface or area forces.
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A volume force is a force that is distributed over the volume of

a body or a portion thereof. Weight is an example of a volume

force. Every small particle (infinitesimal volume element dV ) of

the entire volume has a certain small (infinitesimal) weight dG

(Fig. 1.6a). The sum of the force elements dG, which are conti-

nuously distributed within the volume yields the total weight G.

Other examples of volume forces include magnetic and electrical

forces.

Area forces occur in the regions where two bodies are in con-

tact. Examples of forces distributed over an area include the water

pressure p at a dam (Fig. 1.6b), the snow load on a roof or the

pressure of a body on a hand.

A further idealization used in mechanics is the line force, which

comprises forces that are continuously distributed along a line. If

a blade is pressed against an object and the finite thickness of

the blade is disregarded, the line force q will act along the line of

contact (Fig. 1.6c).

Forces can also be classified according to other criteria. Active

forces refer to the physically prescribed forces in a mechanical

system, as for example the weight, the pressure of the wind or the

snow load on a roof.

Reaction forces are generated if the freedom of movement of

a body is constrained. For example, a falling stone is subjected

only to an active force due to gravity, i.e., its weight. However,

when the stone is held in the hand, its freedom of movement is

constrained; the hand exerts a reaction force on the stone.

Reaction forces can be visualized only if the body is separated

from its geometrical constraints. This procedure is called freeing

or cutting free or isolating the body. In Fig. 1.7a, a beam is loaded

ca

dG

dV

q

Fig. 1.6
b

p
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by an active force G. Supports A and B prevent the beam from

moving: they act on it through reaction forces that, for simplici-

ty, are also denoted by A and B. These reaction forces are made

visible in the so-called free-body diagram (Fig. 1.7b). It shows the

forces acting on the body instead of the geometrical constraints

through the supports. By this “freeing”, the relevant forces beco-

me accessible to analysis (cf. Chapter 5). This procedure is still

valid when a mechanical system becomes movable (dynamic) due

to freeing. In this case, the system is regarded as being frozen

when the reaction forces are determined. This is known as the

principle of solidification (cf. Section 5.3).

a b

free−body diagramsystem

G G

A B

BA

Fig. 1.7

A further classification is introduced by distinguishing between

external forces and internal forces. An external force acts from the

outside on a mechanical system. Active forces as well as reaction

forces are external forces. Internal forces act between the parts of

a system. They also can be visualized only by imaginary cutting or

sectioning of the body. If the body in Fig. 1.8a is sectioned by an

imaginary cut, the internal area forces distributed over the cross-

section must be included in the free-body diagram; they replace

the initially perfect bonding between the two exposed surfaces

(Fig. 1.8b). This procedure is based on the hypothesis, which is

confirmed by experience, that the laws of mechanics are equally

valid for parts of the system. Accordingly, the system initially

consists of the complete body at rest. After the cut, the system

consists of two parts that act on each other through area forces in

such a way that each part is in equilibrium. This procedure, which

enables calculation of the internal forces, is called the method of

sections. It is valid for systems in equilibrium as well as for systems

in motion.
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cut

ba

GG

BB AA

1 2

Fig. 1.8

Whether a force is an external or an internal force depends on

the system to be investigated. If the entire body in Fig. 1.8a is

considered to be the system, then the forces that become exposed

by the cut are internal forces: they act between the parts of the

system. On the other hand, if only part or only part of the

body in Fig. 1.8b is considered to be the system, the corresponding

forces are external forces.

As stated in Section 1.3, a force acting on a rigid body can be

displaced along its line of action without changing its effect on the

body. Consequently, the principle of transmissibility can be used

in the analysis of the external forces. However, this principle can

generally not be applied to internal forces. In this case, the body

is sectioned by imaginary cuts, therefore it matters whether an

external force acts on one or the other part.

The importance of internal forces in engineering sciences is de-

rived from the fact that their magnitude is a measure of the stress

in the material.

1.51.5 Law of Action and Reaction
A universally accepted law, based on everyday experience, is the

law of action and reaction. This axiom states that a force always

has a counteracting force of the same magnitude but of opposite

direction. Therefore, a force can never exist alone. If a hand is pres-

sed against a wall, the hand exerts a force F on the wall (Fig. 1.9a).

An opposite force of the same magnitude acts from the wall on

the hand. These forces can be made visible if the two bodies are

separated at the area of contact. Note that the forces act upon

| ~
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two different bodies. Analogously, a body on earth has a certain

weight G due to gravity. However, the body acts upon the earth

a b

G
G

Fig. 1.9

with a force of equal magnitude: they attract each other (Fig. 1.9b).

In short:

The forces that two bodies exert upon each other are of the

same magnitude but of opposite directions and they lie on

the same line of action.

This principle, which Newton succinctly expressed in Latin as

actio = reactio

is the third of Newton’s axioms (cf. Volume 3). It is valid for long-

range forces as well as for short-range forces, and it is independent

of whether the bodies are at rest or in motion.

1.6 1.6 Dimensions and Units
In mechanics the three basic physical quantities length, time and

mass are considered. Force is another important element that is

considered; however, from a physical point of view, force is a deri-

ved quantity. All other mechanical quantities, such as velocity, mo-

mentum or energy can be expressed by these four quantities. The

geometrical space where mechanical processes take place is three-

dimensional. However, as a simplification the discussion is limited

sometimes to two-dimensional or, in some cases, one-dimensional

problems.

cut

F F
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Associated with length, time, mass and force are their dimen-

sions [l], [t], [M ] and [F ]. According to the international SI unit

system (Système International d′Unités), they are expressed using

the base units meter (m), second (s) and kilogram (kg) and the

derived unit newton (N). A force of 1 N gives a mass of 1 kg the

acceleration of 1m/s2: 1 N = 1 kg m/s2. Volume forces have the di-

mension force per volume [F/l3] and are measured, for example,

as a multiple of the unit N/m3. Similarly, area and line forces

have the dimensions [F/l2] and [F/l] and the units N/m2 and

N/m, respectively.

The magnitude of a physical quantity is completely expres-

sed by a number and the unit. The notations F = 17 N or l =

3 m represent a force of 17 newtons or a distance of 3 meters,

respectively. In numerical calculations units are treated in the

same way as numbers. For example, using the above quantities,

F · l = 17N · 3m = 17 · 3Nm = 51 Nm. In physical equations,

each side and each additive term must have the same dimension.

This should always be kept in mind when equations are formulated

or checked.

Very large or very small quantities are generally expressed by

attaching prefixes to the units meter, second, newton, and so forth:

k (kilo = 103), M (mega = 106), G (giga = 109) and m (milli

= 10−3), μ (micro = 10−6), n (nano = 10−9), respectively; for

example: 1 kN = 103 N.

Table 1.1

U.S. Customary Unit SI Equivalent

Length 1 ft 0.3048 m

1 in (12 in = 1 ft) 25.4 mm

1 yd (1 yd = 3 ft) 0.9144 m

1 mi 1.609344 km

Force 1 lb 4.4482 N

Mass 1 slug 14.5939 kg
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In the U.S. and some other English speaking countries the U.S.

Customary system of units is still frequently used although the

SI system is recommended. In this system length, time, force and

mass are expressed using the base units foot (ft), second (s), pound

(lb) and the derived mass unit, called a slug: 1 slug = 1 lb s2/ft.

As division and multiples of length the inch (in), yard (yd) and

mile (mi) are used. In Table 1.1 common conversion factors are

listed.

1.7 1.7 Solution of Statics Problems, Accuracy
To solve engineering problems in the field of mechanics a careful

procedure is required that depends to a certain extent on the type

of the problem. In any case, it is important that engineers express

themselves clearly and in a way that can be readily understood

since they have to present the formulation as well as the solution

of a problem to other engineers and to people with no engineering

background. This clarity is equally important for one’s own pro-

cess of understanding, since clear and precise formulations are the

key to a correct solution. Although, as already mentioned, there is

no fixed scheme for handling mechanical problems, the following

steps are usually necessary:

1. Formulation of the engineering problem.

2. Establishing a mechanical model that maps all of the essential

characteristics of the real system. Considerations regarding the

quality of the mapping.

3. Solution of the mechanical problem using the established mo-

del. This includes:

– Identification of the given and the unknown quantities. This

is usually done with the aid of a sketch of the mechanical

system. Symbols must be assigned to the unknown quanti-

ties.

– Drawing of the free-body diagram with all the forces acting

on the system.

– Formulation of the mechanical equations, e.g. the equilibri-

um conditions.
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– Formulation of the geometrical relationships (if needed).

– Solving the equations for the unknowns. It should be ensured

in advance that the number of equations is equal to the

number of unknowns.

– Display of the results.

4. Discussion and interpretation of the solution.

In the examples given in this textbook, usually the mechanical

model is provided and Step 3 is concentrated upon, namely the

solution of mechanical problems on the basis of models. Neverthe-

less, it should be kept in mind that these models are mappings of

real bodies or systems whose behavior can sometimes be judged

from daily experience. Therefore, it is always useful to compare

the results of a calculation with expectations based on experience.

Regarding the accuracy of the results, it is necessary to dis-

tinguish between the numerical accuracy of calculations and the

accuracy of the model. A numerical result depends on the pre-

cision of the input data and on the precision of our calculation.

Therefore, the results can never be more precise than the input

data. Consequently, results should never be expressed in a manner

that suggests a non-existent accuracy (e.g., by many digits after

the decimal point).

The accuracy of the result concerning the behavior of the real

system depends on the quality of the model. For example, the

trajectory of a stone that has been thrown can be determined

by taking air resistance into account or by disregarding it. The

results in each case will, of course, be different. It is the task of the

engineer to develop a model in such a way that it has the potential

to deliver the accuracy required for the concrete problem.
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1.8 1.8 Summary
• Statics deals with bodies that are in equilibrium.

• A force acting on a rigid body can be represented by a vector

that can be displaced arbitrarily along its line of action.

• An active force is prescribed by a law of physics. Example: the

weight of a body due to earth’s gravitational field.

• A reaction force is induced by the constrained freedom of mo-

vement of a body.

• Method of sections: reaction forces and internal forces can be

made visible by virtual cuts and thus become accessible to an

analysis.

• Free-body diagram: representation of all active forces and reac-

tion forces which act on an isolated body. Note: mobile parts

of the body can be regarded as being “frozen” (principle of

solidification).

• Law of action and reaction: actio = reactio.

• Basic physical quantities are length, mass and time. The force

is a derived quantity: 1N= 1kgm/s2.

• In mechanics idealized models are investigated which have the

essential characteristics of the real bodies or systems. Examples

of such idealizations: rigid body, concentrated force.
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Objectives: In this chapter, systems of concentrated for-

ces that have a common point of application are investigated. Such

forces are called concurrent forces. Note that forces always act on

a body; there are no forces without action on a body. In the case

of a rigid body, the forces acting on it do not have to have the

same point of application; it is sufficient that their lines of action

intersect at a common point. Since in this case the force vectors are

sliding vectors, they may be applied at any point along their lines

of action without changing their effect on the body (principle of

transmissibility). If all the forces acting on a body act in a plane,

they are called coplanar forces.

Students will learn in this chapter how to determine the re-

sultant of a system of concurrent forces and how to resolve force

vectors into given directions. They will also learn how to cor-

rectly isolate the body under consideration and draw a free-body

diagram, in order to be able to formulate the conditions of equi-

librium.
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2.12.1 Addition of Forces in a Plane
Consider a body that is subjected to two forces F 1 and F 2, whose

lines of action intersect at point A (Fig. 2.1a). It is postulated that

the two forces can be replaced by a statically equivalent force R.

This postulate is an axiom; it is known as the parallelogram law of

forces. The force R is called the resultant of F 1 and F 2. It is the

diagonal of the parallelogram for which F 1 and F 2 are adjacent

sides. The axiom may be expressed in the following way:

The effect of two nonparallel forces F 1 and F 2 acting at a

point A of a body is the same as the effect of the single force

R acting at the same point and obtained as the diagonal of

the parallelogram formed by F 1 and F 2.

The construction of the parallelogram is the geometrical represen-

tation of the summation of the vectors (see Appendix A.1):

R = F 1 + F 2 . (2.1)

Now consider a system of n forces that all lie in a plane and who-

se lines of action intersect at point A (Fig. 2.2a). Such a system is

called a coplanar system of concurrent forces. The resultant can

be obtained through successive application of the parallelogram

law of forces. Mathematically, the summation may be written in

the form of the following vector equation:

R = F 1 + F 2 + . . . + F n =
∑

F i . (2.2)

Since the system of forces is reduced to a single force, this process

is called reduction. Note that the forces that act on a rigid body

a b

A

F 2

R

F 1

R

F 1

F 2
F 1

F 2

R

Fig. 2.1
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are sliding vectors. Therefore, they do not have to act at point A;

only their lines of action have to intersect at this point.

It is not necessary to draw the complete parallelogram to gra-

phically determine the resultant; it is sufficient to draw a force

triangle, as shown in Fig. 2.1b. This procedure has the disadvan-

tage that the lines of action cannot be seen to intersect at one

point. This disadvantage, however, is more than compensated for

by the fact that the construction can easily be extended to an ar-

bitrary number of n forces, which are added head-to-tail as shown

in Fig. 2.2b. The sequence of the addition is arbitrary; in parti-

cular, it is immaterial which vector is chosen to be the first one.

The resultant R is the vector that points from the initial point a

to the endpoint b of the force polygon.

It is appropriate to use a layout plan and a force plan (also de-

noted a vector diagram) to solve a problem graphically. The layout

plan represents the geometrical specifications of the problem; in

general, it has to be drawn to scale (e.g., 1 cm =̂ 1 m). In the case

of a system of concurrent forces, it contains only the lines of action

of the forces. The force polygon is constructed in a force plan. In

the case of a graphical solution, it must be drawn using a scale

(e.g., 1 cm =̂ 10 N).

Sometimes problems are solved with just the aid of a sketch of

the force plan. The solution is obtained from the force plan, for

example, by trigonometry. It is then not necessary to draw the

plan to scale. The corresponding method is partly graphical and

partly analytical and can be called a “graphic-analytical” meth-

a b

b

a

F 2

F i

F n

F 1

RF i

F 2A

F 1

F n

F 1+F 2

F 1+F 2+F i

Fig. 2.2



2.1 Addition of Forces in a Plane 23

od. This procedure is applied, for example, in the Examples 2.1

and 2.4.

E2.1Example 2.1 A hook carries two forces F1 and F2, which define

the angle α (Fig. 2.3a).

Determine the magnitude and direction of the resultant.

Fig. 2.3

Solution Since the problem will be solved by trigonometry (and

since the magnitudes of the forces are not given numerically), a

sketch of the force triangle is drawn, but not to scale (Fig. 2.3b).

We assume that the magnitudes of the forces F1 and F2 and

the angle α are known quantities in this force plan. Then the

magnitude of the resultant follows from the law of cosines:

R2 = F 2
1 + F 2

2 − 2F1 F2 cos (π − α)

or

R =
√

F 2
1 + F 2

2 + 2F1 F2 cos α .

The angle β gives the direction of the resultant R with respect to

the force F2 (Fig. 2.3b). The law of sines yields

sin β

sin (π − α)
=

F1

R
.

Introducing the result for R and using the trigonometrical relation

sin (π − α) = sin α we obtain

sin β =
F1 sin α√

F 2
1 + F 2

2 + 2F1 F2 cos α
.

ba

R

βα

F2

F1

π−α

F2

F1

α
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Students may solve this problem and many others concerning

the addition of coplanar forces with the aid of the TM-Tool “Re-

sultant of Systems of Coplanar Forces” (see screenshot). This and

other TM-Tools can be found at the web address given in the

Preface.

E2.2 Example 2.2 An eyebolt is subjected to four forces (F1 = 12 kN,

F2 = 8 kN, F3 = 18 kN, F4 = 4 kN) that act under given angles

(α1 = 45◦, α2 = 100◦, α3 = 205◦, α4 = 270◦) with respect to the

horizontal (Fig. 2.4a).

Determine the magnitude and direction of the resultant.

a b c

5 kN

αR

force plan

F2

R

F1

F3

F4

F2

F4

f2

f1

f4

f3

layout plan

r
α3

α1

F1

F3

α4

α2

Fig. 2.4

Solution The problem can be solved graphically. First, the layout

plan is drawn, showing the lines of action f1, . . . , f4 of the forces

F1, . . . , F4 with their given directions α1, . . . , α4 (Fig. 2.4b). Then

the force plan is drawn to a chosen scale by adding the given
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vectors head-to-tail (see Fig. 2.4c and compare Fig. 2.2b). Within

the limits of the accuracy of the drawing, the result

R = 10.5 kN , αR = 155◦

is obtained. Finally, the action line r of the resultant R is drawn

into the layout plan.

There are various possible ways to draw the force polygon. De-

pending on the choice of the first vector and the sequence of the

others, different polygons are obtained. They all yield the same

resultant R.

2.22.2 Decomposition of Forces in a Plane,
Representation in Cartesian Coordinates

Instead of adding forces to obtain their resultant, it is often de-

sired to replace a force R by two forces that act in the directions

of given lines of action f1 and f2 (Fig. 2.5a). In this case, the force

triangle is constructed by drawing straight lines in the directions

of f1 and f2 through the initial point and the terminal point of R,

respectively. Thus, two different force triangles are obtained that

unambiguously yield the two unknown force vectors (Fig. 2.5b).

The forces F 1 and F 2 are called the components of R in the

directions f1 and f2, respectively. In coplanar problems, the de-

composition of a force into two different directions is unambi-

guously possible. Note that the resolution into more than two di-

rections cannot be done uniquely: there are an infinite number of

a b

f1

R

f2

R
R

F 2

F 1

F 2
F 1

Fig. 2.5
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ways to resolve the force.

y

ey

ex x

F y

α

F x

F

Fig. 2.6

It is usually convenient to resolve forces into two components

that are perpendicular to each other. The directions of the com-

ponents may then be given by the axes x and y of a Cartesian

coordinate system (Fig. 2.6). With the unit vectors ex and ey, the

components of F are then written as (compare Appendix A.1)

F x = Fx ex , F y = Fy ey (2.3)

and the force F is represented by

F = F x + F y = Fx ex + Fy ey . (2.4)

The quantities Fx and Fy are called the coordinates of the vector

F . Note that they are also often called the components of F , even

though, strictly speaking, the components of F are the vectors

F x and F y. As mentioned in Section 1.2, a vector will often be

referred to by writing simply F (instead of F ) or Fx (instead of

F x), especially when this notation cannot lead to confusion (see,

for example, Figs. 1.1 and 1.2).

From Fig. 2.6, it can be found that

Fx = F cos α , Fy = F sin α ,

F =
√

F 2
x + F 2

y , tan α =
Fy

Fx
.

(2.5)

In the following, it will be shown that the coordinates of the re-

sultant of a system of concurrent forces can be obtained by simply

adding the respective coordinates of the forces. This procedure is

demonstrated in Fig. 2.7 with the aid of the example of two forces.

The x- and y-components, respectively, of the force F i are desi-

gnated with F ix = Fix ex and F iy = Fiy ey. The resultant then
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Fig. 2.7

F 1

F 1x F 2x

F 1y

y

x

F 2y

F 2

R

can be written as

R = Rx ex + Ry ey = F 1 + F 2 = F 1x + F 1y + F 2x + F 2y

= F1x ex+F1y ey+F2x ex+F2y ey =(F1x+F2x)ex+(F1y+F2y)ey .

Hence, the coordinates of the resultant are obtained as

Rx = F1x + F2x , Ry = F1y + F2y .

In the case of a system of n forces, the resultant is given by

R = Rx ex + Ry ey =
∑

F i =
∑

(Fix ex + Fiy ey)

=
(∑

Fix

)
ex +

(∑
Fiy

)
ey (2.6)

and the coordinates of the resultant R follow from the summation

of the coordinates of the forces:

Rx =
∑

Fix , Ry =
∑

Fiy . (2.7)

The magnitude and direction of the resultant are given by (com-

pare (2.5))

R =
√

R2
x + R2

y , tan α
R

=
Ry

Rx
. (2.8)

In the case of a coplanar force group, the two scalar equations

(2.7) are equivalent to the vector equation (2.2).
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E2.3 Example 2.3 Solve Example 2.2 with the aid of the representation

of the vectors in Cartesian coordinates.

F1

F3

F2

α1

F4

α2

α4

α3

x

y

Fig. 2.8

Solution We choose the coordinate system shown in Fig. 2.8, such

that the x-axis coincides with the horizontal. The angles are mea-

sured from this axis. Then, according to (2.7), the coordinates

Rx = F1x + F2x + F3x + F4x

= F1 cos α1 + F2 cos α2 + F3 cos α3 + F4 cos α4

= 12 cos 45◦ + 8 cos 100◦ + 18 cos 205◦ + 4 cos 270◦

= − 9.22 kN

and

Ry = F1y + F2y + F3y + F4y

= F1 sin α1+F2 sin α2+F3 sin α3+F4 sin α4 = 4.76 kN

are obtained. The magnitude and direction of the resultant follow

from (2.8):

R =
√

R2
x + R2

y =
√

9.222 + 4.762 = 10.4 kN ,

tan α
R

=
Ry

Rx
= −

4.76

9.22
= −0.52 → α

R
= 152.5◦ .
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2.32.3 Equilibrium in a Plane
We now investigate the conditions under which a body is in equi-

librium when subjected to the action of forces. It is known from

experience that a body that was originally at rest stays at rest if

two forces of equal magnitude are applied that have the same line

of action and are oppositely directed (Fig. 2.9). In other words:

Two forces are in equilibrium if they are oppositely directed

on the same line of action and have the same magnitude.

This means that the sum of the two forces, i.e., their resultant,

has to be the zero vector:

R = F 1 + F 2 = 0 . (2.9)

It is also known from Section 2.1 that a system of n concurrent

forces F i can always unambiguously be replaced by its resultant

R =
∑

F i .

Therefore, the equilibrium condition (2.9) can immediately be ex-

tended to an arbitrary number of forces. A system of concurrent

forces is in equilibrium if the resultant is zero:

R =
∑

F i = 0 . (2.10)

F 1

f1 =f2

F 2 =−F 1

Fig. 2.9

b, a

F i
F 3

F 2F n

F 1

Fig. 2.10
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The geometrical interpretation of (2.10) is that of a closed force

polygon, i.e., the initial point a and the terminal point b have to

coincide (Fig. 2.10).

The resultant force is zero if its components are zero. There-

fore, in the case of a coplanar system of forces, the two scalar

equilibrium conditions

∑
Fix = 0 ,

∑
Fiy = 0 (2.11)

are equivalent to the vector condition (2.10), (compare (2.7)).

Thus, a coplanar system of concurrent forces is in equilibrium

if the sums of the respective coordinates of the force vectors (here

the x- and y-coordinates) vanish.

Consider a problem where the magnitudes and/or the directi-

ons of forces need to be determined. Since we have two equilibrium

conditions (2.11), only two unknowns can be calculated. Problems

that can be solved by applying only the equilibrium conditions are

called statically determinate. If there are more than two unknowns,

the problem is called statically indeterminate. Statically indeter-

minate systems cannot be solved with the aid of the equilibrium

conditions alone.

Before the equilibrium conditions for a given problem are writ-

ten down, a free-body diagram must be constructed. Therefore,

the body in consideration must be isolated by imaginary cuts, and

all of the forces acting on this body (known and unknown forces)

must be drawn into the diagram. Only these forces should appe-

ar in the equilibrium conditions. Note that the forces exerted by

the body to the surroundings are not drawn into the free-body

diagram.

To solve a given problem analytically, it is generally necessary

to introduce a coordinate system. The directions of the coordinate

axes may be chosen arbitrarily. To apply the equilibrium conditi-

ons (2.11), it suffices to determine the coordinates of the forces;

in coplanar problems, the force vectors need not be written down

explicitly (compare, e.g., Example 2.4).
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2.42.4 Examples of Coplanar Systems of Forces
To be able to apply the above theory to specific problems, a few

idealisations of simple structural elements must be introduced. A

structural element whose length is large compared to its cross-

sectional dimensions and that can sustain only tensile forces in

the direction of its axis, is called a cable or a rope (Fig. 2.11a).

Usually the weight of the cable may be neglected in comparison

to the force acting in the cable.

cable

a

bar in compression

bar in tension 

b c

S S

S S

SS

Fig. 2.11

Often a cable is guided over a pulley (Fig. 2.11b). If the bearing

friction of the pulley is negligible (ideal pulley), the forces at both

ends of the cable are equal in magnitude (see Examples 2.6, 3.3).

A straight structural member with a length much larger than

its cross-sectional dimensions that can transfer compressive as well

as tensile forces in the direction of its axis is called a bar or a rod

(Fig. 2.11c) (compare Section 5.1.1).

As explained in Section 1.5, the force acting at the point of

contact between two bodies can be made visible by separating

the bodies (Fig. 2.12a, b). According to Newton’s third law (ac-

tio = reactio) the contact force K acts with the same magnitude

and in an opposite direction on the respective bodies (Fig. 2.12b).

It may be resolved into two components, namely, the normal for-

ce N and the tangential force T , respectively. The normal force

is perpendicular to the plane of contact, whereas the tangential

force lies in this plane. If the two bodies are merely touching each

other (i.e., if no connecting elements exist) they can only be pres-

sed against each other (pulling is not possible). Hence, the normal

force is oriented towards the interior of the respective body. The

tangential force is due to an existing roughness of the surfaces of

pulley

S
S
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a b

contact plane

N

N

K
K

T

T

1

body 2 2

body 1

Fig. 2.12

the bodies. In the case of a completely smooth surface of one of

the bodies (= idealisation), the tangential force T vanishes. The

contact force then coincides with the normal force N .

E2.4 Example 2.4 Two cables are attached to an eye (Fig. 2.13a). The

directions of the forces F1 and F2 in the cables are given by the

angles α and β.

Determine the magnitude of the force H exerted from the wall

onto the eye.

Solution The free-body diagram (Fig. 2.13b) is drawn as the first

step. To this end, the eye is separated from the wall by an imagi-

nary cut. Then all of the forces acting on the eye are drawn into

the figure: the two given forces F1 and F2 and the force H. These

three forces are in equilibrium. The free-body diagram contains

two unknown quantities, namely, the magnitude of the force H

and the angle γ.

cba

α+β

F1

H

F2

β

α

F2

F1

y

β

α

γ

H

F2

F1

x

Fig. 2.13
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The equilibrium conditions are formulated and solved in the

second step. We will first present a “graphic-analytical” solution,

i.e., a solution that is partly graphical and partly analytical. To

this end, the geometrical condition of equilibrium is sketched: the

closed force triangle (Fig. 2.13c). Since trigonometry will now be

applied to the force plan, it need not be drawn to scale. The law

of cosine yields

H =
√

F 2
1 + F 2

2 − 2F1F2 cos(α + β) .

The problem may also be solved analytically by applying the

scalar equilibrium conditions (2.11). Then we choose a coordinate

system (see Fig. 2.13b), and the coordinates of the force vectors

are determined and inserted into (2.11):
∑

Fix = 0 : F1 sin α + F2 sin β − H cos γ = 0

→ H cos γ = F1 sin α + F2 sin β ,∑
Fiy = 0 : − F1 cos α + F2 cos β − H sin γ = 0

→ H sin γ = −F1 cos α + F2 cos β .

These are two equations for the two unknowns H and γ. To obtain

H, the two equations are squared and added. Using the trigono-

metrical relation

cos(α + β) = cos α cos β − sin α sin β

yields

H2 = F 2
1 + F 2

2 − 2F1 F2 cos(α + β) .

This result, of course, coincides with the result obtained above.

E2.5Example 2.5 A wheel with weight G is held on a smooth inclined

plane by a cable (Fig. 2.14a).

Determine the force in the cable and the contact force between

the plane and the wheel.
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Fig. 2.14

Solution The forces acting at the wheel must satisfy the equilib-

rium condition (2.10). To make these forces visible, the cable is

cut and the wheel is separated from the inclined plane. The free-

body diagram (Fig. 2.14b) shows the weight G, the force S in the

cable (acting in the direction of the cable) and the contact force

N (acting perpendicularly to the inclined plane: smooth surface,

T = 0!). The three forces S,N and G are concurrent forces; the

unknowns are S and N .

First, we solve the problem by graphic-analytical means by

sketching (not to scale) the geometrical equilibrium condition,

namely, a closed force triangle (Fig. 2.14c). The law of sines yields

S = G
sin α

sin(π
2 + β − α)

= G
sin α

cos(α − β)
,

N = G
sin(π

2 − β)

sin(π
2 + β − α)

= G
cos β

cos(α − β)
.

To solve the problem analytically with the aid of the equi-

librium conditions (2.11), we choose a coordinate system (see

Fig. 2.14b). Inserting the coordinates of the forces into (2.11) leads

to two equations for the two unknowns:

∑
Fix = 0 : S cos β − N sin α = 0 ,

∑
Fiy = 0 : S sin β + N cos α − G = 0 .

Their solution coincides with the solution given above.

cba

α

β

y

x

β

α

S

N

α N

S
π
2 −β

G

G

G
π
2 +β−α
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Note that the coordinate system may be chosen arbitrarily.

However, an appropriate choice of the coordinates may save com-

putational work.

E2.6Example 2.6 Three boxes (weights G1, G2 and G3) are attached

to two cables as shown in Fig. 2.15a. The pulleys are frictionless.

Calculate the angles α1 and α2 in the equilibrium configuration.

Fig. 2.15

Solution First, point A is isolated by passing imaginary cuts ad-

jacent to this point. The free-body diagram (Fig. 2.15b) shows the

forces acting at A; the angles α1 and α2 are unknown. Then the

coordinate system shown in Fig. 2.15b is chosen and the equilib-

rium conditions are written down. In plane problems, we shall

from now on adopt the following notation: instead of
∑

Fix = 0

and
∑

Fiy = 0, the symbols → : and ↑ :, respectively, will be used

(sum of all force components in the directions of the arrows equal

to zero). Thus,

→ : −G1 cos α1 + G2 cos α2 = 0 ,

↑ : G1 sin α1 + G2 sin α2 − G3 = 0 .

To compute α1, the angle α2 is eliminated by rewriting the equa-

tions:

G1 cos α1 = G2 cos α2 , G1 sin α1 − G3 = −G2 sin α2 .

Squaring these equations and then adding them yields

sin α1 =
G2

3 + G2
1 − G2

2

2G1 G3
.

a b

α2Aα1 α1

A

y

α2

x

G1 G2G3

G1

G3

G2



36 2 Forces with a Common Point of Application

Similarly, we obtain

sin α2 =
G2

3 + G2
2 − G2

1

2G2 G3
.

A physically meaningful solution (i.e., an equilibrium configura-

tion) exists only for angles α1 and α2 satisfying the conditions

0 < α1, α2 < π/2. Thus, the weights of the three boxes must be

chosen in such a way that both of the numerators are positive and

smaller than the denominators.

E2.7 Example 2.7 Two bars 1 and 2 are attached at A and B to a wall

by smooth pins. They are pin-connected at C and subjected to a

weight G (Fig. 2.16a).

Calculate the forces in the bars.

Solution Pin C is isolated by passing cuts through the bars. The

forces that act at C are shown in Fig. 2.16d.

d e

a b c

A

B

α2

α1
1

2

C

α1

s1

C

α2

g

s2 S1

S2
π−(α1+α2)

S2

S1

C
x

S1

α2

C

α1

S2

y

G
G

G

S1

G

S2

G

Fig. 2.16
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First, the graphical solution is indicated. The layout plan is

presented in Fig. 2.16b. It contains the given lines of action g, s1

and s2 (given by the angles α1 and α2) of the forces G, S1 and

S2, which enables us to draw the closed force triangle (equilibrium

condition!) in Fig. 2.16c. To obtain the graphical solution it would

be necessary to draw the force plan to scale; in the case of a

graphic-analytical solution, no scale is necessary. The law of sines

then yields

S1 = G
sin α2

sin(α1 + α2)
, S2 = G

sin α1

sin(α1 + α2)
.

The orientation of the forces S1 and S2 can be seen in the force

plan. This plan shows the forces that are exerted from the bars

onto pin C. The forces exerted from the pin onto the bars have

the same magnitude; however, according to Newton’s third law

they are reversed in direction (Fig. 2.16d). It can be seen that bar

1 is subject to tension and that bar 2 is under compression.

The problem will now be solved analytically with the aid of the

equilibrium conditions (2.11). The free-body diagram is shown in

Fig. 2.16e. The lines of action of the forces S1 and S2 are given. The

orientations of the forces along their action lines may, in principle,

be chosen arbitrarily in the free-body diagram. It is, however,

common practice to assume that the forces in bars are tensile

forces, as shown in Fig. 2.16e (see also Sections 5.1.3 and 6.3.1).

If the analysis yields a negative value for the force in a bar, this

bar is in reality subjected to compression.

The equilibrium conditions in the horizontal and vertical direc-

tions

→ : −S1 sin α1 − S2 sin α2 = 0 ,

↑ : S1 cos α1 − S2 cos α2 − G = 0

lead to

S1 = G
sin α2

sin(α1 + α2)
, S2 = −G

sin α1

sin(α1 + α2)
.

Since S2 is negative, the orientation of the vector S2 along its
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action line is opposite to the orientation chosen in the free-body

diagram. Therefore, in reality bar 2 is subjected to compression.

2.5 2.5 Concurrent Systems of Forces in Space
It was shown in Section 2.2 that a force can unambiguously be

resolved into two components in a plane. Analogously, a force can

be resolved uniquely into three components in space. As indicated

γ

z

ex ey

x

y

α

F z

F

ez
F x

β
F y

Fig. 2.17

in Section 1.2, a force F may be represented by

F = F x + F y + F z = Fx ex + Fy ey + Fz ez (2.12)

in a Cartesian coordinate system x, y, z (Fig. 2.17). The magnitude

and the direction of F are given by

F =
√

F 2
x + F 2

y + F 2
z ,

cos α =
Fx

F
, cos β =

Fy

F
, cos γ =

Fz

F
.

(2.13)

The angles α, β and γ are not independent of each other. If the

first equation in (2.13) is squared and Fx, Fy and Fz are inserted

according to the second equation the following relation is obtained:

cos2 α + cos2 β + cos2 γ = 1 . (2.14)
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The resultant R of two forces F 1 and F 2 is obtained by con-

structing the parallelogram of the forces (see Section 2.1) which

is expressed mathematically by the vector equation

R = F 1 + F 2 . (2.15)

In the case of a spatial system of n concurrent forces (Fig. 2.18),

the resultant is found through a successive application of the par-

allelogram law of forces in space. As in the case of a system of

coplanar forces, the resultant is the sum of the force vectors. Math-

ematically, this is written as (compare (2.2))

R =
∑

F i . (2.16)

If the forces F i are represented by their components F ix, F iy

and F iz according to (2.12), we obtain

R = Rx ex + Ry ey + Rz ez =
∑

(F ix + F iy + F iz)

=
∑

(Fix ex + Fiy ey + Fiz ez)

=
(∑

Fix

)
ex +

(∑
Fiy

)
ey +

(∑
Fiz

)
ez .

The coordinates of the resultant in space are thus given by

Rx =
∑

Fix , Ry =
∑

Fiy , Rz =
∑

Fiz . (2.17)

Fig. 2.18

F 1

F 2

F n

F i

R

z

y
x
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The magnitude and direction of R follow as (compare (2.13))

R =
√

R2
x + R2

y + R2
z ,

cos αR =
Rx

R
, cos βR =

Ry

R
, cos γR =

Rz

R
.

(2.18)

A spatial system of concurrent forces is in equilibrium if the

resultant is the zero vector (compare (2.10)):

R =
∑

F i = 0 . (2.19)

This vector equation is equivalent to the three scalar equilibrium

conditions

∑
Fix = 0 ,

∑
Fiy = 0 ,

∑
Fiz = 0 , (2.20)

which represent a system of three equations for three unknowns.

E2.8 Example 2.8 A structure consists of two bars 1 and 2 and a rope

3 (weights negligible). It is loaded in A by a box of weight G

(Fig. 2.19a).

Determine the forces in the bars and in the rope.

ba

z

y S2

x
S1

S3

B

3

B

b

c

α
β

A

aa

2
1

γ

A

b

c

GG

Fig. 2.19

Solution We isolate pin A by passing imaginary sections through

the bars and the rope. The internal forces are made visible in the
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free-body diagram (Fig. 2.19b); they are assumed to be tensile

forces. The equilibrium conditions are
∑

Fix = 0 : S1 + S3 cos α = 0 ,
∑

Fiy = 0 : S2 + S3 cos β = 0 , (a)
∑

Fiz = 0 : S3 cos γ − G = 0 .

With the diagonal AB =
√

a2 + b2 + c2, the angles α, β and γ

can be taken from Fig. 2.19b:

cos α =
a√

a2 + b2 + c2
, cos β =

b√
a2 + b2 + c2

,

cos γ =
c√

a2 + b2 + c2
.

This yields

S3 =
G

cos γ
= G

√
a2 + b2 + c2

c
,

S1 = −S3 cos α = −G
cos α

cos γ
= −G

a

c
,

S2 = −S3 cos β = −G
cos β

cos γ
= −G

b

c
.

The negative signs for the forces in the bars indicate that the bars

are actually in a state of compression; the rope is subjected to

tension. This can easily be verified by inspection.

As can be seen, the geometry of this problem is very simple.

Therefore, it was possible to apply the equilibrium conditions

without resorting to the vector formalism. In the case of a com-

plicated geometry it is, however, recommended that the forces be

written down in vector form. This more formal and therefore safer

way to solve the problem is now presented.

The force vectors

S1 = S1

⎛

⎜⎝
1

0

0

⎞

⎟⎠ , S2 = S2

⎛

⎜⎝
0

1

0

⎞

⎟⎠ , G = G

⎛

⎜⎝
0

0

−1

⎞

⎟⎠
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(represented as column vectors, see Appendix A.1) can easily be

written down. To obtain the vector S3, we first represent the vec-

tor r
AB

, which is directed from A to B:

r
AB

=

⎛

⎜⎝
a

b

c

⎞

⎟⎠ .

If this vector is divided by its magnitude r
AB

=
√

a2 + b2 + c2,

the unit vector

e
AB

=
1√

a2 + b2 + c2

⎛

⎜⎝
a

b

c

⎞

⎟⎠

in the direction from A to B is obtained. The force vector S3 has

the same direction; it is therefore given by

S3 = S3 e
AB

=
S3√

a2 + b2 + c2

⎛

⎜⎝
a

b

c

⎞

⎟⎠ .

The equilibrium condition
∑

F i = 0, i.e.,

S1 + S2 + S3 + G = 0

reads

S1

⎛

⎜⎝
1

0

0

⎞

⎟⎠+ S2

⎛

⎜⎝
0

1

0

⎞

⎟⎠+
S3√

a2 + b2 + c2

⎛

⎜⎝
a

b

c

⎞

⎟⎠+ G

⎛

⎜⎝
0

0

−1

⎞

⎟⎠ =

⎛

⎜⎝
0

0

0

⎞

⎟⎠ .

Evaluation yields

∑
Fix = 0 : S1 +

aS3√
a2 + b2 + c2

= 0 ,

∑
Fiy = 0 : S2 +

bS3√
a2 + b2 + c2

= 0 ,

∑
Fiz = 0 : −G +

cS3√
a2 + b2 + c2

= 0 .
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These equations coincide with equations (a).

Note that the quantities Sj are the forces in the bars and in the

rope, respectively, which were assumed to be tensile forces. They

are not the magnitudes of the vectors Sj . The determination of the

forces leads to S1 < 0 and S2 < 0 (bars in compression), whereas

magnitudes of vectors are always non-negative quantities.

E2.9Example 2.9 A vertical mast M is supported by two ropes 1 and

2. The force F in rope 3 is given (Fig. 2.20a).

Determine the forces in ropes 1 and 2 and in the mast.

b

a c

d

y

z

x

S1

S2

SM

S1 =S S2 =S

S∗

S∗

SM

y

z

x

DγA

A

B

Dγ
β

C

αα

α

1

3

β

B

2

C

α

α

BA

C

α

C

β γ

M

F

F

F

Fig. 2.20

Solution We isolate point C by passing imaginary cuts through the

ropes and the mast. The internal forces are assumed to be tensile

forces, and are shown in the free-body diagram (Fig. 2.20b). Since

the y, z-plane is a plane of symmetry, the forces S1 and S2 have

to be equal: S1 = S2 = S (this may be confirmed by applying the

equilibrium condition in the x-direction). The forces S1 and S2

are added to obtain their resultant (Fig. 2.20c)

S∗ = 2S cos α .
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The forces S∗, SM and F act in the y, z-plane (Fig. 2.20d). The

equilibrium conditions

∑
Fiy = 0 : −S∗ cos β + F cos γ = 0 ,

∑
Fiz = 0 : −S∗ sin β − SM − F sin γ = 0

yield, after inserting the relation for S∗,

S = F
cos γ

2 cos α cos β
, SM = −F

sin(β + γ)

cos β
.

As could be expected, the ropes are subjected to tension (S > 0),

whereas the mast is under compression (SM < 0).

The special case γ = π/2 is used as a simple check. Then force

F acts in the direction of the mast, and S = 0 and SM = −F are

obtained with cos(π/2) = 0 and sin(β + π/2) = cos β.

2.6 2.6 Supplementary Examples
Detailed solutions of most of the following examples are given in

(A) D. Gross et al. Formeln und Aufgaben zur Technischen Mecha-

nik 1, Springer, Berlin 2008, or (B) W. Hauger et al. Aufgaben zur

Technischen Mechanik 1-3, Springer, Berlin 2008.

E2.10 Example 2.10 A hook is subjec-

ted to three forces (F1 = 180N,

α1 = 45◦, F2 = 50N, α2 =

60◦, F3 = 30N) as shown in

Fig. 2.21.

Determine the magnitude

and direction of the resultant.

Results: R = 185N , αR = 67◦ .

F3

F2
F1

α1α2

Fig. 2.21
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E2.11Example 2.11 Determine the magni-

tudes F1 and F2 of the components

of force F with magnitude F =

5kN in the directions f1 and f2

(Fig. 2.22).

f1f2

30
◦

F

45
◦

Fig. 2.22Results: F1 = 3.7 kN , F2 = 2.6 kN .

E2.12Example 2.12 A smooth sphere

(weight G = 20N, radius r = 20 cm)

is suspended by a wire (length a =

60 cm) as shown in Fig. 2.23.

Determine the magnitude of force

S in the wire.

Fig. 2.23Result: see (A) S = 21.2N .

E2.13Example 2.13 Fig. 2.24 shows

a freight elevator. The ca-

ble of the winch passes over

a smooth pin K. A crate

(weight G) is suspended at

the end of the cable.

Determine the magnitude

of forces S1 and S2 in bars 1

and 2.

Fig. 2.24

Results: see (B) S1 =
sin β − cos β

sin(α − β)
G, S2 =

cos α − sin α

sin(α − β)
G .

G

r

a

1

2α

β

K

G

Winch
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E2.14 Example 2.14 A smooth circular cy-

linder (weight G, radius r) touches

an obstacle (height h) as shown in

Fig. 2.25.

Find the magnitude of force F ne-

cessary to roll the cylinder over the

obstacle.

Fig. 2.25Result: see (A) F = G tan α .

E2.15 Example 2.15 A large cylinder

(weight 4G, radius 2r) lies on top

of two small cylinders (each having

weight G and radius r) as shown

in Fig. 2.26. The small cylinders are

connected by a wire S (length 3r).

All surfaces are smooth.

Determine all contact forces and

the magnitude of force S in the wire.
Fig. 2.26

Results: see (A) N1 =
4√
3

G, N2 = 3G, S =
2√
3

G .

E2.16 Example 2.16 A cable (length l,

weight negligible) is attached to

two walls at A and B (Fig. 2.27).

A cube (weight G) on a frictionless

pulley (radius negligible) is suspen-

ded by the cable.

Find the distance d of the cube

from the left side in the equilibrium

position and calculate the force S

in the cable.

Results: see (B) S =
Gl

2
√

l2 − a2
, d =

a

2

(
1 − b√

l2 − a2

)
.

G
F r

h
α

4G 2r

3r

S G

r

G

b A

B

G

a
d

Fig. 2.27
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E2.17Example 2.17 A smooth sphere

(weight G, radius R) rests on three

points A, B and C. These three

points form an equilateral triangle

in a horizontal plane. The height

of the triangle is 3a = 3
4

√
3 R (see

Fig. 2.28). The action line of the

applied force F passes through the

center of the sphere.
Fig. 2.28

Determine the contact forces at A, B and C. Find the magni-

tude of force F required to lift the sphere off at C.

Results: see (A) A = B =
2

3

(
G+

1√
3

F
)
, C =

2

3

(
G− 2√

3
F
)
,

A =
A

4

⎛

⎜⎝
−
√

3

3

2

⎞

⎟⎠ , B =
B

4

⎛

⎜⎝
−
√

3

−3

2

⎞

⎟⎠ , C =
C

4

⎛

⎜⎝
2
√

3

0

2

⎞

⎟⎠ ,

F =

√
3

2
G .

E2.18Example 2.18 The construction shown in Fig. 2.29 consists of three

bars that are pin-

connected at K. A

rope attached to a

wall is guided without

friction through an

eye at K. The free

end of the rope is

loaded with a crate

(weight G).

Calculate the ma-

gnitude of the forces

in the bars.
G

3

2
1 K

6a

2a
2a

a

3a

4a

Fig. 2.29

Results: see (B) S1 =
9√
10

G , S2 =
3√
10

G , S3 = − 9√
5

G .

a

R/2

2 a

C A

FR

G

z

x
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2.7 2.7 Summary
• The lines of action of a system of concurrent forces intersect

at a point.

• The resultant of a system of concurrent forces is given by the

vector R =
∑

F i. In coordinates,

Rx =
∑

Fix , Ry =
∑

Fiy , Rz =
∑

Fiz .

In the case of a coplanar system, the z-components vanish.

Note: the coordinate system may be chosen arbitrarily; an ap-

propriate choice may save computational work.

• The equilibrium condition for a system of concurrent forces is∑
F i = 0. In coordinates,
∑

Fix = 0 ,
∑

Fiy = 0 ,
∑

Fiz = 0 .

In the case of a coplanar problem, the z-components vanish.

• In order to solve force problems the following steps are usually

necessary:

⋄ Isolate the body (point).

⋄ Sketch the free-body diagram: introduce all of the forces

exerted on the body; assume the internal forces in bars to

be tensile forces.

⋄ Choose a coordinate system.

⋄ Formulate the equilibrium conditions (3 equations in spatial

problems, 2 equations in coplanar problems).

⋄ Solve the equilibrium conditions.

• The force acting at the point of contact between two bodies

can be made visible by separating the bodies. In the case of

smooth surfaces, it is perpendicular to the plane of contact.
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Objectives: In this chapter general systems of forces are

considered, i.e., forces whose lines of action do not intersect at a

point. For the analysis, the notion “moment” has to be introduced.

Students should learn how coplanar or spatial systems of forces

can be reduced and under which conditions they are in equilibri-

um. They should also learn how to apply the method of sections

to obtain a free-body diagram. A correct free-body diagram and

an appropriate application of the equilibrium conditions are the

key to the solution of a coplanar or a spatial problem.
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3.13.1 General Systems of Forces in a Plane

3.1.1 Couple and Moment of a Couple

In Section 2.1 it was shown that a system of concurrent forces

can always be reduced to a resultant force. In the following, it

Fig. 3.1 h

l

F 2

F 1
a2a1

K −K

R1

R2

R2

R

R1

is demonstrated how the resultant R of two parallel forces F 1 and

F 2 can be found (Fig. 3.1). As a first step, the two forces K and

−K, which have the same line of action, are added. Since they

are in equilibrium they have no effect on a rigid body. Then two

parallelograms (here rectangles) are drawn to obtain the forces

R1 = F 1 + K and R2 = F 2 + (−K). These forces, which are

statically equivalent to the given system of parallel forces, repre-

sent a system of concurrent forces. They may be moved along

their respective lines of action (sliding vectors!) to their point of

intersection. There another parallelogram of forces is constructed

that yields the resultant

R = R1 + R2 = F 1 + F 2 . (3.1)

This graphical solution yields the magnitude R of the resultant

as well as the location of its action line. From Fig. 3.1 it can be

found that

R = F1 + F2 ,

h = a1 + a2 ,
a1

l
=

K

F1
,

a2

l
=

K

F2
.

(3.2)
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Thus, the magnitude of the resultant R of the parallel forces is

simply the algebraic sum of the magnitudes of the forces. Equation

(3.2) also yields the principle of the lever by Archimedes

a1 F1 = a2 F2 (3.3)

and the distances

a1 =
F2

F1 + F2
h =

F2

R
h , a2 =

F1

F1 + F2
h =

F1

R
h . (3.4)

Hence, the method described above always gives the resultant

force and the location of its action line unless the denominator in

(3.4) is zero. In this case the two forces are said to form a couple.

A couple consists of two forces having equal magnitude, parallel

action lines and opposite directions (Fig. 3.2). In this case the

method to find the resultant fails to work. With F2 = −F1 the

equations (3.2) and (3.4) lead to R = 0 and a1, a2 → ±∞. Hence,

a couple can not be reduced to a resultant single force.

Although the resultant force of a couple is zero the couple has

an effect on the body on which it acts: it tends to rotate the body.

Fig. 3.3 shows three examples of couples: a) a wheel which is to

be turned, b) a screw driver acting on the head of a screw and

c) a “clamped” beam whose free end is twisted. As can be seen,

a couple has a sense of rotation: either clockwise or counterclock-

wise. Similar to the notion of a “concentrated” force the couple is

an idealization which replaces the action of the area forces.

We now investigate the quantities which define a couple and

its properties. The effect of a couple on a rigid body is unambi-

guously determined by its moment. The moment incorporates two

−F
F h

Fig. 3.2



3.1 General Systems of Forces in a Plane 53

Fig. 3.3

quantities: first, its magnitude M which is given by the product

of the perpendicular distance h of the action lines (Fig. 3.2) and

the magnitude F of the forces

M = hF , (3.5)

and, secondly, its sense of rotation. In the figures, the sense of

rotation is represented by a curved arrow (� or �). The quanti-

ties magnitude M and sense of rotation � indicate that a couple

moment is a vector in three-dimensional space. The moment has

the dimension length times force [l F ], and is expressed, for ex-

ample, in the unit Nm. In order to avoid confusion with the unit

mN =̂ Milli-Newton, the sequence of the units of length and force

is exchanged: Nm =̂ Newton-Meter.

Fig. 3.4 shows that a couple with a given moment can be pro-

duced by arbitrarily many different pairs of forces. If the forces K

and −K are added to the given couple (forces F , perpendicular

distance h) a statically equivalent couple is obtained (forces F ′,

perpendicular distance h′). The couple moment, i.e., the sense of

rotation and the magnitude of the moment

M = h′ F ′ = (h sin α)
( F

sin α

)
= hF

cba

F F
F

F
F

F F

F F

F

h
h h h

h
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K

F
F ′

α

F F ′

Kh

h′

F ′

F ′′

F ′′

F ′′

h′′

F ′′

F ′K′

K′

Fig. 3.4

remain unchanged. By successive application of this procedure, a

couple may be moved arbitrarily in the plane without any change

of its moment. Hence, in contrast to a force, a couple is not bound

to a line of action. Therefore, it may be applied at arbitrary points

of a rigid body: it always has the same turning effect.

A couple is uniquely described by its moment. Hence, the two

forces F and −F in the following are replaced by the couple mo-

ment. In particular, in the figures we shall replace the two forces

by a curved arrow, i.e., � M , as shown in Fig. 3.5. This notati-

on incorporates the magnitude M of the couple moment and the

sense of rotation (curved arrow); it is analogous to the notation

ր F (arrow and magnitude of the force).

The law of action and reaction (Section 1.5) states that every

force has a counteracting force of the same magnitude but opposite

direction. By analogy, every couple moment has a counteracting

couple moment of equal magnitude but with an opposite sense of

rotation. For example, the screwdriver in Fig. 3.3b exerts a mo-

ment M = hF on the screw which acts clockwise, whereas the

screw exerts a moment of equal magnitude in the counterclock-

wise direction on the screwdriver.

= =

F
M =hF

M =hF

F

h

Fig. 3.5
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Fig. 3.6

If several couples act on a rigid body they may be appropriately

moved and rotated and then added to yield a resultant moment

MR (Fig. 3.6). The couple moments are added algebraically taking

into account their algebraic signs (given by their respective senses

of rotation):

MR =
∑

Mi . (3.6)

If the sum of the moments is zero, the resultant couple moment,

and therefore the tendency to rotate the body, vanish. Thus, the

equilibrium condition for a system of couple moments is

MR =
∑

Mi = 0 . (3.7)

3.1.2 Moment of a Force

A force acting on a rigid body is a sliding vector: it may be moved

along its line of action without changing the effect on the body.

With the aid of the notion of the couple moment, we now will

investigate how a force may be moved to a parallel line of action.

Consider in Fig. 3.7 a force F whose line of action f is assumed to

be moved to the line f ′, which is parallel to f and passes through

point 0. The perpendicular distance of the two lines is given by

h. As a first step, the forces F and −F are introduced on the line

=

=

==

h1

F1

F1h1

M1=h1F1

h2
h1

F2

F1
h2
h1

F2

M2=h2F2
MR =M1+M2

F2

F2

h2

F1



56 3 General Systems of Forces, Equilibrium of a Rigid Body

f ′. These two forces are in equilibrium. One of the forces and the

originally given force (action line f) represent a couple. The cou-

ple moment is given by its magnitude M (0) = hF and the sense

of rotation. The system consisting of force F with action line f ′

and couple moment M (0) = hF is statically equivalent to force F

with action line f . The quantity M (0) = hF is called the moment

of the force F about (with respect to) point 0. The superscript (0)

indicates the reference point. The perpendicular distance of point

0 from the action line f is called the lever arm of force F with

respect to 0. The sense of rotation of the moment is given by the

sense of rotation of force F about 0.

It should be noted that a couple moment is independent of the

point of reference, whereas the magnitude and sense of rotation

of the moment of a force depend on this point.

Often it is advantageous to replace a force F by its Cartesian

components F x = Fx ex and F y = Fy ey (Fig. 3.8). Adopting

the commonly used sign convention that a moment is positive if

it tends to rotate the body counterclockwise when viewed from

above (�), the moment of the force F about point 0 in Fig. 3.8 is

given by M (0) = hF . Using the relations

h = x sin α − y cos α

and

sin α = Fy/F , cos α = Fx/F

the moment can also be represented as

M (0) = hF =

(
x

Fy

F
− y

Fx

F

)
F = x Fy − y Fx . (3.8)

= =

f
f ′

f

0h0 h

f ′

f ′

f

0

F
M(0)=hF

FF
F F

Fig. 3.7
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0
αx

x sin α

y

y

x

h

y cos α
α

α
F y

F x

F

Fig. 3.8

0
y

x

F 1

y

x

F 2y

F 1y

F 2xF 1x

F 2

R

Fig. 3.9

Hence, the moment is equal to the sum of the moments of the force

components about 0. Note the senses of rotation of the respective

components: they determine the algebraic signs in the summation.

Consider now two forces F1 and F2 and their resultant R

(Fig. 3.9). The moments of the two forces with respect to point 0

are

M
(0)
1 = x F1y − y F1x , M

(0)
2 = x F2y − y F2x ,

and their sum is given by

M
(0)
1 +M

(0)
2 = x (F1y+F2y)−y (F1x+F2x) = x Ry−y Rx = M

(0)
R .

Therefore, it is immaterial whether the forces are added first and

then the moment is determined or if the sum of the individual mo-

ments is calculated. This property holds for an arbitrary number

of forces:

The sum of the moments of single forces is equal to the mo-

ment of their resultant.

3.1.3 Resultant of Systems of Coplanar Forces

Consider a rigid body that is subjected to a general system of

coplanar forces (Fig. 3.10). To investigate how this system can be

reduced to a simpler system, a reference point A is chosen and

the action lines of the forces are moved without changing their
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directions until they pass through A. To avoid changing the effect

of the forces on the body, the respective moments of the forces

about A must be introduced. Hence, the given general system of

forces is replaced by a system of concurrent forces and a system of

moments. These two systems can be reduced to a resultant force

R with the components Rx and Ry and a resultant moment M
(A)
R .

According to (2.7) and (3.6), they are given by

Rx =
∑

Fix , Ry =
∑

Fiy , M
(A)
R =

∑
M

(A)
i . (3.9)

The magnitude and direction of the resultant force can be calcu-

lated from

R =
√

R2
x + R2

y , tan α =
Ry

Rx
. (3.10)

The system of the resultant R (action line through A) and the

moment M
(A)
R may be further simplified. It is equivalent to the

single force R alone if the action line is moved appropriately. The

perpendicular distance h (Fig. 3.10) must be chosen in such a way

that the moment M
(A)
R equals hR, i.e., hR = M

(A)
R , which yields

h =
M

(A)
R

R
. (3.11)

==

=

=

x

y

M
(A)
1

M
(A)
2

M
(A)
R A

A

A
M

(A)
i

F1 Fi

F2

F1 Fi

F2

R

R

α

h

Fig. 3.10
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If M
(A)
R = 0 and R �= 0, Equation (3.11) gives h = 0. In this

case the action line of the resultant of the general system of forces

passes through A. On the other hand, if R = 0 and M
(A)
R �= 0, a

further reduction is not possible: the system of forces is reduced to

only a moment (i.e., a couple), which is independent of the choice

of the reference point.

Equations (3.9) to (3.11) can be used to calculate the magnitude

and direction of the resultant as well as the location of its action

line.

E3.1Example 3.1 A disc is subjected to four forces as shown in Fig.

3.11a. The forces have the given magnitudes F or 2F , respectively.

Determine the magnitude and direction of the resultant and

the location of its line of action.

a b

y

x

2F

F

F

2F

R

a

F

2F

2F

F

a α

60◦ 0

h

Fig. 3.11

Solution We choose a coordinate system x, y (Fig. 3.11b), and

its origin 0 is taken as the point of reference. According to the

sign convention, positive moments tend to rotate the disk coun-

terclockwise (�). Thus, from (3.9) we obtain

Rx =
∑

Fix = 2F cos 60◦ + F cos 60◦

+ F cos 60◦ − 2F cos 60◦ = F ,

Ry =
∑

Fiy = − 2F sin 60◦ + F sin 60◦

+ F sin 60◦ + 2F sin 60◦ =
√

3 F ,

M
(0)
R =

∑
M

(0)
i = 2 a F + a F + 2 a F − a F = 4 a F ,
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which yield (see (3.10))

R =
√

R2
x + R2

y = 2F , tan α =
Ry

Rx
=

√
3 → α = 60◦ .

The perpendicular distance of the resultant from point 0 follows

from (3.11):

h =
M

(0)
R

R
=

4 a F

2F
= 2 a .

3.1.4 Equilibrium Conditions

As shown in Section 3.1.3 a general system of coplanar forces can

be reduced to a system of concurrent forces and a system of mo-

ments with respect to an arbitrary reference point A. The system

of moments consists of the moments of the forces and of possible

couple moments. The systems will be subjected to the conditions

of equilibrium (2.11) and (3.7), respectively. Hence, a rigid body

under the action of a general system of coplanar forces is in equi-

librium if the following equilibrium conditions are satisfied:

∑
Fix = 0 ,

∑
Fiy = 0 ,

∑
M

(A)
i = 0 . (3.12)

The number of equilibrium conditions (three) equals the number

of the possible motions (three) of a body in a coplanar problem:

translations in the x- and y-directions, respectively, and a rotation

about an axis that is perpendicular to the x,y-plane. The body is

said to have three degrees of freedom.

It is now shown that the point of reference in the moment equa-

tion of (3.12) can be chosen arbitrarily. In order to do this, we

formulate the moment equation with respect to point A (see Fig.

3.12):
∑

M
(A)
i =

∑
{(xi − xA)Fiy − (yi − yA)Fix}

=
∑

(xiFiy − yiFix) − xA

∑
Fiy + yA

∑
Fix (3.13)

=
∑

M
(B)
i − xA

∑
Fiy + yA

∑
Fix .
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If the equilibrium conditions (3.12) are satisfied, Equation (3.13)

immediately yields
∑

M
(B)
i = 0. On the other hand, if

∑
Fix = 0,∑

Fiy = 0 and
∑

M
(B)
i = 0, then

∑
M

(A)
i = 0 also has to be

satisfied. Therefore it is immaterial which point is chosen as the

point of reference.

Instead of using two force conditions and one moment con-

dition, one force condition and two moment conditions may be

applied. Introducing the conditions

∑
Fix = 0 ,

∑
M

(A)
i = 0 ,

∑
M

(B)
i = 0 (3.14)

into (3.13),
∑

Fiy = 0 is also satisfied if xA �= 0. Hence, the equi-

librium conditions (3.14) are equivalent to the conditions (3.12) if

the two points A and B are not lying on a straight line (here the

y-axis) that is perpendicular to the direction of the force equilib-

rium (here the x-direction). Similarly, the conditions

∑
Fiy = 0 ,

∑
M

(A)
i = 0 ,

∑
M

(B)
i = 0 (3.15)

also lead to
∑

Fix = 0 if yA �= 0.

Three points A, B and C may also be chosen and only moment

equations of equilibrium used, as follows:

∑
M

(A)
i = 0 ,

∑
M

(B)
i = 0 ,

∑
M

(C)
i = 0 . (3.16)

Fig. 3.12

y

xB

F2

C
A

xC xA
xi

F1

Fi

Fix

Fiy

yC yiyA
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These equations are equivalent to (3.12) if the points A, B and C

are not lying on a straight line. In order to prove this statement

we use (3.13) and the corresponding relation for an arbitrary

point C:
∑

M
(A)
i =

∑
M

(B)
i − xA

∑
Fiy + yA

∑
Fix ,

∑
M

(C)
i =

∑
M

(B)
i − xC

∑
Fiy + yC

∑
Fix .

(3.17)

Introducing (3.16) yields

−xA

∑
Fiy + yA

∑
Fix = 0 , −xC

∑
Fiy + yC

∑
Fix = 0 ,

and eliminating
∑

Fiy and
∑

Fix, respectively, leads to

(
−xC

yA

xA

+ yC

)∑
Fix = 0 ,

(
−xC +

xA

yA

yC

)∑
Fiy = 0 .

Therefore,
∑

Fix = 0 and
∑

Fiy = 0 is ensured if the terms in the

parentheses are nonzero, i.e., if yA/xA �= yC/xC . This means that

the points A and C, respectively, must not lie on the same straight

line passing through the origin B of the coordinate system.

In principle, it is irrelevant whether one applies the equilibrium

conditions (3.12), (3.14) or (3.16) to solve a given problem. In

practice, however, it may be advantageous to use one form or the

other.

To apply a moment equilibrium condition (e.g.,
∑

M
(A)
i = 0),

it is necessary to specify a reference point and a positive sense of

rotation (e.g., counterclockwise). In the following, the symbol
�

A :

is used to signify that the sum of all moments about point A must

be equal to zero and that moments in the direction of the curved

arrow are taken to be positive. This notation is analogous to the

notation for the equilibrium of forces (e.g. →:).

Consider again a general system of coplanar forces. According

to (3.12) and to the results of Section 3.1.3, one can always reduce

the system to one of the following four cases:

1. Resultant does not pass through the reference point A (Fig. 3.13a):

R �= 0 , M (A) �= 0 .
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2. Resultant passes through the reference point A (Fig. 3.13b):

R �= 0 , M (A) = 0 .

3. Couple (independent of the reference point A)(Fig. 3.13c):

R = 0 , M (A) = M �= 0 .

4. Equilibrium (Fig. 3.13d):

R = 0 , M (A) = 0 .

E3.2Example 3.2 The beam shown in Fig. 3.14a can rotate about its

support (see Chapter 5). It is loaded by two forces F1 and F2. Its

weight may be neglected.

Determine the location of the support so that the beam is in

equilibrium. Find the force A exerted on the beam from the sup-

port.

0

a b

F2F1 F2

A

F1

l a

Fig. 3.14

Solution The required distance of the support from point 0 is

denoted by a (Fig. 3.14b). The beam is isolated in the free-body

diagram and the force A (= support reaction, see Chapter 5) is

introduced. Since the forces F1 and F2 act in the vertical direction

(the horizontal components are zero), force A also has to be verti-

cal. This follows from the equilibrium condition in the horizontal

direction.

The reference point for the equilibrium condition of moments

a b c d

A A A AF

−F

R

R

Fig. 3.13
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may be chosen arbitrarily. It is, however, practical to choose a

point on the action line of one of the forces. Then the lever arm

of this force is zero and the force does not appear in the moment

equation. If point 0 is chosen, the equilibrium conditions are (the

force equilibrium in the horizontal direction is identically satisfied)

↑ : A − F1 − F2 = 0 ,
�

0 : a A − l F2 = 0 .

This yields

A = F1 + F2 , a =
F2

F1 + F2
l .

As a check, point A is chosen as the reference point. Then the

moment equilibrium is given by

�

A : a F1 − (l − a)F2 = 0 ,

which leads to the same result as found above.

E3.3 Example 3.3 A cable is guided over an ideal pulley and subjected

to forces S1 and S2, which act under the given angles α and β

(Fig. 3.15a). The two forces are in equilibrium.

If force S1 is given, determine the required force S2 and the

force exerted at 0 from the support on the pulley.

Solution The solution of the first part of the problem is found

with the aid of the equilibrium of moments about point 0. The

force acting at 0 on the pulley has no lever arm, and in an ideal

pulley there exists no moment induced by friction. Therefore, the

moment equilibrium condition yields

a b

0
0

α β

S1

S2 S2

S1

L
LV

LH

r

Fig. 3.15
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�

0 : r S1 − r S2 = 0 → S2 = S1 .

This result is already known from Section 2.4, Fig. 2.11b.

In order to find the force L exerted at 0 on the pulley, the

pulley is isolated (Fig. 3.15b). Since the direction of this force is

unknown, it is resolved into its components, LH and LV , in the

horizontal and the vertical directions, respectively. The equilib-

rium conditions

↑ : LV − S1 sin α − S2 sin β = 0 ,

→ : LH − S1 cos α + S2 cos β = 0

and S2 = S1 lead to the result

LV = S1(sin α + sin β) , LH = S1(cos α − cos β) .

In the special case of α = β, we get LV = 2S1 sin α, LH = 0. If

α = β = π/2, then LV = 2S1.

E3.4Example 3.4 A homogeneous beam (length 4 a, weight G) is sus-

pended at C by a rope. The beam touches the smooth vertical

walls at A and B (Fig. 3.16a).

Find the force in the rope and the contact forces at A and B.

Fig. 3.16

Solution We isolate the beam by cutting the rope and remov-

ing the two walls. The free-body diagram (Fig. 3.16b) shows the

a b

S
G

A

B

C

A

C

√
2

2 3a

√
2

2 a

√
2

2 a

30◦

30◦

45◦

B

a

a

2a
3a

a
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contact forces A and B acting perpendicularly to the planes of con-

tact (smooth walls), the internal force S in the rope and the weight

G (acting at the center of the beam, compare Chapter 4). To for-

mulate the sum of the moments, point C is chosen as reference

point; the lever arms of the forces follow from simple geometrical

relations. The equilibrium conditions then are given by

↑ : S cos 30◦ − G = 0 ,

→ : A − B − S sin 30◦ = 0 ,

�

C :

√
2

2
a A −

√
2

2
a G +

√
2

2
3 a B = 0 .

With cos 30◦ =
√

3/2, sin 30◦ = 1/2 the three unknown forces are

obtained as

S =
2
√

3

3
G , A =

1 +
√

3

4
G , B =

3 −
√

3

12
G .

E3.5 Example 3.5 A beam (length l =
√

2 r, weight negligible) lies

inside a smooth spherical shell with radius r (Fig. 3.17a).

If a weight G is attached to the beam, determine the distance x

from the left-end point of the beam required to keep the beam in

equilibrium with the angle α = 15◦. Calculate the contact forces

at A and B.

Solution The free-body diagram (Fig. 3.17b) shows the forces ac-

ting on the isolated beam. The contact forces are orthogonal to the

respective contact planes (smooth surfaces). Therefore, they are

directed towards the center 0 of the sphere. The isosceles triangle

0AB displays a right angle at 0 because of the given lengths r and

l =
√

2 r. Forces A and B are inclined with angles 60◦ and 30◦,

respectively. If forces A and B are resolved into their components

perpendicular and parallel to the beam, the following equilibrium

conditions are obtained:

↑ : A sin 60◦ + B sin 30◦ − G = 0 ,

→ : A cos 60◦ − B cos 30◦ = 0 ,
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�

C : −x(A sin 45◦) + (l − x)(B sin 45◦) = 0 .

These are three equations for the three unknowns A, B and x.

The force equations lead to the contact forces (note: sin 30◦ =

cos 60◦ = 1/2, sin 60◦ = cos 30◦ =
√

3/2):

A =

√
3

2
G , B =

1

2
G .

If these results and sin 45◦ =
√

2/2 are introduced into the mo-

ment equation, the required distance is obtained:

x = l
B

A + B
=

l√
3 + 1

.

The problem may also be solved graphic-analytically. If three

forces are in equilibrium, they must be concurrent forces. Since

the action lines of A and B intersect at 0, the action line of G also

must pass through this point (Fig. 3.17c). The law of sines is now

applied to the triangle 0AC. With sin 105◦ = sin(45◦ + 60◦) =

sin 45◦ cos 60◦+ cos 45◦ sin 60◦ = (
√

2/4)(1 +
√

3) and r = l/
√

2 it

leads again to

0

0

a b

dc

G

G
A

B

G

B

A

A

B

G

r

C

30◦

45◦
15◦

105◦
60◦

30◦

r

C
45◦

r

45◦

x

15◦

15◦

A

x

α

r

l x
√

2 r

B 30◦

Fig. 3.17
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x = r
sin 30◦

sin 105◦
=

l√
2

1/2√
2

4
(1 +

√
3)

=
l

1 +
√

3
.

The contact forces A and B are determined from a sketch of the

force plan (not to scale, see Fig. 3.17d):

A = G cos 30◦ =

√
3

2
G , B = G sin 30◦ =

G

2
.

E3.6 Example 3.6 A lever (length l) that is subjected to a vertical

force F (Fig. 3.18a) exerts a contact force on a circular cylinder

(radius r, weight G). The weight of the lever may be neglected.

All surfaces are smooth.

Determine the contact force between the cylinder and the floor

if the height h of the step is equal to the radius r of the cylinder.

Solution The cylinder and the lever are isolated and the contact

forces A to E, which are perpendicular to the planes of contact at

the respective points of contact, are introduced (Fig. 3.18b). Note

that the floor and the lever represent the planes of contact at D

and E, respectively. The equilibrium conditions for the lever are

given by

→ :

√
2

2
C −

√
2

2
E = 0 ,

ba

0

A

B

E

D

F

C

G

F

C

G
45◦

l

h

r

√
2 h

√
2

2 l

45◦

r−

√
2

2 r

Fig. 3.18
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↑ : D −
√

2

2
C +

√
2

2
E − F = 0 ,

�

0 :
√

2 r
(
1 −

√
2

2

)
C −

√
2 hE +

√
2

2
l F = 0

and equilibrium at the cylinder (concurrent forces) requires

→ : A −
√

2

2
C = 0 ,

↑ : B +

√
2

2
C − G = 0 .

These are five equations for the five unknown forces A to E. With

h = r, they yield the contact force at point B:

B = G − l

2 r
F .

In the case of F = (2 r/l)G, contact force B vanishes. For larger

values of F there is no equilibrium: the cylinder will be lifted.

3.23.2 General Systems of Forces in Space

3.2.1 The Moment Vector

In order to investigate general systems of forces in space, the mo-

ment vector is now introduced. To this end, the coplanar problem

that was already treated in Section 3.1.2 (see Fig. 3.8) is recon-

sidered in Fig. 3.19. Force F , which acts in the x, y-plane, has a

moment M (0) about point 0. With F x = Fx ex, etc., it is given

by

M (0)
z = hF = x Fy − y Fx (3.18)

(compare (3.8)). The algebraic sign (positive sense of rotation) is

chosen as in Section 3.1.2. The subscript z indicates that M
(0)
z

exerts a moment about the z-axis.

The two quantities (magnitude and sense of rotation) by which
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a couple is defined in coplanar problems may be expressed mathe-

matically by the moment vector

M (0)
z = M (0)

z ez . (3.19)

The vector M
(0)
z points in the direction of the z-axis. It incor-

porates the magnitude M
(0)
z and the positive sense of rotation.

The positive sense of rotation is determined by the right-hand

rule (corkscrew rule): if we look in the direction of the positive

z-axis, a positive moment tends to rotate the body clockwise.

In order to distinguish between force vectors and moment

vectors in the figures, a moment vector is represented with a

double head, as shown in Fig. 3.19. Note: force vectors and mo-

ment vectors have different dimensions; therefore they can never

be added.

0

F y

x

y

F x

ez

z

x

h

F

y

M
(0)
z

Fig. 3.19

0

y

α

β

z

F y

F z

F

x
yz

γ
r

M (0)

x

F x

Fig. 3.20

In coplanar problems, the body can only be rotated about the z-

axis. Therefore, the moment vector has only the component M
(0)
z .

In spatial systems, there are three possibilities of rotation (about

the three axes x, y and z). Hence, the moment vector has the

three components M
(0)
x , M

(0)
y and M

(0)
z :

M (0) = M (0)
x ex + M (0)

y ey + M (0)
z ez . (3.20)

Fig. 3.20 shows that the components, i.e., the moments about the

coordinate axes, are obtained as follows:
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M (0)
x = yFz−zFy, M (0)

y = zFx−xFz, M (0)
z = xFy−yFx. (3.21)

The magnitude and direction of the moment vector are given by

|M (0)| = M (0) =

√
[M

(0)
x ]2 + [M

(0)
y ]2 + [M

(0)
z ]2 ,

cos α =
M

(0)
x

M (0)
, cos β =

M
(0)
y

M (0)
, cos γ =

M
(0)
z

M (0)
.

(3.22)

Formally, the moment vector M (0) may be represented by the

vector product

M (0) = r × F , (3.23)

where vector r is the position vector pointing from the reference

point 0 to the point of application of force F , i.e., to an arbitrary

point on the action line of F . With

r = xex + y ey + z ez , F = Fx ex + Fy ey + Fz ez

and the following cross-products (compare Appendix A.1),

ex × ex = 0 , ex × ey = ez , ex × ez = −ey ,

ey × ex = −ez , ey × ey = 0 , ey × ez = ex ,

ez × ex = ey , ez × ey = −ex , ez × ez = 0

equation (3.23) yields

M (0) = (xex + y ey + z ez) × (Fx ex + Fy ey + Fz ez)

= (y Fz − z Fy)ex + (z Fx − x Fz)ey + (x Fy − y Fx)ez

= M (0)
x ex + M (0)

y ey + M (0)
z ez . (3.24)

According to the properties of a cross-product, the moment vec-

tor M (0) is perpendicular to the plane determined by r and F

(Fig. 3.21). Its magnitude is numerically equal to the area of the

parallelogram formed by r and F :

M (0) = r F sin ϕ = hF . (3.25)
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Hence, the moment is equal to the product of the lever arm h and

the force F .

0

z

r

x

h y

F

f

M (0)
ϕ

Fig. 3.21

x

z

y

ϕ

M
h

F

−F

r

Fig. 3.22

The moment of a couple in space (Fig. 3.22) may be represented

by the same formalism. Here,

M = r × F . (3.26)

The vector r points from an arbitrary point on the action line of

−F to an arbitrary point on the action line of F . As before, the

moment vector M is orthogonal to the plane determined by r and

F . Its sense of rotation follows from the rule of the right-handed

screw and its magnitude is numerically equal to the area of the

parallelogram formed by r and F (lever arm times force):

M = hF . (3.27)

The properties of couple moments and of moments of a force in

space correspond to their properties in coplanar problems. In a

plane, couple moments may be moved without changing the effect

on a rigid body. In space, the vector of a couple moment can

be moved parallel to its line of action and along this line without

changing the effect. Whereas the force vector is bound to its action

line (sliding vector) the vector of a couple moment is a free vector.

If a body in space is subjected to several couple moments M i,

the resultant moment MR is obtained as the vector sum

MR =
∑

M i , (3.28)



3.2 General Systems of Forces in Space 73

which reads in components

MRx =
∑

Mix , MRy =
∑

Miy , MRz =
∑

Miz . (3.29)

If the sum of the moments is zero, the resulting moment MR

and hence the rotational effect on the body vanishes. Then the

moment equilibrium condition

MR =
∑

M i = 0 (3.30)

is satisfied. In components,

∑
Mix = 0 ,

∑
Miy = 0 ,

∑
Miz = 0 . (3.31)

E3.7Example 3.7 A rope passes over an ideal pulley as shown in Fig. 3.23a.

It carries a crate with weight G and is held at point C. The radius

of the pulley may be neglected.

Determine the resulting moment of the forces in the rope about

point A.

Solution The internal forces S1 and S2 in the rope are made visible

by cuts through the rope. Their action on point B of the structure

is shown in Fig. 3.23b. Since the bearing friction of the pulley is

negligible (ideal pulley) both forces are equal, and equilibrium at

the crate yields S1 = S2 = G.

To represent the moments of the forces, a coordinate system is

introduced. Moment M
(A)
1 of force S1 about A (represented as a

column vector) has a component only in the x-direction:

M
(A)
1 =

⎛

⎝
−2

0
0

⎞

⎠ aG . (a)

Moment M
(A)
2 of force S2 may be obtained with the aid of the
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a

b

c

A

z

A

C

B

x y

B

3a

2a

4a
a

a

2a

3a

4a

a

a

S2

S1

S1=G

C

A

rAB

rAC

B

rBC

C

G

G

Fig. 3.23

cross-product (see (3.23))

M
(A)
2 = r

AB
× S2 . (b)

The vector r
AB

from reference point A to the point of application

B of force S2 is given by

r
AB

=

⎛

⎝
0
2
3

⎞

⎠ a . (c)

The force S2 may be represented by its magnitude S2 = G

and the unit vector e2, which points in the direction of S2, i.e.,

S2 = S2 e2. To obtain vector e2, we first give vector r
BC

, which

points from B to C (see Fig. 3.23c):

r
BC

= r
AC

− r
AB

=

⎛

⎝
−1

4
1

⎞

⎠ a −

⎛

⎝
0
2
3

⎞

⎠ a =

⎛

⎝
−1

2
−2

⎞

⎠ a .
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If this vector is divided by its magnitude |r
BC

|, the unit vector e2

is obtained:

e2 =
r

BC

|r
BC

| =
1

a
√

1 + 4 + 4

⎛

⎝
−1

2
−2

⎞

⎠ a =
1

3

⎛

⎝
−1

2
−2

⎞

⎠ .

Therefore,

S2 = S2 e2 =
1

3

⎛

⎝
−1

2
−2

⎞

⎠ G . (d)

With (c) and (d) the vector product (b) yields (compare Appen-

dix (A.31))

M
(A)
2 = r

AB
× S2 =

∣∣∣∣∣∣∣

ex ey ez

0 2a 3a

−G/3 2G/3 −2G/3

∣∣∣∣∣∣∣

= (−4/3 − 2)aGex − aGey + (2/3)aGez .

This vector may be written as a column vector:

M
(A)
2 =

1

3

⎛

⎝
−10
−3

2

⎞

⎠ aG . (e)

The resulting moment M
(A)
R of the forces S1 and S2 about point

A is the sum of the moments (a) and (e), (compare (3.32)):

M
(A)
R = M

(A)
1 + M

(A)
2 =

1

3

⎛

⎝
−16
−3

2

⎞

⎠ aG .

3.2.2 Equilibrium Conditions

Consider a general system of forces in space (Fig. 3.24). This sys-

tem can be reduced to a statically equivalent system that consists

of a resultant force and a resultant moment. Similar to the pro-

cedure used in a coplanar problem (compare Section 3.1.3), an
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arbitrary reference point A is chosen in space. The forces F i are

then moved to parallel lines of action that pass through this point.

Since the effect of the forces on the body must not be changed, the

corresponding moments M
(A)
i of the forces have to be introduced.

Now the system of concurrent forces and the system of moments

may be represented by the resultant force R and the resultant

moment M
(A)
R , respectively:

R =
∑

F i , M
(A)
R =

∑
M

(A)
i . (3.32)

The resultant force R is independent of the choice of point A; the

resultant moment M
(A)
R , however, depends on this choice. Hence,

there are many possible ways to reduce a given general system of

forces to a resultant force and a resultant moment.

A general system of forces is in equilibrium if the resultant force

R and the resultant moment M
(A)
R about an arbitrary point A

vanish:

∑
F i = 0 ,

∑
M

(A)
i = 0 . (3.33)

In components,

∑
Fix = 0 ,

∑
M

(A)
ix = 0 ,

∑
Fiy = 0 ,

∑
M

(A)
iy = 0 ,

∑
Fiz = 0 ,

∑
M

(A)
iz = 0 .

(3.34)

The fact that there are six scalar equilibrium conditions corre-

= =

z

yx

A
A

M
(A)
i

F 1

F i F 2

RF i

F 1
M

(A)
1 M

(A)
R

F 2

M
(A)
2

Fig. 3.24
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sponds to the six degrees of freedom of a rigid body in space:

translations in the x-, y- and z-directions and rotations about the

corresponding coordinate axes. It can be shown that the reference

point A may be chosen arbitrarily, as in a coplanar problem.

Consider now the special case of a system of parallel forces. Let,

for example, all the forces act in the z-direction. Then Fix = 0

and Fiy = 0, and the equilibrium conditions (3.34) reduce to
∑

Fiz = 0 ,
∑

M
(A)
ix = 0 ,

∑
M

(A)
iy = 0 . (3.35)

In this case, the equilibrium conditions in the x- and y-directions

for the forces and the moment equation about the axis through A

which is parallel to the z-axis are identically satisfied.

E3.8Example 3.8 A rectangular block (lengths a, b and c) is subjected

to six forces, F1 to F6 (Fig. 3.25a).

Calculate the resultant R, the resultant moments M
(A)
R and

M
(B)
R with respect to points A and B and their magnitudes. As-

sume F1 = F2 = F , F3 = F4 = 2F , F5 = F6 = 3F , b = a,

c = 2 a.

a b

z

yx

F2

F4

F1

F5

F3

F2

F4

F1

F5

z

F3

y

B B

A A

x

c

a

b
F6 F6

Fig. 3.25

Solution The components of the resultant force vector are obtain-

ed as the sum of the given force components:

Rx = F1 + F3 = 3F, Ry = F5 + F6 = 6F, Rz = −F2 + F4 = F.

Hence, R can be written as the column vector (see Appendix A.1)
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R =

⎛

⎜⎝
Rx

Ry

Rz

⎞

⎟⎠ =

⎛

⎜⎝
3

6

1

⎞

⎟⎠F , R =
√

32 + 62 + 12 F =
√

46 F .

To determine the resultant moment about point A, the coordi-

nate system is chosen such that its origin is at A (Fig. 3.25b). The

components of the moment then are obtained as

M
(A)
Rx =

∑
M

(A)
ix = b F4 − c F5 = − 4 a F ,

M
(A)
Ry =

∑
M

(A)
iy = a F2 = a F ,

M
(A)
Rz =

∑
M

(A)
iz = a F5 + a F6 − b F3 = 4 a F ,

and vector M
(A)
R can be written as

M
(A)
R =

⎛

⎜⎜⎝

M
(A)
Rx

M
(A)
Ry

M
(A)
Rz

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−4

1

4

⎞

⎟⎟⎠ a F ,

M
(A)
R =

√
42 + 12 + 42 a F =

√
33 a F .

Similarly, for point B

M
(B)
Rx = b F2 + c F6 = 7 a F ,

M
(B)
Ry = − c F1 − c F3 + a F4 = − 4 a F ,

M
(B)
Rz = b F1 = a F

and

M
(B)
R =

⎛

⎜⎝
7

−4

1

⎞

⎟⎠ a F , M
(B)
R =

√
72 + 42 + 12 a F =

√
66 a F

are obtained. The resultant moments about A and B, respectively,

are different!
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E3.9Example 3.9 A homogeneous plate with weight G is supported by

six bars and loaded by a force F (Fig. 3.26a).

Calculate the forces in the bars.

2

3

4

1

a b

6

5 0

F

S1 x
S2

S3

S4

z

G

F

y

S5

A

S6 G

α

β

β

b

a a

a

α

Fig. 3.26

Solution First, the free-body diagram is sketched (Fig. 3.26b). It

displays the weight G (acting at the center of the plate, compare

Chapter 4), the load F and the internal forces S1 to S6 in the bars

(these are assumed to be tensile forces). In addition, the auxiliary

angles α and β are introduced. Choosing the coordinate system

such that as many moments as possible about its origin are zero,

the following equilibrium conditions are obtained:
∑

Fix = 0 : −S3 cos β − S6 cos β = 0 ,
∑

Fiy = 0 : S4 cos α − S5 cos α + F = 0 ,
∑

Fiz = 0 : −S1 − S2 − S3 sin β − S6 sin β − S4 sin α

−S5 sin α − G = 0 ,
∑

M
(0)
ix = 0 : a S1 − a S2 + a S6 sin β − a S3 sin β = 0 ,

∑
M

(0)
iy = 0 :

b

2
G + b S1 + b S2 + b S6 sin β + b S3 sin β = 0 ,

∑
M

(0)
iz = 0 : b F + a S3 cos β − a S6 cos β = 0 .

Using the trigonometrical relations

cos α = sinα =
a√
2 a2

=

√
2

2
,
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cos β =
b√

a2 + b2
, sin β =

a√
a2 + b2

the first and sixth equilibrium condition lead to

S3 = −S6 = −
√

a2 + b2

2 a
F .

Then the fourth and fifth equations yield

S1 = −G

4
− F

2
, S2 = −G

4
+

F

2
.

Finally, from the second and third equations

S4 = − 1√
2

(
G

2
+ F

)
, S5 = − 1√

2

(
G

2
− F

)

are obtained. As a check, it is verified that the equilibrium of

moments is satisfied if an axis is chosen that is parallel to the

y-axis and passes through point A:

∑
M

(A)
iy = − b

2
G − b S4 sin α − b S5 sin α

= −b

[
G

2
− 1√

2

(
G

2
+F

) √
2

2
− 1√

2

(
G

2
− F

) √
2

2

]
= 0.

E3.10 Example 3.10 An angled member is in equilibrium under the ac-

tion of four forces (Fig. 3.27a). The forces are perpendicular to

the plane determined by the member; the weight of the member

is negligible.

If the force F is given, calculate the forces A, B and C.

a b

0

z

x

y

B C

A

A

CB

A
F

F

b/2

b/2

c

a

Fig. 3.27
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Solution We draw the free-body diagram and introduce a coordi-

nate system (Fig. 3.27b). If the origin 0 is chosen as the reference

point, the equilibrium conditions (3.35) are
∑

Fiz = 0 : A + B + C − F = 0 ,

∑
M

(0)
ix = 0 :

b

2
A − b F = 0 ,

∑
M

(0)
iy = 0 : − c C + a F = 0 .

They have the solution

A = 2F , C =
a

c
F , B = −

(
1 +

a

c

)
F .

As a check, point A is chosen as the reference point instead of

point 0. Then the moment equation

∑
M

(A)
ix = 0 : − b

2
B − b

2
C − b

2
F = 0

is used instead of the second equation above, which leads to the

same solution.

3.33.3 Supplementary Examples
Detailed solutions for most of the following examples are given

in (A) D. Gross et al. Formeln und Aufgaben zur Technischen Me-

chanik 1, Springer, Berlin 2008 or (B) W. Hauger et al. Aufgaben

zur Technischen Mechanik 1-3, Springer, Berlin 2008.

E3.11Example 3.11 A uniform pole

(length l, weight G) leans against

a corner as shown in Fig. 3.28. A

rope S prevents the pole from sli-

ding. All surfaces are smooth.

Determine the force S in the

rope.

Fig. 3.28

S

α

G

h

l
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Result: see (B) S =
Gl

2h
sin2 α cos α .

E3.12 Example 3.12 A uniform

beam (length l, weight G)

is inserted into an opening

(Fig. 3.29). The surfaces are

smooth.

Calculate the magnitude of

the force F required to hold

the beam in equilibrium. Is

the result valid for an arbitra-

ry ratio a/l?
Fig. 3.29

Result: see (B) F =

√
3

6 − 8a/l
G .

The result is valid only if the contact forces between the beam

and the surfaces of the opening are positive, which leads to the

requirement 3/8 < a/l < 3/4.

E3.13 Example 3.13 Two smooth rollers (each

having weight G and radius r) are

connected by a rope (length a) as shown

in Fig. 3.30. A lever (length l) subjected

to a vertical force F exerts contact forces

on the rollers.

Determine the contact forces between

the rollers and the horizontal plane.

Fig. 3.30
Results: see (A)

N1 = G − F
l

a

√
1 − 4(

r

a
)2 , N2 = G + F

l

a

√
1 − 4(

r

a
)2

where N1 and N2 are the contact forces acting on the left and on

the right roller, respectively.

F

a

l,G

30
◦

F

l

a

G G
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E3.14Example 3.14 Two smooth spheres (each

having weight G and radius r) rest in a

thin-walled circular cylinder (weight Q,

radius R = 4r/3) as shown in Fig. 3.31.

Find the magnitude of Q required to

prevent the cylinder from falling over.

Fig. 3.31Result: see (A) Q > G/2 .

E3.15Example 3.15 A rigid body is subjected to three forces: F 1 =

F (−2, 3, 1)T , F 2 = F (7, 1,−4)T , F 3 = F (3,−1,−3)T . Their points

of application are given by the position vectors r1 = a(4, 3, 2)T ,

r2 = a(3, 2, 4)T , r3 = a(3, 5, 0)T .

Determine the resultant force R and the resultant moment

M
(A)
R with respect to point A given by rA = a(3, 2, 1)T .

Results: R = F (8, 3,−6)T , M
(A)
R = aF (−15, 15,−4)T .

E3.16Example 3.16 A plate in

the form of a rectangular

triangle (weight negligible)

is supported by six bars. It

is subjected to the forces F

and Q (Fig. 3.32).

Calculate the forces in

the bars.

a

a

6
4

3

a

F

a

1

5

2

Q

Fig. 3.32

Results: see (A) S1 = F/2, S2 = S5 = −
√

2 F/2,

S3 = −Q/2, S4 = (F − Q)/2, S6 = 0.

G

G

Q

α

R

r
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E3.17 Example 3.17 A homoge-

neous rectangular plate

(weight G1) is supported

by six bars. The plate

is subjected to a vertical

load G2 (Fig. 3.33).

Calculate the forces in

the bars.
1

G2

G1

2

6a3 45
6

A

C

3a
3a

3a
3a 2a2a2a2a

B

Fig. 3.33

Results: see (B) S1 = S2 = −
√

13 (2G1 + 3G2)/24,

S3 = S4 = 0, S5 = −(2G1 − G2)/8, S6 = −(2G1 + 3G2)/8.

E3.18 Example 3.18 A rectangular plate of negligible weight is suspended

by three vertical wires as shown in Fig. 3.34.

a) Assume that the pla-

te is subjected to a con-

centrated vertical force Q.

Determine the location of

the point of application of

Q so that the forces in the

wires are equal.

b) Calculate the forces

in the wires if the plate

is subjected to a constant

area load p.

2

2a y

x

1

3

4a

4a

a

a

Fig. 3.34

Results: see (A) a) xQ = 8 a/3 , yQ = 4 a/3.

b) S1 = 3pa2 , S2 = 9pa2 , S3 = 12pa2.
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E3.19Example 3.19 The circular

arch in Fig. 3.35 is subjec-

ted to a uniform tangential

line load q0.

Determine the resultant

force R and the resul-

tant moment M
(A)
R with

respect to the center A of

the circle. If the load is re-

duced to a single force alo-

ne, find the corresponding

line of action.

r

q0

A

x

y

60
◦

60
◦

Fig. 3.35

Results: see (B) Rx = 0 , Ry =
√

3 p0r , M
(A)
R = 2πp0r

2/3.

xR = 1.21 r , yR arbitrary.



86 3 General Systems of Forces, Equilibrium of a Rigid Body

3.4 3.4 Summary
• A couple consists of two forces having equal magnitudes, par-

allel action lines and opposite directions.

The effect of a couple is uniquely given by its moment M . The

couple moment is determined by its magnitude M = hF and

its sense of rotation.

A couple moment is not bound to an action line: it can be

applied at arbitrary points of a rigid body without changing

its effect on the body.

• The moment of a force F with respect to a point A is defined

as M (A) = r × F where r is the vector pointing from point

A to an arbitrary point on the action line of F . The moment

M (A) has the magnitude M (A) = hF (h = lever arm) and a

sense of rotation.

In the case of a coplanar system of forces, the moment vector

has only one component M (A) = hF (perpendicular to the

plane) and a sense of rotation about A.

• A general system of forces can be reduced to a resultant force

R and a resultant moment M
(A)
R with respect to an arbitrary

point A.

• A general system of forces is in equilibrium if the resultant

force R and the resultant moment M
(A)
R vanish:

∑
F i = 0 ,

∑
M

(A)
i = 0 .

These equations represent three force conditions and three mo-

ment conditions in spatial problems.

In the case of a coplanar system of forces, the equilibrium

conditions reduce to
∑

Fix = 0 ,
∑

Fiy = 0 ,
∑

M
(A)
i = 0 .
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Objectives: In this chapter, definitions of the center of

gravity and the center of mass are given. It is shown how to de-

termine the centroids of bodies, areas and lines. Various examples

demonstrate how to apply the definitions to practical problems.
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4.14.1 Center of Forces
In Section 3.1.3, it is shown that a system of coplanar forces that

are not in equilibrium can be replaced by a single force, namely,

the resultant R, provided that the reduction does not lead to

a couple. In the special case of a system of parallel forces, the

direction of the resultant R coincides with the direction of the

individual forces. The action line of the resultant R can be found

from (3.11). If we introduce the force H = −R, which has the

same action line as R, then the given system of forces and the

single force H are in equilibrium.

0

0

a b

R

H

R
G1 G2 Gi Gn

Gn

Gi
G1

H

C
x1

xc

x

y

z

x
C

yi

xi

yc

xc

Fig. 4.1

As a simple example, consider a beam (weight neglected) that

is loaded by a system of parallel forces Gi (Fig. 4.1a). In order to

determine the location of the action line of the supporting force H

(and therefore also of the resultant R), the coordinate x is introdu-

ced with an arbitrarily chosen origin 0. Applying the equilibrium

conditions (3.12)

↑ : H −
∑

Gi = 0 ,
�

0 : xcH −
∑

xi Gi = 0

the action line is found to be located at the distance

xc =

∑
xi Gi∑
Gi

(4.1)

from the origin 0 of the coordinate system. The corresponding

point C (an arbitrary point on the action line of H) is called the

center of forces.

The result (4.1) can be generalised in the case of a spatial force

system where every force is parallel to the z-axis (Fig. 4.1b). The
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conditions of equilibrium (3.35)
∑

Fiz = 0 : H −∑Gi = 0 ,
∑

M
(0)
ix = 0 : ycH −∑ yi Gi = 0 ,

∑
M

(0)
iy = 0 : −xcH +

∑
xi Gi = 0

(signs of the moments according to the right-hand rule) yield the

coordinates of the center of forces:

xc =

∑
xi Gi∑
Gi

, yc =

∑
yi Gi∑
Gi

. (4.2)

The considerations that are used in the case of concentrated

forces can also be applied to systems of continuously distributed

loads. For this purpose, the line load q(x) (dimension: force per

unit length) is replaced according to Fig. 4.2a by a number of

infinitely small single forces. The line load acting at a distance x on

the infinitesimal element dx is replaced by the concentrated force

q(x) dx (since dx is infinitesimal, the change in q can be neglected

and q can be taken as a constant in this interval). Hence, the forces

Gi in (4.1) are replaced by q(x) dx and the moment arms xi by

the coordinate x. In the limit dx → 0, the sums are replaced by

integrals. Thus, the coordinate of the center of forces is obtained:

xc =

∫
x q(x) dx∫
q(x) dx

. (4.3)

The integrations must be carried out over the entire length l on

which the line load q(x) acts.

a b

C

xc

x

C

dx

x

z

y

p dAq(x)dx
q(x)

p(x, y)

dA

yc

xc

Fig. 4.2
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In an analogous way, the area load p(x, y) (dimension: force

per unit area) acting at the infinitesimal area dA, located at

the point x, y, is replaced by the infinitesimal force p(x) dA

(Fig. 4.2b). Integration leads to the coordinates of the center of

forces:

xc =

∫
x p(x, y) dA∫
p(x, y) dA

, yc =

∫
y p(x, y) dA∫
p(x, y) dA

. (4.4)

It should be noted that the integration must be carried out over

the entire loaded area A with both its directions x and y. For

simplicity of notation only one integral sign is used instead of a

double integral. The Examples 4.3 - 4.5 shall demonstrate how to

practically carry out the integration.

E4.1Example 4.1 A beam is loaded by a triangular line load (Fig. 4.3a).

Determine the resultant of the load and locate its action line.

a b
xcl

x dx

q0 q0

R

q(x)dx

Fig. 4.3

Solution We introduce the coordinate x according to Fig. 4.3b.

Then the triangular line load is described by

q(x) = q0
x

l
.

The integration of q(x) (=̂ sum of the forces q(x) dx) yields the

resultant

R =

l∫

0

q(x) dx =

l∫

0

q0
x

l
dx = q0

x2

2 l

∣∣∣∣
l

0

=
1

2
q0 l ,

which is equivalent to the area of the triangle. With the numerator
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in (4.3),

∫
x q(x) dx =

l∫

0

x q0
x

l
dx = q0

x3

3 l

∣∣∣∣
l

0

=
1

3
q0 l2 ,

we obtain the coordinate of the center of forces, i.e., the location

of the resultant’s action line:

xc =

∫
x q(x) dx∫
q(x) dx

=
1
3q0 l2

1
2q0 l

=
2

3
l .

The action of the concentrated force R = q0l/2, located at a di-

stance xc = 2 l/3 from the left-hand side of the rigid beam, is

statically equivalent to the action of the triangular line load; in

rigid-body mechanics, the distributed load may be replaced by its

resultant.

4.2 4.2 Center of Gravity and Center of Mass
Equations (4.4) can be generalised in the case of parallel body

forces f(x, y, z) (dimension: force per unit volume) that act on ri-

gid bodies. Let the direction of the body forces be arbitrary and be

given by the unit vector e (Fig. 4.4a). As before, the continuously

distributed load is replaced by a system of infinitesimal concentra-

ted forces. For this purpose, the infinitesimal volume element dV ,

located at the point with the position vector r = xex +yey +zez,

is considered. This volume element is loaded by the infinitesimal

force dG = f(x, y, z) dV e. Since the direction of the body forces

is given by the vector e and is therefore the same for all volume

elements and forces, respectively, the resultant of the body forces

is obtained as

G =

∫
dG =

(∫
f(x, y, z) dV

)
e = Ge

where

G =

∫
f(x, y, z) dV .
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The integration must be carried out over the entire volume V with

its three directions x, y and z (triple integral).

The point of application C of the force G, given by the position

vector rc, follows from the condition that the moment of G with

respect to the origin 0 of the coordinate system must be equal to

the sum (i.e., the integral) of the moments of all the forces dG

with respect to the same point:

rc × G =

∫
r × dG .

Introducing G and dG yields

rc × Ge =

(∫
r × f(x, y, z) dV

)
e

→
(

rc G −
∫

rf(x, y, z) dV

)
× e = 0 .

The direction of the vector e is arbitrary. Therefore, this equation

is satisfied only if the expression in parentheses vanishes. This

yields the center of the body forces

rc =

∫
rf(x, y, z) dV∫
f(x, y, z) dV

(4.5a)

which reads in components

xc =

∫
x f(x, y, z) dV∫
f(x, y, z) dV

, yc =

∫
y f(x, y, z) dV∫
f(x, y, z) dV

,
(4.5b)

0

a b

dG=fdV e

r

G

V1
C1

C2V2

rc

dV

CiVi

C

y

z

x
y

z

x

Fig. 4.4
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zc =

∫
z f(x, y, z) dV∫
f(x, y, z) dV

. (4.5b)

As a special case, a rigid body on the surface of the earth that is

subjected to the action of the earth’s gravitational field, is conside-

red now. Here, the body force is given by f(x, y, z) = ̺(x, y, z) g,

where ̺ is the density of the material of the body and g is the

gravitational acceleration. The density may be variable within the

body, and the gravitational acceleration is assumed to be constant

(uniform and parallel gravitational field). Thus, the gravitational

acceleration g is a constant factor in both the numerators and the

denominators of Equations (4.5b), and will cancel. This defines

the center of gravity of the body as the point with the coordinates

xc =

∫
x ̺dV∫
̺dV

, yc =

∫
y ̺ dV∫
̺dV

, zc =

∫
z ̺dV∫
̺dV

. (4.6)

The weight of the body is distributed over its entire volume V .

In the case of a rigid body, the weight can be considered to be

concentrated at the center of gravity without change in the static

action.

It may be noted that the assumption of a uniform and parallel

gravitational field is not satisfied exactly in reality. The direct-

ions and magnitudes of the gravitational forces for the various

particles of a body differ slightly, since these forces are directed

towards the center of attraction of the earth and their intensities

depend on their distance from this center. However, in the case

of sufficiently small bodies, the assumption is sufficiently accurate

for engineering purposes.

The mass of the infinitesimal volume element dV is given by

dm = ̺dV , and the mass of the whole body is the sum (i.e., the

integral) of the mass elements: m =
∫

̺dV =
∫

dm. This leads to

the definition of the center of mass:

xc =
1

m

∫
xdm, yc =

1

m

∫
y dm, zc =

1

m

∫
z dm. (4.7)

The center of mass coincides with the center of gravity if the

gravitational field is assumed to be uniform and parallel.
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In the case of a body made of homogeneous material, the density

̺ is constant and will therefore cancel in (4.6). Thus,

xc =
1

V

∫
xdV , yc =

1

V

∫
y dV , zc =

1

V

∫
z dV , (4.8)

where V =
∫

dV is the volume of the whole body. Equations (4.8)

define the center of the volume. If the density and the gravitational

acceleration are constant, the center of gravity and the center of

the volume coincide. Since Equations (4.8) define a purely geome-

trical property of the body, the center of gravity can be obtained

by purely geometrical considerations in this case.

The term “center” (e.g., center of mass) refers to a real phy-

sical body. The term “centroid” is used when the density factors

are omitted, i.e., when one is concerned with geometrical consi-

derations only. If the density is uniform throughout the body, the

positions of the center of mass and of the centroid of the body are

identical. In the case of a variable density, the center of mass and

the centroid are in general different points. If a body possesses a

plane of geometrical symmetry, the centroid will lie in this plane.

In the following, a body is considered that is composed of se-

veral parts of simple shape (composite body). The volumes Vi, the

constant densities ̺i and the coordinates xi, yi, zi of the centers

of gravity Ci of the individual parts are assumed to be known

(Fig. 4.4b). The denominator in (4.6) can then be written in the

form
∫

V

̺dV =

∫

V1

̺1dV +

∫

V2

̺2dV + . . . = ̺1

∫

V1

dV + ̺2

∫

V2

dV + . . .

= ̺1V1 + ̺2V2 + . . . =
∑

̺iVi ,

where the notation Vi at the integral signs indicates the range of

the respective integration.

In order to simplify the numerators in (4.6), at first only the

x-component is considered and the relation for the i-th body

xi =
1

Vi

∫

Vi

xdV →
∫

Vi

xdV = xiVi
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is used, which follows from the first equation of (4.8). If the inte-

gration over the entire volume is written again as the sum of the

integrations over the individual volumes, the numerator of the first

equation in (4.6) results in
∫

V

x̺ dV = ̺1

∫

V1

x dV + ̺2

∫

V2

x dV + . . .

= ̺1x1V1 + ̺2x2V2 + . . . =
∑

xi̺iVi .

Analogous equations are obtained for the coordinates y and z.

Thus, the location of the center of gravity is determined by

xc =

∑
xi̺iVi∑
̺iVi

, yc =

∑
yi̺iVi∑
̺iVi

, zc =

∑
zi̺iVi∑
̺iVi

. (4.9)

The task to locate the center of gravity is therefore considerably

simplified: no integration is necessary since finite sums replace the

integrals.

If the density is constant within the whole body (homogeneous

material, i.e., ̺i = ̺), it will cancel and (4.9) reduces to

xc =

∑
xiVi

V
, yc =

∑
yiVi

V
, zc =

∑
ziVi

V
. (4.10)

Equations (4.9) and (4.10) can also be used in the case of bo-

dies with holes or with regions having no material. The the given

body then is considered to be composed of the corresponding bo-

dy without holes, and the holes are considered to be additional

bodies with “negative” volumes. The volumes of the holes are thus

inserted with negative signs in (4.9) and (4.10).

E4.2 Example 4.2 A small cube (edge length 2a) is removed from a

large cube (edge length 4a), as shown in Fig. 4.5a.

a) Locate the center of gravity of the remaining body.

b) Determine the center of gravity if the small cube is replaced

by a cube with the same size but of different material (density

̺2 = 2̺1), as shown in Fig. 4.5b.



4.2 Center of Gravity and Center of Mass 97

cba

z

̺1

yx

̺1

̺2 V3

V2

V1

2a
2a

2a

4a

4a

4a

Fig. 4.5

Solution In both cases the body can be considered to be compo-

sed of several parts. In Problem a), the material is homogeneous

(constant density ̺1). Therefore, the position of the center of gra-

vity can be determined from (4.10). The three parts as indicated

in Fig. 4.5c are used in the calculation, which is practical to carry

out in the form of the following table:

i xi yi zi Vi xiVi yiVi ziVi

1 2a 2a a 32a3 64a4 64a4 32a4

2 3a 2a 3a 16a3 48a4 32a4 48a4

3 a a 3a 8a3 8a4 8a4 24a4

∑
56a3 120a4 104a4 104a4

→ xc =
120

56
a =

15

7
a , yc = zc =

104

56
a =

13

7
a .

The same result can be obtained more easily if the complete

cube (edge length 4a) is taken as the volume V1. The space from

which the small cube is removed (the space that is void of mate-

rial, i.e., negative volume V2) is then the second part:

i xi yi zi Vi xiVi yiVi ziVi

1 2a 2a 2a 64a3 128a4 128a4 128a4

2 a 3a 3a −8a3 −8a4 −24a4 −24a4

∑
56a3 120a4 104a4 104a4

In Problem b), the densities of the two parts of the body are

different. Therefore, Equations (4.9) have to be used. The body



98 4 Centroids

as shown in Fig. 4.5a is chosen as the first part. Its center of gravity

is known from Problem a). The second part is the small cube,

having the density ̺2 = 2 ̺1:

i xi yi zi ̺iVi xi̺iVi yi̺iVi zi̺iVi

1 15
7 a 13

7 a 13
7 a 56̺1a

3 120̺1a
4 104̺1a

4 104̺1a
4

2 a 3a 3a 16̺1a
3 16̺1a

4 48̺1a
4 48̺1a

4

∑
72̺1a

3 136̺1a
4 152̺1a

4 152̺1a
4

→ xc =
136

72
a =

17

9
a , yc = zc =

152

72
a =

19

9
a .

4.3 4.3 Centroid of an Area
The location of the centroid of a plane area must be known for cer-

tain problems arising in engineering mechanics (see, for example,

the chapter “Bending of Beams” in Volume 2). The coordinates

of the centroid can be obtained from (4.8) if the body is consi-

dered to be a thin plate with a constant density and a constant

thickness (Fig. 4.6) and t → 0. Introducing the infinitesimal area

dA = dxdy located at the point x, y, the entire area A =
∫

dA,

the volume element dV = t dA and the entire volume V = tA

into (4.8) yields the coordinates of the centroid of the area:

xc =
1

A

∫
xdA , yc =

1

A

∫
y dA . (4.11)

The integration must be carried out over the entire area A (double

integrals). Since t → 0 and therefore z → 0, the third equation

0

x t

y

Cyc

y

xc

dx
dy

x

Fig. 4.6
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in (4.8) results in zc → 0: the centroid of a plane area is located

in its plane.

The center of mass of a thin plate coincides with the centroid of

the surface area if the thickness (t → 0) and density are constant

over the entire area.

The integrals in (4.11) are called the first moments of the area

with respect to the y and the x-axis, respectively:

Sy =

∫
xdA , Sx =

∫
y dA . (4.12)

If the origin of the coordinate system is chosen to coincide with

the centroid of the area, the coordinates xc and yc are zero. Thus,

the integrals in (4.12) have to vanish:

The first moments of an area with respect to axes through

its centroid are zero.

Finding the centroid of an area is simplified if an axis of symme-

try exists. For example, Fig. 4.7 shows that for every infinitesimal

area dA located at a positive distance x, there exists a correspon-

ding element located at a negative distance. The integral
∫

xdA

in (4.11) is therefore zero. Hence:

If the area has an axis of symmetry, the centroid of the area

lies on this axis.

x−x

x

y

C

dA dA

Fig. 4.7

y

xxi

yi

Ai

Ci

C2

C1

Fig. 4.8
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In the case of two axes of symmetry, the centroid is determined

by the point of intersection of these axes.

Let us now consider an area composed of several parts of simple

shape (Fig. 4.8). The coordinates xi, yi of the centroids Ci and the

areas Ai of the individual parts are assumed to be known. The first

equation in (4.11) can then be written in the form

xc =
1

A

∫
xdA =

1

A

{ ∫

A1

xdA +

∫

A2

xdA + . . .

}

=
1

A
{x1 A1 + x2 A2 + . . .} .

Thus, the integrals are replaced by sums (compare Section 4.2).

With A =
∑

Ai the coordinates of the centroid are obtained as

xc =

∑
xi Ai∑
Ai

, yc =

∑
yi Ai∑
Ai

. (4.13)

These equations can also be used for areas with holes or cut-out

sections. The holes are then considered to be “negative” areas (see

Example 4.7).

The method used to divide the whole area into several secti-

ons (method of composite areas) can also be applied to infinitely

small sections. Therefore it is not necessary to choose in (4.11)

an infinitesimal area dA = dxdy as shown in Fig. 4.6. In many

cases, it is more practical to choose a rectangular or a triangular

element where one side, e.g. a, is finite: dA = adx (differential

strip). This step reduces the double integrals to single integrals.

Then, the quantities x and y in (4.11) refer to the coordinates of

the centroid of the element. This method is demonstrated in the

Examples 4.3 - 4.5.

E4.3 Example 4.3 Locate the centroid of a rectangular triangle with

baseline a and height h (Fig. 4.9a).

Solution The coordinates of the centroid can be determined from

Equations (4.11):
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a b

dc

y

x

y

x

dA=ydx

dx

h

a

dy

x

y

x

dA=(a−x)dy

ȳ=y/2y
a − x

Fig. 4.9

xc =
1

A

∫
xdA , yc =

1

A

∫
y dA .

First, we introduce the coordinate system as shown in Fig. 4.9b.

According to Fig. 4.6, the quantity x in the first equation repre-

sents the distance of the infinitesimal element dA from the y-axis.

To determine the coordinate xc, however, it is more practical to

choose the infinitesimal area dA = y dx (see Fig. 4.9b) instead of

the element shown in Fig. 4.6. With this choice, every point of the

element (in particular its centroid) has the same distance x from

the y-axis. Since this element incorporates the integration over y,

the double integral reduces to a single integral. Introducing the

equation y(x) = hx/a for the inclined side of the triangle, we

obtain the first moment of the area with respect to the y-axis:

∫
xdA =

∫
x y dx =

a∫

0

x
h

a
xdx =

h

a

x3

3

∣∣∣∣
a

0

=
1

3
h a2 .

With the area A = a h/2 of the triangle, we get

xc =
1

A

∫
xdA =

1
3h a2

1
2a h

=
2

3
a .

To determine the coordinate yc of the triangle, we choose the

infinitesimal strip dA = (a−x)dy (see Fig. 4.9c). Here, every point
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of the element has the same distance y from the x-axis. With

x(y) = a y/h, the first moment with respect to the x-axis becomes

∫
y dA =

∫
y (a − x) dy =

h∫

0

y
(
a − a

h
y
)

dy

=

{
y2

2
a − a

h

y3

3

}∣∣∣∣
h

0

=
a h2

6

and we obtain

yc =
1

A

∫
y dA =

1
6a h2

1
2a h

=
1

3
h .

One may also use the infinitesimal element as shown in Fig. 4.9b

to determine the coordinate yc. However, the points of this ele-

ment do not have the same distance from the x-axis. As explained

previously, the quantity y in (4.11) represents the coordinate of

the centroid of the element. Therefore, one has to replace y in

(4.11) by ȳ = y/2 (Fig. 4.9d):

yc =
1

A

∫
ȳ dA =

1

A

∫
y

2
dA .

With dA = y dx, y = hx/a, A = ah/2 and

∫
y dA =

a∫

0

y2 dx =

a∫

0

h2

a2
x2 dx =

1

3
ah2

we obtain again

yc =
1
2

1
3 ah2

1
2 ah

=
1

3
a .

It should be noted that the infinitesimal area dA = dxdy ac-

cording to Fig. 4.6 can also be used to determine the coordinates

of the centroid. With this choice, the integration has to be carried

out in both directions x and y (double integral). However, it is

beyond the scope of this textbook to explain how double integrals

are solved.



4.3 Centroid of an Area 103

E4.4Example 4.4 Locate the centroid of the area that is bounded by

a parabola (Fig. 4.10a).

a b

y

x

C
dy dA=2xdy

h

a a

2x

Fig. 4.10

Solution We use the coordinate system as shown in Fig. 4.10b.

Since the y-axis is an axis of symmetry, the centroid C lies on it:

xc = 0. To determine the coordinate yc from

yc =

∫
y dA∫
dA

,

we choose the differential strip dA = 2xdy parallel to the x-axis.

Every point of this element has the same distance y from the

x-axis. The parabola is described by

y =
h

a2
x2 or x =

√
a2 y

h
.

Therefore,

A =

∫
dA =

∫
2xdy = 2

h∫

0

√
a2 y

h
dy = 2

√
a2

h

2

3
y3/2

∣∣∣∣∣

h

0

=
4

3
a h

and
∫

y dA =

h∫

0

y 2

√
a2 y

h
dy = 2

√
a2

h

2

5
y5/2

∣∣∣∣∣

h

0

=
4

5
a h2 .

This equation yields the result

yc =

∫
y dA∫
dA

=
4
5a h2

4
3a h

=
3

5
h .

Note that the height yc of the centroid does not depend on the

width a of the parabola.



104 4 Centroids

E4.5 Example 4.5 Locate the centroid of a circular sector (Fig. 4.11a).

a b

x

CE CE

y

ϕ

dA

dϕ

ϕ

ȳ

ȳ

rdϕ

2
3 r

α α
r

Fig. 4.11

Solution We choose the y-axis as the axis of symmetry, such that

xc = 0. In order to find yc, we introduce the coordinate ϕ and the

infinitesimal area dA, as shown in Fig. 4.11b. Neglecting higher-

order terms, the infinitesimal sector of the circle can be replaced

by an infinitesimal triangle with a base r dϕ and a height r. The

centroid CE of this triangle is located at 2/3 of its height. There-

fore, it lies at a distance

ȳ = 2
3 r sin ϕ

from the x-axis. With dA = 1
2r dϕ r = 1

2r2 dϕ, we obtain

yc =

∫
ȳ dA∫
dA

=

∫ (π/2)+α

(π/2)−α

2
3 r sin ϕ 1

2 r2 dϕ

∫ (π/2)+α

(π/2)−α

1
2 r2 dϕ

=

1

3
r3(− cos ϕ)

∣∣∣∣
(π/2)+α

(π/2)−α

1

2
r2 ϕ

∣∣∣∣
(π/2)+α

(π/2)−α

=

=
1

3
r
cos(π

2 − α) − cos(π
2 + α)

α
=

2

3
r

sin α

α
.

For a semicircular area (α = π/2) this yields

yc =
4 r

3π
.
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E4.6Example 4.6 Find the centroid of the L-shaped area in Fig. 4.12a.

a cb

t

t

y

t ≪ a

x

y

C1

C

xc

1

C2

2
x

5a

8a l1=8a

l2=5a

yc

Fig. 4.12

Solution We choose a coordinate system and consider the area to

be composed of two rectangles (Fig. 4.12b):

A1 = 8 a t , A2 = (5 a − t) t .

The coordinates of their respective centroids are given by

x1 =
t

2
, y1 = 4 a , x2 =

5 a − t

2
+ t =

5 a + t

2
, y2 =

t

2
.

Equations (4.13) yield

xc =

∑
xi Ai∑
Ai

=

t

2
8 a t +

5 a + t

2
(5 a − t) t

8 a t + (5 a − t)t

=
4 a t2 +

25

2
a2 t − t3

2
8 a t + 5 a t − t2

=
25

26
a

1 +
8

25

t

a
− 1

25

(
t

a

)2

1 − 1

13

t

a

and

yc =

∑
yi Ai∑
Ai

=
4 a 8 a t +

t

2
(5 a − t) t

13 a t − t2
=

32

13
a

1 +
5

64

t

a
− 1

64

(
t

a

)2

1 − 1

13

t

a

.
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In the special case of t ≪ a (Fig. 4.12c), the terms t/a and (t/a)2

are negligible compared with 1. Then we obtain

xc =
25

26
a , yc =

32

13
a .

E4.7 Example 4.7 A circle is removed from a triangle, as shown in

Fig. 4.13a.

Locate the centroid C of the remaining area.

a b c

C

x

y

1

2

C1

C2

h

a

h/4

r

yc

Fig. 4.13

Solution By symmetry, the centroid lies on the y-axis of the cho-

sen coordinate system, i.e., xc = 0 (Fig. 4.13b). We consider the

remaining area as a composite area which consists of two parts:

the triangle 1 and the circle 2 . Since the region of the circle is

void of material, this part has to be subtracted from the triangle

(Fig. 4.13c). Introducing

A1 =
1

2
a h , y1 =

h

3
, A2 = π r2 , y2 =

h

4

into (4.13), we obtain

yc =
y1 A1 − y2 A2

A1 − A2
=

h

3

1

2
a h − h

4
π r2

1

2
a h − π r2

=
h

3

1 − 3

2

π r2

a h

1 − 2π r2

a h

.

If the area of the circle is small compared with the area of the

triangle (π r2 ≪ a h/2), the result is reduced to h/3.
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Table 4.1 Location of Centroids

Area Location of Centroid

Rectangular triangle

x

y

C

a

h A =
1

2
ah xc =

2

3
a, yc =

h

3

Arbitrary triangle

x

y
x3, y3

x1, y1
C

x2, y2

A =
1

2
[(x2 − x1)(y3 − y1)

−(x3 − x1)(y2 − y1)]

xc =
1

3
(x1 + x2 + x3)

yc =
1

3
(y1 + y2 + y3)

Parallelogram

hC

a

A = a h
C is determined by

the intersection of

the diagonals

Trapezium C is located at

the median line

x

y

hC

b

a

A =
h

2
(a + b) yc =

h

3

a + 2 b

a + b

Circular sector

y

x
C

r
α
α

A = α r2 xc =
2

3
r

sin α

α

Semicircle

y

x
r

C A =
π

2
r2 xc =

4 r

3 π
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Table 4.1 Location of Centroids (cont’d)

Area Location of Centroid

Circular segment

y

xα
α s

r

C A =
1

2
r2(2 α − sin 2 α)

xc =
s3

12 A

=
4

3
r

sin3 α

2 α − sin 2 α

Quadratic parabola

y

x

C b

a

A =
2

3
a b

xc =
3

5
a

yc =
3

8
b

4.4 4.4 Centroid of a Line
Let us now consider a line that lies in a plane (Fig. 4.14). Its cen-

troid C can be determined if in (4.11) the infinitesimal area dA is

replaced by a line element ds and the area A is replaced by the

length l of the line:

xc =
1

l

∫
xds , yc =

1

l

∫
y ds . (4.14)

The centroid of a straight line lies in its center, and the centroid

of a curved line lies, in general, outside the line. Equations (4.14)

can, for example, be applied to determine the centroid of a bent

x

C

y

xc

ds

yc
s

Fig. 4.14
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uniform wire or to locate the action line of the resultant of forces

that are evenly distributed along a line. The centroid of a line

coincides with the center of mass of a uniform thin bar or wire. In

the case of a variable density or a variable cross-section, the mass

center and the centroid are different points.

Let a line be composed of several parts. The lengths li and

the coordinates xi, yi of the individual centroids are assumed to

be known. The integrals in (4.14) then reduce to sums (compare

(4.13)), and Equations (4.14) are simplified to

xc =

∑
xi li∑
li

, yc =

∑
yi li∑
li

. (4.15)

As a simple example the centroid of the line shown in Fig. 4.12c

is determined where t → 0. Applying (4.15), we obtain

xc =
0 · 8 a + 5

2a 5 a

8 a + 5 a
=

25

26
a , yc =

4 a 8 a + 0 · 5 a

8 a + 5 a
=

32

13
a .

This result coincides with the corresponding result derived in Ex-

ample 4.6.

E4.8Example 4.8 A wire is bent into the shape of a circular arc with

an opening angle 2α (Fig. 4.15a).

Locate its centroid.

a b

y

C xϕα

α

r dϕ

s

ds

Fig. 4.15

Solution The coordinate system shown in Fig. 4.15b is chosen such

that yc = 0 (symmetry). Now the angle ϕ is introduced and an

infinitesimal element of the arc is considered, whose length ds is

given by r dϕ. Using the relation x = r cos ϕ for polar coordinates,

(4.14) yields
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xc =

∫
xds∫
ds

=

+α∫
−α

r cos ϕ r dϕ

+α∫
−α

r dϕ

=
2 r2 sin α

2 r α
= r

sin α

α
.

For the special case of a semicircular arc (i.e., α =
π

2
), we obtain

xc =
2 r

π
.

The centroid of a semicircular area (xc = 4 r/(3π), see Table 4.1

and Example 4.5) is located much closer to the center of the circle

than the centroid of a semicircular arc.

4.5 4.5 Supplementary Examples
Detailed solutions of the following examples are given in (A)

D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik

1, Springer, Berlin 2008 and (B) W. Hauger et al. Aufgaben zur

Technischen Mechanik 1-3, Springer, Berlin 2008.

E4.9 Example 4.9 Locate the centroids of the profiles as shown in

Fig. 4.16. The measurements are given in mm.

ba

32
20

15 15

8

4

45 45

8

4

5 5

x x

yy

Fig. 4.16

Results: see (A) a) xc = 0 , yc = 12.8 mm,

b) xc = 13 mm , yc = 12.8 mm.
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E4.10Example 4.10 Locate the centroids of the thin-walled profiles

(t ≪ a) as shown in Fig. 4.17.

ba

a

t

a a

t

a

aa

a

y

y

x

x

Fig. 4.17

Results: see (B) a) xc = (5
√

2/4 − 1)a , yc =
√

2 a/4,

b) xc = 0 , yc =
3 + π

4 + π
a.

E4.11Example 4.11 Determine the coordi-

nates of the centroid C of the num-

ber shown in Fig. 4.18.

a 3a

a

4a

3a

2a

x

y

Fig. 4.18

Result: see (B) xc = 1.93 a , yc = 4.89 a.

E4.12Example 4.12 A circular area is removed from a circle and an

ellipse, respectively (Fig. 4.19).

Locate the centroids of the remaining areas.
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a b

b

b

3

x
a

x

y

y

r1

r2

r1

2 Fig. 4.19

Results: see (B) a) xc = − r1r
2
2

2(r2
1 − r2

2)
, yc = 0 ,

b) xc = − b2

3(9a − b)
, yc = −xc .

E4.13 Example 4.13 A thin metal

sheet of even thickness is

bent into the shape shown

in Fig. 4.20. It consists of a

square and two triangles. The

measurements are given in

cm.

Determine the centroid.

y

z

4

4

3

2

I
III

II

3

x Fig. 4.20

Result: see (A) xc = 1.71 cm , yc = 1.57 cm , zc = 0.43 cm .

E4.14 Example 4.14 The area shown in Fig.

4.21 is bounded by the coordinate

axes and the quadratic parabola with

its apex at x = 0.

Determine the coordinates of the

centroid.
b

a/2

y

x

3a/2

Fig. 4.21

Result: see (A) xc = 3 b/5 , yc = 47 a/100 .
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E4.15Example 4.15 A thin wire has the

shape of the function y = a cosh x/a

(Fig. 4.22).

Find the centroid. a

a xa

C

y

y = a cosh
x
a

Fig. 4.22

Result: see (A) xc = 0 , yc = 1.197 a .

E4.16Example 4.16 Locate

the centroid of a thin-

walled spherical shell

(radius R, Height H,

thickness t ≪ R) as

shown in Fig. 4.23.

z

t

H

R

Fig. 4.23

Result: see (B) zc = R − H/2 .
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4.6 4.6 Summary
• The weight of a body is distributed over its entire volume. In

the case of a rigid body it can be considered to be concentrated

in the center of gravity without change in the static action. The

coordinates of the center of gravity are defined by

xc =

∫
x ̺dV∫
̺dV

, yc =

∫
y ̺ dV∫
̺dV

, zc =

∫
z ̺dV∫
̺dV

.

Analogous definitions are valid for the center of mass and the

center of volume.

• The coordinates of the centroid of an area are defined by

xc =
1

A

∫
xdA , yc =

1

A

∫
y dA .

• The first moments of an area are defined by

Sy =

∫
xdA , Sx =

∫
y dA .

• The first moments of an area with respect to axes through its

centroid are zero.

• If an area has an axis of symmetry, the centroid of the area

lies on this axis.

• Let a body (area, line) be composed of several parts, the cen-

troids of which are assumed to be known. The integrals are

then replaced by sums. For example, the coordinates of the

centroid of an area follow from

xc =

∑
xiAi∑
Ai

, yc =

∑
yiAi∑
Ai

.

Analogous relations are valid in the case of a body or a line.

• In the case of bodies (areas) with holes, the spaces that are void

of material are considered to be “negative” volumes (areas).
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Objectives: In this chapter, the most common kinds of

supports of simple structures and the different connecting ele-

ments of multi-part structures are introduced. We will discuss

their characteristic features and how they can be classified, so

that the students will be able to decide whether or not a struc-

ture is statically and kinematically determinate. Students will also

learn from this chapter how the forces and couple moments ap-

pearing at the supports and the connecting elements of a loaded

structure can be determined. Here, the most important steps are

the sketch of the free-body diagram and the correct application of

the equilibrium conditions.
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5.15.1 Plane Structures

5.1.1 Supports

Structures can be classified according to their geometrical shape

and the loads acting on them. A slender structural element (cross-

sectional dimensions much smaller than its length) that is loaded

solely in the axial direction (tension or compression) is called a

bar or a rod (see Section 2.4). If the same geometrical object is

subjected to a load perpendicular to its axis, it is called a beam.

A curved beam is usually designated as an arch. Structures con-

sisting of inclined, rigidly joined beams are called frames. A plane

structure with a thickness much smaller than its characteristic in-

plane length is called a disk if it is solely loaded in its plane, e.g.,

by in-plane forces. If the same geometrical structure is loaded per-

pendicularly to its midplane it is called a plate. If such a structure

is curved it is a shell.

Fig. 5.1

Structures are connected to their surroundings by supports who-

se main purpose is to fix the structure in space in a specific po-

sition. Secondly, supports transmit forces. As a simple example,

consider the “roof” in Fig. 5.1a, loaded by external forces Fi, joi-

ned at A to a vertical wall by a pin, and supported at B by the

strut S. Forces are transmitted to the wall and the ground via the

supports A and B. According to the law of action and reaction

(actio = reactio) the same forces are exerted in opposite directions

from the wall and the ground onto the roof. These forces from

the environment onto the structure are reaction forces (cf. Secti-

on 1.4), and are termed support reactions. They become visible in

a b

F1 F2 Fi

A B

S
A B

Fi
F2F1
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the free-body diagram (Fig. 5.1b), where they are generally deno-

ted by the same symbols as the supports, i.e. by A and B in this

example.

The following discussion is limited to single-part structures lo-

cated and loaded in a plane. A free body with no restraints has

three degrees of freedom, i.e., it can be independently displaced

in three different ways: by two translations in different directions

and by one rotation about an axis perpendicular to the plane (cf.

Section 3.1.4). Supports (restraints) reduce the feasible displace-

ments: each support reaction imposes a constraint. Let r be the

number of support reactions. Then the number f of degrees of

freedom of a body in a plane is given by

f = 3 − r (5.1)

(for exceptions see Section 5.1.2).

We now will consider different types of supports and classify

them by the number of support reactions involved.

Supports that can transmit only one single reaction (r = 1). Ex-

amples of this type of support are the roller support, the simple

support and the support by a strut, cf. Fig. 5.2a–c. In this case,

the direction of the reaction force is known (here vertical), and its

magnitude is unknown.

Figure 5.2f shows the free-body diagram for the roller support.

If the contact areas are assumed as frictionless, all contact forces

can be considered to act perpendicular to the respective contact

surfaces. With this assumption the action line of the reaction for-

ce A is determined. Figure 5.2e indicates the displacements that

a
d

ecb f

A

A

Fig. 5.2
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are unconstrained by the support: a horizontal translation and a

rotation. A vertical translation is excluded through the support’s

restraint. If the support reaction A changes its sign, i.e., if it is

reversed in the direction along the action line, a lift-off must be

prevented by an appropriate support construction. From now on a

simple support will be depicted by the symbol shown in Fig. 5.2d.

Supports that can transmit two reactions (r = 2). Examples of

this type of support are the hinged support and the support by

two struts (Fig. 5.3a, b), which are depicted symbolically in Fig.

5.3c.

Fig. 5.3

As shown in Fig. 5.3d, the hinged support allows a rotation but

not a displacement in any direction. Accordingly, it can transmit

a reaction force A of arbitrary magnitude and arbitrary direction

that can be resolved into its horizontal and vertical components

AH and AV (Fig. 5.3e).

Additional variants of supports transmitting two reactions are

the parallel motion and the sliding sleeve (Fig. 5.4a, b). Their free-

body diagrams (Fig. 5.4c, d) show that in both cases one force and

Fig. 5.4

c

edba

A

AV

A
AV

AH

AH

d

ca

b AV

MA

AH

MA
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one couple moment can be transmitted. A displacement in one

single direction is possible in each case; a displacement in any

other direction or a rotation are not possible.

The rotational degree of freedom disappears if a support by two

struts is complemented by an additional, somewhat shifted, third

strut (Fig. 5.5a): the structure becomes immobile. In addition to

the two force components, the support can now also transmit a

couple moment, i.e., in total three reactions: r = 3.

The same situation appears in the case of a clamped support

(fixed support) according to Fig. 5.5b which symbolically is de-

picted in Fig. 5.5c. The free-body diagram in Fig. 5.5d shows that

the clamped support can transmit a reaction force A of arbitrary

magnitude and direction (or AH and AV ) and a couple moment

MA.

5.1.2 Statical Determinacy

A structure is called statically determinate if the support reacti-

ons can be calculated from the three equilibrium conditions (3.12).

Since the number of unknowns must coincide with the number of

equations, three unknown reactions (forces or couple moments)

must exist at the supports: r = 3. It will be explained later that

this necessary condition may not be sufficient for the determina-

tion of the support reactions.

The beam in Fig. 5.6a is supported by the hinged support A and

the simple support B. Accordingly, the three unknown support

reactions AH , AV and B exist. Therefore, with r = 3 it follows

from (5.1) that the beam is immobile: f = 3−r = 0; it is statically

determinate.

a b c d

MA

AH

A
AV

Fig. 5.5
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The support reactions of the clamped beam in Fig. 5.6b consist

of the two force components AH and AV and the couple moment

MA. Figure 5.6c shows a disk supported by the three struts A, B

and C, each transmitting one reaction. In both cases, with r = 3

and f = 0, the support is statically determinate.

Fig. 5.6

In contrast, Fig. 5.6d shows a beam that is supported by three

parallel struts A, B and C. Here too, the number of unknown sup-

port reactions coincides with the number of equilibrium conditi-

ons: the necessary condition for statical determinacy is satisfied.

However, the reaction forces cannot be calculated from the equi-

librium conditions. Here r = 3 does not imply f = 0 (exceptional

case!): the beam can be displaced in a horizontal direction. Such

exceptional cases must be excluded. A structure that may un-

dergo finite or infinitesimal displacements is called kinematically

indeterminate (cf. also Sections 5.3.4 and 6.1).

The disk in Fig. 5.6e is also kinematically indeterminate. Since

the action lines of the reaction forces intersect at point P , the

d

a b

ec

BA

F

A B C

q0

BA

F1

F2

C

A

q0

F

P

M0

A B

C

F
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supports allow an infinitesimal rotation about this point. It can

be seen immediately that the supports in Figs. 5.6d and e are not

statically determinate. In the case of the beam, the equilibrium

condition for the horizontal force components cannot be fulfilled

(
∑

FiH �= 0), whereas for the disk, the equilibrium of the moments

with respect to P cannot be satisfied (
∑

M
(P )
i �= 0).

In the case of a plane problem, a structure is supported stati-

cally and kinematically determinate if it is immobile and exactly

three support reactions appear. These may be

a) three forces which are not all parallel and not central,

b) two nonparallel forces and one moment.

It must be emphasized that the statical determinacy of a struc-

ture is solely dependent on the supports and not on the loading.

If additional supports are attached to a statically determinate

structure, more than three support reactions exist, which can no

longer be determined solely from the three equilibrium conditions.

Such a structure is called statically indeterminate.

For example, if the clamped beam in Fig. 5.6b is additionally

supported by the simple support B (see Fig. 5.7a), the number

of unknown reactions increases from three to four. In this case,

one redundant reaction (force or couple moment) is present. The

beam is therefore statically indeterminate with one degree of static

indeterminacy.

Generally, a structure is statically indeterminate with a degree

x of statical indeterminacy if the number of unknown support

reactions exceeds the number of available equilibrium conditions

by x. Consequently, for the beam in Fig. 5.7b, the degree of statical

indeterminacy is equal to two, since r = 2 + 3 · 1 = 5.

The support reactions of statically indeterminate structures can

only be determined if they are not considered to be rigid but if

a b

M0
q0

BA

F1 F2

Fig. 5.7
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their deformations are taken into account. The relevant methods

will be discussed in Volume 2, Mechanics of Materials.

5.1.3 Determination of the Support Reactions

In order to determine the support reactions, the method of secti-

ons is applied (cf. Section 1.4): the body is freed from its supports

and their action on the body is replaced by the unknown reactions.

As an example, consider the beam in Fig. 5.8a, which is sup-

ported by the strut A and the two simple supports B and C. The

reaction forces become visible in the free-body diagram (Fig. 5.8b).

Their sense of direction along the prescribed action lines can be

chosen arbitrarily. However, for the strut the sign convention for

rods is applied (see Sections 2.4 and 6.3.1) and it is assumed to

be subject to tension. The assumptions are correct if the analysis

yields positive values for the reaction forces, whereas the reaction

force is oppositely directed in the case of a negative sign.

All of the forces acting on the isolated body (i.e., active for-

ces and reaction forces) must fulfill the equilibrium conditions

(3.12):
∑

Fix = 0 ,
∑

Fiy = 0 ,
∑

M
(P )
i = 0 . (5.2)

Here, P is a reference point that may be chosen arbitrarily. The

support reactions can be calculated from (5.2).

E5.1Example 5.1 The beam shown in Fig. 5.9a is loaded by the force

F which acts under an angle α.

Determine the reaction forces at the supports A and B.

ba

y

x

F1 F2 Fi

B C

A A

B

F1 F2 Fi

C

Fig. 5.8
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Solution The beam is rigidly supported; the support A trans-

mits two reactions and support B one reaction. In total, the

three unknown reaction forces AH , AV and B exist: therefore,

the beam is statically determinate. We free the beam from its

supports and make the reaction forces visible in the free-body dia-

gram (Fig. 5.9b) where we choose their senses of direction along

the action lines freely. Hence, the equilibrium conditions are given

by

↑ : AV − F sin α + B = 0 , (a)

→ : AH − F cos α = 0 → AH = F cos α ,
�

A : − a F sin α + l B = 0 → B =
a

l
F sin α . (b)

Introducing B and the geometric relation a + b = l into (a) yields

AV = F sin α − B =
(
1 − a

l

)
F sin α =

b

l
F sin α .

As a check, the equilibrium condition for the couple moments

about another reference point is applied:

�

B : − l AV + b F sin α = 0 → AV =
b

l
F sin α .

This equation, in contrast to Equation (a), directly yields the

reaction force AV . Thus, application of the equilibrium conditions

(3.14) instead of (3.12) would have been advantageous in this case.

E5.2 Example 5.2 The clamped beam shown in Fig. 5.10a is loaded by

the two forces F1 and F2.

Determine the reactions at the support.

ba

α
α F sin α

F

F cos α

F

AH

AV B

l
a b

A B

Fig. 5.9
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Fig. 5.10

Solution The fixed support A transmits three reactions: two force

components AH , AV and the moment MA. They are made visible

in the free-body diagram (Fig. 5.10b) where their senses of direct-

ion have been chosen arbitrarily. Thus, the equilibrium conditions

(5.2) yield

↑ : AV − F2 cos α = 0 → AV = F2 cos α ,

→ : AH + F1 + F2 sin α = 0 → AH = −(F1 + F2 sin α) ,

�

A : MA + b F1 + l F2 cos α = 0 → MA = −(b F1 + l F2 cos α).

The negative signs of AH and MA indicate that these reactions

in reality are directed oppositely to the directions chosen in the

free-body diagram.

5.25.2 Spatial Structures
A body that can move freely in space has six degrees of freedom:

three translations in x-, y- and z-direction and three rotations

about the three axes. Supports constrain the possible displace-

ments. As in the plane case, the different types of support are

classified by the number of transferable support reactions.

The strut in Fig. 5.11a can transfer only one force in the direct-

ion of its axis. Therefore, r = 1 for spatial as well as for plane

structures. In contrast, the hinged support in Fig. 5.11b transfers

three force components in space (in x-, y- and z-direction), i.e.,

r = 3. The fixed support or clamping (Fig. 5.11c) transfers six

reactions in space (r = 6): the force components in the three

a b

F2

b

α

F1

F2
AV

MA

AH

F1

A

l

a
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coordinate directions as well as the moments about the three axes.

The sliding sleeve in Fig. 5.11d can transfer two moments and two

force components, provided that the beam with a circular cross-

section can rotate freely about its axis; for this type of support,

r = 4 is valid. When the support and the beam have rectangular

cross-sections, which makes a rotation impossible, moments about

all three axes can be transferred. This leads to r = 5.

A spatial structure is statically determinate when it is immobi-

le and the support reactions can be calculated from the six equi-

librium conditions (3.34), see also Section 5.3.4. Thus, in total

six reactions must exist at the supports. As in the case of plane

structures, these reactions are calculated by applying the method

of sections.

E5.3 Example 5.3 The rectangular lever which is clamped at A (Fig.

5.12a) is loaded by the line load q0, two forces F1, F2 and the

moment M0.

Determine the support reactions.

ba

dc

xx

y

x

z

y

y
z z

Fig. 5.11
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Fig. 5.12

Solution We free the lever from the fixed support and make the

reactions visible in the free-body diagram. According to the clam-

ped support, the three force components Ax, Ay, Az and the three

moment components MAx, MAy, MAz exist (Fig. 5.12b). Their di-

rections are chosen in such a way that they coincide with the pos-

itive coordinate directions. The line load can be replaced by its

resultant R = q0 b. The equilibrium conditions (3.34) then yield

∑
Fix = 0 : Ax + F1 = 0 → Ax = −F1 ,

∑
Fiy = 0 : Ay − F2 = 0 → Ay = F2 ,

∑
Fiz = 0 : Az − q0 b = 0 → Az = q0 b ,

∑
M

(A)
ix = 0 : MAx + M0 −

b

2
(q0 b) = 0 → MAx =

q0 b2

2
− M0 ,

∑
M

(A)
iy = 0 : MAy + a(q0 b) = 0 → MAy = − q0 a b ,

∑
M

(A)
iz = 0 : MAz − a F2 = 0 → MAz = a F2 .

E5.4Example 5.4 A spatial frame is supported at A, B and C (Fig.

5.13a). It is loaded by the line load q0, the forces F1, F2 and the

moment M0.

Determine the support reactions.

Solution The hinged support A transfers the three force com-

ponents Ax, Ay, Az (Fig. 5.13b). At the support B, forces Bx and

Bz act in the directions of the struts, and at the simple (moveable)

support, force C acts perpendicularly to the horizontal plane, i.e.,

a b

x

y
z

a

M0
q0

A

F2

b

F1

Ax

Ay

MAy
Az MAz

MAx
F1

b/2

q0

F2

M0

R=q0b
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a b
x

z

y
aa

a/2a/2

b
q0

F1

A C

B

M0

F2

Ax

a/2

q0a
M0

C

Bz
Bx

F1

F2

Ay

Az

Fig. 5.13

in the direction of the z-axis. Hence, the equilibrium equations for

the forces are
∑

Fix = 0 : Ax + Bx − F2 = 0 , (a)
∑

Fiy = 0 : Ay − F1 = 0 → Ay = F1 ,
∑

Fiz = 0 : Az + Bz + C − q0 a = 0 . (b)

To formulate the equilibrium of moments we choose axes through

the reference point B:
∑

M
(B)
ix = 0 : −2 a Az +

3

2
a (q0 a) + b F1 = 0 → Az =

3

4
q0 a+

b

2 a
F1 ,

∑
M

(B)
iy = 0 : a C + M0 = 0 → C = − 1

a
M0 ,

∑
M

(B)
iz = 0 : 2 a Ax + a F1 −

a

2
F2 = 0 → Ax = −1

2
F1+

1

4
F2 .

With the results for Ax, Az and C, (a) and (b) yield

Bx = −Ax + F2 =
1

2
F1 +

3

4
F2 ,

Bz = q0 a − Az − C =
1

4
q0 a − b

2 a
F1 +

1

a
M0 .

5.3 5.3 Multi-Part Structures

5.3.1 Statical Determinacy

Structures often consist not only of one single part but of a num-

ber of rigid bodies that are appropriately connected. The connec-

ting members transfer forces and moments, respectively, which can



5.3 Multi-Part Structures 129

be made visible by passing cuts through the connections. In the

following the discussion is restricted to plane structures.

The connecting member between two rigid bodies 1 and 2 of

a structure can be, for example, a strut S, a hinge G or a par-

allel motion P (Fig. 5.14a–c). The strut transfers only one single

force S in its axial direction. In this case, the number v of joint

reactions is v = 1. In contrast, a hinge can transfer a force in an

arbitrary direction, i.e. the force components GH and GV . Since

the hinge is assumed to be frictionless, it offers no resistance to a

rotation: it cannot transfer a moment. Therefore, the number of

joint reactions in this case is v = 2. The parallel motion prevents

a relative rotation and a relative displacement in the horizontal

direction of the connected bodies; however, it allows a vertical dis-

placement. Therefore, only a horizontal force N and a moment M

can be transferred: again v = 2. According to the principle actio

= reactio, the joint reactions act in opposite directions on the two

bodies.

a

b

c

S

1 2 1 2

2121

21 1 2

M

N N

M

GV

GH

GH

GV

SS

G

P

Fig. 5.14

In order to determine the support reactions and the forces and

moments transferred by the connecting members the method of

sections is applied: we free the different bodies of the structure by

removing all of the joints and supports and replace them by the

joint and support reactions.

Three equilibrium conditions can be formulated for each body

of the structure. Therefore, there are in total 3n equations if the

structure consists of n bodies. Let r be the number of support

reactions and v be the number of transferred joint reactions. We



130 5 Support Reactions

call the multi-body structure statically determinate if the r sup-

port reactions and the v joint reactions can be calculated from

the 3 n equilibrium conditions. The necessary condition for stati-

cal determinacy is that the number of equations and the number

of unknowns are equal:

r + v = 3n . (5.3)

Moreover, if the structure is rigid, this condition is sufficient for

statical determinacy. Condition (5.3) also includes the special case

of a statically determinate single body where n = 1, v = 0 and

r = 3 (cf. Section 5.1.2).

As examples, let us consider the multi-part structures depicted

in Fig. 5.15. The structure shown in Fig. 5.15a consists of n = 2

beams 1 and 2 , connected by the hinge G, and it is supported

by the fixed support A and strut B. Hinge G transfers v = 2 force

components, and at the fixed support and the strut, r = 3+1 = 4

support reactions exist. Hence, since 4 + 2 = 3 · 2, the necessary

condition (5.3) for statical determinacy is fulfilled. The structure

in Fig. 5.15b consists of three beams 1 - 3 and the disk 4 ; i.e.,

n = 4. The four hinges G1 - G4 transfer v = 4 · 2 = 8 joint

reactions. At the support A, two reactions exist and each of the

a b

d

c

B

1

G

2

1 2G

4

1 G

Fq0

A

B

A

q0
F F

A

A

q0

F1

3 2

1
q0

CG3 G2

F2

G4

B

G1

2
B

Fig. 5.15
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supports B and C transfers one reaction; this results in a total of

r = 2+1+1 = 4. Introducing these numbers into (5.3) shows that

the necessary condition for statical determinacy is again satisfied:

4 + 8 = 3 · 4. Since both structures are rigid, they are statically

determinate.

If the strut in Fig. 5.15a is attached to beam 1 instead of beam

2 as shown in Fig. 5.15c, the necessary condition for statical de-

terminacy is still fulfilled. However, this structure is kinematically

indeterminate (beam 2 is moveable) and therefore useless. The

structure in Fig. 5.15d is also kinematically indeterminate. Even

though hinge G cannot undergo finite displacements, it can still

be displaced infinitesimally upwards or downwards.

E5.5Example 5.5 The structure shown in Fig. 5.16a consists of the

beam 1 and the angled part 2 , which are connected by the hinge

G. The angled part is clamped at A and the beam is supported

at B. The system is loaded by the force F .

Determine the support and joint reactions.

a b

c

1 2 1 2

F
GV

B

GH

GH

GV

AH

MAAV

h

c

ba

h

F

B
G

A

cba

B

F

AH

MAAV
Fig. 5.16
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Solution Since r = 3 + 1 = 4, v = 2 and n = 2, condition (5.3) is

fulfilled: 4+2 = 3·2. Furthermore, since the structure is immobile,

it is statically determinate.

We separate the bodies 1 and 2 , remove the supports and draw

the free-body diagram (Fig. 5.16b). The directions of GH and GV

can be chosen freely for one of the two bodies. Their directions

for the second body are determined through the principle actio =

reactio. The equilibrium conditions for body 1 yield

→ : GH = 0 ,

�

G : (a + b)F − bB = 0 → B =
a + b

b
F ,

�

B : a F + bGV = 0 → GV = − a

b
F .

From the equilibrium conditions for body 2 in conjunction with

the results for GH and GV , we obtain

↑ : −GV + AV = 0 → AV = GV = − a

b
F ,

→ : −GH + AH = 0 → AH = GH = 0 ,

�

A : MA + hGH + cGV = 0 → MA = −hGH − cGV =
a c

b
F .

The negative signs of GV and AV indicate that their directions in

reality are opposite to those assumed in the free-body diagram.

As a check, the equilibrium conditions are applied to the com-

plete system (Fig. 5.16c), where the hinge G is assumed to be

frozen:

↑ : −F + B + AV = 0 → −F +
a + b

b
F − a

b
F = 0 ,

→ : AH = 0 ,

�

B : a F + MA + hAH + (b + c)AV = 0

→ a F +
a c

b
F − (b + c)

a

b
F = 0 .
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E5.6Example 5.6 The symmetrical sawbuck in Fig. 5.17a consists of

two beams connected at hinge C and fixed by the rope S. It is

loaded with a frictionless cylinder of weight G.

Determine the support reactions at A and B, the force S in the

rope and the joint reaction in C. The weight of the sawbuck can

be neglected.

a b

c

45◦

21

45◦

a a

a

N1

CV

N2

CV

CH

G

N145◦

AV =G/2

a

45◦N2

S S

CH

B=G/2

a

a

S

G

C

A B

a

a

a

G

BAV

AH

a a a a

AH =0

Fig. 5.17

Solution Since only three support reactions are present (see Fig.

5.17b), they can be determined by applying the equilibrium con-

ditions to the complete system:

→ : AH = 0 ,

�

A : − 2 a G + 4 a B = 0 → B = G/2 , (a)

�

B : − 4 a AV + 2 a G = 0 → AV = G/2 .
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In order to determine the forces in the rope and the hinge, we

separate the structure into its two parts (n = 2). In the hinge

C and rope S, in total v = 2 + 1 = 3 forces are transferred

(Fig. 5.17c). With r = 3, the necessary condition (5.3) for statical

determinacy is fulfilled: 3 + 3 = 3 · 2.

Since the surface of the cylinder is assumed to be frictionless,

the contact forces N1 and N2 between the beams and the cylinder

act in directions normal to the respective contact planes. The-

refore, with sin 45◦ =
√

2/2, the equilibrium conditions for the

cylinder read

→ :

√
2

2
N2 −

√
2

2
N1 = 0 → N1 = N2 ,

(b)

↑ : −G +

√
2

2
N2 +

√
2

2
N1 = 0 → N1 = N2 =

√
2

2
G .

From the equilibrium conditions for the beam 2 we obtain with

(a) and (b):

�

C :
√

2 a N2 − a S + 2 a B = 0 → S = 2B +
√

2 N2 = 2G ,

↑ : −
√

2

2
N2 − CV + B = 0 → CV = B −

√
2

2
N2 = 0 ,

→ : −
√

2

2
N2 − CH − S = 0 → CH = −

√
2

2
N2 − S = −5

2
G.

The same result is obtained when the equilibrium conditions

are applied to beam 1 . By symmetry considerations, it can be

concluded from Fig. 5.17c with no calculation that N1 = N2 and

CV = 0.

5.3.2 Three-Hinged Arch

The arch shown in Fig. 5.18a is statically determinate because it

is immobile and in total three support reactions exist at A and

B. In a real construction, the arch AB is not rigid but deforms

under applied loads. If B is a roller support, this may lead to a

large deformation that cannot be tolerated.



5.3 Multi-Part Structures 135

a b

F1

F2

Fi F1

F2

Fi

G

BABA

Fig. 5.18

Such a displacement is prevented if A and B are designed as

hinged supports. As a consequence, the statical determinacy of

the structure gets lost. However, statical determinacy can be re-

established if an additional hinge G is introduced at an arbitrary

location (Fig. 5.18b). Such a structure is called a three-hinged arch.

It consists of n = 2 bodies connected by the hinge G, which trans-

fers v = 2 joint reactions. Since the supports A and B transfer

r = 2 + 2 = 4 support reactions, the condition for statical de-

terminacy (5.3) is fulfilled: 4 + 2 = 3 · 2. Therefore, taking the

immobility of the structure into account, the three-hinged arch is

statically determinate.

The two bodies of a three-hinged arch need not necessarily

be arch shaped. An arbitrary structure consisting of two bodies

connected by a hinge and supported by two hinged supports (in

total three hinges) is also called a three-hinged arch from now on.

Two examples are shown in Fig. 5.19: a) a frame and b) a truss

consisting of two single trusses.

a b

A B A

G

F1

q0
F2G

Fi

F1 F2

B

Fig. 5.19

In order to calculate the forces at the supports and the hinge,

we isolate the two bodies 1 and 2 (cf. Fig. 5.20a,b) and apply the

equilibrium conditions to each body. From the 2 ·3 = 6 equations,
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the unknowns AH , AV , BH , BV , GH and GV can be calculated. As

a check, the equilibrium conditions can be applied to the complete

system where the hinge is regarded as being frozen.

E5.7 Example 5.7 The structure shown in Fig. 5.21a consists of two

beams, joined by the hinge G and supported in A and B by hinged

supports. The system is loaded by the forces F1 = F and F2 = 2F .

Determine the forces at the supports and the hinge.

Solution The structure is a three-hinged arch. In order to cal-

culate the unknown forces we separate the bodies 1 and 2 and

a

b

c
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BH

A

B

G
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draw the free-body diagram (Fig. 5.21b). The equilibrium condi-

tions for beam 1 read

�

A : 2 a GV − 3 a F1 = 0 → GV =
3

2
F1 =

3

2
F ,

�

G : − 2 a AV − a F1 = 0 → AV = − 1

2
F1 = − 1

2
F ,

→ : AH + GH = 0 .

For beam 2 we obtain

�

B : − a F2 − 2 a GV + 2 a GH = 0 ,

�

G : 2 a BH − 2 a BV + a F2 = 0 ,

→ : BH − GH = 0 .

Solving the system of equations yields

GH =
1

2
F2 + GV =

5

2
F , BH = GH =

5

2
F ,

BV =
1

2
F2 + BH =

7

2
F , AH = −GH = − 5

2
F .

As a check we use the force equilibrium for the complete (fro-

zen) system according to Fig. 5.21c:

↑ : AV + BV − F1 − F2 = 0 → −1

2
F +

7

2
F − F − 2F = 0 ,

→ : AH + BH = 0 → −5

2
F +

5

2
F = 0 .

5.3.3 Hinged Beam

Structures with a wide span width are necessarily often support-

ed by more than two supports. As an example, consider the beam

shown in Fig. 5.22a. Since r = 5, the system is statically indetermi-

nate with two degrees of statical indeterminacy (see Section 5.1.2).

Therefore, the calculation of the support reactions solely from the

equilibrium conditions is impossible.

A statically determinate multi-body structure can be obtained
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b c

a

Fq0 q0

G1 G2 G1 G2

F

q0
F

Fig. 5.22

if the continuous beam is divided into several parts by introducing

an appropriate number of hinges. Such a structure is called a

hinged beam.

If the number of these hinges is g, the continuous beam is di-

vided into n = g + 1 parts. Since each hinge transfers two force

components, the number of joint reactions is v = 2 g. Therefore,

according to (5.3) the necessary condition for statical determinacy

takes the form

r + v = 3n → r + 2 g = 3(g + 1) . (5.4)

Thus, the necessary number of hinges is given by

g = r − 3 . (5.5)

The beam in Fig. 5.22a has r = 5 support reactions. Therefore,

according to (5.5) two hinges are necessary: g = 5 − 3 = 2. The-

re are various possibilities for arranging the hinges; the support

and joint reactions depend on their positions. One possibility is

depicted in Fig. 5.22b. In contrast, Fig. 5.22c shows a hinge ar-

rangement leading to a movable, i.e., kinematically indeterminate

structure that is statically useless.

To determine the support and joint reactions, we first divide

the hinged beam into its parts and subsequently apply the equili-

brium conditions to each body.

E5.8 Example 5.8 The hinged beam shown in Fig. 5.23a is loaded by

the single force F and the line load q0.

Determine the support and hinge forces.
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c
a

b
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1
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B
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C

F

l

q0

AV GV
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R=2q0l
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Fig. 5.23

Solution The system is statically determinate. We separate the

two bodies and draw the free-body diagram (Fig. 5.23b). The line

load can be replaced by its statically equivalent resultant force

R = 2 q0 l acting in the middle of beam 1 .

It is often advantageous to use moment equations with respect

to the hinges and the supports. The unknowns can then be calcu-

lated successively from equations with only one unknown. Here,

the equilibrium conditions for beam 1 read

�

A : − l R + 2 l GV = 0 → GV =
1

2
R = q0 l ,

�

G : − 2 l AV + l R = 0 → AV =
1

2
R = q0 l ,

→ : −AH + GH = 0

and those for beam 2 are

�

B : l GV + 2 l C = 0 ,
�

C : 3 l GV − 2 l B = 0 ,

→ : −GH + F = 0 → GH = F .

The solution of the remaining system of equations is

AH = GH = F , B =
3

2
GV =

3

2
q0 l ,

C = − 1

2
GV = − 1

2
q0l .
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As a check, the force equilibrium conditions for the complete

system are used (Fig. 5.23c):

→ : −AH + F = 0 → −F + F = 0 ,

↑ : AV − 2 q0 l + B + C = 0

→ q0 l − 2 q0 l +
3

2
q0 l − 1

2
q0 l = 0 .

5.3.4 Kinematical Determinacy

In this section, statical and kinematical determinacy or indeter-

minacy is discussed in more detail than in Section 5.3.1. Again,

we will restrict the discussion to plane multi-part structures.

The number f of degrees of freedom of an n body system wi-

thout any joints is given by 3n (3 degrees of freedom for each bo-

dy). This number is reduced by the number of restraints r through

supports and the number of restraints v through joints:

f = 3n − (r + v) . (5.6)

Each restraint r and v, respectively, is associated with one support

or joint reaction. Furthermore, the number of available equilibrium

conditions is given by 3n (three equations for each body).

For f > 0 the system is movable. In contrast, for f < 0 the

number r + v of support and joint reactions exceeds the number

3n of equilibrium conditions by x. In this case, the system is stat-

ically indeterminate where the degree x of statical indeterminacy

is given by

x = −f = r + v − 3n . (5.7)

Even though it is impossible to determine all support and joint

reactions of statically indeterminate systems solely from the equi-

librium conditions, it may be possible to calculate some react-

ions in certain cases. For example, let us consider the system in

Fig. 5.24a, where on account of n = 2, r = 5 and v = 2, the de-

gree of statical indeterminacy is equal to one. Nevertheless, for

beam GC, the force components in the hinge G and the force in

the simple support C can be calculated for a given loading from
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Fig. 5.24

the three equilibrium conditions. Two other examples of systems

with one or two degrees of statical indeterminacy, respectively, are

depicted in Figs. 5.24b and c. In both cases the support reactions

can be calculated from the equilibrium conditions applied to the

complete structures: the systems are externally statically determi-

nate. However, the joint reactions (force in the strut, forces in the

hinges) between the parts of the systems cannot be calculated.

Such systems are called internally statically indeterminate.

Statically indeterminate systems in certain cases can undergo

finite or infinitesimal displacements, i.e., they are then also ki-

nematically indeterminate. As an example, the system shown in

Fig. 5.24d is one-degree statically indeterminate because n = 2,

r = 5 and v = 2. However, it can be seen that the system is

not immovable since the vertical beam can rotate infinitesimally

about G. It is evident that such a structure is not able to carry

arbitrary loads.

Finally, for f = 3n − (r + v) = 0 the necessary condition for

statical determinacy is fulfilled (cf. (5.3)). Then all support and

joint reactions can be calculated except in the exceptional case of

a movable system.

Now we will answer the question of how it can be determined

whether or not a multi-part structure is movable. We first consider

only plane systems fulfilling the necessary condition for statical

determinacy (f = 0). Whether the system is movable or not can

a b

dc

S

A B

A

B C

G1

G4

G3

G2

B

A

G

CA B

G
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always be formally decided by rewriting the equilibrium conditions

in the form of a linear system of equations (cf. Appendix A.2):

Ax = b . (5.8)

Here, b = (b1, . . . . . . , b3n)T is given by the prescribed loading,

x = (x1, . . . , x3n)T represents the unknown support and joint re-

actions, and the matrix A is given through the coefficients found

through writing down the equilibrium conditions. The system of

equations has a unique solution if the determinant of matrix A is

nonzero:

detA �= 0 . (5.9)

The multi-part structure with f = 0 is then not only statically but

also kinematically determinate. This condition is very general; it

also holds for an arbitrary spatial system.

E5.9 Example 5.9 Formulate the equilibrium conditions for the beam

shown in Fig. 5.25a (0 ≤ α ≤ π) in the form Ax = b. Calculate

the determinant of the matrix A. Is the system statically useful

for every value of angle α?

a b

B

l

C
a

FF

BH

BV

C

αα

Fig. 5.25

Solution The equilibrium conditions (cf. Fig. 5.25b)

→ : BH − C sin α = 0 ,

↑ : BV + C cos α − F = 0 ,
�

C : lBV − (l − a)F = 0

can be written in matrix representation as
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⎛

⎜⎝
1 0 − sin α

0 1 cos α

0 l 0

⎞

⎟⎠

⎛

⎜⎝
BH

BV

C

⎞

⎟⎠ =

⎛

⎜⎝
0

F

(l − a)F

⎞

⎟⎠ i.e., Ax = b .

The determinant of A is evaluated through cofactor expansion

along the first column:

detA =

∣∣∣∣∣∣∣

1 0 − sin α

0 1 cos α

0 l 0

∣∣∣∣∣∣∣
= 1 ·

∣∣∣∣∣
1 cos α

l 0

∣∣∣∣∣ = − l cos α .

Consequently, we find that

detA

⎧
⎨

⎩
�= 0 for α �= π/2 ,

= 0 for α = π/2 .

Thus, the beam is supported kinematically determinate (immobi-

le) for α �= π/2 and kinematically indeterminate solely for α =

π/2. In the latter case, the simple support C can move in the ver-

tical direction. Then the beam may rotate infinitesimally about

the hinged support B and is therefore statically useless.

It should be mentioned that even though the beam is formally

useful for angles α near π/2, such a construction should be avoided

from the technical point of view because the forces in the supports

become very large in this case.

5.45.4 Supplementary Examples
Detailed solutions of the following examples are given in (A)

D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik

1, Springer, Berlin 2008 and (B) W. Hauger et al. Aufgaben zur

Technischen Mechanik 1-3, Springer, Berlin 2008.
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E5.10 Example 5.10 The beam

in Fig. 5.26 is supported

by three struts and sub-

jected to a triangular line

load.

Determine the forces

in the struts.
aa a

321

q0

3a

4

Fig. 5.26

Results: see (B) S1 = 10 q0a/9, S2 = − q0a, S3 = −10 q0a/9.

E5.11 Example 5.11 The struc-

ture shown in Fig. 5.27

consists of a beam and

three bars. It carries a

concentrated force F .

Determine the sup-

port reaction at A and

the forces in the bars.

Results: see (B) AV = F , AH = − lF/h,

S1 = − lF/h, S2 = lF/(h tan α), S3 = − lF/(h sin α).

E5.12 Example 5.12 The simply supported beam (length a = 1m) shown

in Fig. 5.28 is subjected to the three concentrated forces F1 =

4kN, F2 = 2kN, F3 = 3kN, the line load q0 = 5kN/m and the

moment M0 = 4kNm.

Calculate the support

reactions.

Fig. 5.28

Results: see (A) A = 7.11 kN, BH = 1.41 kN, BV = 6.30 kN.

a aa

q◦ F3 M◦

A B

F1 F2

45
◦

A

K

h

a

F

l

α1

2 3

Fig. 5.27
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E5.13Example 5.13 Find the support

reactions for the hinged beam

shown in Fig. 5.29.

Fig. 5.29

Results: see (A) AV = 7 q0a/2, AH = −4P/3 − 2 q0a/3,

D = 5P/3 + 5 q0a/6, MA = −3 q0a
2.

E5.14Example 5.14 The hinged beam in Fig. 5.30 carries a concentrated

force and a triangular line load.

Determine the support

reactions and the force in

the hinge.

Fig. 5.30

Results: see (B) B = (3 q0a+5F sin α)/8, C = (9 q0a−F sin α)/8,

AV = F sin α/2, AH = F cos α, GV = F sin α/2, GH = 0.

E5.15Example 5.15 Determine the

support reactions for the

structure shown in Fig. 5.31.

The pulley is frictionless.

Fig. 5.31

Results: see (A) AH = 3F , AV = 5F/2,

BH = −3F , BV = −3F/2.

3a

A B

P

D

C

q◦

3a a

aaaa 3a

C

α

A B

G

q0F

A

B R

3R

R

F2R

2R

C

D
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E5.16 Example 5.16 A homogeneous beam (weight G) hangs on a crane

(Fig. 5.32).

Determine the support reactions at A and B and the force at

hinge C.

Fig. 5.32

Results: see (B) AV = 4G/7, AH = G/2, BV = 3G/7,

BH = −G/2, CV = 2G/21, CH = −G/2.

E5.17 Example 5.17 A mast (weight G1) has a hinged support (ball-and-

socket connection) at A.

In addition it is suppor-

ted by two struts. Its up-

per end carries a weight

G2 (Fig. 5.33).

Determine the reaction

force at A and the forces

in the struts.

1

G2

2a

2a

a

G1

2

a a

a

A

x

z

y

Fig. 5.33

Results: see (B) Ax = 0, Ay = (G1 + 2G2)/4, Az = G1/2,

S1 = S2 = −
√

6 (G1 + 2G2)/8.

C

A B

5a

2

4a4a

3a 3a

3a

a

a

2

G
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E5.18Example 5.18 Determine the

support reactions for the

frame shown in Fig. 5.34.

Fig. 5.34

Results: see (A) AH = F/3, AV = −F/6,

B =
√

2 F/6, CH = F/2, CV = F .

E5.19Example 5.19 Calculate

the support reactions for

the spatial structure in

Fig. 5.35.

q◦

D q◦

2aB

A
C

a

y
z

x

Fig. 5.35

Results: see (A) Ax = −Ay = 2q◦a, Az = q◦a/2,

Bz = −q◦a/2, Cy = 2q◦a, Dz = −q◦a.

A

B

F

l/2 l/2

l

l/2

C

l
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5.5 5.5 Summary
• Supports and connecting elements, respectively, are classified

according to the number of transferred reaction forces and cou-

ple moments. A simple support transfers one reaction, a hinged

support two reactions etc. Analogously, a hinge as joining ele-

ment transfers two reactions etc.

• A structure is statically determinate if all support and joint

reactions can be calculated from the equilibrium conditions.

This is the case if the number of unknown support and joint

reactions is equal to the number of equilibrium conditions and

the structure is immobile.

• A structure is kinematically determinate if it is immobile. A

structure that can undergo finite or infinitesimal displacements

is kinematically indeterminate.

• To calculate the support and joint reactions usually the follo-

wing steps are necessary:

⋄ Removal of the supports from the structure and separation

of the individual bodies.

⋄ Sketch of the free-body diagrams; all acting forces and cou-

ple moments as well as all reaction forces and couple mo-

ments must be drawn.

⋄ Formulation of the equilibrium conditions. In the plane case

there are 3 equations for each body, e.g.
∑

Fix = 0 ,
∑

Fiy = 0 ,
∑

M
(A)
i = 0 ,

where A is an arbitrary (appropriately chosen) reference

point. In the spatial case there are 6 equilibrium conditions

for each body.

⋄ Calculation of the unknowns by resolution of the system of

equations. Note: the number of equilibrium conditions and

the number of unknowns must be equal!

⋄ The system of equations has a unique solution if the de-

terminant of the coefficient matrix is nonzero. Then the

structure is statically and kinematically determinate.
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Objectives: A truss is a structure composed of slender

members that are connected at their ends by joints. The truss is

one of the most important structures in engineering applications.

After studying this chapter, students should be able to recognise

if a given truss is statically and kinematically determinate. In

addition, they will become familiar with methods to determine

the internal forces in a statically determinate truss.
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6.16.1 Statically Determinate Trusses
A structure that is composed of straight slender members is called

a truss. To be able to determine the internal forces in the indivi-

dual members, the following assumptions are made:

1. The members are connected through smooth pins (frictionless

joints).

2. External forces are applied at the pins only.

A truss that satisfies these assumptions is called an “ideal truss”.

Its members are subjected to tension or to compression only (two-

force members, see Section 2.4).

In real trusses, these ideal conditions are not exactly satisfied.

For example, the joints may not be frictionless, or the ends of the

members may be welded to a gusset plate. Even then, the ass-

umption of frictionless pin-jointed connections yields satisfactory

results if the axes of the members are concurrent at the joints. Al-

so, external forces may be applied along the axes of the members

(e.g., the weights of the members). Such forces are either neglected

(e.g., if the weights of the members are small in comparison with

the loads) or their resultants are replaced by statically equivalent

forces at the adjacent pins.

Fig. 6.1

I

II

V

VI

IV

3

1

119

III

5

104

6

VII

8

72

F1

F3

F2

In this chapter we focus on plane trusses; space trusses can be

treated using the same methods. As an example, consider the truss

shown in Fig. 6.1. It consists of 11 members which are connected

with 7 pins (the pins at the supports are also counted). The mem-

bers are marked with Arabic numerals and the pins with Roman

numerals.
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To determine the internal forces in the members we may draw

a free-body diagram for every joint of the truss. Since the forces

at the pins are concurrent forces, there are two equilibrium con-

ditions at each joint (see Section 2.3). In the present example, we

thus have 7 ·2 = 14 equations for the 14 unknown forces (11 forces

in the members and 3 forces at the supports).

A truss is called statically determinate if all the unknown forces,

i.e., the forces in the members and the forces at the supports, can

be determined from the equilibrium conditions. Let a plane truss

be composed of m members connected through j joints, and let

the number of support reactions be r. In order to be able to de-

termine the m + r unknown forces from the 2 j equilibrium con-

ditions, the number of unknowns has to be equal to the number

of equations:

2 j = m + r . (6.1)

This is a necessary condition for the determinacy of a plane truss.

As we shall discuss later, however, it will not be sufficient in cases

of improper support or arrangement of the members. If the truss

is rigid, the number of support reactions must be r = 3.

In the case of a space truss, there exist three conditions of

equilibrium at each joint, resulting in a total of 3 j equations.

Therefore,

3 j = m + r (6.2)

is the corresponding necessary condition for a space truss. If the

truss is a rigid body, the support must be statically determinate:

r = 6 (compare Section 3.2.2).

For the truss shown in Fig. 6.2a we have j = 7, m = 10 and

r = 2 · 2 (two pin connections). Hence, since 2 · 7 = 10 + 4, the

necessary condition (6.1) is satisfied. The truss is, in addition,

completely constrained against motion. Therefore, it is statically

determinate.



6.2 Design of a Truss 153

a c

b

ϕ

5 8

VI
IV

II

I
III

V
2
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4

5

61 9
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VI
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II
IV

V
III
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4

3

7
1

6
9

dϕ

IV
II VI

V

VIII

102

1 9

3
6

8

5 7

III

4

F

F

F

Fig. 6.2

A truss that is completely constrained against motion is called

a kinematically determinate truss. In contrast, a truss that is not

a rigid structure and therefore able to move is called kinematically

indeterminate. This is the case if there are fewer unknowns than

independent equilibrium conditions. If there are more unknowns

than equilibrium conditions, the system is called statically inde-

terminate.

We shall only consider trusses that satisfy the necessary con-

ditions (6.1) or (6.2), respectively. Even then, a truss will not

be statically determinate if the members or the supports are im-

properly arranged. Consider, for example, the trusses shown in

Figs. 6.2b and 6.2c. With j = 6, m = 9 and r = 3 the necessary

condition (6.1) is satisfied. However, the members 7 and 8 of the

truss in Fig. 6.2b may rotate about a finite angle ϕ, whereas the

members 5 and 8 of the truss in Fig. 6.2c may rotate about an in-

finitesimally small angle dϕ. Each of the improperly constrained

trusses is statically indeterminate.

6.26.2 Design of a Truss
In the following, we shall discuss three methods for designing a

statically and kinematically determinate plane truss.
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Method 1: We start with a single bar and add two members to form

a triangle (see Fig. 6.3). This basic element represents a rigid body.

It may be extended by successively adding two members at a time

and connecting them in such a way that the structure remains

rigid (one has to avoid having two members along a straight line;

such an improper arrangement is indicated by the dashed line in

Fig. 6.3). A truss designed from a basic triangle as described is

called a simple plane truss.

j =2
m=1

j =6j =5j =4j =3
m=9m=7m=5m=3

Fig. 6.3

As can be verified by inspection, the relation

2 j = m + 3 (6.3)

is satisfied by the trusses shown in Fig. 6.3. For every additional

joint in a simple truss, there are two additional members. The-

refore Equation (6.3) remains valid. If the truss is supported in

such a way that there are r = 3 unknown reactions that comple-

tely constrain the truss, then it is statically determinate (see the

necessary condition (6.1)).

Method 2: Two simple trusses are connected by three members

(Fig. 6.4a). To ensure the rigidity of the system, the axes of the

members must not be parallel or concurrent. The two simple trus-

ses may also be connected by a joint and one member: the system

in Fig. 6.4b has been obtained by replacing members 2 and 3 in

Fig. 6.4a by the joint I.

If two simple trusses are connected through one joint only, the

system is nonrigid. To obtain a statically and kinematically deter-

minate system, an additional support must be introduced; an ex-

ample is given in Fig. 6.4c. This system represents a three-hinged

arch. It should be noted that instead of connecting the two simple
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a b c

I

11

3
I

2

F1

F2F2

F1 F1

F2

Fig. 6.4

trusses by one joint the trusses may be connected by two members

that are not parallel and not concurrent.

It can easily be verified that for the three examples shown in

Fig. 6.4, the necessary condition (6.1) is satisfied. Since these sys-

tems are completely constrained against motion, they are stati-

cally determinate.

Method 3: Consider a truss that has been designed according to

the first or the second method. If we remove one member of the

truss, the truss will become nonrigid. Therefore, we have to add

one member at a different position in such a way that the truss

will be rigid again. Since by doing so neither the number of the

members nor the number of the joints is changed, condition (6.1)

is still satisfied.

Fig. 6.5 a b

1

1′

F F

An example of Method 3 is shown in Fig. 6.5. If we remove

member 1 from the simple truss in Fig. 6.5a, the system is on-

ly partially constrained. Adding member 1′ yields the statically

determinate truss shown in Fig. 6.5b.
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6.3 6.3 Determination of the Internal Forces
In the following, two methods to determine the internal forces

in the individual members of a statically determinate truss will

be discussed. In both methods, the conditions of equilibrium are

applied to suitable free-body diagrams.

6.3.1 Method of Joints

The method of joints consists of applying the equilibrium condi-

tions to the free-body diagram of each joint of the truss. It is a

systematic method and can be used for every statically determi-

nate truss.

In practice, it is often convenient first to identify those members

of the truss that have a vanishing internal force. These members

are called zero-force members. If the zero-force members are re-

cognised in advance, the number of unknowns is reduced, which

simplifies the analysis. It should be noted that the loading deter-

mines whether a member is a zero-force member or not.

a b c

1

2

1 2

3

1
2

S1 =0 , S2 =0 S1 =F , S2 =0 S1 =S2 , S3 =0

S1

S2

F S1 S2

S3

S1

S2

Fig. 6.6

The following rules are useful in identifying zero-force members.

1. If two members are not collinear at an unloaded joint (Fig. 6.6a),

then both members are zero-force members.

2. Let two members be connected at a loaded joint (Fig. 6.6b).

If the action line of the external force F coincides with the

direction of one of the members, then the other member is a

zero-force member.

3. Let three members be connected at an unloaded joint (Fig. 6.6c).

If two members have the same direction, the third member is a

zero-force member.

These rules can be verified by applying the equilibrium conditions

to the respective joints.



6.3 Determination of the Internal Forces 157

a cut bcut

III III SS SS

Fig. 6.7

To free a member of a truss from its constraints we cut it at both

ends, i.e., at the adjacent joints (Fig. 6.7a). The corresponding

free-body diagram is shown in Fig. 6.7b. The members in a truss

are subject to tension or to compression; Fig. 6.7b shows a bar

under tension. According to Newton’s third law (actio = reactio),

forces S of equal magnitude and opposite directions act at the pins

I and II. As can be seen from Fig. 6.7b an arrow that points away

from the pin (pull) indicates tension in the member, whereas an

arrow that points toward the pin (push) indicates compression.

It is not always possible to determine by inspection whether a

member is subject to tension or compression. Therefore, we shall

always assume that all the members of a truss are under tension.

If the analysis gives a negative value for the force in a member,

this member is in reality subject to compression.

The m+r unknown forces can be determined from the 2j equi-

librium conditions for the j joints. One may also apply the three

equilibrium conditions for the complete truss. These equations are

not independent of the equilibrium conditions at the joints. There-

fore they may provide a check on the correctness of the analysis. In

practice, it may be more convenient to determine first the support

reactions from the free-body diagram of the complete truss. Then

three other equilibrium equations within the method of joints will

serve as checks.

The method of joints can also be used to determine the forces in

a space truss where there are three equilibrium conditions at each

joint. If the truss is a rigid body, there must be six support forces

to ensure a statically determinate support. The six equilibrium

conditions for the whole truss can be used as a check. On the

other hand, if the support forces are computed in advance, six

other equilibrium equations within the method of joints may serve

as checks.
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E6.1 Example 6.1 The truss shown in Fig. 6.8a is loaded by an external

force F .

Determine the forces at the supports and in the members of

the truss.

c

b

a

BA

4 8 12

6 102

3 7 11

I III V VII

II
IV VI

1 13

VIII

α
95

I III V

II
IV

α

VI VIII

ααα

α α

F

F

0
BH

A BV

0 0

0

0

A

S1

S2 S2 S6 S6

F

S7 S11S3S1

S3 S7

S8 S8 S12

S11

BH

BV

S12

2l 2l2l

l

Fig. 6.8

Solution Fig. 6.8a represents a simple truss that is completely

constrained against motion. Therefore, it is statically determinate.

The members of the truss are numbered in the free-body dia-

gram of the complete truss (Fig. 6.8b). Zero-force members are

identified by inspection and marked with zeroes: member 4 (ac-

cording to Rule 2), the members 5 and 9 (Rule 3) and the members

10 and 13 (Rule 1).

To further reduce the number of unknown forces, we com-

pute the support forces by applying the equilibrium conditions
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to the whole truss:

→ : BH = 0 ,

�

A : − 4 l F + 6 l BV = 0 → BV =
2

3
F ,

�

B : − 6 l A + 2 l F = 0 → A =
1

3
F .

Fig. 6.8c shows the free-body diagrams of the joints. As pre-

viously stated, we assume that every member is subjected to ten-

sion. Accordingly, all of the corresponding arrows point away from

the joints. Zero-force members are omitted in the free-body dia-

grams. Therefore, joint VII need not be considered. Applying the

equilibrium conditions to each joint yields

I ) → : S2 + S3 cos α = 0 ,

↓ : S1 + S3 sin α = 0 ,

II ) ↑ : S1 + A = 0 ,

III ) → : S6 − S2 = 0 ,

IV ) → : S8 + S7 cos α − S3 cos α = 0 ,

↑ : S7 sin α + S3 sin α = 0 ,

V) → : S11 cos α − S6 − S7 cos α = 0 ,

↓ : S7 sin α + S11 sin α + F = 0 ,

VI ) → : S12 − S8 = 0 ,

VIII ) → : BH − S11 cos α − S12 = 0 ,

↑ : BV + S11 sin α = 0 .

These are 11 equations for the 8 unknown forces in the mem-

bers and the 3 forces at the supports. Since the support forces

have been computed in advance and are already known, the ana-

lysis is simplified, and three equations may be used as a check

on the correctness of the results. Using the geometrical relations
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sin α = l/
√

5 l2 = 1/
√

5 , cos α = 2 l/
√

5 l2 = 2/
√

5, we obtain

S1 = −1

3
F , S2 = S6 = −2

3
F , S3 =

√
5

3
F ,

S7 = −
√

5

3
F , S8 = S12 =

4

3
F , S11 = −2

3

√
5 F .

It is useful to present the results in dimensionless form in a

table, including negative signs:

Table of Forces

i 1 2 3 4 5 6 7 8 9 10 11 12 13

Si

F
−1

3
−2

3

√
5

3
0 0 −2

3
−
√

5

3

4

3
0 0 −2

3

√
5

4

3
0

The negative values for the members 1, 2, 6, 7 and 11 indicate

that these members are under compression.

E6.2 Example 6.2 Fig. 6.9 shows a spatial truss loaded by two external

forces F at the joints IV and V.

Compute the forces in the members 1-6.

2

6

4
3

5

1

I

III

IV

VI

V
II

a

F

a
a

a

y z

x
3a

F

Fig. 6.9
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Solution We free the joints V and IV by passing imaginary cuts

through the bars, and we assume that the members 1-6 are in

tension. The vector equations of equilibrium for these joints are

given by

V : S1ey + S2eV/VI
− S4ex + Fez = 0 ,

IV : −S1ey + S3eIV/VI
− S5ex + S6eIV/II

+ Fez = 0 .

The initially unknown unit vectors can be determined from the

vectors connecting adjacent joints, e.g., for e
V/VI

we obtain

e
V/VI

=
1√

a2 + a2 + a2

⎛

⎜⎝
−a

a

−a

⎞

⎟⎠ =
1√
3

⎛

⎜⎝
−1

1

−1

⎞

⎟⎠ .

Similarly, the other unit vectors are

e
IV/VI

=
1√
3

⎛

⎜⎝
−1

−1

−1

⎞

⎟⎠, e
IV/II

=
1√
5

⎛

⎜⎝
−2

−1

0

⎞

⎟⎠,

ex =

⎛

⎜⎝
1

0

0

⎞

⎟⎠, ey =

⎛

⎜⎝
0

1

0

⎞

⎟⎠, ez =

⎛

⎜⎝
0

0

1

⎞

⎟⎠.

Introducing these into the two vector equations we get the six

scalar equations

V : −S2
1√
3
− S4 = 0 , IV : −S3

1√
3
− S5 − S6

2√
5

= 0 ,

S1 + S2
1√
3

= 0 , −S1 − S3
1√
3
− S6

1√
5

= 0 ,

−S2
1√
3

+ F = 0 , −S3
1√
3

+ F = 0 .

Their solution yields the forces

S2 =
√

3 F , S1 = −F , S4 = −F ,

S3 =
√

3 F , S6 = 0 , S5 = −F .
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6.3.2 Method of Sections

It is not always necessary to determine the forces in all of the

members of a truss. If several forces only are of interest, it may be

advantageous to use the method of sections instead of the method

of joints. In this case, the truss is divided by a cut into two parts.

The cut has to be made in such a way that it either goes through

three members that do not all belong to the same joint, or passes

through one joint and one member. If the support reactions are

computed in advance, the free-body diagram for each part of the

truss contains only three unknown forces that can be determined

by the three conditions of equilibrium.

b

a

I

3

2

BA
1

II

S1

S2

S3

S2

S1

S3 F3

F1 F2

F3

B

AH

AV

F1 F2

aaa a a a

a

Fig. 6.10

To illustrate the method, we consider the truss shown in Fig.

6.10a with the objective of determining the forces in members 1-3.

As a first step, the reactions at supports A and B are computed by

applying the conditions of equilibrium to the free-body diagram

of the whole truss (not shown in the figure). In the second step,

we pass an imaginary section through the members 1-3, cutting

the truss into two parts. Fig. 6.10b shows the free-body diagrams

of the two parts of the truss. The internal forces in members 1-3

act as external forces in the free-body diagrams; they are assumed

to be tensile forces.
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Both parts of the truss in Fig. 6.10b are rigid bodies in equi-

librium. Therefore, either part may be used for the analysis. In

practice, the part that involves a smaller number of forces will

usually lead to a simpler calculation. We shall apply the equilibri-

um conditions to the free-body diagram on the left-hand side of

Fig. 6.10b. It is advantageous to use moment equations about the

points of intersection of two unknown forces. Each of the corre-

sponding equations contains one unknown force only and can be

solved immediately:

�

I : − 2 a AV + a F1 + a S3 = 0 → S3 = 2AV − F1 ,

�

II : − 3 a AV − a AH + 2 a F1 − a S1 = 0

→ S1 = 2F1 − 3AV − AH ,

↑ : AV − F1 −
1

2

√
2 S2 = 0 → S2 =

√
2 (AV − F1) .

Since the support reactions have been computed in advance, the

forces in members 1-3 are now known.

In many cases, the method of sections can be applied without

having to determine the forces at the supports. Consider, for ex-

ample, the truss in Fig. 6.11a. The forces in members 1-3 can be

obtained immediately from the equilibrium conditions for the part

of the truss on the right as shown in Fig. 6.11b.

a b

2

1

3

S1
S1

S2S2

S3S3

F1

F2

F1

F2

Fig. 6.11

The method of sections is also applicable to spatial trusses.

Since there are six equilibrium conditions for a rigid body in the

case of a spatial problem, the truss has to be divided by a cut

through six members, or through three members and a pin.
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E6.3 Example 6.3 A truss is loaded by two forces, F1 = 2F and F2 =

F , as shown in Fig. 6.12a.

Determine the force S4.

a b

c

cut

BA

5
4

I I

6

F1

F2

F1

F1

AV

AH

F2

BAV

AH

S4

S5

S6
S6

S5

S4

B

F2 a

2a 2a 2a

3a 3a

2a

a

a

Fig. 6.12

Solution First, we determine the forces at the supports. Applying

the equilibrium conditions to the free-body diagram of the whole

truss (Fig. 6.12b) yields

�

A : −3 a F1 + a F2 + 6 a B = 0 → B =
3F1 − F2

6
=

5

6
F ,

�

B : −6 a AV + 3 a F1 + a F2 = 0 → AV =
3F1 + F2

6
=

7

6
F ,

→ : AH − F2 = 0 → AH = F2 = F .

Then we pass an imaginary section through the members 4-6

(Fig. 6.12c). The unknown force S4 follows from the moment equa-

tion about point I (intersection of the action lines of the forces

S5 and S6) of the free-body diagram on the left-hand side of

Fig. 6.12c:

�

I : 2 a S4 + 2 a AH − 3 a AV = 0

→ S4 =
1

2
(3AV − 2AH) =

3

4
F .
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The corresponding moment equation for the free-body diagram

on the right-hand side may be used as a check:

�

I : − 2 a S4 + 3 a B − a F2 = 0

→ S4 =
1

2
(3B − F2) =

3

4
F .

6.46.4 Supplementary Examples
Detailed solutions of the following examples are given in (A)

D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik

1, Springer, Berlin 2008 and (B) W. Hauger et al. Aufgaben zur

Technischen Mechanik 1-3, Springer, Berlin 2008.

E6.4Example 6.4 The truss

shown in Fig. 6.13 carries

the two forces F1 = F

and F2 = 3F .

Calculate the forces in

the members 1, 2 and 3.

A B

F1

a

a

3

2

1

F2

a a a a a a
Fig. 6.13

Results: see (B) S1 = −2F/3 , S2 = −
√

2 F/3 , S3 = F .

E6.5Example 6.5 Determine

the forces in the mem-

bers 1, 2 and 3 of the

truss shown in Fig. 6.14.

1

2F

3

2

A

aa a

F
F

B

a

a

a

Fig. 6.14

Results: see (A) S1 = −3F/2 , S2 = −
√

2 F/2 , S3 = 3F .
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E6.6 Example 6.6 The structure

in Fig. 6.15 consists of a

hinged beam AB and five

bars. It is subjected to a li-

ne load q0 .

Determine the forces in

the bars.

1

4a

2
45

2a

G
BA

4a 2a

3 3a

q0

Fig. 6.15

Results: see (B) S1 = S4 = 15 q◦a/4 , S2 = S3 = −9q◦a/4 ,

S5 = 3q◦a.

E6.7 Example 6.7 Determine

the forces in the mem-

bers 1-7 of the truss

shown in Fig. 6.16. 30
◦BD

5
7

41

3 6

F2F
A

2

a a aaa

a

Fig. 6.16

Results: see (A) S1 = S4 = −9

4
F , S2 =

9

8

√
2 F , S7 = 0 ,

S3 =
(9

8
−

√
3

2

)
F , S5 =

7

8

√
2 F , S6 =

(11

8
−

√
3

2

)
F .

E6.8 Example 6.8 The truss shown in

Fig. 6.17 carries the forces F1 =

10 kN and F2 = 20 kN.

Calculate the forces in all the

members.

Fig. 6.17

Results: see (A) S1 = S4 = −S3 = 11.6 kN , S2 = −5.8 kN ,

S5 = −S7 = 34.6 kN , S6 = −28.9 kN , S8 = 46.2 kN.

6

3 5 7

84

1

F2

60◦

I
2

II IV

III V

60◦

F1
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E6.9Example 6.9 Determine the

support reactions and the

forces in the members of

the space truss shown in

Fig. 6.18.

F

a

2
6

5

1

3

4

A a

a

a
C

B

z

x

y

Fig. 6.18

Results: see (A) Ax = Ay = 0 , Az = Cz = −F/2 ,

Bz = −By = F , S1 = S3 = F/
√

2 ,

S2 = −
√

2 F, S4 = −F/2 , S5 = S6 = 0.

E6.10Example 6.10 Calculate the forces in all the members of the space

truss in Fig. 6.19.

Fig. 6.19

7

8
1

2

3

5

6

9

10

11

12

4

a

E

x

zy

G

D

a

C

B

A

F
P

a

a

3a

Results: see (A) S1 = S2 = −P/
√

2 , S3 =
√

2 P ,

S4 = −S7 = −S9 = P/2 , S5 = S6 = S8 = 0 ,

S10 = S12 = −
√

11 P/2 , S11 = 4P .
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6.5 6.5 Summary
• A truss is a structure that consists of straight members connec-

ted at joints.

• A truss is statically determinate if the forces in the members

and at the supports can be determined from the equilibrium

conditions. This is the case if the number of the unknown forces

equals the number of the independent equilibrium conditions

and the system is rigid.

• A truss is kinematically determinate if it is completely con-

strained against motion. It is kinematically indeterminate if it

is nonrigid and therefore can undergo a finite or an infinitesimal

motion.

• The internal forces in the members and the support reactions

can be determined with the method of joints:

⋄ Draw free-body diagrams of all the joints. Introduce the

external loads, the support reactions and the forces in the

members. Assume that the force in each member is a tensile

force.

⋄ Write down the equilibrium conditions for the joints (2

equations for a plane truss, 3 equations for a spatial truss).

⋄ Solve the system of equations.

⋄ The system of equations has a unique solution if the deter-

minant of the matrix of the coefficients is not equal to zero.

Then the truss is statically and kinematically determinate.

• It is usually more practical to apply the method of sections

instead of the method of joints if only several forces are to be

determined.
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Objectives: Beams are among the most important ele-

ments in structural engineering. In this chapter, it is explained

how the internal forces in a beam can be made accessible to cal-

culation.

The normal force, the shear force and the bending moment are

introduced. Students will learn how to determine these quantities

with the aid of the conditions of equilibrium. In addition, they will

learn how to correctly apply the differential relationships between

external loading and internal forces.
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7.17.1 Stress Resultants
Beams are slender structural members that offer resistance to ben-

ding. They are among the most important elements in enginee-

ring. In this chapter the internal forces in structures composed of

beams are analyzed. Knowledge of these internal forces is impor-

tant in order to be able to determine the load-bearing capacity

of a beam, to compute the area of the cross-section required to

sustain a given load, or to compute the deformation (see Volume

2). For the sake of simplicity, the following discussion is limited

to statically determinate plane problems, as indicated in Fig. 7.1a.

a

b
V

N
M

C

R

=̂

Fn
q

M1

F2F1

p

cut

cut

Fig. 7.1

According to Section 1.4, the internal forces in a beam can be

made visible and thus accessible to calculation with the aid of

a free-body diagram. Accordingly, we pass an imaginary section

perpendicularly to the axis of the beam. The internal forces p

(forces per unit area) acting at the cross-section are distributed

across the cross-sectional area (Fig. 7.1b). Their intensity is called

stress (see Volume 2). The actual distribution of the forces across

the cross-section is unknown; it will be determined in Volume 2,

Chapter 4. However, it was shown in Section 3.1.3 that any force

system can be replaced by a resultant force R acting at an arbi-

trary point C and a corresponding couple M (C). When carrying

this out, we choose the centroid C of the cross-sectional area as

the reference point of the reduction. The reason for this particu-

lar choice will become apparent in Volume 2. In the following, we
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adopt the common practice of omitting the superscript C that

refers to the reference point: instead of M (C), we simply write M .

The resultant force R is resolved into its components N (normal

to the cross-section, in the direction of the axis of the beam) and

V (in the cross section, orthogonal to the axis of the beam). The

quantities N , V and M are called the stress resultants. In parti-

cular,

N is called the normal force, V is the shear force and M is

the bending moment.

M

NN

M V

VM1

F1 F2
q Fn

Fig. 7.2

In order to determine the stress resultants, the beam may be

divided by a cut into two segments (method of sections). A free-

body diagram of each part of the beam will include all of the

forces acting on the respective part, i.e., the applied loads (forces

and couples), the support reactions and the stress resultants ac-

ting at the cut sections. Because of Newton’s third law (action

equals reaction) they act in opposite directions at the two faces

of the segments of the beam (compare Fig. 7.2). Since each part

of the beam is in equilibrium, the three conditions of equilibrium

for either part can be used to compute the three unknown stress

resultants.

Before we can provide examples for the determination of the

stress resultants, a sign convention must be introduced. Consider

the two adjoining portions of the same beam shown in Fig. 7.3.

The coordinate x coincides with the direction of the axis of the

beam and points to the right; the coordinate z points downward.

Accordingly, the y-axis is directed out of the x, z-plane (right-hand

system, see Appendix A.1). By cutting the beam, a left-hand face

and a right-hand face are obtained (see Fig. 7.3). They are cha-

racterized by a normal vector n that points outward from the

interior of the beam. If the vector n points in the positive (negati-
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n n

VM

N
V

M

N

y

z

x

negativepositive
face

Fig. 7.3

ve) direction of the x-axis, the corresponding face is called positive

(negative). The following sign convention is adopted:

Positive stress resultants at a positive (negative) face point

in the positive (negative) directions of the coordinates.

Here, the bending moment M has to be interpreted as a moment

vector pointing in the direction of the y-axis (positive direction

according to the right-hand rule). Fig. 7.3 shows the stress resul-

tants with their positive directions. In the following examples, we

shall strictly adhere to this sign convention. It should be noted,

however, that different sign conventions exist.

In the case of a horizontal beam, very often only the x-coordi-

nate is given. Then it is understood that the z-axis points down-

ward. Sometimes it is convenient to use a coordinate system where

the x-axis points to the left (instead of to the right) with the z-

axis again pointing downward (compare Example 7.4). Then the

y-axis is directed into the plane of the paper. In this case, only

the positive direction of the shear force V according to Fig. 7.3 is

reversed, the positive directions of M and N remain unchanged.

a b

q0

x

M

V

M

G

N
N

V

y

z

F

Fig. 7.4
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The sign convention for frames and arches may be introduced

by drawing a dashed line at one side of each part of the system

(Fig. 7.4a). The side with the dashed line can then be interpreted

as the “underneath side” of the respective part and the coordinate

system can be chosen as the one for a beam: x-axis in the direction

of the dashed line, z-axis toward the dashed line (“downward”).

Fig. 7.4b shows the stress resultants with their positive directions.

a

b

c

d

e

V

M
N

V

M
N

a b

AV

x

AV

x

F cos α

AH

F sin α

F sin α

AH

αF sin α

F cos α

AH

BAV

AV

AH

x

aAV

F cos α

B

A

l

α

F
F

B
D

C

C

V

M

N

cut

Fig. 7.5

We will now determine the stress resultants for the simply sup-

ported beam shown in Fig. 7.5a. First, the support reactions are

computed from the equilibrium conditions for the free-body dia-

gram of the beam as a whole (Fig. 7.5b). With FV = F sin α and

FH = F cos α we obtain
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→: AH − FH = 0 → AH = FH ,

�

A : l B − a FV = 0 → B =
a

l
FV ,

�

B : − l AV + b FV = 0 → AV =
b

l
FV .

In a second step, a coordinate system is chosen and the beam is

divided into two parts by a cut at an arbitrary position x between

the points A and D (0 < x < a, Fig. 7.5b). The free-body diagram

of the left-hand segment of the beam is depicted in Fig. 7.5c. We

shall always represent the stress resultants at the cut section with

their positive directions. If the analysis yields a negative value

for a stress resultant, the resultant acts in opposite direction in

reality. The equilibrium conditions for this part of the beam yield

→: AH + N = 0 → N = −AH = −FH ,

↑: AV − V = 0 → V = AV =
b

l
FV ,

�

C : x AV − M = 0 → M = x AV = x
b

l
FV .

Now we cut the beam at an arbitrary position x between points D

and B (a < x < l). The free-body diagram of the left-hand part is

depicted in Fig. 7.5d. From the equilibrium conditions we obtain

→: AH − FH + N = 0 → N = FH − AH = 0 ,

↑: AV − FV − V = 0 → V = AV − FV =
b − l

l
FV

= − a

l
FV = −B ,

�

C : x AV − (x − a)FV − M = 0 → M = x AV − (x − a)FV

=
(
1 − x

l

)
a FV .

It should be noted that the equilibrium conditions for the cor-

responding right-hand parts yield the same results for the stress

resultants. Usually, the part of the beam with a smaller number

of forces will be chosen, since it allows for a simpler calculation of

the results.



176 7 Beams, Frames, Arches

The stress resultants are functions of the coordinate x; they

are shown graphically in Fig. 7.5e. These graphs are called the

shear-force, normal-force and bending-moment diagrams, respec-

tively. The shear-force and normal-force diagrams display a jump

discontinuity at point D (point of application of the external force

F ). The jumps have the magnitude of the components FV and FH ,

respectively. The bending-moment diagram shows a slope discon-

tinuity (kink) at D. The maximum bending moment is located at

D. It is usually the most important value in the design of a beam

(see Volume 2).

This example shows that, in order to determine the stress re-

sultants, the beam may be sectioned at an arbitrary position x

between two concentrated loads (external loads or support reac-

tions). The process of sectioning has to be performed for each such

span. Since there are discontinuities at the points of application

of a concentrated load, these points should not be chosen for a

section (compare however Section 7.2.5).

7.2 7.2 Stress Resultants in Straight Beams
Beams are usually subjected to forces perpendicular to their axes.

If there are no components of forces (external forces or support

reactions) in the direction of the axis of a beam, the normal force

vanishes: N = 0. In the following subsections, we shall concentrate

on such problems.

7.2.1 Beams under Concentrated Loads

In order to determine the stress resultants V and M we choose

a coordinate system and imagine the beam cut at an arbitrary

position x. The stress resultants are represented with their positive

directions in the free-body diagrams; they can be computed from

the equilibrium conditions for either portion of the beam. The

results of the analysis are usually presented in a shear-force and

a bending-moment diagram.

As an alternative to this elementary method, there exists an-

other method to determine the stress resultants. It is based on the
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differential relationships between the load and the stress resultants

and will be presented in the Sections 7.2.2 to 7.2.4.

For the sake of simplicity, we restrict the discussion in the

following to beams that are subjected to concentrated loads and

to couples. As an example we consider the simply supported beam

shown in Fig. 7.6a.

a

c

b

d

e

VMM

V

l

B
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A B

aj
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MkM1

F1 Fn
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Fj

Fj

A

M1 Mk B

Mk

A

F1 FnFj

M1

F1

Fj

A

Fn

B
C

cut

M

V

Fig. 7.6

The support reactions are obtained from the equilibrium condi-

tions for the free-body diagram of the beam as a whole (Fig. 7.6b):

�

A : l B −
∑

ai Fi +
∑

Mi = 0 → B =
1

l

[∑
ai Fi −

∑
Mi

]
,

�

B : − l A +
∑

(l − ai)Fi +
∑

Mi = 0

→ A =
1

l

[∑
(l − ai)Fi +

∑
Mi

]
.

Now, let us imagine the beam cut at an arbitrary position x

(Fig. 7.6c). Since the normal force is equal to zero, it is not shown

in the free-body diagram. The equilibrium conditions for the left-
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hand portion of the beam,

↑ : A −
∑

Fi − V = 0 ,

�

C : −x A +
∑

(x − ai)Fi +
∑

Mi + M = 0 ,

yield the shear force and the bending moment:

V = A −
∑

Fi , (7.1)

M = x A −
∑

(x − ai)Fi −
∑

Mi . (7.2)

The summations in (7.1) and (7.2) include only the forces Fi and

the couples Mi acting at the left-hand portion of the beam.

The stress resultants can also be computed with the equilibrium

conditions for the right-hand part of the beam. Usually, the part

of the beam that allows for a simpler calculation of the results is

chosen.

The shear-force diagram is shown in Fig. 7.6d. According to

(7.1), the shear force is piecewise constant. The shear-force dia-

gram has jump discontinuities at the points of application of the

concentrated forces Fi. The magnitude of a jump is equal to the

magnitude of the respective force.

According to (7.2), the bending moment (Fig. 7.6e) is a piece-

wise linear function of the coordinate x. The diagram displays

slope discontinuities (kinks) at the points of application of the

forces Fi and jump discontinuities (magnitudes Mi) at the points

of application of the external couples Mi. The supports A and B

(hinge and roller support) cannot exert a moment. Therefore, the

bending moment is zero at the end-points of a simply supported

beam.

A relationship exists between the bending moment and the

shear force. If the derivative of (7.2) with respect to x is calculated

and (7.1) is applied, we obtain

dM

dx
= A −

∑
Fi = V . (7.3)

The slopes of the straight lines in the bending-moment diagram

are thus given by the corresponding values of the shear force.
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E7.1Example 7.1 The simply supported beam in Fig. 7.7a is subjected

to the three forces F1 = F , F2 = 2F and F3 = −F .

Draw the shear-force and bending-moment diagrams.

a

b

c

A= 3
2F F

2F

3
2aF

1
2aF

B

x
A

F 2F F

F3F2F1

A

B

2aF

F
B= 1

2F

V

M

a a a a

Fig. 7.7

Solution As a first step we draw the free-body diagram of the

entire beam (Fig. 7.7b) and compute the support reactions A and

B. The equilibrium conditions yield

�

A : − a F − 2 a 2F + 3 a F + 4 a B = 0 → B =
1

2
F ,

�

B : − 4 a A + 3 a F + 2 a 2F − a F = 0 → A =
3

2
F .

In the next step, we pass imaginary sections at arbitrary positions

x in each span between two concentrated loads. The equilibrium of

the forces for the left-hand parts of the beam yields the shear force

(the corresponding free-body diagrams are not shown in Fig. 7.7):

V = A = 3F/2 for 0 < x < a ,

V = A − F = F/2 for a < x < 2 a ,

V = A − F − 2F = − 3F/2 for 2 a < x < 3 a ,

V = A − F − 2F + F = −F/2 for 3 a < x < 4 a .
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The bending moment is obtained from the equilibrium of the mo-

ments:

M = xA = 3
2 xF for 0 ≤ x ≤ a ,

M = xA − (x − a)F = (a + 1
2 x)F for a ≤ x ≤ 2a ,

M = xA − (x − a)F − (x − 2a)2F = (5a − 3
2 x)F

for 2a ≤ x ≤ 3a ,

M = xA − (x − a)F − (x − 2a)2F + (x − 3a)F

= (2a − 1
2 x)F for 3a ≤ x ≤ 4a .

It should be noted that it would have been simpler to use the

right-hand parts instead of the left-hand parts for x > 2a.

The shear-force and bending-moment diagrams are shown in

Fig. 7.7c. The bending-moment diagram has a positive (negative)

slope in the regions of a positive (negative) shear force.

The values of the stress resultants at the right-hand end of the

beam (x = 4 a) may serve as checks:

– the shear force has a jump discontinuity of magnitude B (the

diagram should close at x = 4a),

– the bending moment is zero (roller support at the end of the

beam).

Since the beam in Fig. 7.7a is simply supported, the results for

V and M are already given by (7.1) and (7.2).

E7.2 Example 7.2 Determine the shear-force and bending-moment dia-

grams for the cantilever beam shown in Fig. 7.8a.

Solution First, the support reactions are calculated with the aid

of the free-body diagram of the whole beam (Fig. 7.8b). The equi-

librium conditions yield

↑ : A − F = 0 → A = F ,

�

A : −MA + M0 − l F = 0 → MA = M0 − l F = l F .
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Fig. 7.8

In order to obtain the shear force, we section the beam at an

arbitrary position x (since there is no concentrated load acting

between both ends of the beam, only one region of x needs to be

considered). The shear force follows from the equilibrium conditi-

ons of the forces in the vertical direction:

V = A = F for 0 < x < l .

Because of the couple M0 at the center of the beam, two regions

of x must be considered when the bending moment is calculated.

Accordingly, we pass a cut in the region given by 0 < x < l/2

and another one in the span l/2 < x < l. The equilibrium of the

moments yields

M = MA + x A = (l + x)F for 0 < x <
l

2
,

M = MA + x A − M0 = (x − l)F for
l

2
< x ≤ l .

The shear-force and bending-moment diagrams are shown in

Fig. 7.8c. The shear force is constant over the entire length of the

beam. The bending moment is a linear function of the coordinate

x and has a jump of magnitude M0 = 2 l F at the point of ap-

plication (x = l/2) of the external couple M0. The two straight

lines in the regions x < l/2 and x > l/2 have the same slope since

a

b c

l/2 l/2

A

MA

M0

M0 =2lF

A
x

3
2 lF

F

F

MA = lF

FA=F

1
2 lF

V

M
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the shear force has the same value in both regions (see (7.3)).

It should be noted that in this example the support reactions

need not be calculated in order to determine the shear force and

the bending moment. If we apply the equilibrium conditions to

the right-hand portions of the cut beam, the stress resultants are

obtained immediately. The support reactions A and MA can then

be found from the diagrams: they are equal to the shear force and

the bending moment, respectively, at x = 0.

E7.3 Example 7.3 Draw the diagrams of the stress resultants for the

beam shown in Fig. 7.9a.

a

c

d

b

e

M
N

V

V

M
N

a b

l

A

BV

BH

x

AV

x

AH

B

45◦

M0
l

b
l
M0

a
l
M0

M0

BH

BV

AH

AV

M0
l

B

M0 M0

C

C

V

M

N

Fig. 7.9

Solution The support reactions follow from the conditions of

equilibrium for the whole beam (Fig. 7.9b). With the components

BH = BV of the reaction force B (action line under 45◦ against

the vertical axis) we obtain
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�

A : M0 − l BV = 0 → BV = BH =
M0

l
,

�

B : l AV + M0 = 0 → AV = − M0

l
,

→: AH − BH = 0 → AH =
M0

l
.

Forces A and B represent a couple with the moment M0.

Since there is a discontinuity in the bending moment, two re-

gions of x must be considered to describe it for the entire beam.

First, we imagine the beam being cut in the region x < a. The

equilibrium conditions for the left-hand portion of the beam (Fig.

7.9c) yield

→: AH + N = 0 → N = −AH = − M0

l
,

↑: AV − V = 0 → V = AV = − M0

l
,

�

C : −x AV + M = 0 → M = x AV = − x

l
M0 .

In order to obtain the stress resultants to the right of the applied

couple, the beam is sectioned at a position x > a. Now it is simpler

to use the free-body diagram of the right-hand portion of the beam

(Fig. 7.9d). Notice the positive directions of the stress resultants

(negative face!) in this diagram. The conditions of equilibrium

yield

←: N + BH = 0 → N = −BH = − M0

l
,

↑: V + BV = 0 → V = −BV = − M0

l
,

�

C : M − (l − x)BV = 0 → M = (l − x)BV =
l − x

l
M0 .

The stress resultants are shown graphically in Fig. 7.9e. The

moment diagram has a jump discontinuity at the point of appli-

cation of the applied couple (x = a). The two straight lines in the

regions x < a and x > a have the same slope, since the shear force
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has the same value in both regions (see also (7.3)). The normal

force is induced by the support reactions and is constant in the

entire beam.

It should be noted that the support reactions are independent

of the point of application of the applied couple. The bending-

moment diagram, however, depends on this point.

7.2.2 Relationship between Loading and Stress Resultants

A relationship between the shear force V and the bending moment

M for beams under concentrated loads has already been given in

(7.3). This result is now extended to a beam that is subjected to

a load q(x) (force per unit length) that varies continuously over

the length of the beam (Fig. 7.10a). Fig. 7.10b shows the free-body

diagram of a beam element of infinitesimal length dx. The load

q may be considered to be constant over the length dx since the

effect of any change of q disappears in the limit dx → 0 (compare

Section 4.1). The distributed load is replaced by its resultant dF =

q dx. The shear force V and the bending moment M act at the

location x. They are drawn in their positive directions (negative

face!). Proceeding to the location x+dx, the stress resultants have

changed by an amount dV and dM , respectively, to the values

V + dV and M + dM . They are also shown with their positive

directions. The conditions of equilibrium yield

↑ : V − q dx − (V + dV ) = 0 → q dx + dV = 0 , (7.4)

�

C : − M − dx V +
dx

2
q dx + M + dM = 0

→ −V dx + dM +
1

2
q dx · dx = 0 . (7.5)

From (7.4) we obtain

dV

dx
= − q . (7.6)

Thus, the slope of the shear-force diagram is equal to the negative

intensity of the applied loading.
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a b

V

M
M+dM

V +dV

x+dxxdxx

A B C

dF =q(x)dx
dF =q(x)dx

dx

q(x)

Fig. 7.10

The term in (7.5) containing dx · dx is “small of higher or-

der” compared with dx or dM . Therefore, it vanishes in the limit

dx → 0 and (7.5) reduces to

dM

dx
= V . (7.7)

The derivative of the bending moment with respect to x is equal

to the shear force. This result is already known from the case of

beams under concentrated forces (see (7.3)). It should be noted

that the algebraic signs in (7.6) and (7.7) result from the sign

convention for the stress resultants.

If (7.7) is differentiated and (7.6) introduced, we obtain

d2M

dx2
= − q . (7.8)

The differential relations (7.6) and (7.7) may be used, for exam-

ple, to determine qualitatively the stress resultants and can also

serve as checks. For example, if q = const, then the shear force is a

linear function of x according to (7.6) and the bending moment is

represented by a quadratic parabola according to (7.7). The Table

at the end of this section shows the relations between the loading

and the stress resultants for several simple examples of q.

The most important value for the design of a beam is usually

the magnitude of the maximum bending moment. The correspond-

ing coordinate x for a relative maximum is characterized by the

condition of a vanishing shear force (compare (7.7)). It should be
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noted, however, that the absolute maximum may be located at an

end point of the beam or of a span (position of discontinuity).

q V M

0 constant linear

constant linear quadratic parabola

linear quadratic parabola cubic parabola

7.2.3 Integration and Boundary Conditions

The relations (7.6) and (7.7) may also be used to quantitatively

determine the stress resultants for a given load q(x). If we integrate

(7.6) and (7.7), we obtain

V = −
∫

q dx + C1 , (7.9)

M =

∫
V dx + C2 . (7.10)

The constants of integration C1 and C2 can be calculated if the

functions (7.9) and (7.10) for the stress resultants are evaluated at

positions of x where the values of V or M are known. The corre-

sponding equations are called boundary conditions. The following

Table shows which stress resultant vanishes at a given support at

the end of a beam. Statements V �= 0 and/or M �= 0 cannot be

(7.11)

support V M

pin �= 0 0

parallel motion 0 �= 0

sliding sleeve �= 0 �= 0

fixed end �= 0 �= 0

free end 0 0
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used as boundary conditions.

In contrast to the method of sections (see Section 7.2.1), the

support reactions do not have to be computed in order to determi-

ne the stress resultants V and M : they are automatically obtained

through the integration. If, on the other hand, some support re-

actions are known in advance, they can also be used to determine

the constants of integration.

To illustrate the procedure, let us consider the three beams

shown in Figs. 7.11a–c. They are subjected to the same load but

have different supports. With q = q0 = const, Equations (7.9) and

(7.10) yield

V = − q0 x + C1 ,

M = − 1

2
q0 x2 + C1 x + C2

for each beam.

b c

a

lll

x x x

q0

A B

q0

q0l

A

q0l

q0

B
A

q0l
2

Mmax =
q0l2

8 q0l2

2

q0l2

2

M M

V V V

M

Fig. 7.11
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The boundary conditions

a) M(0) = 0 , b) V (l) = 0 , c) V (0) = 0 ,

M(l) = 0 , M(l) = 0 , M(l) = 0

and thus the resulting constants of integration

a) 0 = C2 , b) 0 = − q0 l + C1 , c) 0 = C1 ,

a), b), c) 0 = − 1
2 q0 l2 + C1 l + C2

→

⎧
⎨

⎩
C1 = 1

2 q0 l ,

C2 = 0 ,

⎧
⎨

⎩
C1 = q0 l ,

C2 = − 1
2 q0 l2 ,

⎧
⎨

⎩
C1 = 0 ,

C2 = 1
2 q0 l2

are different for each of the cases a) to c). This leads to the follo-

wing stress resultants (Figs. 7.11a–c):

a) V =
1

2
q0 l
(
1 − 2

x

l

)
,

M =
1

2
q0 l2

x

l

(
1 − x

l

)
,

b) V = q0 l
(
1 − x

l

)
,

M = − 1

2
q0 l2

(
1 − x

l

)2

,

c) V = − q0 x ,

M =
1

2
q0 l2

[
1 −

(x

l

)2
]

.

The results are written in such a way that the terms in parenthe-

ses are dimensionless. The maximum bending moment Mmax =

q0 l2/8 for the simply supported beam is located at the center of

the beam (x = l/2: V = 0).

The support reactions can be taken from the diagrams; they

are equal to the values of the stress resultants at the endpoints of

the beams:

a) A = V (0) = 1
2 q0 l ,

B = −V (l) = 1
2 q0 l ,

b) A = V (0) = q0 l ,

MA = M(0) = − 1
2 q0 l2 ,

c) MA = M(0) = 1
2 q0 l2 ,

B = −V (l) = q0 l .
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a b

C

Mq0

A=
q0l
2 B=

q0l
2

q0

A

q0x

x

V

x
Fig. 7.12

The shear-force and bending-moment diagrams can also be ob-

tained with the method of sections. In order to explain this me-

thod in the case of a distributed load, the beam in Fig. 7.11a is

reconsidered. In a first step, the support reactions have to be cal-

culated (Fig. 7.12a). Next, the beam is sectioned at an arbitrary

position x (Fig. 7.12b). Then we replace the distributed load q0 by

its resultant q0x (notice that the distributed load must not be re-

placed by its resultant for the entire beam, i.e., before the beam is

divided by the cut). The equilibrium conditions for the left-hand

portion of the beam (Fig. 7.12b) yield the stress resultants

↑ : A − q0 x − V = 0

→ V = A − q0 x =
1

2
q0 l
(
1 − 2

x

l

)
,

�

C : −x A +
1

2
x q0 x + M = 0

→ M = x A − 1

2
q0 x2 =

1

2
q0 l2

x

l

(
1 − x

l

)
.

This method is recommended only if the resultant of the distrib-

uted load acting at the cut beam and its line of action can easily

be given.

E7.4Example 7.4 The cantilever beam in Fig. 7.13a is subjected to a

triangular line load.

Determine the stress resultants through integration.

Solution In the coordinate system given in Fig. 7.13a, the load is

described by the equation q(x) = q0(l − x)/l. Integration leads to

V (x) =
q0

2l
(l − x)2 + C1 , M(x) = − q0

6l
(l − x)3 + C1 x + C2 ,
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Fig. 7.13

(compare (7.9) and (7.10)). The boundary conditions V (l) = 0

and M(l) = 0 yield the constants of integration: C1 = 0 and

C2 = 0. Hence,

V (x) =
1

2
q0 l
(
1 − x

l

)2

, M(x) = − 1

6
q0 l2

(
1 − x

l

)3

,

see Fig. 7.13b. The shear-force diagram has a vanishing slope at

x = l since the distributed load is zero at the free end of the beam

(V ′(l) = −q(l) = 0). Analogously, the bending-moment diagram

has a vanishing slope at x = l since the shear force is zero at the

free end (M ′(l) = V (l) = 0).

In this example, it would have been more convenient to introdu-

ce the coordinate system according to Fig. 7.13c. Here, the x-axis

points to the left. In this coordinate system, the triangular load is

described by the simpler equation q(x) = q0 x/l, and the integra-

tion and boundary conditions V (0) = 0 and M(0) = 0 yield the

stress resultants (Fig. 7.13d)

V (x) = − 1

2
q0 l
(x

l

)2

, M(x) = − 1

6
q0 l2

(x

l

)3

.

Note that with this choice of the coordinate system the algebraic

c

a b

d

parabola
cubic

parabola
quadratic

parabola
cubic

quadratic
parabolaq0l

2

z

x

x

q(x)

z

q0l2

6
q0l
2

l

q0l2

6

q0

q0

q(x)

V M
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sign of the shear force is reversed (see Section 7.1).

It should also be noted that the stress resultants can easily be

determined with the method of sections.

7.2.4 Matching Conditions

Frequently, the load q(x) is given through different functions of x

in different portions of the beam (instead of one function for the

entire length of the beam). In this case, the beam must be divided

into several regions and the integration of (7.6) and (7.7) must be

performed separately in each of these regions.

To illustrate the method, the cantilever beam shown in Fig. 7.14

is considered. The load is given by

q(x) =

⎧
⎨

⎩
0 for 0 ≤ x < a ,

q0 for a < x < l .

Integration in region I (0 ≤ x < a) and region II (a < x < l)

yields

I: qI = 0 , II: qII = q0 ,

VI = C1 , VII = − q0 x + C3 ,

MI = C1 x + C2 , MII = − 1
2 q0 x2 + C3 x + C4 .

(7.12)

The two boundary conditions

VII(l) = 0 , MII(l) = 0 (7.13)

are not sufficient to determine the four constants C1 – C4 of inte-

gration. Therefore, two additional equations must be used. They

Fig. 7.14

a

q0

I II

x

l
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describe the behaviour of the stress resultants at the point x = a

(point of transition from region I to region II). These equations

are called matching conditions.

The beam is not subjected to a concentrated force or to an

external couple at x = a. Therefore, there are no jumps in the

shear-force or bending-moment diagrams (since dV/dx = − q and

q has a jump at x = a, the shear-force diagram has a jump in the

slope). Hence, the matching conditions are

VI(a) = VII(a) , MI(a) = MII(a) . (7.14)

Introducing (7.12) into the boundary conditions (7.13) and the

matching conditions (7.14) yields the constants of integration:

C1 = q0(l − a) ,

C3 = q0 l ,

C2 = − 1
2 q0(l

2 − a2) ,

C4 = − 1
2 q0 l2 .

As a second example, we consider the beam in Fig. 7.15. It is

subjected to a concentrated force F at x = a and an external

couple M0 at x = b. Then the shear-force diagram exhibits a

jump of magnitude F at x = a, whereas the bending-moment

diagram is continuous at this point (it has a jump in the slope).

The matching conditions for the values of the stress resultants at

the transition from region I to region II are therefore

VII(a) = VI(a) − F , MII(a) = MI(a) . (7.15)

The external couple M0 at x = b causes a jump in the bending-

moment diagram; the shear-force diagram is continuous. Hence,

the matching conditions at the transition from region II to region

a

M0

b

F

x

I IIIII

Fig. 7.15
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III are given by

VIII(b) = VII(b) , MIII(b) = MII(b) − M0 . (7.16)

The following Table shows which loads cause jumps in the stress

resultants or in the slopes of the diagrams.

Load V M
q0

kink –

F
jump kink

M0

– jump

If a beam has to be divided into n regions, the integration in

each region yields a total of 2n constants of integration. They can

be determined from 2n − 2 matching conditions and 2 boundary

conditions.

Let us now consider structures composed of several beams that

are connected by joints. Since an internal pin cannot exert a mo-

ment, the bending moment is zero at the pin: M = 0. The shear

force is in general not equal to zero at this point: V �= 0. In con-

trast, at a parallel motion V = 0 and M �= 0 are valid. These

statements concerning the stress resultants at a connecting mem-

ber are displayed in the following Table.

connecting member V M

G �= 0 0

0 �= 0

(7.17)

If an internal pin or a parallel motion exists in a structure, a

matching condition is replaced by one of the following conditions:

bending moment or shear force equal to zero.
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A division into regions at a connecting member is not necessary

if no concentrated force or external couple acts on the element.

Also, no division into regions is required in the case of a distributed

load that is described by the same function to the left and to the

right of the element.

If a beam must be divided into many regions, a system of equa-

tions with many unknowns has to be solved in order to obtain the

constants of integration. Therefore, this method is recommended

only for beams with very few regions.

E7.5 Example 7.5 A simply supported beam is subjected to a concen-

trated force and a triangular line load (Fig. 7.16a).

Determine the stress resultants.

cb

a

cubic

quadratic
parabola

parabola

x2x1

III F q0

F q0

l
ba

V

M

Fig. 7.16

Solution The beam is divided into the two regions I and II accor-

ding to Fig. 7.16b. We use the coordinate x1 in the region I and

coordinate x2 in region II (instead of the coordinate x for the en-

tire length of the beam). Integration according to (7.9) and (7.10)

in both regions yields

I: qI = 0 , II: qII = q0
x2

b
,

VI = C1 , VII = − q0
x2

2

2 b
+ C3 ,

MI = C1 x1 + C2 , MII = − q0
x3

2

6 b
+ C3 x2 + C4 .
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The boundary conditions and the matching conditions are

MI(x1 = 0) = 0 , MII(x2 = b) = 0 ,

VII(x2 = 0) = VI(x1 = a) − F , MII(x2 = 0) = MI(x1 = a) .

They lead, after some calculation, to the constants of integration:

C1 =
(1

6
q0 b + F

)b

l
, C2 = 0 ,

C3 =
(1

6
q0 b − a

b
F
)b

l
, C4 =

(1

6
q0 b + F

)a b

l
.

Hence, we obtain the stress resultants (Fig. 7.16c)

VI =
(1

6
q0 b + F

)b

l
,

VII = − q0
x2

2

2 b
+
(1

6
q0 b − a

b
F
)b

l
,

MI =
(1

6
q0 b + F

)b

l
x1 ,

MII = − q0
x3

2

6 b
+
(1

6
q0b −

a

b
F
)b

l
x2 +

(1

6
q0 b + F

)a b

l
.

E7.6Example 7.6 Determine the stress resultants for the compound

beam in Fig. 7.17a.

cb

a

parabola
quadratic

1
2 q0l

3
8 q0l2

1
8 q0l2

q0l

3
8 q0l

G

x1 x2

q0

l/2
l

q0

I II

BG CA

l

V

M

Fig. 7.17
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Solution The beam must be divided into two regions at the lo-

cation of support B (support reaction B and discontinuous load

q!). A division into regions at the internal pin G is not required

since q = q0 to the left and to the right of the pin. We use the

coordinates x1 and x2 in regions I and II, respectively (Fig. 7.17b).

Integration leads to

I: qI = q0 , II: qII = 0,

VI = − q0 x1 + C1 , VII = C3 ,

MI = − 1
2 q0 x2

1 + C1 x1 + C2 , MII = C3 x2 + C4 .

The four conditions

MI(x1 = 0) = 0 , MII(x2 = l) = 0 (boundary conditions) ,

MI(x1 = 3
2 l) = MII(x2 = 0) (matching condition) ,

MI(x1 = l) = 0 (zero bending moment at internal pin G)

yield the four constants of integration:

C1 = 1
2 q0 l , C2 = 0 , C3 = 3

8 q0 l , C4 = − 3
8 q0 l2 .

Thus, we obtain the stress resultants (Fig. 7.17c)

VI = − q0 x1 +
1

2
q0 l , VII =

3

8
q0 l ,

MI = − 1

2
q0 x2

1 +
1

2
q0 l x1 , MII =

3

8
q0 l(x2 − l) .

As a check, the support reactions are taken from the shear-force

diagram:

A = VI(x1 = 0) = 1
2 q0 l ,

B = VII(x2 = 0) − VI(x1 = 3
2 l) = 11

8 q0 l ,

C = −VII(x2 = l) = − 3
8 q0 l .

They are in equilibrium with the resulting external load 3 q0 l/2.



7.2 Stress Resultants in Straight Beams 197

7.2.5 Pointwise Construction of the Diagrams

To apply the theory to practical problems, it is not always neces-

sary to give the stress resultants as functions of x over the length of

the beam. Frequently, it suffices to calculate the stress resultants

at several specific points only. The values of the stress resultants

at these points are then connected with the curves that are asso-

ciated with the respective load.

a

b

c d

e

I II III IV V

M M

A

BA

B

F

q0

q0

2q0a

a a a a a a

M0

x

A A

F

F

C

V

a a a

A
F

B

C

V

M0

M0

V

M

Fig. 7.18

To illustrate the method, the simply supported beam in Fig.

7.18a is considered. As a first step, we compute the support reac-

tions with the conditions of equilibrium for the free-body diagram

of the entire beam (Fig. 7.18b):

�

B : − 6 a A + 5 a F + 3 a 2 q0 a + M0 = 0

→ A =
1

6

(
5F + 6 q0 a +

M0

a

)
,
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�

A : − a F − 3 a 2 q0 a + M0 + 6 a B = 0

→ B =
1

6

(
F + 6 q0 a − M0

a

)
.

The stress resultants exhibit jumps, or jumps in the slopes, at

x = a, 2 a, 4 a and 5 a, respectively. At these specific points, the

stress resultants are computed using the method of sections. If

we cut the beam at x = a immediately to the left of the force F

(Fig. 7.18c), we obtain

↑: A − V = 0 → V (a) = A =
1

6

(
5F + 6 q0 a +

M0

a

)

to the left of F ,
�

C : −a A + M = 0 → M(a) = a A

=
1

6
(5 a F + 6 q0 a2 + M0) .

A cut at x = 2a (Fig. 7.18d) yields

↑: A − F − V = 0 → V (2 a) =
1

6

(
−F + 6 q0 a +

M0

a

)
,

�

C : −2 a A + a F + M = 0

→ M(2 a) =
1

3
(2 a F + 6 q0 a2 + M0) .

Similarly, we find

V (4 a) =
1

6

(
−F − 6 q0 a +

M0

a

)
,

M(4 a) =
1

3
(a F + 6 q0 a2 + 2M0) ,

V (5 a) = V (4 a) ,

M(5 a) =
1

6
(a F + 6 q0 a2 − M0) to the right of M0 .

The distributed load is zero in regions I, II, IV and V. Therefore,

the shear force is constant in each of these regions. In region III,

the shear force varies linearly since q = q0 = const. The shear-

force diagram has a jump of magnitude F at x = a.
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Accordingly, the bending moment varies linearly in the regions

I, II, IV and V, and it is described by a quadratic parabola in

region III (compare the Table in Section 7.2.2). The diagram shows

a jump in the slope at x = a. Since the shear-force diagram is

continuous at x = 2 a and x = 4 a, the moment diagram has no

jumps in the slopes at these points (V = dM/dx). The external

couple M0 causes a jump in the diagram at x = 5 a.

Fig. 7.18e shows the diagrams of the stress resultants. The max-

imum bending moment is located at the position of the vanishing

shear force.

E7.7Example 7.7 Draw the diagrams of the stress resultants for the

structure in Fig. 7.19a (a = 0.5 m, q0 = 60 kN/m, F = 80 kN,

M0 = 10 kNm).

Fig. 7.19

Solution First, we compute the support reactions and the force in

the internal pin G (the horizontal components are zero). The equi-

librium conditions for the free-body diagrams of the two portions

of the structure (Fig. 7.19b) yield

1
�

A :
2

3
a q0 a + M0 − a 2 q0 a − 2 a G = 0

cb

a

quadratic

parabola

cubic

parabola

quadratic

parabola

MB

BA

q0

a

x

F

A

2q0a

GM0

F

MB
B

G

2a

M0

B

A

M0 G

q0a

a
2a

G

F

1 2

50

-50

-100

-25

-50

V

M

[kN]

[kNm]
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→ G = − 2

3
q0 a +

M0

2 a
= − 10 kN ,

�

G :
8

3
a q0 a + M0 − 2 a A + a 2 q0 a = 0

→ A =
7

3
q0 a +

M0

2 a
= 80 kN ,

2
�

B : − 2 a G + a F + MB = 0

→ MB = − 4

3
q0 a2 + M0 − a F = − 50 kNm ,

↑ : G − F + B = 0

→ B =
2

3
q0 a − M0

2 a
+ F = 90 kN .

The stress resultants at specific points of the beam are obtained

using the method of sections:

V (2a) =

{
− q0 a = − 30 kN

− q0 a + A = 50 kN

to the left of A ,

to the right of A ,

V (4a) = − q0 a + A − 2 q0 a = − 10 kN ,

V (5a) =

{
G = − 10 kN

G − F = − 90 kN

to the left of F ,

to the right of F ,

V (6a) = −B = − 90 kN ,

M(2a) =

⎧
⎪⎪⎨

⎪⎪⎩

− 2

3
a q0 a = − 10 kNm

− 2

3
a q0 a − M0 = − 20 kNm

to the left of A ,

to the right of A ,

M(5a) = a G = − 5 kNm ,

M(6a) = MB = − 50 kNm .

In addition, V (0) = 0, M(0) = 0 and M(4 a) = 0.

The values of the stress resultants are now connected with the

appropriate curves (straight lines or parabolas, Fig. 7.19c). Note

that
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– at x = 0, the quadratic parabola for V (because of q(0) = 0)

and the cubic parabola for M (because of V (0) = 0) have

horizontal slopes,

– at x = 4 a, the slope of the moment diagram has no jump

(because of the continuous shear force).

7.37.3 Stress Resultants in Frames and Arches
The methods for determining the stress resultants will now be ge-

neralized to frames and arches. Note that the differential relations

derived in Section 7.2.2 can be applied to straight portions of a

frame only; they are not valid for arches.

In this section, the discussion is limited to plane (i.e., coplanar)

problems and focused on the pointwise construction of the stress-

resultants diagrams. According to this method (see Section 7.2.5),

the stress resultants are computed at specific points of the struc-

ture with the aid of the method of sections. The algebraic signs of

the stress resultants are defined using dashed lines (Section 7.1).

A frame, in general, experiences also a normal force, even if the

external loads act perpendicularly to its members. Therefore, we

will always calculate all three stress resultants: bending moment,

shear force and normal force.

At the corners of frames where two straight beams are rigidly

joined, the equilibrium conditions reveal how the stress resultants

ba

N
1

C

Q
1

C

F2

N
1

C

M
1

C

q0

1

1

CC

BA

D
M

2

C

M
1

C

2

Q
2

C

2

3

M
2

C

N
2

C N
2

C

Q
2

C

Q
1

C

F1

Fig. 7.20
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are transferred. As an example, consider the externally unloaded

rectangular corner C of the frame shown in Fig. 7.20a. If we free

the corner by appropriate cuts, the equilibrium conditions yield

(Fig. 7.20b)

N
1

C = −V
2

C , V
1

C = N
2

C , M
1

C = M
2

C . (7.18)

Whereas the bending moment is transferred unaltered from part

1 to part 2 , the normal force becomes the shear force and the

shear force becomes the normal force. If the beams are joined at a

corner under an arbitrary angle, the transferred stress resultants

depend on this angle.

E7.8 Example 7.8 Determine the stress resultants for the frame in

Fig 7.21a.

ba

quadratic parabola
c

M - lineV - lineN - line

2aF

aF

A

BV

3

BH

F F

E
C D

a

a

2a

q0 =F/a

2aF
3
2F

2F

q0

2

4

1

a

5
2F

F

3
2F

Fig. 7.21

Solution The support reactions are obtained from the equilibrium

conditions for the frame as a whole (Fig. 7.21b):

A =
5

2
F , BV = −3

2
F , BH = 2F .

In order to define the algebraic signs of the stress resultants, we

introduce the dashed lines according to Fig. 7.21b. The following
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stress resultants are calculated using the method of sections:

N
1

C = 0 , V
1

C = −F , M
1

C = − aF ,

N
2

C = −A = − 5

2
F , V

2

C = 0 , M
2

C = 0 ,

N
3

D = 0 , V
3

D = −F + A =
3

2
F , M

3

D = −3 a F + 2 a A = 2 a F.

The equilibrium conditions at the freed corner D, where parts 3

and 4 are rigidly connected, yield in analogy to (7.18),

N
4

D = V
3

D =
3

2
F , V

4

D = −N
3

D = 0 , M
4

D = M
3

D = 2 a F .

With the following values at the ends of the members

N
1

E = 0 , V
1

E = −F , M
1

E = 0 ,

N
2

A = −A = − 5

2
F , V

2

A = 0 , M
2

A = 0 ,

N
4

B = −BV =
3

2
F , V

4

B = −BH = − 2F , M
4

B = 0

we obtain the stress resultants displayed in Fig. 7.21c.

The equilibrium conditions for the freed bifurcation point C

(cuts adjacent to C) may serve as a check. As an example, we

consider the stress resultants in the vertical direction showing that

the equilibrium condition is fulfilled:

V
1

C − V
3

C − N
2

C = 0 → −F − 3

2
F +

5

2
F = 0 .

E7.9Example 7.9 Determine the stress resultants for the members of

the structure in Fig. 7.22a.

Solution First we compute the support reactions. With the com-

ponents AV = AH of the reaction at A, the equilibrium conditions

for the entire structure (Fig. 7.22b) yield

�

B : 2a AV + 2a AH + 2a F = 0 → AV = AH = − 1
2 F ,

→: AH + BH = 0 → BH = 1
2 F ,
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a

b

c d

N - line

V - line

M - line

F

x

1
2F

5
2F

1
2F

F
1
2F

F

2Fa

3
2F

1
2Fa

1
2F

GH

a

45◦

2a

A

BV

GV

C
45◦

S

BH

S
G

B

1
2Fa

AH

A

F

45◦

x
AV

BH

BV

1
2F

a

a

a

Fig. 7.22

�

A : 2a BV + 2a BH − 4a F = 0 → BV = 3
2 F .

Then the force in bar S (= normal force S) and the force in pin

G (components GH and GV ) are calculated using the equilibrium

conditions for the vertical beam (Fig. 7.22c):

�

C : a GH − a BH = 0 → GH =
F

2
,

�

G : 2a BH − a

√
2

2
S = 0 → S =

√
2 F ,

↑: BV +

√
2

2
S − GV = 0 → GV =

5

2
F .

In order to define the algebraic signs of the stress resultants,

we introduce the dashed lines according to Fig. 7.22b. The normal-

force diagram and the shear-force diagram can be drawn without
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further computation (note the jumps in the diagrams due to the

concentrated forces S, GH and GV ). The bending-moment dia-

gram can be constructed with the aid of the values at specific

points (Fig. 7.22d).

E7.10Example 7.10 The circular arch in Fig. 7.23a is subjected to a

concentrated force F .

Draw the diagrams of the stress resultants.

c

a b

d

e

N - line

M - line

V - line

F

30◦

r

V

B

M

ψ

N

F

B

II

AV

AH

I

AV

AH

1
4F

r sin ψϕ
r

r(1−cos ψ)r(1 − cos ϕ)

NM

r

√
3

8 F

1
4F F

( √
3

2 − 1
8

)
F

(
1
4 +

√
3

8

)
rF

(
1
2 +

√
3

8

)
F

1
4F

1
8F

C

ϕ

r/2

r sin ϕ
C V

Fig. 7.23
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Solution The reactions at the supports follow from the equilibrium

conditions for the the entire arch (Fig. 7.23b):

B =
1

4
F , AV = −B = − 1

4
F , AH = F .

We introduce the dashed line and cut the arch at an arbitrary

position ϕ in region I (0 < ϕ < 30◦). The free-body diagram

of the corresponding part of the arch is shown in Fig. 7.23c. The

equilibrium conditions lead to the stress resultants:

ր : N + AV cos ϕ − AH sin ϕ = 0

→ N =
(
sin ϕ + 1

4 cos ϕ
)
F ,

ց : V − AV sin ϕ − AH cos ϕ = 0

→ V =
(
cos ϕ − 1

4 sin ϕ
)
F ,

�

C : M − r sin ϕAH − r(1 − cos ϕ)AV = 0

→ M =
(
sin ϕ + 1

4 cos ϕ − 1
4

)
r F .

Since the arch is sectioned at an arbitrary position ϕ, these equa-

tions describe the variations of the stress resultants in region I.

Similarly, introducing the angle ψ = π − ϕ, the stress resultants

in region II (30◦ < ϕ < 180◦) are obtained from the equilibrium

conditions for the free-body diagram in Fig. 7.23d:

տ : N + B cos ψ = 0

→ N = − 1
4 F cos ψ = 1

4 F cos ϕ ,

ր : V + B sin ψ = 0

→ V = − 1
4 F sin ψ = − 1

4 F sin ϕ ,

�

C : −M + r(1 − cos ψ)B = 0

→ M = 1
4 (1 − cos ψ)r F = 1

4 (1 + cos ϕ)r F .

The stress resultants are drawn perpendicularly to the axis of

the arch in Fig. 7.23e. The jumps ΔN = F/2 in the normal

force and ΔV =
√

3 F/2 in the shear force at ϕ = 30◦ are equal

to the components of F tangential and orthogonal to the arch,

respectively.
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7.47.4 Stress Resultants in Spatial Structures
The discussion to this point has been limited to plane problems,

i.e., plane structures that are subjected to loads acting in the

same plane. Now we extend the investigation of stress resultants

to spatial structures and to three-dimensional load vectors.

As a simple example, consider the cantilever beam in Fig. 7.24a,

which is subjected to the concentrated forces Fj and the exter-

nal couples Mj acting in arbitrary directions. As in the case of

plane problems, we cut the beam at an arbitrary position x (com-

pare Section 7.1). The internal forces acting in the cross-section

are replaced by the resultant R (acting at the centroid C of the

cross-section) and the corresponding couple M (C). Again, the

superscript C is omitted: instead of M (C), we simply write M

(Fig. 7.24b). Vectors R and M have, in general, components in

all three directions of the coordinate system:

R =

⎛

⎜⎝
N

Vy

Vz

⎞

⎟⎠ , M =

⎛

⎜⎝
MT

My

Mz

⎞

⎟⎠ . (7.19)

The component of the resultant R in the x-direction (normal to

a

b

F 2y x

F 1

M 2

y
RM

x

M 1

z

z

Vy

Vz

N
MT

Mz

xy

z

My

C C

Fig. 7.24
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the cross-section) is the normal force N (compare Section 7.1).

The components in the y- and z-directions (perpendicular to the

axis of the beam) are the shear forces Vy and Vz, respectively.

The component of the moment M in the x-direction is called

torque. In an elastic beam, the torque causes a twist about the

longitudinal axis (see Volume 2). The components in the y- and

z-directions are the bending moments My and Mz, respectively.

The sign convention for the stress resultants coincides with the

sign convention for plane problems (see Section 7.1): positive stress

resultants at a positive (negative) face point in the positive (neg-

ative) directions of the coordinates. Fig. 7.24b shows the stress

resultants with their positive directions. In structures composed

of several members having different directions, it is helpful to use

a different coordinate system for each member.

The stress resultants are determined using the method of sec-

tions, i.e., from the equilibrium conditions for a portion of the

structure.

E7.11 Example 7.11 The spatial structure in Fig. 7.25a is subjected to

a concentrated force F .

Determine the stress resultants.

Solution We cut the structure at arbitrary positions in the regi-

ons 1 – 3 . If we apply the equilibrium conditions to the cut-off

portions of the structure, the stress resultants can be determined

without having calculated the support reactions.

To define the algebraic signs of the stress resultants in the three

regions, we use three coordinate systems (Fig. 7.25a). First, a cut

is passed at an arbitrary position x in region 1 . The stress resul-

tants are drawn in the free-body diagram (Fig. 7.25b) with their

positive directions (negative face!). The equilibrium conditions

(3.34) yield

∑
Fiy = 0 : F − Vy = 0 → Vy = F ,

∑
Miz = 0 : (c − x)F − Mz = 0 → Mz = (c − x)F .

The other stress resultants are zero in region 1 .
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The stress resultants in regions 2 and 3 are also obtained

using the method of sections. The free-body diagram for region 2

(Fig. 7.25c) leads to

∑
Fiy = 0 : F − Vy = 0 → Vy = F ,

∑
Mix = 0 : c F − MT = 0 → MT = c F ,

∑
Miz = 0 : (b − x)F − Mz = 0 → Mz = (b − x)F ,

c db

e

V - lineN - line

M - line
MT - line

1

cF

F

F

Vy

Vy
F

cF

bF

My

Mz

Mz

cF

Mz

FFF

c−x

3

a−x

2

Vy

Vz

N

My

MT

MT

Mz

Vy N
My

Mz

Mz b−x

Fig. 7.25

a

x
y z

z
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and for region 3 (Fig. 7.25d) we obtain

∑
Fix = 0 : F − N = 0 → N = F ,

∑
Miy = 0 : − c F − My = 0 → My = − c F ,

∑
Miz = 0 : b F − Mz = 0 → Mz = b F .

The stress resultants that are equal to zero are omitted in these

free-body diagrams for the sake of clarity of the figures.

The stress resultants are presented in Fig. 7.25e. The support

reactions are equal to the values of the stress resultants at the

fixed end.

E7.12 Example 7.12 The clamped circular arch in Fig. 7.26a is subjected

to a concentrated force F that acts perpendicularly to the plane

of the arch.

Determine the stress resultants.

top view

b

r sin ϕ

My

Fr

Vz

y

S
r(1−cos ϕ)

MT
x

ϕ

Fig. 7.26

Solution We section the arch at an arbitrary position ϕ and con-

sider the cut-off portion of the arch (Fig. 7.26b). To define the

algebraic signs of the stress resultants, a local x, y, z-coordinate

system is used. At the position S given by ϕ, the shear force Vz,

the torque MT and the bending moment My are introduced with

their positive directions (positive face). The other stress resultants

are zero; they are omitted in the free-body diagram.

The equilibrium conditions yield

a

F
r r
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∑
Fiz = 0 : Vz + F = 0 → Vz = −F ,

∑
M

(S)
ix = 0 : MT + F r(1 − cos ϕ) = 0

→ MT = −F r(1 − cos ϕ) ,
∑

M
(S)
iy = 0 : My + F r sin ϕ = 0

→ My = −F r sin ϕ .

7.57.5 Supplementary Examples
Detailed solutions of the following examples are given in (A)

D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik

1, Springer, Berlin 2008 or (B) W. Hauger et al. Aufgaben zur

Technischen Mechanik 1-3, Springer, Berlin 2008.

E7.13Example 7.13 A crab on two

wheels can move on a beam

(weight negligible). Its weight

G is linearly distributed as in-

dicated in Fig. 7.27.

Determine the value

ξ = ξ∗ for which the bending

moment attains its maximum value Mmax. Calculate Mmax.

a BA

l

Gξ

Fig. 7.27

Results: see (B) ξ∗ = (3l − a)/6 , Mmax =
1

36

(
3 − a

l

)2

Gl.

E7.14Example 7.14 Determine the

bending moment for a canti-

lever subjected to a sinusoi-

dal line load (Fig. 7.28).
l

q◦
x

Fig. 7.28

Result: see (A) M(x) = −q◦l
2

π

(x

l
− sin

πx

l

)
.
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E7.15 Example 7.15 The struc-

ture in Fig. 7.29 consists

of a hinged beam and five

bars. It is subjected to two

concentrated forces.

Determine the forces in

the bars and the bending

moment in the beam.
a a a a

a

F 2F

1
2 4

3
5

Fig. 7.29

Results: see (A) S1 = S5 = 3
2

√
2F , S2 = S4 = −S3 = − 3

2F ,

Mmax = aF/4 .

E7.16 Example 7.16 A simply supported beam carries a linearly varying

line load as shown in

Fig. 7.30.

Calculate the location

and the magnitude of the

maximum bending mo-

ment for q1 = 2q0.

q◦

l

q1

x

Fig. 7.30

Results: see (A) x∗ = 0.53 l , Mmax = 0.19 q◦l
2.

E7.17 Example 7.17 Draw the shear-

force and bending-moment

diagrams for the hinged beam

shown in Fig. 7.31.

Result: see (B) Selected values:

V (0) = q◦a , V (a) = 0 , V (5a) = 3q◦a/2 ,

M(a) = q◦a
2/2 , M(3a) = −3q◦a

2/2 , M(5a) = 3q◦a
2/2 .

a aa
x

G2

A CB
G1

2a

q0

Fig. 7.31
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E7.18Example 7.18 The beam

shown in Fig. 7.32 carries

a uniformly distributed line

load q◦ and a couple M0 =

4q◦a
2.

Draw the shear-force and

bending-moment diagrams.
Fig. 7.32

Result: see (B) Selected values: V (a) = −q◦a, M(4a) = − 8q◦a
2.

E7.19Example 7.19 Determine the distance a of hinge G from the sup-

port B (Fig. 7.33) so that the

magnitude of the maximum

bending moment becomes

minimal.
B C

l l

a GA

q◦

Fig. 7.33

Result: see (A) a = (3 −
√

8)l = 0.172 l.

E7.20Example 7.20 Determine the

stress resultants for the

clamped angled member

shown in Fig. 7.34.
C

B

q◦ A

b
a

y1

z
x1

x2

y2

zFig. 7.34

Results: see (A)

CB : Vz = −q◦x1 , My = −q◦x
2
1/2 ,

BA : Vz = −q◦a , MT = q◦a
2/2 , My = −q◦ax2 .

α
S

4a2a2a

x

A

q0M0
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E7.21 Example 7.21 Determine the

distance a of the hinge G

(Fig. 7.35) so that the magni-

tude of the maximum ben-

ding moment becomes mini-

mal.

q◦ a
l

l

G

Fig. 7.35

Result: see (A) a = (2
√

3 − 3)l = 0.464 l.

E7.22 Example 7.22 Draw the shear-

force and bending-moment

diagrams for the frame shown

in Fig. 7.36. 2a

q◦

A B

a a2a

C

DE

Fig. 7.36
Result: see (A) Selected values:

V (A) = −V (B) = q◦a/
√

5 , V (C) = −V (D) = q◦a ,

M(C) = M(D) = q◦a
2 , M(E) = 3q◦a

2/2 .

E7.23 Example 7.23 The arch shown in

Fig. 7.37 carries a constant line

load q◦.

Calculate the maximum va-

lues of the normal force and the

bending moment.

q◦

r

Fig. 7.37

Results: see (A) Nmax = 17 q◦r/16 , Mmax = −q◦r
2/8.
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E7.24Example 7.24 A clamped arch

in the form of a quarter-circle

(weight negligible) supports a

line load q◦ (Fig. 7.38).

Determine the stress resul-

tants as functions of the coor-

dinate ϕ. Fig. 7.38

Results: see (B) Vz = −q◦rϕ , My = −q◦r
2(1 − cos ϕ) ,

MT = −q◦r
2(ϕ − sin ϕ) .

E7.25Example 7.25 Draw the

shear-force and bending-

moment diagrams for the

hinged beam shown in

Fig. 7.39.

2a

A B
G

3a

4a 2a 4a

q0

x

Fig. 7.39

Results: see (B)

V (0) = 9
4q0a , V (6a) = − 3

2q0a , V (12a) = 3
4q0a ,

M(9a/4) = 81
32q0a

2 , M(4a) = q0a
2 , M(8a) = −3q0a

2 .

B

q0

r

A

ϕ
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7.6 7.6 Summary
• In plane problems, the stress resultants in a beam, frame or

arch are the normal force N , the shear force V and the bending

moment M .

• Sign convention for stress resultants: positive stress resultants

at a positive (negative) face point in the positive (negative)

directions of the coordinates.

• The stress resultants can be determined using the method of

sections:

⋄ Pass an imaginary cut through the beam (frame, arch).

⋄ Choose a coordinate system.

⋄ Draw a free-body diagram of a portion of the structure

(stress resultants acting in their positive directions).

⋄ Formulate the equilibrium conditions (3 equations in a

plane problem, 6 equations in a spatial problem).

⋄ Solve the equations.

⋄ The system of equations has a unique solution if the struc-

ture is (externally and internally) statically determinate.

• The differential relationships

V ′ = − q , M ′ = V

are valid for beams and for the straight parts of a frame (not for

arches). If the applied load q is known, the stress resultants can

be obtained through integration. The constants of integration

are determined from boundary conditions or from boundary

conditions and matching conditions.

• Frequently, it suffices to compute the stress resultants at sev-

eral specific points only. The curves between these points are

determined by the corresponding loads. Note the relationships

between q, V and M .
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Objectives: Students will become familiar with the con-

cepts of work, conservative forces and potential energy. In addi-

tion, they will learn about the principle of virtual work. After

studying this chapter, students should be able to correctly apply

this principle in order to determine equilibrium states in nonrigid

systems as well as support reactions and internal forces and mo-

ments. Finally, it will be shown how to investigate the stability

of equilibrium states of conservative systems with one degree of

freedom.
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8.18.1 Work and Potential Energy
The concept of work involves displacements and therefore belongs

to the field of kinetics (see Volume 3) since in the field of statics

no movement occurs. However, as will be shown in Section 8.2,

problems in the field of statics can also be solved with the aid of

work concepts. For this purpose, first the mechanical term “work”

is introduced.

Fig. 8.1

Fig. 8.1 shows a body which is displaced a distance s by a con-

stant force F acting in the direction of the displacement s. Here

the work of the force F is defined as the product of F and the

displacement s of the point of application P :

U = F s .

This definition can be generalized with the aid of vector calculus.

In Fig. 8.2a the point of application P of a force F moves along an

arbitrary path. Let us now consider an infinitesimal displacement

dr from the current position given by vector r to a neighboring

position. The infinitesimal work dU done by the force F is then

defined as the scalar product

dU = F · dr . (8.1)

a b

r

F

P

αdr

dr cos αα

F
dr

F cos α
F

dr
α

x

z

y

1

2

Fig. 8.2

F
P P ′

F

s
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According to (A.19), this product of the vectors F and dr is given

by the scalar value

dU = |F ||dr| cos α = (F cos α)dr = F (dr cos α) . (8.2)

Thus, the work dU is the displacement dr multiplied by the force

component F cos α in the direction of the displacement. Alterna-

tively, it may be interpreted as the product of the force F and

the component of the displacement dr cos α in the direction of the

force (Fig. 8.2b). If force and displacement are orthogonal (α =

π/2), then no work will be done: dU = 0.

The work done along an arbitrary path (Fig. 8.2a) from point

1 to point 2 can be determined from the line-integral

U =

∫
dU =

2∫

1

F · dr . (8.3)

Work has the dimension [F l] and is given in the unit named after

the physicist James Prescott Joule (1818–1889):

1 J = 1Nm.

The magnitude and direction of the force F in (8.3) may de-

pend on the position vector r, i.e., F = F (r). Therefore, the

expression “work = force× distance” is only valid when both vec-

tors F and dr permanently have the same direction (α = 0), and

the magnitude of F is constant.

As an example, let us consider a system of two bodies with

weights G and Q, respectively, connected by an unstretchable ca-

ble (Fig. 8.3). If the body on the left side undergoes a downward

displacement of length ds, then the body on the right side will

be pulled the same length upward along the inclined plane. The

work done by weight G is then given by dUG = Gds, since the

directions of the force and the displacement coincide. Only the

component Q sin α in the direction of the displacement is taken

into account for the work done by Q, since the component of a

force perpendicular to the direction of the displacement does no
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Fig. 8.3

work. As the working component acts in the opposite direction of

the displacement, its work is negative: dUQ = −Q sin α ds.

As a further example, consider a two-sided lever to which the

forces F1 and F2 are applied (Fig. 8.4a). During an infinitesimal

rotation dϕ about the supporting point A, force F1 does the work

(Fig. 8.4b)

dU = F1 ds1 = F1 adϕ .

The product of force F1 and length a of the lever arm is, according

to (3.5), the moment M1 of the force F1 about A. Therefore, the

work can also be expressed by

dU = M1 dϕ .

ba

F2F1

ds1

F1 F2

dϕa b

A

Fig. 8.4

In order to generalize the results obtained so far, we introduce

an infinitesimal rotation vector dϕ, whose direction coincides with

the axis of rotation and whose magnitude is the angle dϕ. There-

fore, the work done by a moment vector M during an infinitesimal

rotation is given by

dU = M · dϕ . (8.4)

ds

ds

G

Q

α

Q cos α

Q
α

Q sin α
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The work done by a moment vector M during a finite rotation of

the body on which it acts, follows from integration:

U =

∫
dU =

∫
M · dϕ . (8.5)

This equation is analogous to the expression (8.3) for the work of

a force. If M and dϕ are parallel, then it follows from (8.4) that

dU = Mdϕ. If, in addition, M is constant during a finite rotation

ϕ, then (8.5) yields U = M ϕ.

Since an angle is dimensionless, moment and work (although

they are different physical quantities) have the same dimension

[F l].

r

x

z

y G

dr

1

2 Fig. 8.5

Now a special case of a constant force is considered, namely, the

weight G of a body (dead load) in the vicinity of the earth’s sur-

face (Fig. 8.5). Let the coordinate z point perpendicularly outward

from the earth’s surface, then the force vector is given by

G = −G ez .

With the change of the position vector

dr = dxex + dy ey + dz ez

and

ez · ex = ez · ey = 0 , ez · ez = 1 (see (A.22))

we obtain from (8.1)
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dU = G · dr = −Gez · (dxex + dy ey + dz ez) = −Gdz .

Therefore, according to (8.3), the work done by the weight along

the path from 1 to 2 is given by

U =

∫
dU = −

z2∫

z1

Gdz = G (z1 − z2) . (8.6)

The work U depends only on the location of the endpoints. Hence,

the work done by the weight along arbitrary paths is unchanged

as long as the endpoints 1 and 2 are the same, i.e., the work is

path-independent.

Forces whose work is path-independent are called conservative

forces or potential forces. These forces, and these forces only, can

be derived from a potential V , which is defined as

V = −U = −
∫

F · dr . (8.7)

The quantity V is also referred to as potential energy.

As a first example, we consider again the weight G in Fig. 8.6a.

With z2 = z, Equation (8.6) yields

V (z) = −U = G (z − z1) = Gz − Gz1 . (8.8a)

In Volume 3 it will be shown how a conservative force may be

derived from its potential. In our case, the weight G is obtained

by calculating the negative derivative of V with respect to the

coordinate z:

− dV

dz
= −G . (8.8b)

The minus sign in front of G indicates that the weight acts in the

negative z-direction.

According to (8.8a), the potential depends on the choice of the

coordinate system (location of the origin). It is determined up to

an arbitrary additive constant (here Gz1). However, this constant

does not enter into the calculation of the force G, cf. (8.8b). It also
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has no influence on the work because the work depends only on the

height difference z − z1. Therefore, the location of the coordinate

system can be chosen arbitrarily. It is often useful to choose the

coordinate system in such a way that the potential is zero at z = 0:

V (0) = 0 (zero level).

As a further example, the potential of the force in a spring

is considered. The spring depicted in Fig. 8.6b is elongated by a

length x from its unstretched length through an external force

F . It is known from experiments that the linear relation F = c x

exists between the force F and the spring elongation x, provided

the elongation of the spring remains sufficiently small. The spring

constant c is a measure of the stiffness of the spring. It has the

dimension force divided by length, and therefore the unit N cm−1.

The spring force Ff (restoring force) is the reaction force associa-

ted with F and points in the opposite direction of the elongation.

Thus, calculation of the work done by the spring force during

elongation yields

U = −
x∫

0

Ff dx̄ = −
x∫

0

c x̄ dx̄ = − 1

2
c x2 .

According to (8.7), the potential of the spring force is given by

V (x) =
1

2
c x2 . (8.9)

The potential represents the energy stored in the spring due to

its elongation. The spring force Ff also follows from the negative

cba

G

M

F

FFf

z

z1
ϕ

x

1

2 c
T

c

Fig. 8.6
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derivative of V with respect to the coordinate x:

Ff = − dV

dx
= − c x .

Consider now a linear torsion spring as depicted in Fig. 8.6c.

There is a linear relation M = c
T
ϕ between the moment M and

the angle of rotation ϕ. This relation is analogous to F = c x in the

foregoing case. The torsion spring constant c
T

has the dimension

[Fl] and therefore the unit N cm or a multiple of it. If in Equation

(8.9), c is replaced by c
T

and x by ϕ, the potential of the moment

of a torsion spring is obtained:

V =
1

2
c

T
ϕ2 . (8.10)

8.28.2 Principle of Virtual Work
Up to this point in the chapter we have calculated the work done

by a force when the point of application actually moves along a

path. However, the concept of work can also be applied to statics,

where no displacements occur. In this framework, actual displace-

ments must be replaced by virtual displacements. Virtual displa-

cements are displacements (or rotations) that are

a) fictitious, i.e., do not exist in reality,

b) infinitesimally small,

c) geometrically (kinematically) admissible, i.e. consistent with

the constraints of the system.

In order to distinguish virtual displacements from real displa-

cements dr, we denote virtual displacements as δr, i.e., with the

δ-symbol, taken from the calculus of variations. Accordingly, the

virtual work done by forces or moments during a virtual displace-

ment is written as

δU = F · δr (compare (8.1)),

δU = M · δϕ (compare (8.4)).

We now reconsider the two-sided lever (Fig. 8.7a) and calculate

the work done during a virtual displacement. A virtual displace-
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ment, i.e., a deflection that is consistent with the constraints of

the system, is a rotation with an angle δϕ about the support A

(Fig. 8.7b). The total virtual work δU done by the two forces F1

and F2 is

δU = F1 a δϕ − F2 b δϕ = (F1 a − F2 b) δϕ .

The minus sign in the second term takes into account that the

force F2 acts in opposite direction of the virtual deflection b δϕ. In

the equilibrium state, the expression in parentheses disappears due

to the equilibrium condition of moments F2 b = F1 a (Archimedes’

law of the lever). Therefore, in this example, the virtual work

vanishes in the equilibrium position: δU = 0. It should be noted

that only the external forces F1 and F2 (cf. Section 1.4) enter

into the virtual work, whereas the reaction force in A does not

contribute.

a b c

aδϕ
bδϕ

A

δz

δϕ

F1 F2 F1 F1 F2F2

A

a b

Fig. 8.7

The aforementioned results can be generalized. We postulate

as an axiom that for an arbitrary system with an arbitrary num-

ber of external forces F
(e)
i and external moments M

(e)
i the entire

virtual work must disappear in an equilibrium state:

δU =
∑

F
(e)
i · δri +

∑
M

(e)
i · δϕi = 0 . (8.11)

Since this equilibrium axiom provides a statement on the work

done during virtual displacements, it is called the principle of vir-

tual work. It may be expressed as follows:

A mechanical system is in equilibrium if the virtual work of

the external loads (forces and moments) vanishes during an

arbitrary virtual displacement.
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The axiom of the principle of virtual work δU = 0 is also often

referred to as the principle of virtual displacements . In the me-

chanics of deformable solids, an extended version of this principle

has a significant meaning (cf. Volume 2).

The equilibrium conditions can be derived from the principle

of virtual work; conversely, the principle of virtual work can be

derived from the equilibrium conditions, which also have an axio-

matic character. Therefore, the entire field of statics can be based

either on the equilibrium conditions or on the principle of virtual

work. From a practical point of view, the principle of virtual work

offers the great advantage that the number of unknowns in the

equations can often be reduced through an appropriate choice of

virtual displacements. The drawback is that complicated kinema-

tic conditions may have to be formulated.

The principle of virtual work cannot only be applied to mova-

ble systems, but also to systems that are rigidly supported, i.e.,

immobile. In the case of a rigid system, one or several supports

are removed and replaced by the support reactions. These reacti-

ons then will be considered to be external loads and consequently

taken into account in the principle of virtual work. For example,

if we remove in Fig. 8.7b the pin joint at A, it is replaced by the

force A (Fig. 8.7c). This force does the virtual work Aδz during a

virtual displacement δz. Hence, the principle of virtual work reads

δU = Aδz − F1 δz − F2 δz = (A − F1 − F2)δz = 0 .

Since the virtual displacement δz is nonzero, the term in paren-

theses must vanish, yielding the support force A = F1 + F2.

8.38.3 Equilibrium States and Forces in Nonrigid
Systems

In the following we consider systems of rigid bodies that are in-

completely constrained and therefore able to move. If the applied

forces are prescribed, the corresponding equilibrium configuration

can be determined with the aid of the principle of virtual work.

On the other hand, if an equilibrium position is prescribed, the
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principle of virtual work yields the necessary forces. There are two

ways to formulate the principle of virtual work:

a) We can draw the system in an arbitrary configuration and in

an adjacent configuration. The magnitudes and directions of

the displacements associated with the applied forces can be

taken from the drawn figure. The corresponding terms for the

virtual work (including the algebraic signs) are inserted into

the principle of virtual work.

b) We can choose a coordinate system and describe the coordina-

tes of the point of application of each force in this coordina-

te system. The virtual displacements are equal to infinitesimal

changes of the coordinates. They are obtained formally through

differentiation (the δ-symbol can be treated as a differential).

For example, if r is a function of a coordinate α, i.e., r = r(α),

then δr = (dr/dα)δα. The differentiation automatically yields

the correct algebraic sign for each term.

Both methods will now be applied to the simple example of a

rod (weight negligible) of length l, supported by a pin joint at A

(Fig. 8.8a). The rod is loaded by a horizontal force P and a vertical

force Q at the free end B. Our aim is to determine the angle α

in the equilibrium position. Applying the first method, the rod is

considered to be infinitesimally rotated by δα from an arbitrary,

yet unknown position α (Fig. 8.8b). The point of application of

the forces then is displaced by an amount l δα sin α upward, and

by an amount l δα cos α to the left. The principle of virtual work

δU = P l δα cos α − Q l δα sin α = (P cos α − Q sin α) l δα = 0

yields the equilibrium position (δα �= 0!):

P cos α − Q sin α = 0 → tan α =
P

Q
.

In the second, more formal method, we describe the position

of point B (point of application of the forces) with the aid of the

position vector r that points from the fixed support A to B. In

the coordinate system shown in Fig. 8.8c, the coordinates of r are

x = l sin α and y = l cos α. The virtual displacements are obtained
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a b c

α α

Q

δα

α

lδα sin α
lδα

P lδα cos α

A

y

x

B

l l

B

A A

Fig. 8.8

through differentiation:

δx =
dx

dα
δα = l cos α δα , δy =

dy

dα
δα = − l sin α δα .

Inserting these relations into the principle of virtual work (both

forces point in the directions of the positive coordinate axes)

δU = P δx + Q δy = P l cos α δα − Q l sin α δα

= (P cos α − Q sin α) l δα = 0

leads to the same result as before.

The advantage of the formal method now becomes clear: in the

first method the algebraic signs of the virtual displacements have

to be determined from observation, whereas the second method

automatically gives the correct signs (δα > 0 yields δy < 0). The

second method is preferable in the case of complicated kinematics

(geometry), since it is not always possible to rely on observation.

It should be noted that α can also be determined by formulating

the moment equilibrium condition
�

A : P l cos α − Q l sin α = 0.

If a system has several independent possibilities of movement

(degrees of freedom), the position r(α, β, . . .) of the point of ap-

plication of a force is given by several independent coordinates

α, β, . . .. The virtual displacements can then be found analogous

to the total differential of a function of several variables:

δr =
∂r

∂α
δα +

∂r

∂β
δβ + . . . . (8.12)
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E8.1 Example 8.1 A drawbridge of weight G can be raised with the aid

of a cable (weight neglected) and a counter-weight Q (Fig. 8.9a).

Determine the positions of equilibrium.

ba

G

Q
ϕ

ϕl

G
Q

D

E

l

x

z

s

l/2

A

Fig. 8.9

Solution Since the angle ϕ uniquely describes the position of the

system, the system has one degree of freedom.

If the arbitrary position given by ϕ is changed by a virtual

displacement δϕ, the points of application of the forces G and Q

are displaced. In order to determine the virtual work of G, we have

to consider only the change of its elevation, since the weight does

no work in a horizontal displacement. With the coordinate system

chosen in Fig. 8.9b (origin at the fixed support A), we obtain

zG =
l

2
cos ϕ → δzG =

dzG

dϕ
δϕ = − l

2
sin ϕ δϕ .

Determining the virtual displacement of the point of application

of Q is more difficult. For this purpose, we introduce the auxiliary

coordinate s, i.e., the distance between the fixed point D and point

E (Fig. 8.9b):

s = 2 l sin
ϕ

2
.

A virtual displacement δϕ causes a virtual change δs of s, which is

equal to the virtual displacement δzQ of the weight Q (inextensible

cable!):

δzQ = δs =
ds

dϕ
δϕ = l cos

ϕ

2
δϕ .
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Since both forces point in the direction of the negative z-axis, the

principle of virtual work yields

δU = −GδzG − Q δzQ =

(
G

l

2
sin ϕ − Q l cos

ϕ

2

)
δϕ = 0 .

With sinϕ = 2 sin(ϕ/2) cos(ϕ/2) and δϕ �= 0, we obtain

cos
ϕ

2

(
G sin

ϕ

2
− Q

)
= 0 .

The first solution cos(ϕ/2) = 0 leads to ϕ = π. Therefore, the

only remaining solution is

sin
ϕ

2
=

Q

G
.

For ϕ lying within the technically reasonable region 0 < ϕ < π/2,

the inequality sin(ϕ/2) < sin(π/4) =
√

2/2 must be satisfied. This

requirement leads to the following condition for the load Q:

Q

G
< sin

π

4
=

√
2

2
.

E8.2Example 8.2 A car-jack loaded with a weight G is schematically

depicted in Fig. 8.10. The height of the screw-thread is h.

What torque M must be applied to the car-jack in order to

keep the jack in equilibrium? The jack-screw, when turned, moves

without friction.

Fig. 8.10

z
ϕ

G

h

M
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Solution According to the principle of virtual work, the system

is in equilibrium when the total work done by force G and torque

M vanishes:

δU = Mδϕ − Gδz = 0 .

Here, the directions of M and ϕ coincide, whereas G and z have

opposite directions (Fig. 8.10). The virtual displacements δϕ and

δz are not independent. A rotation of Δϕ = 2π will raise the

jack-screw by the height Δz = h of the screw-thread. Therefore,

a rotation of δϕ results in δz = (h/2π)δϕ. Thus, the principle of

virtual work yields

δU =

(
M − h

2π
G

)
δϕ = 0 .

With δϕ �= 0 we obtain the torque necessary for equilibrium:

M =
h

2π
G .

It can be recognized that a large weight G can be raised with a

small force K by an externally applied torque M = l K if l ≫ h.

E8.3 Example 8.3 Two pin-jointed rods of weights G1 and G2 are dis-

placed from the vertical position by a horizontal force F (Fig. 8.11a).

Determine the equilibrium configuration.

a b

ϕ1

ϕ1

F F

ϕ2 ϕ2

G1

G2

A
x

l1

l2

G1

y

G2

Fig. 8.11

Solution The configuration of the system is uniquely determined

by the two angles ϕ1 and ϕ2. We use a coordinate system that

has its origin at the fixed support A (Fig. 8.11b). Then we obtain
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the following coordinates of the points of application of the forces:

y1 =
l1
2

cos ϕ1 , y2 = l1 cos ϕ1 +
l2
2

cos ϕ2 ,

xF = l1 sin ϕ1 + l2 sin ϕ2 .

According to (8.12), the virtual displacements are given by

δy1 = − l1
2

sin ϕ1 δϕ1 , δy2 = − l1 sin ϕ1 δϕ1 −
l2
2

sin ϕ2 δϕ2 ,

δxF = l1 cos ϕ1 δϕ1 + l2 cos ϕ2 δϕ2 .

Therefore, the principle of virtual work leads to

δU = G1 δy1 + G2 δy2 + F δxF

= G1

(
− l1

2
sin ϕ1 δϕ1

)
+ G2

(
−l1 sin ϕ1 δϕ1 −

l2
2

sin ϕ2 δϕ2

)

+F (l1 cos ϕ1 δϕ1 + l2 cos ϕ2 δϕ2)

=
(
F l1 cos ϕ1 − G1

l1
2

sin ϕ1 − G2 l1 sin ϕ1

)
δϕ1

+
(
F l2 cos ϕ2 − G2

l2
2

sin ϕ2

)
δϕ2 = 0 .

Since the system has two degrees of freedom, there are two

virtual displacements, δϕ1 and δϕ2, which are independent of each

other and not equal to zero at the same time. Therefore, the virtual

work vanishes only if the expressions in both parentheses are zero:

F l1 cos ϕ1 − G1
l1
2

sin ϕ1 − G2 l1 sin ϕ1 = 0

→ tan ϕ1 =
2F

G1 + 2G2
,

F l2 cos ϕ2 − G2
l2
2

sin ϕ2 = 0 → tan ϕ2 =
2F

G2
.

8.48.4 Reaction Forces and Stress Resultants
Structures such as beams, frames or trusses are rigidly supported.

In order to calculate a reaction force (moment) with the aid of

the principle of virtual work, the corresponding support must be
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removed and replaced by the support reaction. The point of ap-

plication of the support reaction is then able to move. Therefore,

the reaction force (moment) is considered to be an external force

(moment) in the principle of virtual work. Similarly, the force in

an internal pin or the stress resultants in beams can be determined

by cutting the system appropriately. Due to this imaginary cut,

the system becomes movable and the corresponding internal for-

ce does virtual work during a virtual displacement. The following

examples will explain the procedure.

E8.4 Example 8.4 Determine the force in the pin G of the structure

shown in Fig. 8.12a.

a b

b ca
δϕ δwG

FG

δwR

R=q0a/2
M0

G

d
q0

F
M0

A
G

Fig. 8.12

Solution The horizontal component of the force in the pin is ze-

ro. In order to determine the vertical component, we divide the

structure into two parts by a cut through the pin. The left-hand

part is then able to rotate about the point A, whereas the right-

hand portion cannot move in the vertical direction (Fig. 8.12b).

Furthermore, the triangular load is replaced by its resultant

R = q0 a/2

which is located at a distance 2 a/3 from A. With the virtual

displacements

δwR =
2

3
a δϕ , δwG = a δϕ

the principle of virtual work yields

δU = R δwR + M0 δϕ − GδwG =
q0 a

2

2

3
a δϕ + M0δϕ − Ga δϕ

=

(
q0

a2

3
+ M0 − Ga

)
δϕ = 0 .
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Since δϕ �= 0, the force in pin G becomes

G =
q0 a

3
+

M0

a
.

The force F acting on the right-hand section has no influence on

the force in pin G.

E8.5Example 8.5 The structure in Fig. 8.13a consists of three beams

that are pin-connected at G1 and G2. It is subjected to a concen-

trated force F and a constant line load q0 = F/(3 a).

Determine the support reactions at A with the aid of the prin-

ciple of virtual work.

Fig. 8.13

Solution In order to determine the vertical support reaction A,

the clamped end of the structure has to be replaced by a parallel

motion according to Fig. 8.13b. Then point A can move in the

vertical direction and the support reaction A has to be treated as

an external load in the principle of virtual work. Since no rotation

is possible at A, the moment MA is a reaction moment and does no

work. From Fig. 8.13b we obtain the following relations between

the virtual displacements:

δwA = δwF = δwG1
= a δβ , δwR = a δα .

The angles δα and δβ are mutually dependent. Considering the

displacement of pin G2, we find

a

b c

F
δαδβ

δwR

A

F

q0
F

G2G1

a a a a 2a

δε δγ

δwG2

A

δwR

δμ

δwA

δwG2
δwG1

δwF

δwG1
δwF

R R
MA
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δwG2
= 2 a δα = a δβ → δα = 1

2 δβ .

From the principle of virtual work

δU = −AδwA + F δwF − R δwR = −Aa δβ + F a δβ − 2
3 F a δα

= (−A + F − 2
3 F 1

2 ) a δβ = 0

and δβ �= 0, we obtain the support reaction

A =
2

3
F .

In order to calculate the moment MA we replace the clamped

support by a smooth pin (Fig. 8.13c). Then the left part of the

structure can rotate about A and the moment MA enters into the

principle of virtual work as an external moment. Now the point

A cannot be vertically displaced. Therefore, force A is a reaction

force and does no work. The three angles in Fig. 8.13c are mutually

dependent:

δwG1
= 2 a δμ = a δε , δwG2

= a δε = 2 a δγ

→ δε = 2 δμ and δγ = δμ .

Considering the algebraic signs (F acts in the opposite direction

to δwF and MA acts in the opposite direction to δμ) the principle

of virtual works yields

δU = −MA δμ − F δwF + R δwR

= −MA δμ − F a δμ +
F

3 a
2 a a δγ

=
(
−MA − Fa +

2

3
Fa
)
δμ = 0 → MA = − 1

3
Fa .

Both calculations show the advantage of the principle of virtu-

al work: the forces G1 and G2 in the pins and the remaining

support reactions, which appear in the classical calculation (cf.

Section 5.3.3), do no work and therefore need not be taken into

account when applying the principle of virtual work.
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E8.6Example 8.6 Determine the force in member 5 of the truss shown

in Fig. 8.14a.

a b c
II I

y
π/2 π

S5/K

2

3 4

5

K

S5

Kβ β

1

S5

β

x

A

a
b

H

a sin β

a cos β

Fig. 8.14

Solution We remove member 5 from the truss. Then the internal

forces S5 at pins I and II act as external forces (Fig. 8.14b). In

order to determine the positions of the points of application of

the various forces, an x, y-coordinate system is introduced with

its origin at the fixed point A. The point of application of force

K has the y-coordinate

y
K

= H − a cos β =

√
b2 − a2 sin2 β − a cos β .

Pin I (point of application of S5) has the x-coordinate

xI = a sin β .

A virtual displacement (i.e., a small change of angle β) yields

δy
K

=
dy

K

dβ
δβ =

(− a2 2 sin β cos β

2
√

b2 − a2 sin2 β
+ a sin β

)
δβ ,

δxI =
dxI

dβ
δβ = a cos β δβ .

Due to the symmetry of the system and the loading, the displa-

cement of pin II (to the right) is equal to the displacement of pin

I (to the left). Therefore, the total virtual work performed by the

forces is

δU = Kδy
K
− 2S5 δxI

=
[
Ka sin β

(
1 − a cos β√

b2 − a2 sin2 β

)
− 2S5 a cos β

]
δβ .
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Since δU = 0 and δβ �= 0, we obtain

S5 =
1

2
K tan β

(
1 − a cos β√

b2 − a2 sin2 β

)
.

Fig. 8.14c qualitatively depicts the ratio S5/K versus β. Becau-

se of b > a, force S5 is positive for 0 ≦ β < π/2 and negative for

π/2 < β ≦ π. This result may be verified by inspection.

8.5 8.5 Stability of Equilibrium States
In Section 9.4 the equilibrium states were determined by applying

the principle of virtual work δU = 0. However, experience teaches

that there are “different types” of equilibrium states. To charac-

terize these states the concept of stability must be introduced. In

the following, the discussion is limited to conservative forces and

systems with only one degree of freedom. In this case the potential

V depends only on one coordinate. Fig. 8.15 shows two examples

where the only applied force is the weight. The first example in

Fig. 8.15a shows a sphere (weight G) that lies at the lowest point

of a concave surface (equilibrium position). If a small disturbance

is imposed, e.g., a small lateral deflection x, the sphere is lifted

by an amount Δz and the potential is increased by

ΔV = GΔz > 0 .

In the second example, a rod supported by a frictionless pin at its

upper end is shown in the equilibrium position (vertical position).

A small disturbance (small angle ϕ) raises the center of gravity

of the rod (point of application of G) and therefore increases the

potential. In both cases, the respective body returns to its equili-

brium position when left to itself. Such equilibrium positions are

referred to as stable.

Now we consider a sphere lying on a horizontal plane and a

rod supported at its center of gravity (Fig. 8.15b). The elevation

of the points of application of the weights remains unchanged in
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the case of a displacement x or a rotation ϕ. Therefore, there is

no change in the potential:

ΔV = GΔz = 0 .

The displaced positions are also equilibrium positions. The bodies

remain at rest when left to themselves. Such equilibrium states are

called neutral.

If the sphere is in equilibrium at the highest point of a convex

surface or if the rod is supported at its lower end (Fig. 8.15c), then

the potential decreases due to a displacement:

ΔV = GΔz < 0 .

When the sphere or the rod are left to themselves in the displaced

b

equilibrium position

a

c

x

z
Δz

G

G

Δz

Δz

G

x

G

G

G

V

V

V

x, ϕ

x, ϕ

x, ϕ

Δz

ϕ

ϕ

ϕ

Fig. 8.15
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position, they will move further away from the equilibrium state.

Such equilibrium states are referred to as unstable.

On the right-hand side of Fig. 8.15 the graph of the potential is

qualitatively depicted as a function of x (sphere) or as a function of

ϕ (rod) for the three cases. It can be recognized from the diagrams

that the potential in each equilibrium state has an extreme value.

This extreme value is equivalent to the principle of virtual work

that, according to (8.11), requires for equilibrium

δV = − δU = 0 .

If the potential depends on one coordinate only, e.g., V = V (x),

then

δV =
dV

dx
δx = 0 .

Since δx �= 0, this equation leads to the following condition for an

equilibrium state:

dV

dx
= V ′ = 0 . (8.13)

The graph of the potential function has a horizontal tangent at

the point corresponding to an equilibrium position.

The criterion of stability follows from the behavior of the po-

tential curve in the vicinity of the considered equilibrium state.

In case a), the potential increases due to a displacement x or a

rotation ϕ; in case c) the potential decreases. Therefore, taking

into account the above-mentioned concepts, it can be stated:

ΔV

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0 stable

≡ 0 neutral

< 0 unstable

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
equilibrium . (8.14)

Accordingly, the potential has a minimum in a stable equilibrium

state and a maximum in an unstable equilibrium state. Conse-

quently, the stability criterion (8.14) can also be formulated in

terms of the second derivative of the potential function V (x),
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characterizing a minimum and a maximum:

V ′′(x0) > 0 → minimum → stable ,

V ′′(x0) < 0 → maximum → unstable .
(8.15)

Here, the position x0 denotes the equilibrium state.

In the case V ′′(x0) = 0, further investigations are necessary.

Let V (x0) = V0 be the value of the potential in the equilibrium

state x0. The potential in a neighboring position x0 + δx can be

expressed by the Taylor-Series

V (x0 + δx) = V0 + V ′(x0) δx + 1
2V ′′(x0) (δx)2

+ 1
6V ′′′(x0) (δx)3 + . . . .

Thus, the change in the potential is

ΔV = V (x0 + δx) − V0

= V ′(x0) δx + 1
2V ′′(x0) (δx)2 + 1

6V ′′′(x0) (δx)3 + . . . .
(8.16)

According to (8.13), the first derivative of the potential vanishes

in the equilibrium state, i.e. V ′(x0) = 0. Therefore, the algebraic

sign of the second derivative V ′′(x0) of the potential determines

whether ΔV is greater or less than zero and hence, whether the

equilibrium state is stable or unstable. If V ′′(x0) and all higher

derivatives disappear, then ΔV ≡ 0 according to (8.16). This cor-

responds to a neutral equilibrium state. On the other hand, if

V ′′(x0) = 0 holds and higher derivatives are nonzero, the alge-

braic sign of the lowest non-vanishing derivative of the potential

determines the type of equilibrium.

E8.7Example 8.7 Three cogged wheels are supported without friction

at their centers. Three mass points (weights G1, G2 and G3) are

mounted eccentrically on the wheels as shown in Fig. 8.16a.

Determine the equilibrium states and investigate their type of

stability (i.e., stable or unstable) for G1 = G3 = 2G, G2 = G and

x =
√

3 r.
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c

a b

α

α1
α3

α∗

α∗∗

α2 α4

rr

x

G1

G2

2r

G3

z

unstable stable

Fig. 8.16

Solution To formulate the potential we introduce the coordinate

z as shown in Fig. 8.16b. Let the large wheel be rotated by an

arbitrary angle α from the initial position (Fig. 8.16b). This rota-

tion causes the other wheels also to rotate. The arc lengths at the

contact points of the wheels must be the same for every wheel.

With the given radii, we obtain

2 r α = r α∗ = r α∗∗ → α∗ = α∗∗ = 2α .

The coordinates of G1, G2 and G3 are given by

z1 = −x sin α , z2 = r cos α∗ = r cos 2 α ,

z3 = − r cos α∗∗ = − r cos 2 α .

Thus, the total potential can be expressed as

V = G1 z1 + G2 z2 + G3 z3

= 2G(−x sin α) + Gr cos 2 α + 2G(− r cos 2 α)

= −Gr(2
√

3 sinα + cos 2 α) .

According to (8.13), the equilibrium states are determined from
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V ′ =
dV

dα
= −Gr(2

√
3 cos α − 2 sin 2α)

= − 2Gr cos α(
√

3 − 2 sin α) = 0 .

A first solution is obtained by setting the first factor to zero:

cos α = 0 .

The corresponding equilibrium positions are

α1 = π/2 , α2 = 3π/2 .

A second solution follows from the disappearance of the bracketed

term:

√
3 − 2 sin α = 0 → sin α =

√
3/2 .

The corresponding equilibrium positions are

α3 = π/3 , α4 = 2π/3 .

According to (8.15), the type of equilibrium of the four different

positions can be determined with the aid of the second derivative

of the potential:

V ′′ =
d2V

dα2
= −Gr(− 2

√
3 sin α − 4 cos 2 α)

= 2Gr(
√

3 sin α + 2 cos 2 α) .

Inserting the solutions αi yields:

V ′′(α1) = V ′′( 1
2π) = 2Gr(

√
3 − 2) < 0 → unstable,

V ′′(α2) = V ′′( 3
2π) = 2Gr(−

√
3 − 2) < 0 → unstable,

V ′′(α3) = V ′′( 1
3π) = 2Gr

[√
3 1

2

√
3 + 2

(
− 1

2

)]
= Gr > 0

→ stable,

V ′′(α4) = V ′′( 2
3π) = 2Gr

[√
3 1

2

√
3 + 2

(
− 1

2

)]
= Gr > 0

→ stable.

Fig. 8.16c shows the four equilibrium configurations.



244 8 Work and Potential Energy

E8.8 Example 8.8 A weightless rod is subjected to a vertical force F

and held on each side by a spring (Fig. 8.17a). The spring constant

of each spring is c. An appropriate support keeps the springs in a

horizontal position during a rotation of the rod.

Determine the type of stability of the equilibrium positions.

ba c

unstable

stable

F

Fkrit

F

a

l

z

ϕ

F

ϕ

x

c c

Fig. 8.17

Solution We introduce a coordinate system with its origin at

the fixed support (Fig. 8.17b). To determine the potentials of the

force F and the spring forces we consider an arbitrary position of

the rod. The zero-level of the potential of force F (dead load, cf.

Section 8.1) is chosen to be at z = 0. Thus, its potential is

V
F

= F z
F

.

According to (8.9) the potential of a spring (spring constant c)

due to an elongation x is given by

Vf = 1
2 c x2 .

The system has one degree of freedom. Therefore, the total poten-

tial depends only on a single coordinate; it is useful to choose the

angle ϕ (Fig. 8.17b). With the geometrical relations z
F

= l cos ϕ

and x = a tan ϕ, the total potential becomes

V (ϕ) = F l cos ϕ + 2 1
2 c (a tan ϕ)2 .

We determine the equilibrium positions using condition (8.13):

V ′ =
dV

dϕ
= −F l sin ϕ + 2 c a2 tan ϕ

cos2 ϕ
= 0
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→ sin ϕ

(
−F l + 2 c a2 1

cos3 ϕ

)
= 0 .

A first equilibrium position is obtained from

sin ϕ = 0 → ϕ1 = 0 .

Further solutions follow from the term in parentheses:

−F l + 2 c a2 1

cos3 ϕ
= 0 → cos3 ϕ2 =

2 c a2

F l

→ ϕ2 = arccos
3

√
2 c a2

F l
. (a)

These positions exist only for Fl > 2c a2.

In order to investigate the type of stability, the second deriva-

tive of the total potential is calculated:

V ′′ =
d2V

dϕ2
= −F l cos ϕ + 2 c a2

cos2ϕ
1

cos2ϕ
+ tanϕ 2 cos ϕ sin ϕ

cos4 ϕ

=−F l cos ϕ + 2 c a2 1 + 2 sin2 ϕ

cos4 ϕ

=−F l cos ϕ + 2 c a2 3 − 2 cos2 ϕ

cos4 ϕ
. (b)

Inserting the first solution ϕ1 = 0 yields

V ′′(ϕ1) = (−F l+2 c a2) = 2 c a2

(
1 − F l

2 c a2

)
. (c)

The algebraic sign of V ′′ (and thus the stability of this equilibrium

position) depends on the parameters that appear in parentheses.

From (c), we obtain

V ′′(ϕ1) > 0 for
F l

2 c a2
< 1 → stable position,

V ′′(ϕ1) < 0 for
F l

2 c a2
> 1 → unstable position.
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The special case

F l

2 c a2
= 1 → F = 2

c a2

l
= Fkrit (d)

characterizes the “critical load”, since at this point of the load-

displacement curve in Fig. 8.17c, the stable position ϕ = 0 (for

F < Fkrit) changes to an unstable position (for F > Fkrit).

The second derivative V ′′(ϕ1) is equal to zero for F = Fkrit. To

investigate the type of stability at this particular point, it would

be necessary to consider higher derivatives of V .

If the angle ϕ2 of the second equilibrium position is inserted

into (b) and the relation 2 c a2 = F l cos3 ϕ2 is used, we obtain for

the second derivative of V

V ′′(ϕ2) = −F l cos ϕ2

(
1 − cos2 ϕ2

3 − 2 cos2 ϕ2

cos4 ϕ2

)

= −F l cos ϕ2

(
1 − 3

cos2 ϕ2
+ 2

)

= 3F l cos ϕ2

(
1

cos2 ϕ2
− 1

)
.

For 0 < ϕ2 < π/2, we have cos ϕ2 < 1. Hence, V ′′(ϕ2) > 0, i.e., the

equilibrium position ϕ = ϕ2 is stable. Note, since cos ϕ is an even

function, a second solution ϕ∗
2 = −ϕ2 exists. As a consequence,

according to (a), 2 c a2/F l < 1 holds and thus, according to (d),

F > Fkrit. In the special case of ϕ2 = 0 we obtain V ′′(ϕ2) = 0

and F = Fkrit.

The result is depicted in Fig. 8.17c: for F < Fkrit there exists

only one equilibrium position, i.e., ϕ = 0; this position is sta-

ble. For F > Fkrit this position becomes unstable, and two new

stable equilibrium positions ±ϕ2 appear. Hence, three different

equilibrium positions exist in this region.

Since a bifurcation of the solution appears for the critical load

F = Fkrit, this particular value in load-displacement diagrams

is called the “bifurcation point”. The critical load and the bi-

furcation of a solution play an important role in the analysis of

the stability behavior of elastic structures (cf. Volume 2).
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E8.9Example 8.9 The homogeneous body shown in Fig. 8.18a (density

̺) consists of a half circular cylinder (radius r) and a rectangular

block (height h).

Determine the value of h for which the body is in neutral equi-

librium at an arbitrary position.

Solution The rectangular block has the weight

GQ = 2 r h l ̺ g ,

and the distance of its center of gravity measured from the sepa-

rating surfaces of the two parts of the body is

sQ = h/2

(Fig. 8.18b). The corresponding values for the half cylinder are

GH =
1

2
π r2 l ̺ g

and

sH =
4

3
π r

(see Table 4.1).

If we choose the surface of the base as the reference level for

the potential, we obtain the following expression for an arbitrary

position α:

V = ̺ g l

[
π r2

2

(
r − 4 r

3π
cos α

)
+ 2 r h

(
r +

h

2
cos α

)]
.

The equilibrium positions are determined from

a

h

r

Fig. 8.18

cb

α

SQSH

sQ

yS

S

r

sH
l
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V ′ =
dV

dα
= ̺ g l sin α

[
2

3
r3 − rh2

]
= 0 .

A first equilibrium position follows from

sin α = 0 → α1 = 0 .

Therefore, the reference configuration (characterized by α = 0)

in which the centers of gravity SQ and SH lie over each other on

a vertical line is an equilibrium position. The derivative V ′ also

vanishes if the term in the brackets becomes zero:

2

3
r3 − rh2 = 0 → h =

√
2

3
r .

Equilibrium positions with arbitrary α exist for this specific value

of h only.

To apply the stability criterion, we consider the second deriva-

tive

V ′′ = ̺ g l cos α

[
2

3
r3 − rh2

]
.

For an arbitrary value of α and h =
√

2/3 r, the second derivative

V ′′ and all higher derivatives are equal to zero. The equilibrium

positions are therefore neutral. The body is then in equilibrium

in every arbitrary position, as shown in Fig. 8.18c.

This problem may also be solved without using the potential

and its derivatives. An equilibrium position is neutral, if the center

of gravity remains at the same elevation during a rotation (ΔV ≡
0). Therefore, the center of gravity S of the whole body must have

the constant elevation r above the base for arbitrary α. Using

(4.13), the center of gravity is given by

ys =

π r2

2

(
r − 4 r

3π

)
+ 2 rh

(
r +

h

2

)

π r2

2
+ 2 rh

.

After some algebraic manipulations, h follows from the condition

ys = r. This value is identical to that calculated above.
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E8.10Example 8.10 Determine the type of stability of the equilibrium

position in Problem 8.1.

Solution We choose the zero level of the potential of force G at the

level of the support A (Fig. 8.9a). The zero level of the potential

of force Q is chosen at the height at which the counterweight is

located when the drawbridge is in vertical position (ϕ = 0). With

s = 2l sin(ϕ/2), the total potential as a function of the coordinate

ϕ becomes

V (ϕ) =
G l

2
cos ϕ + Q s =

G l

2
cos ϕ + 2Q l sin

ϕ

2
.

Using the relation sinϕ = 2 sin(ϕ/2) cos(ϕ/2), the derivatives are

obtained as

V ′ = − G l

2
sin ϕ + Q l cos

ϕ

2
=
(
−G sin

ϕ

2
+ Q

)
l cos

ϕ

2
,

V ′′ = − G l

2
cos ϕ − Q l

2
sin

ϕ

2
.

From V ′ = 0, we again obtain the equilibrium position

sin(ϕ/2) = Q/G.

Without further calculations, it can be seen that V ′′ is negative

for ϕ < π/2. Therefore, the equilibrium position determined in

Problem 8.1 is unstable.

8.68.6 Supplementary Examples
The detailed solutions of the following examples are given in (A)

D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik

1, Springer, Berlin 2008 or (B) W. Hauger et al. Aufgaben zur

Technischen Mechanik 1-3, Springer, Berlin 2008.



250 8 Work and Potential Energy

E8.11 Example 8.11 The mechanism

shown in Fig. 8.19 is subjected

to a force F and a moment

M0. The weights of the three

links may be neglected.

Apply the principle of vir-

tual work to find the equilibri-

um position ϕ = ϕ∗.

ϕϕ

F
l

l

M0

Fig. 8.19
Result: see (B) ϕ∗ = arcsin

M0

F l
.

E8.12 Example 8.12 A hinged beam

is subjected to a line load q0

and a concentrated force F

(Fig. 8.20).

Determine the support reac-

tion B with the aid of the prin-

ciple of virtual work.

aa a a

B CG

F

A

α
q0

Fig. 8.20

Result: see (B) B = 2 q0a + 1
2F sin α.

E8.13 Example 8.13 The system in Fig. 8.21 is held by a spring

(stiffness c) and a torsion

spring (stiffness cT ). The for-

ce in the spring and the mo-

ment in the torsion spring are

zero in the equilibrium posi-

tion shown in the figure. This

equilibrium position is unsta-

ble if the applied force F ex-

ceeds a critical value Fkrit.

Find Fkrit.

c

cT

l

l

F

l

Fig. 8.21

Results: see (A) Fkrit = cl + 4cT /l.
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E8.14Example 8.14 A hydraulic ramp is schematically depicted in

Fig. 8.22. The two beams

(each length l) are pin-

connected at their centers

M . A car (weight G) stands

on the ramp.

Determine the force F

which has to be genera-

ted in the hydraulic piston

and applied to the lever of

length a in order to keep the

system in equilibrium.

G

B

M

A

F
a

2a

30
◦

30
◦

30
◦

l

Fig. 8.22

Result: see (B) F =

√
3 l

2 a
G.

E8.15Example 8.15 A wheel (weight G, radius r) rolls on a circular

cylinder (radius R) without sli-

ding. It is connected to a wall by

a spring (stiffness c). The spring

is kept in a horizontal position by

the support; the force in the spring

is zero in the position shown in

Fig. 8.23.

Determine the equilibrium posi-

tions and investigate their stability.
Fig. 8.23

Results: see (B) ϕ1 = 0 (G < c(R + r): stable),

(G ≥ c(R + r): unstable),

ϕ2,3 = ± arccos
G

c(R + r)
(unstable).

ϕ

G

rc

R
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E8.16 Example 8.16 The slider crank mecha-

nism shown in Fig. 8.24 consists of the

crank AC and the connecting rod BC.

Their weights can be neglected in com-

parison with the force F acting at B.

Determine the moment M(α) which

is necessary to keep the system in equi-

librium at an arbitrary angle α.

Result: see (A) M = Fr sin α
(
1 +

r cos α√
l2 − r2 sin2 α

)
.

E8.17 Example 8.17 Calculate the force S1 in member 1 of the structure

in Fig. 8.25.

Fig. 8.25
Result: see (A) S1 = 4

3 q0a.

E8.18 Example 8.18 A concentrated mass

m is attached to a circular disk

(radius R, mass M) as shown in

Fig. 8.26. The disk can roll on an

inclined plane (no sliding!).

Determine the positions of equi-

librium and investigate their stabi-

lity.

r
M

R

m ϕ

α

Fig. 8.26

Results: see (B) ϕ1 = 0 (k = 1, unstable),

ϕ2 = ± arccos k (k < 1, stable),

k = cos ϕ = (M + m)R sin α/(mr).

α

B

r

F

A

l

C

M

Fig. 8.24

aa a a

21
2q0

q0
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E8.19Example 8.19 Figure 8.27 shows

schematically the door CD (weight

G, height 2r) of a garage. It is sup-

ported by a lever BC and a spring

AB (stiffness c). The spring is un-

stretched for α = π. The distance

between the points B and M is de-

noted by a.

Investigate the stability of the

equilibrium configurations for the

case a ≪ r and Gr/ca2 = 3.

D

G

C

B

α

A

r

r

M

β
r

rr

a

Fig. 8.27

Results: see (A) α1 = 0 (unstable), α2 = π/3 (stable),

α3 = π (unstable).
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8.7 8.7 Summary
• The work done by a force F during an infinitesimal displace-

ment dr of the force application point is dU = F · dr. The

work done during a finite displacement is given by

U =

∫
F · dr .

Remark: The expression “work = force x displacement” is valid

if and only if the directions of the force and of the displacement

coincide and the force is constant.

• The work U of a conservative force is path-independent. A

conservative force can be derived from a potential (potential

energy) V = −U .

• The potentials of a weight G, a spring force and a torsion-

spring moment are respectively given by

V = Gz , V =
1

2
c x2 , V =

1

2
c

T
ϕ2 .

• Virtual displacements δr or rotations δϕ are infinitesimal, ima-

ginary (they do not really exist) and kinematically possible.

The virtual work of a force F is given by δU = F · δr, and the

virtual work of a moment M by δU = M · δϕ.

• A mechanical system is in equilibrium if the work done by the

external forces disappears during a virtual displacement from

this position:

δU = 0 .

• In a conservative system, the total potential has an extreme

value in an equilibrium position. The equilibrium position x0

of a system with one degree of freedom is characterized by

V ′(x0) = 0 .

• An equilibrium state is stable (unstable), if its total potential

has a minimum (maximum):

V ′′(x0) > 0 → stable , V ′′(x0) < 0 → unstable .
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Objectives: Bodies in contact exert a force on each other.

In the case of ideally smooth surfaces, this force acts perpendicu-

larly to the contact plane. If the surfaces are rough, however, there

may also be a tangential force component. Students will learn that

this tangential component is a reaction force if the bodies adhere,

and an active force if the bodies slip. After studying this chapter,

students should be able to apply the Coulomb theory of friction

to determine the forces in systems with contact.
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9.19.1 Basic Principles
In this textbook so far, it has been assumed that all bodies consi-

dered have smooth surfaces. According to Chapter 2.4, only forces

perpendicular to the contact plane can be transferred between two

bodies in contact. This is a proper description of the mechanical

behavior if the tangential forces occurring in reality due to the

roughness of the surfaces can be neglected. In this chapter, we

will address problems for which this simplification is not valid.

First, let us consider the following simple example.

Fig. 9.1a shows a box with weight G resting on a rough hori-

zontal surface. If a sufficiently small horizontal force F is applied

to the box, it can be expected to stay at rest. The reason for this

behavior is the transfer of a tangential force between the base and

the box due to the surfaces’ roughness. This tangential force is

frequently called static friction force H.

Using the notation given in the free-body diagram (Fig. 9.1b),

the equilibrium conditions for this system lead to the following

relations:

↑ : N = G , → : H = F . (9.1)

The equilibrium of moments would additionally yield the location

of N , which is not needed here.

If the force F exceeds a certain limit, the box slips on the base

(Fig. 9.1c). Again, a force is transferred between the box and the

base due to the roughness of the surfaces. This tangential force is

commonly called kinetic friction force R. Since it tends to prevent

the movement, its orientation is opposed to the direction of the

motion. Assuming the acceleration a to be positive to the right,

the second equilibrium condition (9.1) is replaced by Newton’s

a

rough
b c

direction of motion

H
N

R
N

F F aF

G

G

G

Fig. 9.1
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second law (cf. Volume 3)

mass times acceleration =
∑

forces ,

i.e., in the current example,

ma = F − R . (9.2)

Here, the kinetic friction force R is as yet unknown.

Even though static and kinetic friction are caused by the rough-

ness of the surfaces, their specific nature is fundamentally differ-

ent. The static friction force H is a reaction force that can be

determined from the equilibrium conditions for statically deter-

minate systems without requiring additional assumptions. On the

other hand, the kinetic friction force R represents an active for-

ce depending on the surface characteristics of the bodies in con-

tact. In order to keep this fundamental difference in mind, it must

be carefully distinguished between static friction corresponding to

friction in a position of rest and kinetic friction related to the mo-

vement of bodies in contact. Accordingly, we distinguish precisely

between the corresponding static friction forces and the kinetic

friction forces.

Friction forces are altered strongly if other materials are placed

between the bodies considered. Every car driver or bicyclist knows

the differences between a dry, wet, or even icy road. Lubricants

can significantly decrease friction in the case of moveable machi-

ne parts. Due to the introductory nature of this chapter, “fluid

friction” and related phenomena will not be addressed.

The following investigations are restricted to the case of so-

called dry friction occurring due to the roughness of any solid

body’s surface.

Static and kinetic friction are of great practical relevance. It is

static friction that enables motion on solid ground. For instance,

wheels of vehicles adhere to the surface of the road. Forces nee-

ded for acceleration or deceleration are transferred at the contact

areas. If these forces cannot be applied, for example in the case of

icy roads, the wheels slide and the desired state of motion cannot

be attained.
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Screws and nails are able to perform their tasks due to their

roughness. This effect is reinforced in the case of screw anchors

with the increased asperity of their surfaces.

On the other hand, kinetic friction is often undesirable due to

the resulting loss of energy. In the contact areas, mechanical ener-

gy is converted to thermal energy, resulting in a temperature in-

crease. While one tries to increase static friction on slippery roads

by spreading sand, the kinetic friction of rotating machine parts

is reduced by lubricants, as mentioned before. Again, it becomes

obvious that static and kinetic friction need to be distinguished

carefully.

9.29.2 Coulomb Theory of Friction
Let us first consider static friction, using the example in Fig. 9.1b.

As long as F is smaller than a certain limit F0, the box stays at

rest and equilibrium yields H = F . The tangential force H at-

tains its maximum value H = H0 for F = F0. Charles Augustine

de Coulomb (1736–1806) showed in his experiments that this li-

mit force H0 is in a first approximation proportional to the normal

force N :

H0 = μ0 N . (9.3)

The proportionality factor μ0 is commonly referred to as the co-

efficient of static friction. It depends solely on the roughness of

surfaces in contact, irrespective of their size. Table 9.1 shows se-

veral numerical values for different configurations. Note that coef-

ficients derived from experiments can only be given within certain

tolerance limits; the coefficient for “wood on wood”, for example,

strongly depends on the type of wood and the treatment of the

surfaces. It should also be noted that (9.3) relates the tangenti-

al force and the normal force only in the limit case when slip is

impending; it is not an equation for the static friction force H.

A body adheres to its base as long as the condition of static

friction

H ≤ H0 = μ0 N (9.4a)
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Table 9.1

coefficient of coefficient of

static friction μ0 kinetic friction μ

steel on ice 0.03 0.015

steel on steel 0.15 . . . 0.5 0.1 . . . 0.4

steel on Teflon 0.04 0.04

leather on metal 0.4 0.3

wood on wood 0.5 0.3

car tire on snow 0.7 . . . 0.9 0.5 . . . 0.8

ski on snow 0.1 . . . 0.3 0.04 . . . 0.2

is fulfilled. The orientation of the friction force H always opposes

the direction of the motion that would occur in the absence of

friction. For complex systems, this orientation is often not easily

identifiable, and must therefore be assumed arbitrarily. The al-

gebraic sign of the result shows if this assumption was correct

(compare e.g., Section 5.1.3). In view of a possible negative alge-

braic sign of H, we generalise condition (9.4a) as follows:

|H| ≤ H0 = μ0 N . (9.4b)

The normal force N and the static friction force H can be as-

sembled into a resultant force W (Fig. 9.2a). Its direction is defined

by the angle ϕ, which can be derived from

tan ϕ =
H

N
.

contact plane

a b
ϕ

WN

H

ϕ W
n

n

̺0 ̺0

Fig. 9.2
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Referring to the limit angle ϕl as ̺0 (in the case H = H0) yields

tan ϕl = tan ̺0 =
H0

N
=

μ0 N

N
= μ0 .

This so-called “angle of static friction” ̺0 is related to the coeffi-

cient of static friction:

tan ̺0 = μ0 . (9.5)

A “static friction wedge” for a plane problem (Fig. 9.2b) is ob-

tained by drawing the static friction angle ̺0 on both sides of the

normal n. If W is located within this wedge, H < H0 is valid and

the body stays at rest.

In three-dimensional space, the static friction angle ̺0 can also

be interpreted graphically. A body stays at rest if the reaction

force W corresponding to an arbitrarily oriented external load is

located within the so-called “static friction cone”. This cone of

revolution around the normal n of the contact plane has an angle

of aperture of 2̺0. If W is located within the static friction cone,

ϕ < ̺0 and consequently |H| < H0 holds (Fig. 9.3).

If W lies outside of this cone, equilibrium is no longer possi-

ble: the body starts to move. We now will discuss the friction

phenomena occurring in this case. Again, Coulomb demonstrated

experimentally that the friction force R related to the movement

is (in a good approximation)

Fig. 9.3

N

̺0

ϕ

H

n

W
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a) proportional to the normal force N (proportionality factor μ)

and

b) oriented in the opposite direction of the velocity vector while

being independent of the velocity.

Consequently, the law of friction can be stated as follows:

R = μ N . (9.6)

The proportionality factor μ is referred to as the coefficient of

kinetic friction. In general, its value is smaller than the formerly

introduced coefficient of static friction μ0 (compare Table 9.1).

When considering the direction of R by means of a mathema-

tical formula, a unit vector v/|v| oriented in the direction of the

velocity vector v must be introduced. Coulomb’s friction law then

reads

R = −μ N
v

|v| ,

with the minus sign indicating that the friction force acts in the

opposite direction of the velocity vector. In contrast to static fric-

tion forces, the sense of direction of kinetic friction forces therefore

cannot be assumed arbitrarily.

v1

v2

v1 v1 v1

R

v2 =0

R R

v2

v2 >v1

R

v2

v2 <v1

Fig. 9.4

If both the body and the base move (e.g., bulk goods slipping

on a band-conveyor) then the direction of the kinetic friction force

depends on the relative velocity, i.e., on the difference of the velo-

cities v1 and v2 (cf. Volume 3). In Fig. 9.4, the resulting direction

of the kinetic friction force exerted on the body is illustrated for

different configurations.

In summary, the following three cases have to be distinguished:
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a) “Static friction”

H < μ0 N

The body stays at rest; the correspon-

ding static friction force H can be calcu-

lated from the equilibrium conditions.

b) “Limiting friction”

H = μ0 N

The body is still at rest but on the verge

of moving. After a disturbance, the body

will be set in motion due to the fact that

μ < μ0.

c) “Kinetic friction”

R = μ N

If the body slips, the kinetic friction force

R acts as an active force.

When investigating friction phenomena, one has to distinguish

between statically determinate and statically indeterminate sys-

tems, respectively. In the first case, the reaction forces H and N

can be calculated from the equilibrium conditions in a first step.

Subsequently, fulfillment of the static friction condition (9.4b) can

be checked. In statically indeterminate problems, determining the

reaction forces H and N is not possible. In this case, one can only

formulate equilibrium conditions as well as static friction condi-

tions at those locations where the bodies adhere. Then a system

of algebraic equations and inequalities needs to be solved. Howe-

ver, in this case it is often easier to investigate only the limiting

friction case.

E9.1Example 9.1 A block with weight G resting on a rough inclined

plane (angle of slope α, coefficient of static friction μ0) is subjected

to an external force F (Fig. 9.5a).

Specify the range of F such that the block stays at rest.

a cb

F

α

H

N

N

H

FF

α α

G G

G

Fig. 9.5
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Solution If F is a sufficiently large positive force, the block would

move upwards without static friction. The static friction force H

then is oriented downwards (Fig. 9.5b). From the equilibrium con-

ditions

ր : F − G sin α − H = 0 , տ : N − G cos α = 0

the static friction force and the normal force can be determined:

H = F − G sin α , N = G cos α .

Inserting these forces into (9.4a) establishes the range of F fulfil-

ling the static friction condition:

F − G sin α ≤ μ0 G cos α → F ≤ G(sin α + μ0 cos α) .

Using (9.5), we can reformulate the preceding relation in terms of

the static friction angle ̺0:

F ≤ G (sin α + tan ̺0 cos α) = G
sin(α + ̺0)

cos ̺0
. (a)

On the other hand, if F is too small, the block may slip down-

wards due to its weight. The static friction force preventing this

motion is then oriented upwards according to Fig. 9.5c. In this

case, from the equilibrium equations

ր : F − G sin α + H = 0 , տ : N − G cos α = 0

and the static friction condition

H ≤ μ0 N ,

we obtain the following inequality:

G sin α − F ≤ μ0 G cos α .

This result can be formulated in terms of the static friction angle:

F ≥ G (sin α−μ0 cos α) = G
sin(α − ̺0)

cos ̺0
. (b)

Summarizing the results (a) and (b) yields the following admissible

range for the force F :
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G
sin(α − ̺0)

cos ̺0
≤ F ≤ G

sin(α + ̺0)

cos ̺0
. (c)

Assuming, for example, the case “steel on steel”, friction coef-

ficient μ0 = 0.15 from Table 9.1 yields ̺0 = arctan 0.15 = 0.149.

Choosing furthermore α = 10◦ =̂ 0.175 rad, we obtain from (c)

G
sin(0.175 − 0.149)

cos 0.149
≤ F ≤ G

sin(0.175 + 0.149)

cos 0.149

or

0.026G ≤ F ≤ 0.32G .

In this numerical example, the block stays at rest provided that F

is in the range between approximately 3% and 30% of its weight

G. If α < ̺0, F can also take on negative values according to (c).

In the case α = ̺0, the lower limit of the range of F equals zero.

Therefore, the slope of the inclined plane is a direct measure of

the coefficient of static friction. A body under the action of only

its own weight (i.e., F = 0) stays at rest on an inclined plane as

long as α ≤ ̺0 holds.

E9.2Example 9.2 A man with weight Q stands on a ladder as depicted

in Fig. 9.6a.

Determine the maximum position x he can reach on the lad-

der if a) only the floor and b) the floor and the wall have rough

surfaces. The coefficient of static friction in both cases is μ0.

Solution a) If the wall surface is smooth, the ladder is subjected

only to a normal force NB at B (Fig. 9.6b). At A, we have a normal

force NA and a static friction force HA (opposing the movement

that would occur without static friction). From the equilibrium

conditions

→: NB − HA = 0 , ↑: NA − Q = 0 ,
�

A : x Q − hNB = 0

the normal force and static friction force at point A can be calcu-

lated:
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HA =
x

h
Q , NA = Q .

Insertion into the condition of static friction

HA ≤ μ0 NA

yields the solution

x

h
Q ≤ μ0 Q → x ≤ μ0 h .

This result can also be obtained in the following way: in equili-

brium, the lines of action of the three forces Q, NB , and WA (re-

sultant of NA and HA) have to intersect at one point (Fig. 9.6b).

Thus,

c

a

d

b

A

NB

B Q

ϕ

HA

NA

Q

α

NB

HB

NA

C

HA

Q

Q
α

̺0

WA

̺0

WA

WB

̺0

̺0

x

h

h

x

q

Fig. 9.6
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tan ϕ =
HA

NA

=
x

h
.

The line of action of the reaction force WA must be located within

the static friction cone (ϕ ≤ ̺0). Consequently, the ladder stays

at rest provided that

x

h
= tanϕ ≤ tan ̺0 = μ0 → x ≤ μ0 h .

For α ≤ ̺0, the stability of the ladder is ensured for all possible

values of x, due to x ≤ h tan α.

b) If the surface of the wall is also rough, four unknown reaction

forces are exerted on the ladder, according to Fig. 9.6c. However,

only three equilibrium equations are available. Hence, these forces

cannot be determined unambiguously and the problem is statical-

ly indeterminate. Nevertheless, one can calculate the admissible

range of x from the equilibrium equations

→ : NB = HA , ↑ : NA + HB = Q ,

�

A : x Q = hNB + (h tan α)HB

and the conditions of static friction

HB ≤ μ0 NB , HA ≤ μ0 NA .

Since the solution of the system of equations and inequalities is

not straightforward, we prefer the graphical approach illustrated

in Fig. 9.6d. For this purpose, the static friction cones are drawn

at both points of contact. If the line of action q of the load Q

is located within the domain of the overlapping cones marked

in green, a multitude of possible reaction forces is conceivable;

an example of one combination is illustrated in Fig. 9.6d. The

ladder starts to slide if q is located to the left of C, since in this

case the required static friction force cannot be applied anymore.

Obviously, the danger of slipping is decreased or even eliminated

in the case of a steeper position of the ladder.
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E9.3 Example 9.3 A screw with a flat thread (coefficient of static fric-

tion μ0, pitch h, radius r) is subjected to a vertical load F and a

moment Md as shown in Fig. 9.7a.

State the condition for equilibrium if the normal forces and

the static friction forces are uniformly distributed over the screw

thread.

Solution We decompose the normal force dN and the static fric-

tion force dH exerted on an element E of the thread into their

horizontal and vertical components, as illustrated in Fig. 9.7b. The

corresponding angle α can be determined from the pitch h and the

unrolled perimeter 2π r as tan α = h/2π r. The resultant, i.e., the

integral of the vertical components, has to equilibrate the external

load F :

F =

∫
dN cos α−

∫
dH sin α = cos α

∫
dN−sin α

∫
dH . (a)

Furthermore, Md has to be in equilibrium with the moment re-

sulting from the horizontal components:

Md =

∫
r dN sin α+

∫
r dH cos α = r sin α

∫
dN +r cos α

∫
dH .

In combination with (a) we obtain
∫

dN = F cos α +
Md

r
sin α ,

∫
dH =

Md

r
cos α − F sin α .

Introducing the condition of static friction

a b

α

F

Md

h

h

2πr

dN
dH

dN

α

α

dH

2r

E

E

Fig. 9.7
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|dH| ≤ μ0 dN or

∫
|dH| ≤ μ0

∫
dN

yields
∣∣∣∣
Md

r
cos α − F sin α

∣∣∣∣ ≤ μ0

(
F cos α +

Md

r
sin α

)
.

If Md/r > F tan α, this inequality results in
∣∣∣∣
Md

r
− F tan α

∣∣∣∣ =
Md

r
− F tan α ≤ μ0

(
F +

Md

r
tan α

)

or, using (9.5) and the addition theorem of the tangent function

Md

r
≤F

tan α + μ0

1 − tan α μ0
=F

tan α + tan ̺0

1 − tan α tan ̺0
=F tan(α + ̺0) .

If, on the other hand, Md/r < F tan α, we analogously obtain

from
∣∣∣∣
Md

r
− F tan α

∣∣∣∣ = F tan α − Md

r
≤ μ0

(
F +

Md

r
tan α

)

the condition

Md

r
≥ F tan(α − ̺0) .

Hence, the screw is in equilibrium provided that

F tan(α − ̺0) ≤
Md

r
≤ F tan(α + ̺0)

holds. In particular, if α ≤ ̺0 (i.e., tanα ≤ μ0), the load F is

supported only by the static friction forces and no additional ex-

ternal moment is required for equilibrium (Md = 0). In this case,

the screw is “self-locking”.

9.39.3 Belt Friction
If a rope wrapped around a rough post is subjected to a large

force on one of its ends, a small force on the other end may be
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a b

dH
dN

dϕ/2

SS+dS

dϕ

dϕ/2

S2 > S1

S2

S1

ds

ϕ

s

ds

α

Fig. 9.8

able to prevent the rope from slipping. In Fig. 9.8a, the rope is

wrapped around the post at an angle α. It is assumed that the

force S2 applied to the left end of the rope is larger than the

force S1 exerted on the right end. In order to establish a relation

between these forces, we draw the free-body diagram shown in

Fig. 9.8b and apply the equilibrium conditions to an element of

the rope with length ds. In this context, we take into account

that the tension is changing by the infinitesimal force dS along

ds. Since S2 > S1 holds, the rope would slip to the left without

friction; the static friction force dH is therefore oriented to the

right. The equilibrium conditions can be formulated as follows:

→ : S cos
dϕ

2
− (S + dS) cos

dϕ

2
+ dH = 0 ,

↑ : dN − S sin
dϕ

2
− (S + dS) sin

dϕ

2
= 0 .

Since dϕ is infinitesimally small, we obtain cos (dϕ/2) ≈ 1 and

sin (dϕ/2) ≈ dϕ/2; furthermore, the higher order term dS(dϕ/2)

is small and can be neglected in the following. Therefore, the

above relations simplify to

dH = dS , dN = S dϕ . (9.7)

Obviously, the three unknowns H, N , and S cannot be determined

from these two equations: the system is statically indeterminate.

Therefore only the limiting friction case is considered, i.e., when

slippage of the rope is impending. In this case (9.3) gives

dH = dH0 = μ0 dN .



9.3 Belt Friction 271

Applying (9.7) yields

dH = μ0 S dϕ = dS → μ0 dϕ =
dS

S
.

Integration over the domain of rope contact produces

μ0

α∫

0

dϕ =

S2∫

S1

dS

S
→ μ0 α = ln

S2

S1

or

S2 = S1 eµ0α . (9.8)

This formula for belt friction is commonly named after Leonhard

Euler (1707–1783) or Johann Albert Eytelwein (1764–1848) .

If, in contrast to the initial assumption, S1 > S2 holds, one

simply has to exchange the subscripts to obtain

S1 = S2 eµ0α or S2 = S1 e−µ0α . (9.9)

For a given S1, the system is in equilibrium provided that the

value of S2 remains within the limits given in (9.8) and (9.9):

S1 e−µ0α ≤ S2 ≤ S1 eµ0α . (9.10)

The rope slips to the right if S2 < S1 e−µ0α, whereas it slips to

the left for S2 > S1 eµ0α.

The following numerical example provides a sense of the ratio

between the two forces. We assume the rope to be wrapped n-

times around the post; the coefficient of static friction is given by

μ0 = 0.3 ≈ 1/π. In this case we obtain

eµ02nπ ≈ e2n ≈ (7.5)n and S1 =
S2

eµ0α
=

S2

(7.5)n
.

Consequently, the more the rope is wrapped around the support,

the smaller is the force S1 that is required to equilibrate the larger

force S2. This effect is taken advantage of when, for example,

mooring a boat.
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The Euler-Eytelwein formula can be transferred from static to

kinetic belt friction by simply replacing the static coefficient of

friction μ0 with the corresponding kinetic coefficient μ. Kinetic

friction may occur if either the rope slips over a fixed drum or

the drum rotates while the rope is at rest. The direction of the

friction force R is opposite to the direction of the relative velocity

(compare Fig. 9.4). When we know in which direction R acts, we

also know which of the forces S1 or S2 is the larger one. Then

for

for

S2 > S1 :

S2 < S1 :

S2 = S1 eµα ,

S2 = S1 e−µα .

(9.11)

E9.4 Example 9.4 The cylindrical roller shown in Fig. 9.9a is subjected

to a moment Md. A rough belt (coefficient of static friction μ0) is

wrapped around the roller and connected to a lever.

Determine the minimum value of F such that the roller stays

at rest (strap brake).

ba

S2

Md

S1

F

Md

F

A

B

l

r

Fig. 9.9

Solution The free-body diagram of the system is given in Fig. 9.9b.

The equilibrium of moments for both lever and roller yields:

�

A : l F − 2 r S1 = 0 → S1 =
l

2 r
F ,

�

B : Md + (S1 − S2)r = 0 → S1 = S2 −
Md

r
.

Obviously, S2 > S1 is valid for equilibrium due to the orientation
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of Md. Introducing the angle of wrap α = π, the condition for

limiting friction follows from (9.8):

S2 = S1 eµ0π .

Hence,

S1 = S1 eµ0π − Md

r
→ S1 =

Md

r(eµ0π − 1)
,

and we obtain the required force

F =
2 r

l
S1 = 2

Md

l

1

eµ0π − 1
.

E9.5Example 9.5 A block with weight G lies on a rotating drum. It is

held by a rope which is fixed at point A (Fig. 9.10a).

Determine the tension at A if friction acts between the drum

and both the block and the rope (each with a coefficient of kinetic

friction μ).

Fig. 9.10

Solution First, the bodies are separated. Due to the movement of

the drum, a friction force R is exerted on the block. Its direction is

given in the free-body diagram shown in Fig. 9.10b. Furthermore,

SA > SB holds. From the equilibrium conditions for the block the

forces SB and N are determined as

ր : SB = G sin α + R , տ : N = G cos α .

Introducing them into the friction laws for the rope (9.11) and for

the block (9.6)

a b

sense of rotation

SB

R
N

G

G SA

A

α α

α
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SA = SB eµα , R = μ N

we obtain

SA = (G sin α + R) eµα = G(sin α + μ cos α) eµα .

9.4 9.4 Supplementary Examples
Detailed solutions of the following examples are given in (A)

D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik

1, Springer, Berlin 2008 or (B) W. Hauger et al. Aufgaben zur

Technischen Mechanik 1-3, Springer, Berlin 2008.

E9.6 Example 9.6 A sphere (weight G1) and a wedge (weight G2) are

jammed between two vertical walls with

rough surfaces (Fig. 9.11). The coefficient

of static friction between the sphere and

the left wall and between the wedge and

the right wall, respectively, is μ0. The in-

clined surface O of the wedge is smooth.

Determine the required value of μ0 in

order to keep the system in equilibrium.
Fig. 9.11

Result: see (B) μ0 ≥ (1 + G2/G1) tan α.

E9.7 Example 9.7 The excentric device in Fig. 9.12 is used to exert a

large normal force onto the ba-

se. The applied force F , desi-

red normal force N , coefficient

of static friction μ0, length l,

radius r and angle α are given.

Calculate the required ec-

centricity e.

α
l

F

e

r

µ0

Fig. 9.12

Result: see (A) e >
l F
N − μ0 r

cos α − μ0 sin α
.

µ0 µ0

G1
G2

O

α
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E9.8Example 9.8 A horizontal force F

is exerted on a vertical lever to

prevent a load (weight G) from

falling downwards (Fig. 9.13). The

drum can rotate without friction

about point B; the coefficient of

static friction between the drum

and the block is μ0.

Determine the magnitude of the

force F needed to prevent the

drum from rotating.

F

b

a

A

B

c r G

µ0

Fig. 9.13

Result: see (B) F ≥ b + μ0 c

μ0(a + b)
G.

E9.9Example 9.9 A wall and a beam (weight G2 = G) keep a roller

(weight G1 = 3G) in the position

as shown in Fig. 9.14. The beam

adheres to the rough base; all the

other areas of contact are smooth.

Determine the minimum value

of the coefficient of static friction

μ0 between the base and the beam

in order to prevent slipping.

Fig. 9.14Result: see (B) μ0 ≥
√

3/3.

E9.10Example 9.10 A block (weight G2) is clamped between two

cylinders (each weight G1) as

shown in Fig. 9.15. All the sur-

faces are rough (coefficient of

static friction μ0).

Find the maximum value of

G2 in order to prevent slipping.

α α

G2

µ0

µ0

G1

Fig. 9.15

Result: see (A) G2 <
2μ0 sin α

cos α − μ0(1 + sinα)
G1.

a

µ0

G1 G2

30
◦

5a

4
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E9.11 Example 9.11 A peg A that can ro-

tate without friction and a fixed peg

B are attached to a curved member

(weight G) as depicted in Fig. 9.16.

The rope supports a load (weight

GK = G/5).

Determine the number of coils of

the rope around peg B that are nee-

ded to prevent slipping. Calculate

the angle β in the equilibrium posi-

tion.

A

B

µ0

GK

G

β
l

2l

2

l

4

Fig. 9.16

Results: see (B) 3 coils are sufficient, β = 19.7◦.

E9.12 Example 9.12 A block with weight G can move vertically between

two smooth walls. It is held by a

rope which passes around three fi-

xed rough pegs (coefficient of static

friction μ0) as shown in Fig. 9.17.

Calculate the force F which will

ensure that the block remains sus-

pended. Find the forces N1, N2

which are exerted from the block

onto the walls.

µ0

45◦

c

b

a

G

F

45◦

Fig. 9.17

Results: see (A) F >
G

eµ0π − 1
, N1 = N2 = G

a − 2c

2b
.
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E9.13Example 9.13 A rotating drum (weight G1) exerts a normal force

and a kinetic friction force on a

wedge (Fig. 9.18). The wedge lies on

a rough base (coefficient of static

friction μ0).

Find the value of the coefficient

of kinetic friction μ between the

drum and the wedge that is requi-

red to move the wedge to the right.

α
µ

G1

G

µ0

Fig. 9.18

Result: see (A) μ =
μ0(1 + G/G1) + tan α

1 − μ0(1 + G/G1) tan α
.

E9.14Example 9.14 The rotating drum in Fig. 9.19 is encircled by a

break band that is tightened by

the applied force F . The coeffi-

cient of kinetic friction between

the drum and the band is μ.

Calculate the magnitude of

F that is necessary to induce

a given breaking moment MB

if the rotation of the drum is

clockwise (c) and if it is coun-

terclockwise (cc).

F

r

l
A

µ

Fig. 9.19

Results: see (A) Fc =
2MB

l (eµπ − 1)
, Fcc =

2MB eµπ

l (eµπ − 1)
.
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9.5 9.5 Summary
• The static friction force H is a reaction force that can be de-

termined directly from the equilibrium conditions in the case

of statically determinate systems. Note that the orientation of

H can be assumed arbitrarily in the free-body diagram.

• The absolute value of the static friction force H cannot exceed

a certain limit friction force H0. A body adheres to another

body if the condition of static friction

|H| ≤ H0 = μ0 N

is fulfilled.

• The kinetic friction force R is an active force given by Cou-

lomb’s friction law

R = μ N.

The force R is oriented in the opposite direction of the (rela-

tive) velocity vector.

• In the case of static belt friction, the limiting case can be stated

with the aid of the Euler-Eytelwein formula:

S2 = S1e
µ0α .

• In the case of kinetic belt friction, the forces are also related

by means of the Euler-Eytelwein formula if the coefficient of

static friction μ0 is replaced with the kinetic coefficient μ:

S2 = S1e
µα .



AAppendix

Vectors, Systems of Equations



A Vectors, Systems of Equations

A.1 A.1 Vectors
Scalar physical quantities (e.g., time, mass, density) possess only

magnitude. Vectors are physical quantities (e.g., force, velocity,

acceleration) that possess magnitude and direction. A vector is

represented geometrically by an arrow. The direction of the arrow

coincides with the direction of the vector; the length of the arrow is

a measure of the magnitude of the vector (Fig. A.1). It is common

practice to denote a vector by a boldfaced letter, for example A.

The magnitude of a vector is denoted by |A| or by A. It is a

positive number or zero. A vector with magnitude “1” is called a

unit vector, and denoted by e. A vector with magnitude zero is

called a zero vector. The negative of a vector A is the vector −A;

it has the same magnitude as A but the opposite direction. Two

vectors are equal if they have the same magnitude and the same

direction.

e

A=Ae

Fig. A.1

A
B =λA
λ > 0

Fig. A.2

If a vector A is multiplied by a scalar quantity λ, the vector

B = λ A is obtained (Fig. A.2); it has the magnitude |B| = |λ||A|.
The direction of B coincides with the direction of A if λ > 0,

whereas it is oppositely directed if λ < 0. Accordingly, any vector

may be written as the product of its magnitude and a unit vector

with the same direction (Fig. A.1):

A = Ae . (A.1)

The addition of two vectors A and B yields the vector

C = A + B . (A.2)
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Fig. A.3
A

C =A+BB

a

b

It may be obtained graphically: the sum of the two vectors A and

B is the diagonal of the parallelogram of which A and B are ad-

jacent sides (Fig. A.3).

This parallelogram may also be interpreted in the following

way: a given vector C is resolved into the two vectors A and B

having the lines of action a and b. Vectors A and B are then cal-

led components of the vector C in the directions a and b. In two

dimensions, the resolution of a vector into two different directions

is unique. Similarly, the resolution into three directions (which are

not coplanar) is uniquely possible in three-dimensional problems.

Fig. A.4

y

Az

γ

β

z

x

A

eyex

α

ez

Ax

Ay

For the convenience of calculation, vectors are usually resolved

in a Cartesian coordinate system (Fig. A.4). The components are

then called rectangular components. The mutually perpendicu-

lar unit vectors ex, ey and ez (called base vectors) point in the

positive x, y and z directions, respectively. The vectors ex, ey

and ez, in this order, form a right-handed system: the thumb, the
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forefinger and the middle finger, in this order, can represent the

directions of ex, ey and ez.

The vector A may be resolved into its rectangular components

Ax, Ay and Az in the directions x, y and z, respectively (Fig. A.4):

A = Ax + Ay + Az . (A.3)

According to (A.1), the components can be written as

Ax = Ax ex , Ay = Ay ey , Az = Az ez . (A.4)

Hence, we obtain from (A.3)

A = Ax ex + Ay ey + Az ez . (A.5)

The quantities Ax, Ay and Az are called coordinates of the vec-

tor A. Note that they are often also called the components of A

(even though, strictly speaking, the components are the vectors

Aj (j = x, y, z)).

One may arrange the coordinates in the form of a column:

A =

⎛

⎜⎝
Ax

Ay

Az

⎞

⎟⎠ . (A.6)

This representation of the vector A is called a column vector.

Frequently, it is more appropriate to arrange the coordinates in

a row instead of a column. If the columns and the rows are in-

terchanged, the vector is “transposed”; this is indicated by the

superscript “T”. Hence, vector A may also be written in the form

of a so-called row vector:

A = (Ax, Ay, Az)
T . (A.7)

A vector is uniquely determined by its three coordinates. Its

magnitude follows from the theorem of Pythagoras:

|A| = A =
√

A2
x + A2

y + A2
z . (A.8)

The direction of A is determined by the three angles α, β and γ.
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The direction cosines

cos α =
Ax

A
, cos β =

Ay

A
, cos γ =

Az

A
(A.9)

are taken from Fig. A.4. Hence, from (A.8)

A2
x

A2
+

A2
y

A2
+

A2
z

A2
= 1 (A.10)

and therefore

cos2 α + cos2 β + cos2 γ = 1 . (A.11)

Thus, the three angles α, β and γ are not independent.

The vector equation

A = B (A.12)

is equivalent to the three scalar equations

Ax = Bx , Ay = By , Az = Bz . (A.13)

Hence, two vectors are equal if the three coordinates of both vec-

tors coincide.

In the following, some elements of vector algebra are given using

the representation of the vectors in a Cartesian coordinate system.

A.1.1 Multiplication of a Vector by a Scalar

Using (A.3) and (A.4), the multiplication of a vector A by a scalar

λ (Fig. A.2) yields the vector

B = λ A = A λ = λ(Ax + Ay + Az)

= λAx ex + λAy ey + λAz ez . (A.14)

Hence, every coordinate of the vector is multiplied by the scalar

λ. If λ is positive, B has the same direction as A; if λ is negative,

B points in the opposite direction. In the special case of λ = −1,

the negative of vector A is obtained: B = −A. For λ = 0, the

zero vector 0 is obtained.
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A.1.2 Addition and Subtraction of Vectors

The sum of two vectors A and B is given by

C = A+B = (Ax ex+Ay ey+Az ez) + (Bx ex+By ey+Bz ez)

= (Ax + Bx)ex + (Ay + By)ey + (Az + Bz)ez

= Cx ex + Cy ey + Cz ez .

(A.15)

Hence,

Cx = Ax + Bx , Cy = Ay + By , Cz = Az + Bz . (A.16)

Two vectors are added by adding the corresponding coordinates.

To subtract a vector B from a vector A is equivalent to adding

the negative of B:

C = A − B = A + (−B) . (A.17)

Therefore,

Cx = Ax − Bx , Cy = Ay − By , Cz = Az − Bz . (A.18)

A.1.3 Dot Product

Consider two vectors A and B that include the angle ϕ (Fig. A.5a).

The dot product (so called because of the notation “·”) or scalar

product is defined as

A · B = AB cos ϕ . (A.19)

The scalar product yields a scalar (hence the name), not a vec-

tor! It may be interpreted in one of the following ways (Fig. A.5b):

a) product of the magnitudes of A and B multiplied by the cosine

of the angle ϕ,

ba

A cos ϕ

ϕ

B

A
ϕϕ

B

A

B

B cos ϕ
A

Fig. A.5
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b) magnitude of A multiplied by the component B cos ϕ of B in

the direction of A,

c) magnitude of B multiplied by the component A cos ϕ of A in

the direction of B.

The scalar product is positive if the two vectors include an acute

angle (ϕ < π/2) and negative if the angle is obtuse (ϕ > π/2). In

the special case of two orthogonal vectors (ϕ = π/2), the scalar

product is zero.

From the definition (A.19) of the scalar product, it follows that

A · B = B · A . (A.20)

Hence, the order of the factors may be interchanged: the commu-

tative law is valid.

Introducing the vector components, the scalar product can be

written as

A ·B = (Ax ex + Ay ey + Az ez)·(Bx ex + By ey + Bz ez) . (A.21)

Since

ex · ex = ey · ey = ez · ez = 1 ,

ex · ey = ey · ez = ez · ex = 0 ,
(A.22)

we obtain

A · B = AxBx + AyBy + AzBz . (A.23)

In the special case of B = A, the angle ϕ is zero. Then, (A.19)

yields the magnitude of vector A:

A · A = A2 or A =
√

A · A . (A.24)

A.1.4 Vector Product (Cross-Product)

The vector product (because of the notation “×” also called the

cross-product) of two vectors A and B yields a vector. It is written

as

C = A × B (A.25)
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C =AB sin ϕϕ

C

A

B

Fig. A.6

and is defined as follows:

a) The vector C is perpendicular to both vectors A and B (Fig.

A.6).

b) The magnitude of C is numerically equal to the area of the

parallelogram formed by A and B:

|C| = C = AB sin ϕ . (A.26)

c) The vectors A, B and C in this order form a right-handed

system.

Therefore,

A × B = −B × A . (A.27)

Hence, the commutative law does not hold for a vector product.

According to b), the vector product is zero for two parallel vec-

tors (ϕ = 0).

From the definition of the cross product we have

ex × ex = 0 , ex × ey = ez , ex × ez = −ey ,

ey × ex = −ez , ey × ey = 0 , ey × ez = ex ,

ez × ex = ey , ez × ey = −ex , ez × ez = 0 .

(A.28)

Hence,

C = A×B = (Ax ex + Ay ey + Az ez)×(Bx ex + By ey + Bz ez)

= (AyBz − AzBy)ex + (AzBx − AxBz)ey (A.29)

+ (AxBy − AyBx)ez ,

which yields the coordinates of vector C:
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Cx = AyBz − AzBy ,

Cy = AzBx − AxBz , (A.30)

Cz = AxBy − AyBx .

The vector product may also be written in the form of the deter-

minant

C = A × B =

∣∣∣∣∣∣∣∣

ex ey ez

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣
. (A.31)

The first row is given by the unit vectors ex, ey and ez. The coor-

dinates of vectors A and B are written in the second and the

third row, respectively. Expanding the determinant yields (com-

pare (A.29))

C =

∣∣∣∣∣
Ay Az

By Bz

∣∣∣∣∣ ex −
∣∣∣∣∣
Ax Az

Bx Bz

∣∣∣∣∣ ey +

∣∣∣∣∣
Ax Ay

Bx By

∣∣∣∣∣ ez

= (AyBz − AzBy)ex + (AzBx − AxBz)ey

+ (AxBy − AyBx)ez.

(A.32)

The triple vector product A × (B × C) (the parentheses are

needed!) is a vector that lies in the plane defined by B and C.

Applying (A.31) yields the relation

A × (B × C) = (A · C)B − (A · B)C . (A.33)

A.2A.2 Systems of Linear Equations
Frequently, the treatment of a problem in mechanics leads to a

system of linear equations. Examples are the determination of the

support reactions of a structure or of the forces in the members of

a truss. In the case of a beam in a plane problem, the equilibrium

conditions yield three equations for the three unknown support
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reactions. For a space truss with j joints, there are 3j = m + r

equations to calculate the m unknown forces in the members and

the r support reactions.

Let us consider the system

a11 x1 + a12 x2 + . . . + a1n xn = b1 ,

a21 x1 + a22 x2 + . . . + a2n xn = b2 ,
. . . . . . . . .
an1 x1 + an2 x2 + . . . + ann xn = bn

(A.34)

of n linear inhomogeneous equations for the n unknowns x1, x2, . . .

. . . , xn (for example, the support reactions and/or forces in the

members of a truss). The coefficients ajk and the “right-hand

sides” bk are known. In matrix notation

A =

⎛

⎜⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

an1 an2 . . . ann

⎞

⎟⎟⎟⎟⎠
, x =

⎛

⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞

⎟⎟⎟⎟⎠
, b =

⎛

⎜⎜⎜⎜⎝

b1

b2

...

bn

⎞

⎟⎟⎟⎟⎠
(A.35)

equation (A.34) may be written in the form

A x = b . (A.36)

If the determinant of matrix A is nonzero, i.e.,

det A =

∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣

�= 0 , (A.37)

then the n equations (A.34) are linearly independent. In this case,

the system of equations (A.36) has the unique solution

x = A−1 b . (A.38)

Matrix A−1 is called the inverse of A. It is defined by
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A−1 A = 1, where

1 =

⎛

⎜⎜⎜⎜⎝

1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

⎞

⎟⎟⎟⎟⎠
(A.39)

is the unit matrix. It is often rather time consuming to calculate

the inverse with pencil and paper. However, it can be very easily

determined with the aid of computer programs, e.g., Matlab or

Mathematica.

Practical methods to solve a system of equations include the

Gaussian elimination (Carl Friedrich Gauss, 1777-1855) (also cal-

led Gauss’s algorithm) and Cramer’s rule (Gabriel Cramer, 1704-

1752). If we apply Gauss’s algorithm, the unknowns are systema-

tically eliminated to obtain from (A.34) the equivalent system

a
′

11 x1 + a
′

12 x2 + . . . + a
′

1n xn = b
′

1 ,

a
′

22 x2 + . . . + a
′

2n xn = b
′

2 ,

. . . . . . . . .

a
′

nn xn = b
′

n .

(A.40)

Beginning with the last equation, the unknowns can be computed

successively.

As an example, consider the system

2x1 + 5x2 + 8x3 + 4x4 = 3 ,

6x1 + 16x2 + 22x3 + 13x4 = 9 ,

4x1 + 14x2 + 28x3 + 10x4 = 4 ,

10x1 + 23x2 + 84x3 + 25x4 = 22

of four equations for the four unknowns x1, . . . , x4. The first equa-

tion (row) is multiplied by −3 and added to the second row. Also,

the first row is multiplied by −2 and added to the third one, etc.

Thus, the unknown x1 is eliminated from the second, third and

fourth equation:
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2x1 + 5x2 + 8x3 + 4x4 = 3 ,

x2 − 2x3 + x4 = 0 ,

4x2 + 12x3 + 2x4 = −2 ,

− 2x2 + 44x3 + 5x4 = 7 .

Similarly, the unknowns x2 and x3 are subsequently eliminated. It

is convenient to arrange the algorithm according to the following

scheme, where only the coefficients ajk are written down:

x1 x2 x3 x4 b

2 5 8 4 3 (a)

6 16 22 13 9

4 14 28 10 4

10 23 84 25 22

0 1 −2 1 0 (b)

0 4 12 2 −2

0 −2 44 5 7

0 0 20 −2 −2 (c)

0 0 40 7 7

0 0 0 11 11 (d)

With the coefficients (a)–(d), we obtain the “staggered” system

(compare (A.40))

2x1 + 5x2 + 8x3 + 4x4 = 3 ,

x2 − 2x3 + x4 = 0 ,

20x3 − 2x4 = −2 ,

11x4 = 11 .

Beginning with the last row, we get successively

x4 = 1 , x3 = 0 , x2 = −1 , x1 = 2 .

According to Cramer’s rule, the unknowns are given by

xk =
det (Ak)

det A
, k = 1, . . . , n . (A.41)
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The determinant det (Ak) is obtained by replacing the k-th co-

lumn of the determinant of A by b.

As an example, consider the system

a11 x1 + a12 x2 = b1 ,

a21 x1 + a22 x2 = b2 .

The unknowns are found to be

x1 =

∣∣∣∣∣
b1 a12

b2 a22

∣∣∣∣∣
∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣

=
b1a22 − a12b2

a11a22 − a12a21
,

x2 =

∣∣∣∣∣
a11 b1

a21 b2

∣∣∣∣∣
∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣

=
a11b2 − b1a21

a11a22 − a12a21
.

Note that Cramer’s rule is suitable only for systems with two

(at most three) unknowns. For larger systems, Gaussian eliminati-

on is recommended. It should also be noted that for large systems,

a loss of accuracy may occur due to round-off errors.
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Index
action line 8

active force 11

angle of static friction 261

arch 117, 174, 201

Archimedes’ law of the lever 52,

226

area force 11

axiom 1

bar 31, 117

beam 117, 176

– axis 171, 172

belt friction 269

bending moment 172, 208

– diagram 176, 178

bifurcation point 246

boundary conditions 186

cable 31

center – of forces 89

– of gravity 88, 92, 94

– of mass 88, 92, 94

– of volume 95

centroid 88, 95

– of a line 108

– of an area 98

clamping 120, 125

coefficient, kinetic friction 260, 262

–, static friction 259, 260

components, force 25

–, vector 281

concurrent forces 21

condition of static friction 259

connecting member 128

conversion factors 15

coordinates of a vector 26

coplanar 21

corc screw rule 70

Coulomb theory of friction 259

couple 52, 63

Cramer’s rule 289

criterion of stability 240

critical load 246

cross product 71, 285

dashed line 174, 201

dead load 222, 244

decomposition 25

degrees of freedom 60, 118, 125,

140, 229

disk 117

dot product 284

dynamics 2

energy, potential 223

equilibrium 29, 40, 63

– condition 29, 40, 55, 60, 75, 227

- state 227

– state, stability of 238

–, neutral 239

–, stable 238

–, unstable 240

Euler 271

external force 12

externally statically determinate 141

Eytelwein 271

force 7

force plan 22

– polygon 22

– system in space 38, 69

– system, concurrent 38

– system, coplanar 57

– triangle 22

force, active 11, 258

–, area 11

–, components of a 25

–, concentrated 10
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–, conservative 223

–, direction of 7

–, external 12

–, internal 12, 152

–, kinetic friction 258

–, line 11

–, magnitude of 7

–, normal 31, 172, 208

–, point of application 8

–, potential 223

–, reaction 11, 233, 258

–, shear 172, 208

–, spring 224

–, static friction 258

–, tangential 31

–, volume 11

forces, parallel 51

–, addition of 21

–, concurrent 20, 21, 38

–, coplanar 20, 21, 57

–, decomposition of 25

frame 117, 174, 201

free-body diagram 12, 30

friction coefficient 260, 262

friction, belt 269

Gaussian elimination 289

hinge 129

hinged beam 137

internal force 12, 152

internally statically indeterminate

141

Joule 220

kinematical (in)determinacy 121,

131, 140, 142, 153

kinematics 2

kinetic friction 257, 258, 262, 263

– friction force 258

kinetics 2

law of action and reaction 13, 117

law of friction 262

layout plan 22

lever arm 56

line force 11

– of action 8

load, dead 222, 244

mass point 1

matching conditions 191

method of joints 156

– of sections 12, 123, 129, 162

moment 52

– of a force 55

– of an area 99

– vector 69

–, bending 172, 208

–, magnitude 53

–, sense of rotation 52, 53

Newton 7

Newton’s third law 14, 172

normal force 31, 172, 208

– diagram 176

parallel motion 119, 129, 186

parallelogram law of forces 21

plate 117

position vector 71, 219

potential 219, 223

– energy 223

– of spring force 224

– of torsion spring 225

– of weight 223

principle of solidification 12

– of the lever 52, 226

– of transmissibility 9

– of virtual displacements 227

– of virtual work 225, 226
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reaction force 11, 233, 258

reduction 21

reference point 56

restraint 118

resultant 21, 57, 63

right-hand rule 70

rigid body 1, 9

rod 31, 117

rope 31

scalar product 284

sense of rotation 52

shear force 172, 208

shear-force diagram 176, 178

shell 117

sign convention 172, 174, 208

simple truss 154

sliding sleeve 119, 186

spring constant 224

– constant, torsion 225

stability 238

– criterion 240

static friction 257, 258, 263

– friction cone 261

– friction force 258

– friction wedge 261

statical (in)determinacy 30, 120,

122, 126, 128, 130, 138, 140, 142,

151, 152, 267

statics 2

stress 171

– resultants 171, 233

structure, plane 117, 129

structures, multi-part 128

–, spatial 125, 207

strut 118 125, 129

support 117

– reactions 116, 117

–, clamped 120, 125

–, fixed 120, 125

–, hinged 119, 125

–, roller 118

–, simple 118

tangential force 31

three-hinged arch 134

torque 208

torsion spring constant 225

truss 150

unit vector 280

vector coordinates 282

– product 71, 285

–, free 72

vectors 280

virtual displacement 225

– work 225, 226

volume force 11

work 219

–, virtual 225, 226

zero-force member 156


