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Preface

Statistics has developed by combining the needs of science, business, industry, and
government. More recent development is connected with methods for generating
insights from data, using statistical theory and delivery platforms. This integration
is at the core of applied statistics and most of theoretical statistics.

Before the beginning of the twentieth century, statistics meant observed data and
descriptive summary figures, such as means, variances, indices, etc., computed from
data. With the introduction of the χ2-test for goodness of fit by Karl Pearson (1900)
and the t-test by Gosset (Student, 1908) for drawing inference on the mean of a
normal population, statistics became a methodology of analyzing sample data to
determine the validity of hypotheses about the source of the data (the population).
Fisher (1922) laid the foundations for statistics as a discipline. He considered the
object of statistical methods to be reducing data into the essential statistics, and he
identified three problems that arise in doing so:

1. Specification-choosing the right mathematical model for a population
2. Estimation-methods to calculate, from a sample, estimates of the parameters of

the hypothetical population
3. Distribution-properties of statistics derived from samples

Forty years later, Tukey (1962) envisioned a data-centric development of statis-
tics, sketching the pathway to data science. Forty years after that, we entered the age
of big data, data science, artificial intelligence, and machine learning. These new
developments are built on the methods, applications, and experience of statisticians
around the world.

The first two authors started collaborating on a book in the early 1990s. In
1998, we published with Duxbury Wadsworth Modern Industrial Statistics: Design
and Control of Quality and Reliability. The book appeared in a Spanish edition
(Estadística Industrial Moderna: Diseño y Control de Calidad y la Confiabilidad,
Thomson International, 2000). An abbreviated edition was published as Modern
Statistics: A Computer based Approach (Thomson Learning, 2001); this was
followed by a Chinese edition (China Statistics Press, 2003) and a softcover edition,
(Brooks/Cole, 2004). The book used QuickBasic, S-Plus, and MINITAB. In 2014
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viii Preface

we published, with Wiley, an extended second edition titled Modern Industrial
Statistics: With Applications in R, MINITAB and JMP. That book was translated
into Vietnamese by the Vietnam Institute for Advanced Studies in Mathematics
(VIASM, 2016). A third, expanded edition, was published by Wiley in 2021.

This book is about modern statistics with Python. It reflects many years of
experience of the authors in doing research, teaching and applying statistics in
science, healthcare, business, defense, and industry domains. The book invokes
over 40 case studies and provides comprehensive Python applications. In 2019,
there were 8.2 million developers in the world who code using Python which is
considered the fastest-growing programming language. A special Python package,
mistat, is available for download https://gedeck.github.io/mistat-code-solutions/
ModernStatistics/. Everything in the book can be reproduced with mistat. We
therefore provide, in this book, an integration of needs, methods, and delivery
platform for a large audience and a wide range of applications.

Modern Statistics: A Computer-Based Approach with Python is a companion
text to another book published by Springer titled: Industrial Statistics: A Computer
Based Approach with Python. Both books include mutual cross references, but both
books are stand-alone publications. This book can be used as textbook in a one
semester or two semester course on modern statistics. The technical level of the
presentation in both books can serve both undergraduate and graduate students.
The example and case studies provide access to hands on teaching and learning.
Every chapter includes exercises, data sets, and Python applications. These can be
used in regular classroom setups, flipped classroom setups, and online or hybrid
education programs. The companion text is focused on industrial statistics with
special chapters on advanced process monitoring methods, cybermanufacturing,
computer experiments, and Bayesian reliability.Modern Statistics is a foundational
text and can be combined with any program requiring data analysis in its curriculum.
This, for example, can be courses in data science, industrial statistics, physics,
biology, chemistry, economics, psychology, social sciences, or any engineering
discipline.

Modern Statistics: A Computer-Based Approach with Python includes eight
chapters. Chapter 1 is on analyzing variability with descriptive statistics. Chapter 2
is on probability models and distribution functions. Chapter 3 introduces statistical
inference and bootstrapping. Chapter 4 is on variability in several dimensions and
regression models. Chapter 5 covers sampling for estimation of finite population
quantities, a common situation when one wants to infer on a population from a
sample. Chapter 6 is dedicated to time series analysis and prediction. Chapters 7
and 8 are about modern data analytic methods.

Industrial Statistics: A Computer-Based Approach with Python contains 11
chapters: Chapter 1— Introduction to Industrial Statistics, Chapter 2—Basic Tools
and Principles of Process Control, Chapter 3—Advanced Methods of Statistical
Process Control, Chapter 4—Multivariate Statistical Process Control, Chapter 5—
Classical Design and Analysis of Experiments, Chapter 6—Quality by Design,
Chapter 7—Computer Experiments, Chapter 8—Cybermanufacturing and Digital
Twins, Chapter 9—Reliability Analysis, Chapter 10—Bayesian Reliability Estima-
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tion and Prediction, and Chapter 11—Sampling Plans for Batch and Sequential
Inspection. This second book is focused on industrial statistics with applications
to monitoring, diagnostics, prognostic, and prescriptive analytics. It can be used as
a stand-alone book, or in conjunction with Modern Statistics. Both books include
solution manuals to exercises listed at the end of each chapter. This was designed to
support self-learning as well as instructor led courses.

We made every possible effort to ensure the calculations are correct and the text
is clear. However, should errors have skipped to the printed version, we would
appreciate feedback from readers noticing these. In general, any feedback will be
much appreciated.

Finally, we would like to thank the team at Springer Birkhäuser, including
Dana Knowles and Christopher Tominich. They made everything in the publication
process look easy.

Ra’anana, Israel Ron S. Kenett
McLean, VA, USA Shelemyahu Zacks
Falls Church, VA, USA Peter Gedeck
April 2022
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Chapter 1
Analyzing Variability: Descriptive
Statistics

Preview The chapter focuses on statistical variability and various methods of
analyzing random data. Random results of experiments are illustrated with distinc-
tion between deterministic and random components of variability. The difference
between accuracy and precision is explained. Frequency distributions are defined to
represent random phenomena. Various characteristics of location and dispersion of
frequency distributions are defined. The elements of exploratory data analysis are
presented.

1.1 Random Phenomena and the Structure of Observations

Many phenomena which we encounter are only partially predictable. It is difficult
to predict the weather or the behavior of the stock market. In this book we focus
on industrial phenomena, like performance measurements from a product which is
being manufactured, or the sales volume in a specified period of a given product
model. Such phenomena are characterized by the fact that measurements performed
on them are often not constant but reveal a certain degree of variability. Variability
is also a reflection of uncertainty. For a comprehensive treatment of uncertainty in
engineering applications, see del Rosario and Iaccarino (2022). The objective of this
chapter is to present methods for analyzing this variability, in order to understand
the variability structure and enhance our ability to control, improve, and predict
future behavior of such phenomena. We start with a few simple examples. The data
and code used throughout the book is available from https://gedeck.github.io/mistat-
code-solutions/ModernStatistics/

Example 1.1 A piston is a mechanical device that is present in most types of
engines. One measure of the performance of a piston is the time it takes to complete
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2 1 Analyzing Variability: Descriptive Statistics

one cycle. We call this measure cycle time. In Table 1.1 we present 50 cycle times
of a piston operating under fixed operating conditions (a sample dataset is stored in
file CYCLT.csv). We provide with this book code in Python for running a piston
software simulation. If you installed Python, install the mistat package using the
Python package installer pip.

pip install mistat

You will get access to a piston simulator with seven factors that you can
change. We will also use this simulator when we discuss statistical process control
(Chaps. 2, 3, and 4 in the Industrial Statistics book) and the design of experiments
(Chaps. 5, 6, and 7 in the Industrial Statistics book). We continue at a pedestrian
pace by recreating Table 1.1 using Python. All the Python applications referred to
in this book are contained in a package called mistat available from the Python
package index and on GitHub at https://github.com/gedeck/mistat. The following
Python commands will import the mistat package, read the cycle time data, and
print the first five values on your monitor:

import mistat
data = mistat.load_data('CYCLT')
print(data.head())

0 1.008
1 1.098
2 1.120
3 0.423
4 1.021
Name: CYCLT, dtype: float64

Notice that functions in Python have parenthesis. The import statement imports
the mistat package and makes its functionality available. mistat.load_data
is a function that loads the CYCLT dataset as a Pandas data series. A Pandas data
series is a simple vector of values.

The differences in cycle times values are quite apparent and we can make the
statement “cycle times are varying.” Such a statement, in spite of being true, is
not very useful. We have only established the existence of variability—we have
not yet characterized it and are unable to predict and control future behavior of the
piston. �

Example 1.2 Consider an experiment in which a coin is flipped once. Suppose the
coin is fair in the sense that it is equally likely to fall on either one of its faces.
Furthermore, assume that the two faces of the coin are labeled with the numbers “0”
and “1”. In general, we cannot predict with certainty on which face the coin will
fall. If the coin falls on the face labeled “0”, we assign to a variable X the value 0;
if the coin falls on the face labeled “1”, we assign to X the value 1. Since the values
which X will obtain in a sequence of such trials cannot be predicted with certainty,
we call X a random variable. A typical random sequence of 0, 1 values that can be
generated in this manner might look like the following:


 13263 17966 a 13263 17966
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Table 1.1 Cycle times of
piston (in seconds) with
control factors set at
minimum levels

1.008 1.098 1.120 0.423 1.021

1.069 0.271 0.431 1.095 1.088

1.117 1.080 0.206 0.330 0.314

1.132 0.586 1.118 0.319 0.664

1.141 0.662 0.531 0.280 0.489

1.080 0.628 0.302 0.179 1.056

0.449 1.057 0.437 0.175 0.482

0.275 1.084 0.287 1.068 1.069

0.215 1.107 0.348 0.213 0.200

0.187 0.339 0.224 1.009 0.560

0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0,
1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1.

In this sequence of 40 random numbers, there are 22 0s and 18 1s. We expect in a
large number of trials, since the coin is unbiased, that 50% of the random numbers
will be 0s and 50% of them will be 1s. In any particular short sequence, the actual
percentage of 0s will fluctuate around the expected number of 50%.

At this point we can use the computer to “simulate” a coin tossing experiment.
There are special routines for generating random numbers on the computer. We will
illustrate this by using Python. The following commands generate a sequence of 50
random binary numbers (0 and 1).

from scipy.stats import binom
import numpy as np

X = binom.rvs(1, 0.5, size=50)

print(X)

[1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1
1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1]

The command uses a binomial function (binom.rvs). The first argument
defines the number of trials, here set to 1, and the second argument the probability
of 1s. The size argument specifies the number of observations. Execute this
command to see another random sequence of 50 0s and 1s. Compare this sequence
to the one given earlier. �

Example 1.3 Another example of a random phenomenon is illustrated in Fig. 1.1
where 50 measurements of the length of steel rods are presented. These data are
stored in file STEELROD.csv. To generate Fig. 1.1 in Python, type at the prompt
the following commands:

import matplotlib.pyplot as plt

steelrod = mistat.load_data('STEELROD')
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Fig. 1.1 Length of 50 steel rods (in cm)

# create a scatterplot
ax = steelrod.plot(y='STEELROD', style='.', color='black')
ax.set_xlabel('Index') # set the x axis title
ax.set_ylabel('Steel rod Length') # set the y axis title
plt.show()

Steel rods are used in the car and truck industry to strengthen vehicle structures.
Automation of assembly lines has created stringent requirements on the physical
dimensions of parts. Steel rods supplied by Urdon Industries for Peugeot car plants
are produced by a process adjusted to obtain rods with a length of 20 cm. However,
due to natural fluctuations in the production process, the actual length of the rods
varies around the nominal value of 20 cm. Examination of this sequence of 50 values
does not reveal any systematic fluctuations. We conclude that the deviations from
the nominal values are random. It is impossible to predict with certainty what the
values of additional measurements of rod length will be. However, we shall learn
later that with further analysis of this data, we can determine that there is a high
likelihood that new observations will fall close to 20 cm.

It is possible for a situation to arise in which, at some time, the process will start
to malfunction, causing a shift to occur in the average value of the process. The
pattern of variability might then look like the one in Fig. 1.2. An examination of
Fig. 1.2 shows that a significant shift has occurred in the level of the process after
the 25th observation and that the systematic deviation from the average value of the
process has persisted constantly. The deviations from the nominal level of 20 cm are
first just random and later systematic and random. The steel rods obviously became
shorter. A quick investigation revealed that the process got accidentally misadjusted
by a manager who played with machine knobs while showing the plant to important
guests. �



1.1 Random Phenomena and the Structure of Observations 5

Fig. 1.2 Level shift after the first 25 observations

In formal notation, if Xi is the value of the i-th observation, then

Xi =
{

O + Ei i = 1, · · · , 25

N + Ei i = 26, · · · , 50,

where O = 20 is the original level of the process, N = 17 is its new level after
the shift, and Ei is a random component. Note that O and N are fixed and, in this
case, constant non-random levels. Thus, a random sequence can consist of values
which have two components: a fixed component and a random component. A fixed-
nonrandom pattern is called a deterministic pattern. As another example, in Fig. 1.3
we present a sequence of 50 values of

Xi = Di + Ei, i = 1, · · · , 50,

where the Di’s follow a sinusoidal pattern shown on Fig. 1.3 by dots and Ei’s
are random deviations having the same characteristics as those of Fig. 1.1. The
sinusoidal pattern is Di = sin(2πi/50), i = 1, . . . , 50. This component can be
determined exactly for each i and is therefore called deterministic while Ei is a
random component. In Python we can construct such a sequence and plot it with the
following commands:

import math
from scipy.stats import norm

# create a list of 50 values forming a sine curve
x = [math.sin(x * 2 * math.pi / 50) for x in range(1, 51)]

# Add a random normal with mean 0 and standard deviation 0.05
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Fig. 1.3 Random variation around a systematic trend

x = [xi + norm.rvs(loc=0, scale=0.05) for xi in x]

ax = pd.Series(x).plot(style='.', color='black')
ax.set_ylabel('Values')
ax.axhline(y=0, linestyle='--', color='darkgray')
plt.show()

If the random component could be eliminated, we would be able to predict
exactly the future values ofXi . For example, by following the pattern of theDi’s, we
can determine that X100 would be equal to 0. However, due to the existence of the
random component, an exact prediction is impossible. Nevertheless, we expect that
the actual values will fall around the deterministic pattern. In fact, certain prediction
limits can be assigned, using methods which will be discussed later.

1.2 Accuracy and Precision of Measurements

Different measuring instruments and gages or gauges (such as weighing scales,
voltmeters, etc.) may have different characteristics. For example, we say that an
instrument is accurate if repetitive measurements of the same object yield an
average equal to its true value. An instrument is inaccurate if it yields values
whose average is different from the true value. Precision, on the other hand, is
related to the dispersion of the measurements around their average. In particular,
small dispersion of the measurements reflects high precision, while large dispersion
reflects low precision. It is possible for an instrument to be inaccurate but precise,
or accurate but imprecise. Precision, sometimes called repeatability, is a property
of the measurement technology. Reproducibility is assessing the impact of the
measurement procedure on measurement uncertainty, including the contribution
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of the individuals taking the measurement. Differences between lab operators are
reflected by the level of reproducibility. There are other properties of measuring
devices or gages, like stability, linearity etc., which will not be discussed here. A
common term for describing techniques for empirical assessment of the uncertainty
of a measurement device is gage repeatability and reproducibility (GR&R).
These involve repeated testing of a number of items, by different operators. In
addition to a (GR&R) assessment, to ensure proper accuracy, measuring instruments
need to be calibrated periodically relative to an external standard. In the USA, the
National Institute of Standards and Technologies (NIST) is responsible for such
activities.

Example 1.4 In Fig. 1.4, we present weighing measurements of an object whose
true weight is 5 kg. The measurements were performed on three instruments, with
ten measurements on each one. We see that instrument A is accurate (the average is
5.0 kg), but its dispersion is considerable. Instrument B is not accurate (the average
is 2.0 kg) but is more precise than A. Instrument C is as accurate as A but is more
precise than A. �

np.random.seed(seed=1)

x = np.concatenate([5 + norm.rvs(loc=0, scale=0.5, size=10),
2 + norm.rvs(loc=0, scale=0.2, size=10),
5 + norm.rvs(loc=0, scale=0.1, size=10)])

ax = pd.Series(x).plot(style='.', color='black')
ax.set_ylabel('Values')
ax.set_xlabel('Index')
ax.set_ylabel('Weight')
ax.hlines(y=5, xmin=0, xmax=9, color='darkgray')
ax.hlines(y=2, xmin=10, xmax=19, color='darkgray')
ax.hlines(y=5, xmin=20, xmax=29, color='darkgray')
ax.text(4, 6.5, 'A')
ax.text(14, 3.5, 'B')
ax.text(24, 6.5, 'C')
ax.set_ylim(0, 8)
plt.show()

As a note it should be mentioned that repeatability and reproducibility are also
relevant in the wider context of research. For a dramatic failure in reproducibility,
see the article by Nobel Prize winner Paul Krugman on the research of Harvard
economists, Carmen Reinhart and Kenneth Rogoff, that purported to identify a
critical threshold or tipping point, for government indebtedness. Their findings were
flawed because of self-selected data points and coding errors in Excel (https://www.
nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html). Another
dramatic example of irreproducible research is a Duke university genomic study
which proposed genomic tests that looked at the molecular traits of a cancerous
tumor and recommended which chemotherapy would work best. This research
proved flawed because of errors such as moving a row or a column over by one in a
giant spreadsheet and other more complex reasons (https://www.nytimes.com/2011/
07/08/health/research/08genes.html). Repeatability in microarray studies is related
to identifying the same set of active genes in large and smaller studies. These topics
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Fig. 1.4 Samples of ten measurements from three different instruments

are however beyond the scope of this book. For a discussion of reproducibility in
science, with references, see Kenett and Rubinstein (2021).

1.3 The Population and the Sample

A statistical population is a collection of units having a certain common attribute.
For example, the set of all the citizens of the USA on January 1, 2021, is a statistical
population. Such a population is comprised of many subpopulations, e.g., all males
in the age group of 19–25 living in Illinois, etc. Another statistical population is the
collection of all concrete cubes of specified dimensions that can be produced under
well-defined conditions. The first example of all the citizens of the USA on January
1, 2021, is a finite and real population, while the population of all units that can be
produced by a specified manufacturing process is infinite and hypothetical.

A sample is a subset of the elements of a given population. A sample is usually
drawn from a population for the purpose of observing its characteristics and making
some statistical decisions concerning the corresponding characteristics of the whole
population. For example, consider a lot of 25,000 special screws which were shipped
by a vendor to factory A. Factory A must decide whether to accept and use this
shipment or reject it (according to the provisions of the contract). Suppose it is
agreed that, if the shipment contains no more than 4% defective items, it should
be accepted and, if there are more than 6% defectives, the shipment should be
rejected and returned to the supplier. Since it is impractical to test each item of
this population (although it is finite and real), the decision of whether or not to
accept the lot is based on the number of defective items found in a random sample
drawn from the population. Such procedures for making statistical decisions are
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called acceptance sampling methods. Chapter 11 in the Industrial Statistics book
is dedicated to these methods. Chapter 5 provides the foundations for estimation
of parameters using samples from finite populations including random sample
with replacement (RSWR) and random sample without replacement (RSWOR).
Chapter 3 includes a description of a technique called bootstrapping, which is a
special case of RSWR.

1.4 Descriptive Analysis of Sample Values

In this section we discuss the first step for analyzing data collected in a sampling
process. One way of describing a distribution of sample values, which is particularly
useful in large samples, is to construct a frequency distribution of the sample
values. We distinguish between two types of frequency distributions, namely,
frequency distributions of (i) discrete variables and (ii) continuous variables.

A random variable, X, is called discrete if it can assume only a finite (or at
most a countable) number of different values. For example, the number of defective
computer cards in a production lot is a discrete random variable. A random variable
is called continuous if, theoretically, it can assume all possible values in a given
interval. For example, the output voltage of a power supply is a continuous random
variable.

1.4.1 Frequency Distributions of Discrete Random Variables

Consider a random variable, X, that can assume only the values x1, x2, · · · , xk ,
where x1 < x2 < · · · < xk . Suppose that we have made n different observations
on X. The frequency of xi (i = 1, · · · , k) is defined as the number of observations
having the value xi . We denote the frequency of xi by fi . Notice that

k∑
i=1

fi = f1 + f2 + · · · + fk = n.

The set of ordered pairs

{(x1, f1), (x2, f2), · · · , (xk, fk)}

constitutes the frequency distribution of X. We can present a frequency distribution
in a tabular form as

It is sometimes useful to present a frequency distribution in terms of the
proportional or relative frequencies pi , which are defined by
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Value Frequency

x1 f1

x2 f2
.
.
.

.

.

.

xk fk

Total n

Fig. 1.5 Bar diagram of a frequency distribution

pi = fi/n (i = 1, · · · , k).

A frequency distribution can be presented graphically in a form which is called
a bar diagram, as shown in Fig. 1.5. The height of the bar at xj is proportional to
the frequency of this value.

In addition to the frequency distribution, it is often useful to present the
cumulative frequency distribution of a given variable. The cumulative frequency
of xi is defined as the sum of frequencies of values less than or equal to xi . We
denote it by Fi and the proportional cumulative frequencies or cumulative relative
frequency by

Pi = Fi/n.

A table of proportional cumulative frequency distribution could be represented as
follows:

The graph of the cumulative relative frequency distribution is a step function and
looks typically like the graph shown in Fig. 1.6.

Example 1.5 A US manufacturer of hybrid microelectronic components purchases
ceramic plates from a large Japanese supplier. The plates are visually inspected
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Value p P

x1 p1 P1 = p1

x2 p2 P2 = p1 + p2
.
.
.

.

.

.

xk pk Pk = p1 + · · · + pk

Total 1

Fig. 1.6 Step function of a cumulative relative frequency distribution

Table 1.2 Frequency
distribution of blemishes on
ceramic plates

x f p P

0 15 0.50 0.50

1 8 0.27 0.77

2 3 0.10 0.87

3 3 0.10 0.97

4 0 0.00 0.97

5 1 0.03 1.00

before screen printing. Blemishes will affect the final product’s electrical perfor-
mance and overall yield. In order to prepare a report for the Japanese supplier, the
US manufacturer decided to characterize the variability in the number of blemishes
found on the ceramic plates. The following measurements represent the number of
blemishes found on each of 30 ceramic plates:

0, 2, 0, 0, 1, 3, 0, 3, 1, 1, 0, 0, 1, 2, 0,
0, 0, 1, 1, 3, 0, 1, 0, 0, 0, 5, 1, 0, 2, 0.

Here the variable X assumes the values 0, 1, 2, 3, and 5. The frequency distribu-
tion of X is displayed in Table 1.2.
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We did not observe the value x = 4, but since it seems likely to occur in future
samples, we include it in the frequency distribution, with frequency f = 0.

For pedagogical purposes, we show next how to calculate a frequency distribu-
tion and how to generate a bar diagram in Python:

blemishes = mistat.load_data('BLEMISHES')

The object BLEMISHES is not a simple vector like CYCLT—it is called a data
frame, i.e., a matrix-like structure whose columns (variables) may be of differing
types. Here are the first few rows of the data frame.

blemishes.head(3)

plateID count
0 1 0
1 2 2
2 3 0

We can access individual elements in a list using square brackets in Python. For
a Pandas data frame, we need to use the square brackets on the .iloc[i, j]
property. i defines the row and j the column.

print(blemishes.iloc[1, 0])
print(blemishes.iloc[2, 1])

2
0

Note that, like many other programming languages, Python starts the index of
lists at 0. For the first example, this means we accessed row 2 (index 1) and column
1 (index 0).

It is also possible to extract a whole column from a Pandas data frame by name.

blemishes['count'].head(5)

0 0
1 2
2 0
3 0
4 1
Name: count, dtype: int64

We can create a bar diagram of the blemish count distribution as follows.

# use value_counts with normalize to get relative frequencies
X = pd.DataFrame(blemishes['count'].value_counts(normalize=True))
X.loc[4, 'count'] = 0 # there are no samples with 4 blemishes add a row
X = X.sort_index() # sort by number of blemishes

ax = X['count'].plot.bar(color='grey', legend=False)
ax.set_xlabel('Number of blemishes')
ax.set_ylabel('Proportional Frequency')
plt.show()

X['Number'] = X.index # add number of blemishes as column
X['Cumulative Frequency'] = X['count'].cumsum()
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Fig. 1.7 Bar diagram for number of blemishes on ceramic plates

Fig. 1.8 Cumulative relative frequency distribution for number of blemishes on ceramic plates

ax = X.plot.line(x='Number', y='Cumulative Frequency', color='black',
drawstyle='steps-post', legend=False)

ax.set_xlabel('Number of blemishes')
ax.set_ylabel('Cumulative Frequency')
ax.set_ylim(0, 1.1)
plt.show()

The bar diagram and cumulative frequency step function are shown in Figs. 1.7
and 1.8, respectively. �
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1.4.2 Frequency Distributions of Continuous Random
Variables

For the case of a continuous random variable, we partition the possible range of
variation of the observed variable into k subintervals. Generally speaking, if the
possible range of X is between L and H , we specify numbers b0, b1, b2, · · · , bk

such that L = b0 < b1 < b2 < · · · < bk−1 < bk = H . The values b0, b1, · · · , bk

are called the limits of the k subintervals. We then classify the X values into the
interval (bi−1, bi) if bi−1 < X ≤ bi (i = 1, · · · , k). (If X = b0, we assign it to the
first subinterval.) Subintervals are also called bins, classes, or class intervals.

In order to construct a frequency distribution, we must consider the following
two questions:

(i) How many subintervals should we choose?
(ii) How large should the width of the subintervals be?

In general, it is difficult to give these important questions exact answers which
apply in all cases. However, the general recommendation is to use between 10
and 15 subintervals in large samples and apply equal width subintervals. The
frequency distribution is given then for the subintervals, where the mid-point of each
subinterval provides a numerical representation for that interval. A typical frequency
distribution table might look like the following:

Subintervals Mid-point Freq. Cum. Freq.

b0 − b1 b̄1 f1 F1 = f1

b1 − b2 b̄2 f2 F2 = f1 + f2
.
.
.

bk−1 − bk b̄k fk Fk = n

Example 1.6 Nilit, a large fiber supplier to US and European textile manufacturers,
has tight control over its yarn strength. This critical dimension is typically analyzed
on a logarithmic scale. This logarithmic transformation produces data that is more
symmetrically distributed. Consider n = 100 values of Y = ln(X) where X

is the yarn strength [lb./22 yarns] of woolen fibers. The data is stored in file
YARNSTRG.csv and shown in Table 1.3.

The smallest value in Table 1.3 is Y = 1.1514 and the largest value is
Y = 5.7978. This represents a range of 5.7978 − 1.1514 = 4.6464. To obtain
approximately 15 subintervals, we need the width of each interval to be about
4.6464/15 = .31. A more convenient choice for this class width might be 0.50.
The first subinterval would start at b0 = 0.75 and the last subinterval would end
with bk = 6.25. The frequency distribution for this data is presented in Table 1.4.

A graphical representation of the distribution is given by a histogram as shown in
Fig. 1.9. Each rectangle has a height equal to the frequency (f ) or relative frequency
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Table 1.3 A sample of 100
log (yarn strength)

2.4016 1.1514 4.0017 2.1381 2.5364

2.5813 3.6152 2.5800 2.7243 2.4064

2.1232 2.5654 1.3436 4.3215 2.5264

3.0164 3.7043 2.2671 1.1535 2.3483

4.4382 1.4328 3.4603 3.6162 2.4822

3.3077 2.0968 2.5724 3.4217 4.4563

3.0693 2.6537 2.5000 3.1860 3.5017

1.5219 2.6745 2.3459 4.3389 4.5234

5.0904 2.5326 2.4240 4.8444 1.7837

3.0027 3.7071 3.1412 1.7902 1.5305

2.9908 2.3018 3.4002 1.6787 2.1771

3.1166 1.4570 4.0022 1.5059 3.9821

3.7782 3.3770 2.6266 3.6398 2.2762

1.8952 2.9394 2.8243 2.9382 5.7978

2.5238 1.7261 1.6438 2.2872 4.6426

3.4866 3.4743 3.5272 2.7317 3.6561

4.6315 2.5453 2.2364 3.6394 3.5886

1.8926 3.1860 3.2217 2.8418 4.1251

3.8849 2.1306 2.2163 3.2108 3.2177

2.0813 3.0722 4.0126 2.8732 2.4190

Table 1.4 Frequency
distribution for log yarn
strength data

bi−1 − bi b̄i fi pi Fi Pi

0.75–1.25 1.0 2 0.02 2 0.02

1.25–1.75 1.5 9 0.09 11 0.11

1.75–2.25 2.0 12 0.12 23 0.23

2.25–2.75 2.5 26 0.26 49 .49

2.75–3.25 3.0 17 0.17 66 0.66

3.25–3.75 3.5 17 0.17 83 0.83

3.75–4.25 4.0 7 0.07 90 0.90

4.25–4.75 4.5 7 0.07 97 0.97

4.75–5.25 5.0 2 0.02 99 0.99

5.25–5.75 5.5 0 0.00 99 0.99

5.75–6.25 6.0 1 0.01 100 1.00

(p) of the corresponding subinterval. In either case the area of the rectangle
is proportional to the frequency of the interval along the base. The cumulative
frequency distribution is presented in Fig. 1.10.

Computer programs select a default midpoint and width of class intervals but
provide the option to change these choices. The shape of the histogram depends
on the number of class intervals chosen. You can experiment with the dataset
YARNSTRG.csv, by choosing a different number of class intervals, starting with
the default value.
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Fig. 1.9 Histogram of log yarn strength (Table 1.4)

Fig. 1.10 Cumulative relative distribution of log yarn strength

Apply the following Python commands:

X = mistat.load_data('YARNSTRG')
ax = X.plot.hist(bins=5, color='white', edgecolor='black', legend=False)
ax.set_xlabel('Log yarn strength')
plt.show()

ecdf = pd.DataFrame({'Log yarn strength': X.sort_values(),
'Fn(x)': range(1, len(X) + 1)})

ecdf['Fn(x)'] = ecdf['Fn(x)'] / len(X)
ax = ecdf.plot(x='Log yarn strength', y='Fn(x)', color='black',

drawstyle='steps-post', legend=False)
ax.axhline(y=0, color='grey', linestyle='--')
ax.axhline(y=1, color='grey', linestyle='--')
ax.set_ylabel('Fn(x)')
plt.show()
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The commands produce a histogram with five bins (Fig. 1.9) and a cumulative
relative distribution shown in Fig. 1.10. �

1.4.3 Statistics of the Ordered Sample

In this section we identify some characteristic values of a sample of observations
that have been sorted from smallest to largest. Such sample characteristics are called
order statistics. In general statistics are computed from observations and are used
to make an inference on characteristics of the population from where the sample was
drawn. Statistics that do not require to sort observation are discussed in Sect. 1.4.4.

LetX1, X2, · · · , Xn be the observed values of some random variable, as obtained
by a random sampling process. For example, consider the following ten values of
the shear strength of welds of stainless steel (lb./weld): 2385, 2400, 2285, 2765,
2410, 2360, 2750, 2200, 2500, 2550. What can we do to characterize the variability
and location of these values?

The first step is to sort the sample values in an increasing order, that is, we rewrite
the list of sample values as 2200, 2285, 2360, 2385, 2400, 2410, 2500, 2550, 2750,
2765. These ordered values are denoted by X(1), X(2), · · · , X(n), where X(1) =
2200 is the smallest value in the sample, X(2) = 2285 is the second smallest, and
so on. We call X(i) the i-the order statistic of the sample. For convenience, we can
also denote the average of consecutive order statistics by

X(i.5) = (X(i) + X(i+1))/2 = X(i) + .5(X(i+1) − X(i)). (1.1)

For example, X(2.5) = (X(2) + X(3))/2. We now identify some characteristic values
that depend on these order statistics, namely, the sample minimum, the sample
maximum, the sample range, the sample median, and the sample quartiles. The
sample minimum is X(1) and the sample maximum is X(n). In our example
X(1) = 2200 and X(n) = X(10) = 2765. The sample range is the difference
R = X(n) − X(1) = 2765− 2200 = 565. The “middle” value in the ordered sample
is called the sample median, denoted by Me. The sample median is defined as
Me = X(m) wherem = (n+1)/2. In our example, n = 10 som = (10+1)/2 = 5.5.
Thus

Me = X(5.5) = (X(5) + X(6))/2 = X(5) + .5(X(6) − X(5))

= (2400 + 2410)/2

= 2405.

The median characterizes the center of dispersion of the sample values and is
therefore called a statistic of central tendency, or location statistic. Approxi-
mately 50% of the sample values are smaller than the median. Finally we define
the sample quartiles as Q1 = X(q1) and Q3 = X(q3) where
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q1 = (n + 1)

4

and (1.2)

q3 = 3(n + 1)

4
.

Q1 is called the lower quartile and Q3 is called the upper quartile. These quartiles
divide the sample so that approximately one fourth of the values are smaller than
Q1, one half are between Q1 and Q3, and one fourth are greater than Q3. In our
example, n = 10 so

q1 = 11

4
= 2.75

and

q3 = 33

4
= 8.25.

Thus, Q1 = X(2.75) = X(2) + .75 × (X(3) − X(2)) = 2341.25 and Q3 = X(8.25) =
X(8) + .25 × (X(9) − X(8)) = 2600.

These sample statistics can be obtained from a frequency distribution using the
cumulative relative frequency as shown in Fig. 1.11 which is based on the log yarn
strength data of Table 1.3.

Using linear interpolation within the subintervals, we obtainQ1 = 2.3,Q3 = 3.6
and Me = 2.9. These estimates are only slightly different from the exact values
Q1 = X(.25) = 2.2789, Q3 = X(.75) = 3.5425, and Me = X(.5) = 2.8331.

The sample median and quartiles are specific forms of a class of statistics known
as sample quantiles. The p-th sample quantile is a number that exceeds exactly
100p% of the sample values. Hence, the median is the 0.5 sample quantile, Q1 is
the 0.25-th quantile, and Q3 is the 0.75-th sample quantile. We may be interested,
for example, in the 0.9 sample quantile. Using linear interpolation in Fig. 1.11, we
obtain the value 4.5, while the value of X(.9) = 4.2233. The p-th sample quantile
is also called the 100p-th sample percentile. The following Python commands yield
these statistics of the data: median, min, max, Q1, and Q3.

cyclt = mistat.load_data('CYCLT')

print(cyclt.quantile(q=[0, 0.25, 0.5, 0.75, 1.0]))

0.00 0.1750
0.25 0.3050
0.50 0.5455
0.75 1.0690
1.00 1.1410
Name: CYCLT, dtype: float64

The mean is calculated with the mean method.
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Fig. 1.11 Cumulative relative distribution function with linear interpolation lines at quartiles

print(cyclt.mean())

0.6524599999999999

The describe method returns several of the statistics in a concise format.

print(cyclt.describe())

count 50.000000
mean 0.652460
std 0.372971
min 0.175000
25% 0.305000
50% 0.545500
75% 1.069000
max 1.141000
Name: CYCLT, dtype: float64

Applying this command on the piston cycle time of file CYCLT.csv, we find
X(1) = 0.1750, Q1 = 0.3050, Me = 0.5455, X̄ = 0.6525, Q3 = 1.0690, and
X(50) = 1.1410.

1.4.4 Statistics of Location and Dispersion

Given a sample of n measurements, X1, · · · , Xn, we can compute various statistics
to describe the distribution. The sample mean is determined by the formula
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Table 1.5 Computing the
sample variance

X (X − X̄) (X − X̄)2

45 15 225

60 30 900

21 −9 81

19 −11 121

4 −26 676

31 1 1

Sum 180 0 2004

X̄ = 180/6 = 30
S2 = 2004/5 = 400.8

X̄ = 1

n

n∑
i=1

Xi. (1.3)

Like the sample median, X̄ is a measure of central tendency. In Physics, the sample
mean represents the “center of gravity” for a system consisting of n equal-mass
particles located on the points Xi on the line.

As an example consider the following measurements, representing component
failure times in hours since initial operation

45, 60, 21, 19, 4, 31.

The sample mean is

X̄ = (45 + 60 + 21 + 19 + 4 + 31)/6 = 30.

To measure the spread of data about the mean, we typically use the sample
variance defined by

S2 = 1

n − 1

n∑
i=1

(Xi − X̄)2, (1.4)

or the sample standard deviation, given by

S =
√

S2.

The sample standard deviation is used more often since its units (cm., lb.) are the
same as those of the original measurements. In the next section, we will discuss
some ways of interpreting the sample standard deviation. Presently we remark
only that datasets with greater dispersion about the mean will have larger standard
deviations. The computation of S2 is illustrated in Table 1.5 using the failure time
data.
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The sample standard deviation and sample mean provide information on the
variability and central tendency of observation. For the dataset (number of blemishes
on ceramic plates) in Table 1.2, one finds that X̄ = 0.933 and S = 1.258.
Looking at the histogram in Fig. 1.7, one notes a marked asymmetry in the data.
In 50% of the ceramic plates, there were no blemishes and in 3% there were five
blemishes. In contrast, consider the histogram of log yarn strength which shows
remarkable symmetry with X̄ = 2.9238 and S = 0.93776. The difference in shape
is obviously not reflected by X̄ and S. Additional information pertaining to the shape
of a distribution of observations is derived from the sample skewness and sample
kurtosis. The sample skewness is defined as the index

β3 = 1

n

n∑
i=1

(Xi − X̄)3/S3. (1.5)

The sample kurtosis (steepness) is defined as

β4 = 1

n

n∑
i=1

(Xi − X̄)4/S4. (1.6)

These indices can be computed in Python using the Pandas or the scipy package.

X = mistat.load_data('YARNSTRG')
print(f'Skewness {X.skew():.4f}') # Computes the skewness
print(f'Kurtosis {X.kurtosis():.4f}') # Computes the kurtosis

from scipy.stats import skew, kurtosis
print(f'Skewness {skew(X):.4f}') # Computes the skewness
print(f'Kurtosis {kurtosis(X):.4f}') # Computes the kurtosis

Skewness 0.4164
Kurtosis -0.0080
Skewness 0.4102
Kurtosis -0.0670

Skewness and kurtosis are provided by most statistical computer packages,
and we can see from these two examples that there are subtle differences in
implementation. If a distribution is symmetric (around its mean), then skewness
= 0. If skewness > 0, we say that the distribution is positively skewed or skewed to
the right. If skewness < 0, then the distribution is negatively skewed or skewed to
the left. We should also comment that in distributions which are positively skewed
X̄ > Me, while in those which are negatively skewed X̄ < Me. In symmetric
distributions X̄ = Me.

The steepness of a distribution is determined relative to that of the normal
(Gaussian) distribution, which is described in the next section and specified in
Sect. 2.4.2. In a normal distribution, kurtosis = 3. Thus, if kurtosis > 3, the
distribution is called steep. If kurtosis< 3, the distribution is called flat. A schematic
representation of shapes is given in Figs. 1.12 and 1.13.
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Fig. 1.12 Symmetric and asymmetric distributions

Fig. 1.13 Normal, steep, and flat distributions

To illustrate these statistics, we compute X̄, S2, S, skewness and kurtosis for the
log yarn strength data of Table 1.3, We obtain

X̄ = 2.9238

S2 = 0.8794 S = 0.9378

Skewness = 0.4164 Kurtosis = −0.0080.
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The sample mean is X̄ = 2.9238, for values on a logarithmic scale. To return to
the original scale [lb/22 yarns], we can use the measure

G = exp{X̄} (1.7)

=
(

n∏
i=1

Yi

)1/n

= 18.6127, (1.8)

where Yi = exp(Xi), i = 1, . . . , n. The measure G is called the geometric mean of
Y . The geometric mean, G, is defined only for positive valued variables. It is used
as a measure of central tendency for rates of change and index numbers such as the
desirability function. One can prove the following general result:

G ≤ X̄.

Equality holds only if all values in the sample are the same.
Additional statistics to measure the dispersion are as follows.

(i) The interquartile range

IQR = Q3 − Q1, and (1.9)

(ii) The coefficient of variation

γ = S

|X̄| . (1.10)

The interquartile range, IQR, is a useful measure of dispersion when there are
extreme values (outliers) in the sample. It is easy to compute and can yield an
estimate of S; for more details, see Sect. 1.6.5. The coefficient of variation is a
dimensionless index, used to compare the variability of different datasets, when the
standard deviation tends to grow with the mean. The coefficient of variation of the

log yarn strength data is γ = 0.9378

2.9238
= 0.3207.

1.5 Prediction Intervals

When the data X1, · · · , Xn represents a sample of observations from some popula-
tion, we can use the sample statistics discussed in the previous sections to predict
how future measurements will behave. Of course, our ability to predict accurately
depends on the size of the sample.
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Prediction using order statistics is very simple and is valid for any type of
distribution. Since the ordered measurements partition the real line into n + 1
subintervals,

(−∞, X(1)), (X(1), X(2)), · · · , (X(n),∞),

we can predict that 100/(n + 1)% of all future observations will fall in any one
of these subintervals; hence, 100 i/(n + 1)% of future sample values are expected
to be less than the i-th order statistic X(i). It is interesting to note that the sample
minimum, X(1), is not the smallest possible value. Instead, we expect to see one out
of every n + 1 future measurements to be less than X(1). Similarly, one out of every
n + 1 future measurements is expected to be greater than X(n).

Predicting future measurements using sample skewness and kurtosis is a bit
more difficult because it depends on the type of distribution that the data follow.
If the distribution is symmetric (skewness ≈ 0) and somewhat “bell-shaped” or
“normal”1 (kurtosis ≈ 3) as in Fig. 1.9, for the log yarn strength data, we can make
the following statements:

1. Approximately 68% of all future measurements will lie within one standard
deviation of the mean

2. Approximately 95% of all future measurements will lie within two standard
deviations of the mean

3. Approximately 99.7% of all future measurements will lie within three standard
deviations of the mean.

The sample mean and standard deviation for the log yarn strength measurement
are X̄ = 2.92 and S = 0.94. Hence, we predict that 68% of all future measurements
will lie between X̄−S = 1.98 and X̄+S = 3.86, 95% of all future observations will
be between X̄−2S = 1.04 and X̄+2S = 4.80, and 99.7% of all future observations
will be between X̄ − 3S = 0.10 and X̄ + 3S = 5.74. For the data in Table 1.4, there
are exactly 69, 97, and 99 of the 100 values in the above intervals, respectively.

When the data does not follow a normal distribution, we may use the following
result:

Chebyshev’s Inequality
For any number k > 1 the percentage of future measurements within k

standard deviations of the mean will be at least 100(1 − 1/k2)%.

This means that at least 75% of all future measurements will fall within two
standard deviations (k = 2). Similarly, at least 89% will fall within three standard
deviations (k = 3). These statements are true for any distribution; however,

1 The normal or Gaussian distribution will be defined in Chap. 2.
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the actual percentages may be considerably larger. Notice that for data which is
normally distributed, 95% of the values fall in the interval [X̄ − 2S, X̄ + 2S]. The
Chebyshev inequality gives only the lower bound of 75% and is therefore very
conservative.

Any prediction statements, using the order statistics or the sample mean and
standard deviation, can only be made with the understanding that they are based on a
sample of data. They are accurate only to the degree that the sample is representative
of the entire population. When the sample size is small, we cannot be very confident
in our prediction. For example, if based on a sample of size n = 10, we find X̄ = 20
and S = 0.1, then we might make the statement that 95% of all future values will
be between 19.8 = 20 − 2(.1) and 20.2 = 20 + 2(.1). However, it would not be
too unlikely to find that a second sample produced X̄ = 20.1 and S = .15. The
new prediction interval would be wider than 19.8 to 20.4, a considerable change.
Also, a sample of size 10 does not provide sufficient evidence that the data has a
“normal” distribution. With larger samples, say n > 100, we may be able to draw
this conclusion with greater confidence.

In Chap. 3 we will discuss theoretical and computerized statistical inference
whereby we assign a “confidence level” to such statements. This confidence level
will depend on the sample size. Prediction intervals which are correct with high
confidence are called tolerance intervals.

1.6 Additional Techniques of Exploratory Data Analysis

In the present section, we present additional modern graphical techniques, which
are quite common today in exploratory data analysis. These techniques are the
density plot, the box and whiskers plot, the quantile plot, and stem-and-leaf
Diagram. We also discuss the problem of sensitivity of the sample mean and
standard deviation to outlying observations and introduce some robust statistics.

1.6.1 Density Plots

Similar to histograms, density plots represent the distribution of a variable. In
contrast to histograms, they create a continuous representation that can give a more
detailed insight into the distribution.

Density plots can, for example, be created using pandas. Figure 1.14 compares
histogram and density plot for the yarn strength dataset.

X = mistat.load_data('YARNSTRG')
X.plot.density()
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Fig. 1.14 Comparison of histogram and density plot for the log yarn strength datasets

The density plots are also known as kernel density plots, a name that reflects how
they are calculated. The kernel density f (x) is calculated from the n data points
x1, . . . , xn as follows:

f (x) = 1

nh

n∑
i=1

K

(
x − xi

h

)

K is the kernel and h > 0 is the smoothing parameter. There are a variety of
functions for K described in the literature; however, a frequently used one is the
gaussian or normal distribution N(0, 1) (see Sect. 2.4.2).

The smoothing parameter, often referred to as bandwidth, controls the level of
detail in the density estimate. A small value shows many details and may however
lead to an undersmoothing; a large value on the other hand can hide interesting
details. Figure 1.15 demonstrates the effect of changing the bandwidth for the log
yarn strength dataset.

Finding a good value for h is therefore crucial. There are various approaches
to derive h based on the data: rule-of-thumb methods, plugin methods, or cross-
validation methods. A rule of thumb is Scott’s rule:

hScott = 1.06S̄n
−1
d+4

where d is the number of dimensions, here d = 1, n the number of data points,
and S̄ the estimate of the standard deviation. While Scott’s rule may be a reasonable
starting point, it is known to fail for multi-modal data. In this case plugin methods,
e.g., Sheather-Jones, or cross-validation methods give better density estimates.
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Fig. 1.15 Effect of setting the bandwidth on a density plot to 0.1 (dotted), 0.5 (dashed), and 1.0
(solid line)

Figure 1.16 shows the resulting density estimate using the Sheather-Jones plugin
method.

from KDEpy.bw_selection import improved_sheather_jones
h = improved_sheather_jones(X.values.reshape(-1, 1))
ax = X.plot.density(color='grey')
X.plot.density(bw_method=h, color='black', ax=ax)
ax.set_xlabel('Log yarn strength')
ax.set_ylabel(f'Density (h={h:.2f})')
plt.show()

If data abruptly change, a single bandwidth may not be suitable to describe
the distribution across the full data range. Adaptive bandwidth density estimate
methods were developed to address cases like this. Implementations in Python can
be found online. It is also possible to extend kernel density estimates to two or more
dimensions.

1.6.2 Box and Whiskers Plots

The box and whiskers plot is a graphical presentation of the data, which provides an
efficient display of various features, like location, dispersion, and skewness. A box
is plotted, with its lower hinge at the first quartile Q1 = X(q1) and its upper hinge at
the third quartile Q3 = X(q3). Inside the box a line is drawn at the median, Me, and
a cross is marked at the sample mean, X̄n, to mark the statistics of central location.
The interquartile range, Q3 − Q1, which is the length of the box, is a measure of
dispersion. Two whiskers are extended from the box. The lower whisker is extended
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Fig. 1.16 Density estimate using Scott’s rule of thumb (gray) and the improved Sheather-Jones
plugin method (black) for bandwidth selection

toward the minimum X(1), but not lower than one and half of the interquartile range,
i.e.,

Lower whisker starts = max{X(1),Q1 − 1.5(Q3 − Q1)}. (1.11)

Similarly,

Upper whisker ends = min{X(n),Q3 + 1.5(Q3 − Q1)}. (1.12)

Data points beyond the lower or upper whiskers are considered outliers. The
commands below generate the box and whiskers plot shown in Fig. 1.17.

X = mistat.load_data('YARNSTRG')
ax = X.plot.box(color='black')
ax.set_ylabel('Log Yarn Strength')
plt.show()

Example 1.7 In Fig. 1.17 we present the box whiskers plot of the log yarn strength
data, of Table 1.3. For this data we find the following summarizing statistics:

X(1) = 1.1514

Q1 = 2.2844

Me = 2.8331, X̄100 = 2.9238

Q3 = 3.5426
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Fig. 1.17 Box whiskers plot of log yarn strength data

X(100) = 5.7978

Q3 − Q1 = 1.2581, S(100) = 0.9378.

In the box whiskers plot, the end point of the lower whisker is at
max{X(1), 0.3973} = X(1). The upper whisker ends at min{X(100), 5.4297} =
5.4297. Thus X(100) is an outlier. We conclude that the one measurement of yarn
strength, which seems to be exceedingly large, is an outlier (could have been an
error of measurement). �

1.6.3 Quantile Plots

The quantile plot is a plot of the sample quantiles xp against p, 0 < p < 1 where
xp = X(p(n+1)). In Fig. 1.18 we see the quantile plot of the log yarn strength. From
such a plot, one can obtain graphical estimates of the quantiles of the distribution.
For example, from Fig. 1.17 we immediately obtain the estimate 2.8 for the median,
2.28 for the first quartile, and 3.54 for the third quartile. These are close to the values
presented earlier. We see also in Fig. 1.18 that the maximal point of this dataset is
an outlier. Tracing a straight line, beginning at the median, we can also see that
from x.4 to x.9, 50% of the data points are almost uniformly distributed, while the
data between x.1 to x.4 tend to be larger (closer to the Me) than those of a uniform
distribution, while the largest 10% of the data values tend to be again larger (further
away from the Me) than those of a uniform distribution. This explains the slight
positive skewness of the data, as seen in Fig. 1.17. For further discussion of quantile
plots, see Sect. 3.6.
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Fig. 1.18 Quantile plot of
log yarn strength data

1.6.4 Stem-and-Leaf Diagrams

Table 1.6a is a stem-and-leaf display of the log yarn strength data.

Table 1.6a: Stem-and-Leaf Display
Stem-and-leaf of log yarn strength, N = 100, leaf unit = 0.10

5 1 11344

15 1 5556677788

34 2 0011112222233344444

(21) 2 555555555566677888999

45 3 000011112223344444

27 3 5556666677789

14 4 00013344

6 4 5668

2 5 0

1 5 7

In order to construct the stem-and-leaf diagram, the data is classified into class
intervals, like in the histogram. The classes are of equal length. The 100 values in
Table 1.3 start X(1) = 1.151 and at X(100) = 5.798. The stem-and-leaf diagram
presents only the first two digits to the left, without rounding. All values between
1.0 and 1.499 are represented in the first class as 1.1, 1.1, 1.3, 1.4, and 1.4. There are
five such values, and this frequency is written on the left-hand side. The second class
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Table 1.6b Stem-and-leaf of Elec_Out N = 99 leaf unit = 1.0

5 21 01111

10 21 22333

19 21 444445555

37 21 666666667777777777

(22) 21 8888888888889999999999

40 22 0000000001111111111

21 22 22233333

13 22 44455555

5 22 6777

1 22 8

consists of all values between 1.5 and 1.999. There are ten such values, namely, 1.5,
1.5, 1.5, 1.6, 1.6, 1.7, 1.7, 1.7, 1.8, and 1.8. In a similar manner all other classes
are represented. The frequency of the class to which the median, Me, belongs is
written on the left in round brackets. In this way one can immediately indicate where
the median is located. The frequencies below or above the class of the median are
cumulative. Since the cumulative frequency (from above) of the class right that of
the median is 45, we know that the median is located right after the fifth largest value
from the top of that class, namely, Me = 2.8, as we have seen before. Similarly, to
find Q1, we see that X(q1) is located at the third class from the top. It is the tenth
value in that class, from the left. Thus, we find Q1 = 2.2. Similarly we find that
X(q3) = 4.5. This information cannot be directly obtained from the histogram. Thus,
the stem-and-leaf diagram is an important additional tool for data analysis.

In Table 1.6b we present the stem-and-leaf diagram of the electric output data
(OELECT.csv).

1.6.5 Robust Statistics for Location and Dispersion

The sample mean X̄n and the sample standard deviation are both sensitive statistics
to extreme deviations. Let us illustrate this point. Suppose we make three observa-
tions on the shear weld strength of steel and obtain the values 2350, 2400, and 2500.
The sample mean is X̄3 = 2416.67. What happens if the technician by mistake
punches into the computer the value 25000, instead of 2500? The sample mean
would come out as 9916.67. If the result is checked on the spot, the mistake would
likely be discovered and corrected. However, if there is no immediate checking,
that absurd result would have remained and cause all kinds of difficulties later.
Also, the standard deviations would have recorded wrongly as 13063 rather than
the correct value of 76.376. This simple example shows how sensitive the mean and
the standard deviation are to extreme deviations (outliers) in the data.
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To avoid such complexities, a more robust statistic can be used, instead of the
sample mean, X̄n. This statistic is the α-trimmed mean. A proportion α of the data
is trimmed from the lower and the upper end of the ordered sample. The mean is
then computed on the remaining (1 − 2α) proportion of the data. Let us denote by
T̄α the α-trimmed mean. The formula of this statistic is

T̄α = 1

Nα

[n(1−α)]∑
j=[nα]+1

Xj , (1.13)

where [·] denotes the integer part of the number in brackets, e.g., [7.3] = 7, and
Nα = [n(1 − α)] − [nα]. For example, if n = 100 and α = 0.05, we compute the
mean of the 90 ordered values X(6), · · · , X(95).

Example 1.8 Let us now examine the robustness of the trimmed mean.
We import the data fileOELECT.csv using the method mistat.load_data.

The function trim_mean yields different results given specific values of the trim
parameter. We use this example to show how to set up a function in Python.

from scipy.stats import trim_mean

Oelect = mistat.load_data('OELECT')

def mySummary(x, trim=0):
""" Returns summary information for list x

The optional argument trim can be used to calculate a trimmed mean
"""
x = pd.Series(x) # convert to pandas series

quantiles = list(x.quantile(q=[0, 0.25, 0.5, 0.75, 1.0]))
trimmed_mean = trim_mean(x, trim)

# return the summary information as pandas Series
return pd.Series({

'Min': quantiles[0],
'Q1': quantiles[1],
'Median': quantiles[2],
'Mean': trimmed_mean,
'Q3': quantiles[3],
'Max': quantiles[4],
'SD': x.std(),
'IQR': quantiles[3] - quantiles[1],

})

Note that we define the function mySummary with an optional argument trim
that has a default value of 0. While it is not enforced, it is good practice to use the
name of the argument in the function call.

print(pd.DataFrame({
'untrimmed': mySummary(Oelect),
'trimmed': mySummary(Oelect, trim=0.05),

}))

untrimmed trimmed
Min 210.896000 210.896000
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Q1 216.846000 216.846000
Median 219.096000 219.096000
Mean 219.248020 219.218198
Q3 221.686000 221.686000
Max 228.986000 228.986000
SD 4.003992 4.003992
IQR 4.840000 4.840000

We see that X̄99 = 219.25 and T̄.05 = 219.22. Let us make a sorted copy of
the series using the function sort_values() and replace the largest values from
228.986 to be V (99) = 2289.86 (an error in punching the data) and look at results
when we apply the same commands

# sort and reset the index
OutVolt = Oelect.sort_values(ignore_index=True)
# in Python index starts at 0, so the 99-th value is at position 98
OutVolt[98] = 2289.86
print(pd.DataFrame({

'untrimmed': mySummary(OutVolt),
'trimmed': mySummary(OutVolt, trim=0.05),

}))

untrimmed trimmed
Min 210.896000 210.896000
Q1 216.846000 216.846000
Median 219.096000 219.096000
Mean 240.064929 219.218198
Q3 221.686000 221.686000
Max 2289.860000 2289.860000
SD 208.150486 208.150486
IQR 4.840000 4.840000

We see by comparing the two outputs that X̄99 changed from 219.25 to 240.1,
S99 (STDEV) changed dramatically from 4.00 to 208.2.

On the other hand, Me, T̄α , Q1, and Q3 did not change at all. These statistics are
called robust (non-sensitive) against extreme deviations (outliers). �

We have seen that the standard deviation S is very sensitive to deviations in the
extremes. A robust statistic for dispersion is

σ̃ = Q3 − Q1

1.3490
. (1.14)

The denominator 1.3490 is the distance between Q3 and Q1 in the theoretical
normal distribution (see Chap. 2). Indeed, Q3 and Q1 are robust against outliers.
Hence, σ̃ , which is about 3/4 of the IQR, is often a good statistic to replace S.

Another statistic is the α-trimmed standard deviation

Sα =
⎛
⎝ 1

Nα − 1

[n(1−α)]∑
j=[nα]+1

(Xj − T̄α)2

⎞
⎠

1/2

. (1.15)

For the OELECT data, Sα equals 3.5897. The command below calculates a robust
statistic for dispersion σ̃ from the OELECT data.
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from scipy.stats import iqr

def trim_std(data, alpha):
data = np.array(data)
data.sort()
n = len(data)
low = int(n * alpha) + 1
high = int(n * (1 - alpha))
return data[low:(high + 1)].std()

print('S_alpha', trim_std(OutVolt, 0.025))
print('sigma:', iqr(OutVolt) / 1.349)

S_alpha 3.5896765570264395
sigma: 3.587842846552984

We see these two robust statistics, σ̃ and Sα , yield close results. The sample
standard deviation of OELECT is S = 4.00399.

1.7 Chapter Highlights

The main concepts and definitions introduced in this chapter include:

• Random variable
• Fixed and random components
• Accuracy and precision
• The population and the sample
• Random sampling with replacement (RSWR)
• Random sampling without replacement (RSWOR)
• Frequency distributions
• Discrete and continuous random variables
• Quantiles
• Sample mean and sample variance
• Skewness
• Kurtosis
• Prediction intervals
• Box and whiskers plots
• Quantile plots
• Stem-and-leaf diagrams
• Robust statistics

1.8 Exercises

Exercise 1.1 In the present problem, we are required to generate at random 50
integers from the set {1, 2, 3, 4, 5, 6}. To do this we can use the random.choices
method from the random package.
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Use this method of simulation and count the number of times the different
integers have been repeated. This counting can be done by using the Counter class
from the collections package.

How many times you expect each integer to appear if the process generates the
numbers at random?

Exercise 1.2 Construct a sequence of 50 numbers having a linear trend for
deterministic components with random deviations around it. This can be done by
using these Python commands. We use Python’s list comprehension to modify the
elements of the list

random.seed(1)
x = list(range(50))
y = [5 + 2.5 * xi for xi in x]
y = [yi + random.uniform(-10, 10) for yi in y]

By plotting y versus x, one sees the random variability around the linear trend.

Exercise 1.3 Generate a sequence of 50 random binary numbers (0, 1), when the
likelihood of 1 is p using the command binom.rvs(1, p, size=50).

Do this for the values p = 0.1, 0.3, 0.7, 0.9. Count the number of 1s in these
random sequences, by summing up the result sequence.

Exercise 1.4 The following are two sets of measurements of the weight of an
object, which correspond to two different weighing instruments. The object has a
true weight of 10 kg.
Instrument 1:

9.490950 10.436813 9.681357 10.996083 10.226101 10.253741

10.458926 9.247097 8.287045 10.145414 11.373981 10.144389

11.265351 7.956107 10.166610 10.800805 9.372905 10.199018

9.742579 10.428091

Instrument 2:

11.771486 10.697693 10.687212 11.097567 11.676099 10.583907

10.505690 9.958557 10.938350 11.718334 11.308556 10.957640

11.250546 10.195894 11.804038 11.825099 10.677206 10.249831

10.729174 11.027622

Which instrument seems to be more accurate? Which instrument seems to be
more precise?
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Exercise 1.5 The quality control department of a candy factory uses a scale to
verify compliance of the weight of packages. What could be the consequences of
problems with the scale accuracy, precision, and stability?

Exercise 1.6 Draw a random sample with replacement (RSWR) of size n = 20
from the set of integers {1, 2, · · · , 100}.

Exercise 1.7 Draw a random sample without replacement (RSWOR) of size n =
10 from the set of integers {11, 12, · · · , 30}.

Exercise 1.8

(i) How many words of five letters can be composed (N = 26, n = 5)?
(ii) How many words of five letters can be composed, if all letters are different?
(iii) How many words of five letters can be written if the first and the last letters are

x?
(iv) An electronic signal is a binary sequence of ten 0s or 1s. How many different

signals are available?
(v) How many electronic signals in a binary sequence of size 10 are there in which

the number 1 appears exactly five times?

Exercise 1.9 For each of the following variable, state whether it is discrete or
continuous:

(i) The number of “heads” among the results of ten flippings of a coin;
(ii) The number of blemishes on a ceramic plate;
(iii) The thickness of ceramic plates;
(iv) The weight of an object.

Exercise 1.10 Data file FILMSP.csv contains data gathered from 217 rolls of film.
The data consists of the film speed as measured in a special lab. Prepare a histogram
of the data.

Exercise 1.11 Data file COAL.csv contains data on the number of yearly disasters
in coal mines in England. Prepare a table of frequency distributions of the number
of coal mine disasters.

Exercise 1.12 Data fileCAR.csv contains information on 109 different car models.
For each car there are values of five variables:

1. Number of cylinders (4, 6, 8)
2. Origin (1, 2, 3)
3. Turn diameter [m]
4. Horsepower [HP]
5. Number of miles/gallon in city driving [mpg].

Prepare frequency distributions of variables 1, 2, 3, 4, 5.
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Exercise 1.13 Compute the following five quantities for the data in file
FILMSP.csv:

(i) Sample minimum, X(1);
(ii) Sample first quartile, Q1;
(iii) Sample median, Me;
(iv) Sample third quartile, Q3;
(v) Sample maximum, X(217).
(vi) The .8-quantile.
(vii) The .9-quantile.
(viii) The .99-quantile.

Show how you get these statistics by using the formulae. The order statistics of the
sample can be obtained by first ordering the values of the sample.

Exercise 1.14 Compute with Python the indices of skewness and kurtosis of the
FILMSP.csv, using the given formulas.

Interpret the skewness and kurtosis of this sample in terms of the shape of the
distribution of film speed.

Exercise 1.15 Compare the means and standard deviations of the number of miles
per gallon/city of cars by origin (1 = USA; 2 = Europe; 3 = Asia) according to the
data of file CAR.csv.

Exercise 1.16 Compute the coefficient of variation of the turn diameter of US-
made cars (Origin = 1) in file CAR.csv.

Exercise 1.17 Compare the mean X̄ and the geometric meanG of the turn diameter
of US- and Japanese-made cars in CAR.csv.

Exercise 1.18 Compare the prediction proportions to the actual frequencies of the
intervals

X̄ ± kS, k = 1, 2, 3

for the film speed data, given in FILMSP.csv file.

Exercise 1.19 Present side by side the box plots of miles per gallon/city for cars by
origin. Use data file CAR.csv.

Exercise 1.20 Prepare a stem-leaf diagram of the piston cycle time in file
OTURB.csv. Compute the five summary statistics (X(1),Q1,Me,Q3, X(n)) from
the stem-leaf.

Exercise 1.21 Compute the trimmed mean T̄.10 and trimmed standard deviation,
S.10, of the piston cycle time of file OTURB.csv.
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Exercise 1.22 The following data is the time (in sec.) to get from 0 to 60 mph for a
sample of 15 German- and 20 Japanese-made cars

German-made cars Japanese-made cars

10.0 10.9 4.8 9.4 9.5 7.1 8.0

6.4 7.9 8.9 8.9 7.7 10.5 6.5

8.5 6.9 7.1 6.7 9.3 5.7 12.5

5.5 6.4 8.7 7.2 9.1 8.3 8.2

5.1 6.0 7.5 8.5 6.8 9.5 9.7

Compare and contrast the acceleration times of German- and Japanese-made cars,
in terms of their five summary statistics.

Exercise 1.23 Summarize variables Res 3 and Res 7 in dataset HADPAS.csv by
computing sample statistics, histograms, and stem-and-leaf diagrams.

Exercise 1.24 Are there outliers in the Res 3 data of HADPAS.csv? Show your
calculations.



Chapter 2
Probability Models and Distribution
Functions

Preview The chapter provides the basics of probability theory and theory of distri-
bution functions. The probability model for random sampling is discussed. This is
fundamental for statistical inference discussed in Chap. 3 and sampling procedures
in Chap. 5. Bayes’ theorem also presented here has important ramifications in
statistical inference, including Bayesian decision making presented in Chap. 3.
The Industrial Statistics book treats, in Chap. 3, Bayesian tracking and detection
methods, and has a chapter on Bayesian reliability analysis (Chap. 10).

2.1 Basic Probability

2.1.1 Events and Sample Spaces: Formal Presentation of
Random Measurements

Experiments or trials of interest are those which may yield different results with
outcomes that are not known ahead of time with certainty. We have seen in the
previous chapter a number of examples in which outcomes of measurements vary. It
is of interest to find, before conducting a particular experiment, what are the chances
of obtaining results in a certain range. In order to provide a quantitative answer to
such a question, we have to formalize the framework of the discussion so that no
ambiguity is left.

When we say a “trial” or “experiment,” in the general sense, we mean a well-
defined process of measuring certain characteristic(s), or variable(s). For example,
if the experiment is to measure the compressive strength of concrete cubes, we must
specify exactly how the concrete mixture was prepared, i.e., proportions of cement,
sand, aggregates, and water in the batch, length of mixing time, dimensions of
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mold, number of days during which the concrete has hardened, the temperature
and humidity during preparation and storage of the concrete cubes, etc. All these
factors influence the resulting compressive strength. Well-documented protocol of
an experiment enables us to replicate it as many times as needed. In a well-controlled
experiment, we can assume that the variability in the measured variables is due to
randomness. We can think of the random experimental results as sample values
from a hypothetical population. The set of all possible sample values is called the
sample space. In other words, the sample space is the set of all possible outcomes
of a specified experiment. The outcomes do not have to be numerical. They could be
names, categorical values, functions, or collection of items. The individual outcome
of an experiment will be called an elementary event or a sample point (element).
We provide a few examples.

Example 2.1 The experiment consists of choosing ten names (without replacement)
from a list of 400 undergraduate students at a given university. The outcome of such
an experiment is a list of ten names. The sample space is the collection of all possible
such sublists that can be drawn from the original list of 400 students. �

Example 2.2 The experiment is to produce 20 concrete cubes, under identical
manufacturing conditions, and count the number of cubes with compressive strength
above 200 [kg/cm2]. The sample space is the set S = {0, 1, 2, · · · , 20}. The
elementary events, or sample points, are the elements of S. �

Example 2.3 The experiment is to choose a steel bar from a specific production
process and measure its weight. The sample space S is the interval (ω0, ω1) of
possible weights. The weight of a particular bar is a sample point. �

Thus, sample spaces could be finite sets of sample points, or countable or
noncountable infinite sets.

Any subset of the sample space, S, is called an event. S itself is called the sure
event. The empty set, ∅, is called the null event. We will denote events by the letters
A,B,C, · · · or E1, E2, · · · . All events under consideration are subsets of the same
sample space S. Thus, events are sets of sample points.

For any event A ⊆ S, we denote by Ac the complementary event, i.e., the set of
all points of S which are not in A.

An event A is said to imply an event B, if all elements of A are elements of B.
We denote this inclusion relationship by A ⊂ B. If A ⊂ B and B ⊂ A, then the
two events are equivalent, A ≡ B.

Example 2.4 The experiment is to select a sequence of five letters for transmission
of a code in a money transfer operation. Let A1, A2, . . . , A5 denote the first,
second,..., fifth letter chosen. The sample space is the set of all possible sequences
of five letters. Formally,

S = {(A1A2A3A4A5) : Ai ∈ {a, b, c, · · · , z}, i = 1, · · · , 5}
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This is a finite sample space containing 265 possible sequences of five letters. Any
such sequence is a sample point.

Let E be the event that all the five letters in the sequence are the same. Thus

E = {aaaaa, bbbbb, · · · , zzzzz}.

This event contains 26 sample points. The complement of E, Ec is the event that at
least one letter in the sequence is different from the other ones. �

2.1.2 Basic Rules of Operations with Events: Unions and
Intersections

Given events A,B, · · · of a sample space S, we can generate new events, by the
operations of union, intersection, and complementation.

The union of two events A and B, denoted A ∪ B, is an event having elements
which belong either to A or to B.

The intersection of two events, A∩B, is an event whose elements belong both to
A and to B. By pairwise union or intersection, we immediately extend the definition
to finite number of events A1, A2, · · · , An, i.e.,

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

and

n⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An.

The finite union
⋃n

i=1 Ai is an event whose elements belong to at least one of the n

events. The finite intersection
⋂n

i=1 Ai is an event whose elements belong to all the
n events.

Any two events,A and B, are said to be mutually exclusive or disjoint ifA∩B =
∅, i.e., they do not contain common elements. Obviously, by definition, any event is
disjoint of its complement, i.e.,A∩Ac = ∅. The operations of union and intersection
are:

1. Commutative:

A ∪ B = B ∪ A,

A ∩ B = B ∩ A;
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2. Associative:

(A ∪ B) ∪ C = A ∪ (B ∪ C)

= A ∪ B ∪ C

(A ∩ B) ∩ C = A ∩ (B ∩ C)

= A ∩ B ∩ C

(2.1)

3. Distributive:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
(2.2)

The intersection of events is sometimes denoted as a product, i.e.,

A1 ∩ A2 ∩ · · · ∩ An ≡ A1A2A3 · · ·An.

The following law, called DeMorgan’s law, is fundamental to the algebra of events
and yields the complement of the union, or intersection, of two events, namely:

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc
(2.3)

Finally, we define the notion of partition. A collection of n events E1, · · · , En

is called a partition of the sample space S, if

(i)
n⋃

i=1

Ei = S

(ii) Ei ∩ Ej = ∅ for all i �= j (i, j = 1, · · · , n)

That is, the events in any partition are mutually disjoint, and their union exhaust all
the sample space.

Example 2.5 The experiment is to generate on the computer a random number, U ,
in the interval (0, 1). A random number in (0, 1) can be obtained as

U =
∞∑

j=1

Ij2
−j ,
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where Ij is the random result of tossing a coin, i.e.,

Ij =
{
1, if Head

0, if Tail.

For generating random numbers from a set of integers, the summation index j is
bounded by a finite number N . This method is, however, not practical for generating
random numbers on a continuous interval. Computer programs generate “pseudo-
random” numbers. Methods for generating random numbers are described in various
books on simulation (see Bratley et al. 1983). The most cosmmonly applied is the
linear congruential generator. This method is based on the recursive equation

Ui = (aUi−1 + c) mod m, i = 1, 2, · · · .

The parameters a, c, and m depend on the computer’s architecture. In many
programs, a = 65539, c = 0, and m = 231 − 1. The first integer X0 is called
the “seed.” Different choices of the parameters a, c, and m yield “pseudo-random”
sequences with different statistical properties.

The sample space of this experiment is

S = {u : 0 ≤ u ≤ 1}

Let E1 and E2 be the events

E1 = {u : 0 ≤ u ≤ 0.5},
E2 = {u : 0.35 ≤ u ≤ 1}.

The union of these two events is

E3 = E1 ∪ E2 = {u : 0 ≤ u ≤ 1} = S.

The intersection of these events is

E4 = E1 ∩ E2 = {u : 0.35 ≤ u < 0.5}.

Thus, E1 and E2 are not disjoint.
The complementary events are

Ec
1 = {u : 0.5 ≤ u < 1} and Ec

2 = {u : u < 0.35}

Ec
1 ∩ Ec

2 = ∅, i.e., the complementary events are disjoint. By De Morgan’s law

(E1 ∩ E2)
c = Ec

1 ∪ Ec
2

= {u : u < 0.35 or u ≥ 0.5}.
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However,

∅ = Sc = (E1 ∪ E2)
c = Ec

1 ∩ Ec
2.

Finally, the following is a partition of S:

B1 = {u : u < 0.1}, B2 = {u : 0.1 ≤ u < 0.2},
B3 = {u : 0.2 ≤ u < 0.5}, B4 = {u : 0.5 ≤ u < 1}.

Notice that B4 = Ec
1 �

Different identities can be derived by the above rules of operations on events; a
few will be given as exercises.

2.1.3 Probabilities of Events

A probability function Pr{·} assigns to events of S real numbers, following the
following basic axioms:

1. Pr{E} ≥ 0
2. Pr{S} = 1.
3. If E1, · · · , En (n ≥ 1) are mutually disjoint events, then

Pr

{
n⋃

i=1

Ei

}
=

n∑
i=1

Pr{Ei}.

From these three basic axioms, we deduce the following results.

Result 1. If A ⊂ B then

Pr{A} ≤ Pr{B}.

Indeed, since A ⊂ B, B = A ∪ (Ac ∩ B). Moreover, A ∩ Ac ∩ B = ∅. Hence,
by axioms 1 and 3, Pr{B} = Pr{A} + Pr{Ac ∩ B} ≥ Pr{A}.
Thus, if E is any event, since E ⊂ S, 0 ≤ Pr{E} ≤ 1.

Result 2. For any event E, Pr{Ec} = 1 − Pr{E}.
Indeed S = E ∪ Ec. Since E ∩ Ec = ∅,

1 = Pr{S} = Pr{E} + Pr{Ec}. (2.4)

This implies the result.
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Result 3. For any events A, B

Pr{A ∪ B} = Pr{A} + Pr{B} − Pr{A ∩ B}. (2.5)

Indeed, we can write

A ∪ B = A ∪ Ac ∩ B,

where A ∩ (Ac ∩ B) = ∅. Thus, by the third axiom,

Pr{A ∪ B} = Pr{A} + Pr{Ac ∩ B}.

Moreover, B = Ac ∩ B ∪ A ∩ B, where again Ac ∩ B and A ∩ B are disjoint.
Thus, Pr{B} = Pr{Ac ∩ B} + Pr{A ∩ B}, or Pr{Ac ∩ B} = Pr{B} − Pr{A ∩ B}.
Substituting this above we obtain the result.

Result 4. If B1, · · · , Bn (n ≥ 1) is a partition of S, then for any event E,

Pr{E} =
n∑

i=1

Pr{E ∩ Bi}.

Indeed, by the distributive law,

E = E ∩ S = E ∩
(

n⋃
i=1

Bi

)

=
n⋃

i=1

EBi.

Finally, since B1, · · · , Bn are mutually disjoint, (EBi)∩(EBj ) = E∩Bi ∩Bj =
∅ for all i �= j . Therefore, by the third axiom

Pr{E} = Pr

{
n⋃

i=1

EBi

}
=

n∑
i=1

Pr{EBi} (2.6)

Example 2.6 Fuses are used to protect electronic devices from unexpected power
surges. Modern fuses are produced on glass plates through processes of metal
deposition and photographic lythography. On each plate several hundred fuses are
simultaneously produced. At the end of the process, the plates undergo precise
cutting with special saws. A certain fuse is handled on one of three alternative
cutting machines. Machine M1 yields 200 fuses per hour, machine M2 yields 250
fuses per hour, and machine M3 yields 350 fuses per hour. The fuses are then mixed
together. The proportions of defective parts that are typically produced on these
machines are 0.01, 0.02, and 0.005, respectively. A fuse is chosen at random from
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the production of a given hour. What is the probability that it is compliant with the
amperage requirements (nondefective)?

Let Ei be the event that the chosen fuse is from machine Mi (i = 1, 2, 3). Since
the choice of the fuse is random, each fuse has the same probability 1

800 to be chosen.
Hence, Pr{E1} = 1

4 , Pr{E2} = 5
16 and Pr{E3} = 7

16 .
Let G denote the event that the selected fuse is non-defective. For example, for

machine M1, Pr{G} = 1−0.01 = 0.99. We can assign Pr{G∩M1} = 0.99×0.25 =
0.2475, Pr{G∩M2} = 0.98× 5

16 = 0.3062 and Pr{G∩M3} = 0.995× 7
16 = 0.4353.

Hence, the probability of selecting a non-defective fuse is, according to Result 4,

Pr{G} = Pr{G ∩ M1} + Pr{G ∩ M2} + Pr{G ∩ M3} = 0.989.

�

Example 2.7 Consider the problem of generating random numbers, discussed in
Example 2.5. Suppose that the probability function assigns any interval I (a, b) =
{u : a < u < b}, 0 ≤ a < b ≤ 1, the probability

Pr{I (a, b)} = b − a.

Let E3 = I (0.1, 0.4) and E4 = I (0.2, 0.5). C = E3 ∪ E4 = I (0.1, 0.5). Hence,

Pr{C} = 0.5 − 0.1 = 0.4.

On the other hand, Pr{E3 ∩ E4} = 0.4 − 0.2 = 0.2.

Pr{E3 ∪ E4} = Pr{E3} + Pr{E4} − Pr{E3 ∩ E4}
= (0.4 − 0.1) + (0.5 − 0.2) − 0.2 = 0.4.

This illustrates Result 3. �

2.1.4 Probability Functions for Random Sampling

Consider a finite population P , and suppose that the random experiment is to select
a random sample from P , with or without replacement. More specifically let LN =
{w1, w2, · · · , wN } be a list of the elements of P , where N is its size. wj (j =
1, · · · , N) is an identification number of the j -th element.

Suppose that a sample of size n is drawn from LN [respectively, P ] with
replacement. Let W1 denote the first element selected from LN . If j1 is the index
of this element, then W1 = wj1 . Similarly, let Wi (i = 1, . . . , n) denote the i-th
element of the sample. The corresponding sample space is the collection
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S = {(W1, · · · ,Wn) : Wi ∈ LN, i = 1, 2, · · · , n}

of all samples, with replacement from LN . The total number of possible samples is
Nn. Indeed, wj1 could be any one of the elements of LN and so are wj2, · · · , wjn .
With each one of the N possible choices of wj1 , we should combine the N possible
choices of wj2 and so on. Thus, there are Nn possible ways of selecting a sample
of size n, with replacement. The sample points are the elements of S (possible
samples). The sample is called random with replacement (RSWR) if each one
of these Nn possible samples is assigned the same probability, 1/Nn, for being
selected.

Let M(i) (i = 1, · · · , N) be the number of samples in S, which contain the i-th
element of LN (at least once). Since sampling is with replacement

M(i) = Nn − (N − 1)n.

Indeed, (N − 1)n is the number of samples with replacement, which do not include
wi . Since all samples are equally probable, the probability that a RSWR Sn includes
wi (i = 1, · · · , N) is

Pr{wi ∈ Sn} = Nn − (N − 1)n

Nn

= 1 −
(
1 − 1

N

)n

.

If n > 1, then the above probability is larger than 1/N which is the probability
of selecting the element Wi in any given trial but smaller than n/N . Notice also
that this probability does not depend on i, i.e., all elements of LN have the same
probability to be included in a RSWR. It can be shown that the probability that wi

is included in the sample exactly once is
n

N

(
1 − 1

N

)n−1

.

If sampling is without replacement, the number of sample points in S is N(N −
1) · · · (N − n + 1)/n!, since the order of selection is immaterial. The number of
sample points which includewi isM(i) = (N−1)(N−2) · · · (N−n+1)/(n−1)!. A
sample Sn is called randomwithout replacement (RSWOR) if all possible samples
are equally probable. Thus, under RSWOR,

Pr{wi ∈ Sn} = n!M(i)

N(N − 1) · · · (N − n + 1)
= n

N
,

for all i = 1, · · · , N .
We consider now events, which depend on the attributes of the elements of

a population. Suppose that we sample to obtain information on the number of
defective (nonstandard) elements in a population. The attribute in this case is “the
element complies to the requirements of the standard.” Suppose that M out of N
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elements in LN is non-defective (have the attribute). Let Ej be the event that j

out of the n elements in the sample is non-defective. Notice that E0, · · · , En is a
partition of the sample space. What is the probability, under RSWR, of Ej ? Let
Kn

j denote the number of sample points in which j out of n are G elements (non-
defective) and (n− j) elements are D (defective). To determine Kn

j we can proceed
as follows.

Choose first j G’s and (n − j) D’s from the population. This can be done in
Mj(N − M)n−j different ways. We have now to assign the j G’s into j out of n

components of the vector (w1, · · · , wn). This can be done in n(n − 1) · · · (n − j +
1)/j ! possible ways. This is known as the number of combinations of j out of n,
i.e., (

n

j

)
= n!

j !(n − j)! , j = 0, 1, · · · , n (2.7)

where k! = 1 ·2 · · · · ·k is the product of the first k positive integers, 0! = 1. Hence,
Kn

j = (
n
j

)
Mj(N − M)n−j . Since every sample is equally probable, under RSWR,

Pr{Ej :n} = Kn
j /Nn =

(
n

j

)
P j (1 − P)n−j , j = 0, · · · , n (2.8)

where P = M/N . If sampling is without replacement, then

Kn
j =

(
M

j

)(
N − M

n − j

)

and

Pr{Ej } =
(
M
j

)(
N−M
n−j

)
(
N
n

) . (2.9)

These results are valid since the order of selection is immaterial for the event Ej .
These probabilities of Ej under RSWR and RSWOR are called, respectively, the

binomial and hypergeometric probabilities.

Example 2.8 The experiment consists of randomly transmitting a sequence of
binary signals, 0 or 1. What is the probability that three out of six signals are 1s?
Let E3 denote this event.

The sample space of six signals consists of 26 points. Each point is equally
probable. The probability of E3 is

Pr{E3} =
(
6

3

)
1

26
= 6 · 5 · 4

1 · 2 · 3 · 64
= 20

64
= 5

16
= 0.3125.

�
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Example 2.9 Two out of ten television sets are defective. A RSWOR of n = 2 sets
is chosen. What is the probability that the two sets in the sample are good (non-
defective)? This is the hypergeometric probability of E0 when M = 2, N = 10,
n = 2, i.e.,

Pr{E0} =
(8
2

)
(10
2

) = 8 · 7
10 · 9 = 0.622.

�

2.1.5 Conditional Probabilities and Independence of Events

In this section, we discuss the notion of conditional probabilities. When different
events are related, the realization of one event may provide us relevant information
to improve our probability assessment of the other event(s). In Sect. 2.1.3 we gave
an example with three machines which manufacture the same part but with different
production rates and different proportions of defective parts in the output of those
machines. The random experiment was to choose at random a part from the mixed
yield of the three machines.

We saw earlier that the probability that the chosen part is non-defective is 0.989.
If we can identify, before the quality test, from which machine the part came, the
probabilities of non-defective would be conditional on this information.

The probability of choosing at random a non-defective part from machine M1
is 0.99. If we are given the information that the machine is M2, the probability is
0.98 and given machine M3 the probability is 0.995. These probabilities are called
conditional probabilities. The information given changes our probabilities.

We define now formally the concept of conditional probability.
Let A and B be two events such that Pr{B} > 0. The conditional probability

of A, given B, is

Pr{A | B} = Pr{A ∩ B}
Pr{B} . (2.10)

Example 2.10 The random experiment is to measure the length of a steel bar.
The sample space is S = (19.5, 20.5) [cm]. The probability function assigns

any subinterval a probability equal to its length. Let A = (19.5, 20.1) and B =
(19.8, 20.5). Pr{B} = 0.7. Suppose that we are told that the length belongs to
the interval B, and we have to guess whether it belongs to A. We compute the
conditional probability

Pr{A | B} = Pr{A ∩ B}
Pr{B} = 0.3

0.7
= 0.4286.
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On the other hand, if the information that the length belongs to B is not given, then
Pr{A} = 0.6. Thus, there is a difference between the conditional and nonconditional
probabilities. This indicates that the two events A and B are dependent. �

Definition Two events A, B are called independent if

Pr{A | B} = Pr{A}.

If A and B are independent events, then

Pr{A} = Pr{A | B} = Pr{A ∩ B}
Pr{B}

or, equivalently,

Pr{A ∩ B} = Pr{A}Pr{B}.

If there are more than two events, A1, A2, · · · , An, we say that the events are
pairwise independent if

Pr{Ai ∩ Aj } = Pr{Ai}Pr{Aj } for all i �= j, i, j = 1, · · · , n.

The n events are said to be mutually independent if, for any subset of k events,
k = 2, . . . , n, indexed by Ai1 , . . . , Aik ,

Pr{Ai1 ∩ Ai2 · · · ∩ Aik } = Pr{Ai1} · · · Pr{Ain}.

In particular, if n events are mutually independent, then

Pr

{
n⋂

i=1

Ai

}
=

n∏
i=1

Pr{Ai}. (2.11)

One can show examples of events which are pairwise independent but not mutually
independent.

We can further show (see exercises) that if two events are independent then the
corresponding complementary events are independent. Furthermore, if n events are
mutually independent, then any pair of events is pairwise independent, every three
events are triplewise independent, etc.

Example 2.11 Five identical parts are manufactured in a given production process.
Let E1, · · · , E5 be the events that these five parts comply with the quality specifica-
tions (non-defective). Under the model of mutual independence, the probability that
all the five parts are indeed non-defective is
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Pr{E1 ∩ E2 ∩ · · · ∩ E5} = Pr{E1}Pr{E2} · · · Pr{E5}.

Since these parts come from the same production process, we can assume that
Pr{Ei} = p, all i = 1, · · · , 5. Thus, the probability that all the five parts are non-
defective is p5.

What is the probability that one part is defective and all the other four are non-
defective? Let A1 be the event that one out of five parts is defective. In order to
simplify the notation, we write the intersection of events as their product. Thus,

A1 = Ec
1E2E3E4E5 ∪ E1E

c
2E3E4E5 ∪ E1E2E

c
3E4E5 ∪

E1E2E3E
c
4E5 ∪ E1E2E3E4E

c
5.

A1 is the union of five disjoint events. Therefore,

Pr{A1} = Pr{Ec
1E2 · · ·E5} + · · · + Pr{E1E2 · · · Ec

5}
= 5p4(1 − p).

Indeed, since E1, · · · , E5 aremutually independent events ,

Pr{Ec
1E2 · · ·E5} = Pr{Ec

1}Pr{E2} · · · Pr{E5} = (1 − p)p4.

Also,

Pr{E1E
c
2E3E4E5} = (1 − p)p4,

etc. Generally, if J5 denotes the number of defective parts among the five ones,

Pr{J5 = i} =
(
5

i

)
p(5−i)(1 − p)i, i = 0, 1, 2, · · · , 5.

�

2.1.6 Bayes’ Theorem and Its Application

Bayes’ theorem, which is derived in the present section, provides us with a
fundamental formula for weighing the evidence in the data concerning unknown
parameters, or some unobservable events.

Suppose that the results of a random experiment depend on some event(s)
which is (are) not directly observable. The observable event is related to the
unobservable one(s) via the conditional probabilities. More specifically, suppose
that {B1, · · · , Bm} (m ≥ 2) is a partition of the sample space. The events
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B1, · · · , Bm are not directly observable, or verifiable. The random experiment
results in an event A (or its complement). The conditional probabilities Pr{A | Bi},
i = 1, · · · ,m are known. The question is whether, after observing the event A, we
can assign probabilities to the events B1, · · · , Bm. In order to weigh the evidence
thatA has onB1, · · · , Bm, we first assume some probabilities Pr{Bi}, i = 1, · · · ,m,
which are called prior probabilities. The prior probabilities express our degree
of belief in the occurrence of the events Bi (i = 1, · · · ,m). After observing the
event A, we convert the prior probabilities of Bi (i = 1, · · · ,m) to posterior
probabilities Pr{Bi | A}, i = 1, · · · ,m by using Bayes’ theorem

Pr{Bi | A} = Pr{Bi}Pr{A | Bi}∑m
j=1 Pr{Bj }Pr{A | Bj } , i = 1, · · · ,m. (2.12)

These posterior probabilities reflect the weight of evidence that the event A has
concerning B1, · · · , Bm.

Bayes’ theorem can be obtained from the basic rules of probability. Indeed,
assuming that Pr{A} > 0,

Pr{Bi | A} = Pr{A ∩ Bi}
Pr{A}

= Pr{Bi}Pr{A | Bi}
Pr{A} .

Furthermore, since {B1, · · · , Bm} is a partition of the sample space,

Pr{A} =
m∑

j=1

Pr{Bj }Pr{A | Bj }.

Substituting this expression above, we obtain Bayes’ theorem.
The following example illustrates the applicability of Bayes’ theorem to a

problem of decision-making.

Example 2.12 Two vendors B1, B2 produce ceramic plates for a given production
process of hybrid micro-circuits. The parts of vendor B1 have probability p1 = 0.10
of being defective. The parts of vendor B2 have probability p2 = 0.05 of being
defective. A delivery of n = 20 parts arrive, but the label which identifies the vendor
is missing. We wish to apply Bayes’ theorem to assign a probability that the package
came from vendor B1.

Suppose that it is a priori, equally likely that the package was mailed by vendor
B1 or vendor B2. Thus, the prior probabilities are Pr{B1} = Pr{B2} = 0.5. We
inspect the 20 parts in the package and find J20 = 3 defective items. A is the event
{J20 = 3}. The conditional probabilities of A, given Bi (i = 1, 2), are
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Pr{A | B1} =
(
20

3

)
p3
1(1 − p1)

17

= 0.1901.

Similarly

Pr{A | B2} =
(
20

3

)
p3
2(1 − p2)

17

= 0.0596.

According to Bayes’ theorem,

Pr{B1 | A} = 0.5 × 0.1901

0.5 × 0.1901 + 0.5 × 0.0596
= 0.7613

Pr{B2 | A} = 1 − Pr{B1 | A} = 0.2387.

Thus, after observing three defective parts in a sample of n = 20 ones, we believe
that the delivery came from vendor B1. The posterior probability of B1, given A, is
more than three times higher than that of B2 given A. The a priori odds of B1 against
B2 were 1:1. The a posteriori odds are 19:6. �

In the context of a graph representing directed links between variables, a
directed acyclic graph (DAG) represents a qualitative causality model. The model
parameters are derived by applying the Markov property, where the conditional
probability distribution at each node depends only on its parents. For discrete
random variables, this conditional probability is often represented by a table, listing
the local probability that a child node takes on each of the feasible values—for
each combination of values of its parents. The joint distribution of a collection
of variables can be determined uniquely by these local conditional probability
tables. A Bayesian network (BN) is represented by a DAG. A BN reflects a simple
conditional independence statement, namely, that each variable is independent
of its non-descendants in the graph given the state of its parents. This property is
used to reduce, sometimes significantly, the number of parameters that are required
to characterize the joint probability distribution of the variables. This reduction
provides an efficient way to compute the posterior probabilities given the evidence
present in the data. Moreover, conditioning on target variables, at the end of
the DAG, and applying Bayes’ theorem, provides us a diagnostic representation
of the variable profiles leading to the conditioned value. Overall, BNs provide
both predictive and diagnostic capabilities in analyzing multivariate datasets (see
Sect. 8.3 for more details on Bayesian networks).
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2.2 Random Variables and Their Distributions

Random variables are formally defined as real-valued functions, X(w), over the
sample space, S, such that events {w : X(w) ≤ x} can be assigned probabilities,
for all −∞ < x < ∞, where w are the elements of S.

Example 2.13 Suppose that S is the sample space of all RSWOR of size n, from a
finite population, P , of size N . 1 ≤ n < N . The elements w of S are subsets of
distinct elements of the population P . A random variable X(w) is some function
which assigns w a finite real number, e.g., the number of “defective” elements of w.
In the present example, X(w) = 0, 1, · · · , n and

Pr{X(w) = j} =
(
M
j

)(
N−M
n−j

)
(
N
n

) , j = 0, · · · , n,

where M is the number of “defective” elements of P . �

Example 2.14 Another example of random variable is the compressive strength of
a concrete cube of a certain dimension. In this example, the random experiment is
to manufacture a concrete cube according to a specified process. The sample space
S is the space of all cubes, w, that can be manufactured by this process. X(w) is
the compressive strength of w. The probability function assigns each event {w :
X(w) ≤ ξ} a probability, according to some mathematical model which satisfies
the laws of probability. Any continuous nondecreasing function F(x), such that
limx→−∞ F(x) = 0 and limx→∞ F(x) = 1, will do the job. For example, for
compressive strength of concrete cubes, the following model has been shown to fit
experimental results

Pr{X(w) ≤ x} =

⎧⎪⎪⎨
⎪⎪⎩
0, x ≤ 0

1√
2πσ

∫ x

0
1
y
exp

{
− (ln y−μ)2

2σ 2

}
dy, 0 < x < ∞.

The constants μ and σ , −∞ < μ < ∞, and 0 < σ < ∞ are called parameters of
the model. Such parameters characterize the manufacturing process. �

We distinguish between two types of random variables: discrete and continu-
ous. Discrete random variables, X(w), are random variables having a finite or
countable range. For example, the number of “defective” elements in a random
sample is a discrete random variable. The number of blemishes on a ceramic plate
is a discrete random variable. A continuous random variable is one whose range
consists of whole intervals of possible values. The weight, length, compressive
strength, tensile strength, cycle time, output voltage, etc. are continuous random
variables.
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2.2.1 Discrete and Continuous Distributions

2.2.1.1 Discrete Random Variables

Suppose that a discrete random variable can assume the distinct values x0, · · · , xk

(k is finite or infinite). The function

p(x) = Pr{X(w) = x}, −∞ < x < ∞ (2.13)

is called the probability distribution function (p.d.f.) of X.
Notice that if x is not one of the values in the specified range SX = {xj ; j =

0, 1, · · · , k}, then {X(w) = x} = φ and p(x) = 0. Thus, p(x) assumes positive
values only on the specified sequence SX (SX is also called the sample space of X),
such that

p(xj ) ≥ 0, j = 0, · · · , k

k∑
j=0

p(xj ) = 1.
(2.14)

Example 2.15 Suppose that the random experiment is to cast a die once. The
sample points are six possible faces of the die, {w1, · · · , w6}. Let X(wj ) = j ,
j = 1, · · · , 6, be the random variable, representing the face number. The probability
model yields

p(x) =
{

1
6 , if x = 1, 2, · · · , 6

0, otherwise.

�

Example 2.16 Consider the example of Sect. 2.1.5, of drawing independently n = 5
parts from a production process and counting the number of “defective” parts in this
sample. The random variable is X(w) = J5. SX = {0, 1, · · · , 5} and the p.d.f. is

p(x) =
{(5

x

)
p5−x(1 − p)x, x = 0, 1, · · · , 5

0, otherwise.

�
The probability of the event {X(w) ≤ x}, for any −∞ < x < ∞, can be

computed by summing the probabilities of the values in SX, which belong to the
interval (−∞, x]. This sum is called the cumulative distribution function (c.d.f.)
of X and denoted by
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Fig. 2.1 The graph of the

p.d.f. P(x) = ∑[x]
j=0

(5j)
25

random variable

P(x) = Pr{X(w) ≤ x} (2.15)

=
∑

{xj ≤x}
p(xj ), (2.16)

where xj ∈ SX.
The c.d.f. corresponding to Example 2.16 is

P(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, x < 0∑[x]

j=0

(5
j

)
p5−j (1 − p)j , 0 ≤ x < 5

1, 5 ≤ x

where [x] denotes the integer part of x., i.e., the largest integer smaller or equal
to x.

Generally the graph of the p.d.f. of a discrete variable is a bar chart (see Fig. 2.1).
The corresponding c.d.f. is a step function, as shown in Fig. 2.2.

2.2.1.2 Continuous Random Variables

In the case of continuous random variables, the model assigns the variable under
consideration a function F(x) which is:

(i) continuous;
(ii) Nondecreasing, i.e., if x1 < x2 then F(x1) ≤ F(x2) and
(iii) limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.

Such a function can serve as a cumulative distribution function (c.d.f.), for X.
An example of a c.d.f. for a continuous random variable which assumes non-

negative values, e.g., the operation total time until a part fails, is
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Fig. 2.2 The graph of the
c.d.f of P(x)

F (x) =
{
0, if x ≤ 0

1 − e−x, if x > 0.

This function is continuous, monotonically increasing, and limx→∞ F(x) = 1 −
limx→∞ e−x = 1 (see Fig. 2.3). If the c.d.f. of a continuous random variable can be
represented as

F(x) =
∫ x

−∞
f (y) dy, (2.17)

for some f (y) ≥ 0, then we say that F(x) is absolutely continuous and f (x) =
d
dx F (x). (The derivative f (x) may not exist on a finite number of x values, in any
finite interval.) The function f (x) is called the probability density function (p.d.f.)
of X.

In the above example of total operational time, the p.d.f. is

f (x) =
{
0, if x < 0

e−x, if x ≥ 0.

Thus, as in the discrete case, we have F(x) = Pr{X ≤ x}. It is now possible to write

Pr{a ≤ X < b} =
∫ b

a

f (t) dt = F(b) − F(a) (2.18)

or

Pr{X ≥ b} =
∫ ∞

b

f (t) dt = 1 − F(b). (2.19)

Thus, if X has the exponential c.d.f.
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Fig. 2.3 c.d.f. of F(x) = 1 − e−x

Pr{1 ≤ X ≤ 2} = F(2) − F(1) = e−1 − e−2 = 0.2325.

There are certain phenomena which require more complicated modeling. The
random variables under consideration may not have purely discrete or purely
absolutely continuous distribution. There are many random variables with c.d.f.s
which are absolutely continuous within certain intervals and have jump points
(points of discontinuity) at the end points of the intervals. Distributions of such
random variables can be expressed as mixtures of purely discrete c.d.f., Fd(x), and
of absolutely continuous c.d.f., Fac(x), i.e.,

F(x) = pFd(x) + (1 − p)Fac(x), −∞ < x < ∞, (2.20)

where 0 ≤ p ≤ 1 (Fig. 2.4).

Example 2.17 A distribution which is a mixture of discrete and continuous distribu-
tions is obtained, for example, when a measuring instrument is not sensitive enough
to measure small quantities or large quantities which are outside its range. This
could be the case for a weighing instrument which assigns the value 0 [mg] to any
weight smaller than 1 [mg], the value 1 [g] to any weight greater than 1 gram, and
the correct weight to values in between.

Another example is the total number of minutes, within a given working hour,
that a service station is busy serving customers. In this case the c.d.f. has a jump at
0, of height p, which is the probability that the service station is idle at the beginning
of the hour and no customer arrives during that hour. In this case,

F(x) = p + (1 − p)G(x), 0 ≤ x < ∞,
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Fig. 2.4 c.d.f. of the mixture distribution F(x) = 0.5(1 − e−x) + 0.5e−1∑[x]
j=0

1
j !

where G(x) is the c.d.f. of the total service time, G(0) = 0. �

2.2.2 Expected Values and Moments of Distributions

The expected value of a function g(X), under the distribution F(x), is

EF {g(X)} =
{∫∞

−∞ g(x)f (x) dx, if X is continuous∑k
j=0 g(xj )p(xj ), if X is discrete.

In particular,

μl(F ) = EF {Xl}, l = 1, 2, · · · (2.21)

is called the l-th moment of F(x). μ1(F ) = EF {X} is the expected value of X, or
the population mean, according to the model F(x).

Moments around μ1(F ) are called central moments, which are

μ∗
l (F ) = E{(X − μ1(F ))l}, l = 1, 2, 3, · · · . (2.22)

Obviously,μ∗
1(F ) = 0. The second central moment is called the variance of F(x),

VF {X}.
In the following, the notation μl(F ) will be simplified to μl , if there is no room

for confusion.
Expected values of a function g(X), and in particular the moments, may not exist,

since an integral
∫∞
−∞ xlf (x)dx may not be well defined. Example of such a case is



60 2 Probability Models and Distribution Functions

the distribution, called the Cauchy distribution, with p.d.f.

f (x) = 1

π
· 1

1 + x2
, −∞ < x < ∞.

Notice that under this model, moments do not exist for any l = 1, 2, · · · . Indeed,
the integral

1

π

∫ ∞

−∞
x

1 + x2
dx

does not exist. If the second moment exists, then

V {X} = μ2 − μ2
1.

Example 2.18 Consider the random experiment of casting a die once. The random
variable, X, is the face number. Thus, p(x) = 1

6 , x = 1, · · · , 6 and

μ1 = E{X} = 1

6

6∑
j=1

j = 6(6 + 1)

2 × 6
= 7

2
= 3.5

μ2 = 1

6

6∑
j=1

j2 = 6(6 + 1)(2 × 6 + 1)

6 × 6
= 7 × 13

6
= 91

6
= 15.167.

The variance is

V {X} = 91

6
−
(
7

2

)2

= 182 − 147

12
= 35

12
.

�

Example 2.19 X has a continuous distribution with p.d.f.

f (x) =
{
0, otherwise

1, if 1 ≤ x ≤ 2.
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Thus,

μ1 =
∫ 2

1
x dx = 1

2

(
x2
∣∣∣∣
2

1

)
= 1

2
(4 − 1) = 1.5

μ2 =
∫ 2

1
x2 dx = 1

3

(
x3
∣∣∣∣
2

1

)
= 7

3

V {X} = μ2 − μ2
1 = 7

3
− 9

4
= 28 − 27

12
= 1

12
.

�
The following is a useful formula when X assumes only positive values, i.e.,

F(x) = 0 for all x ≤ 0,

μ1 =
∫ ∞

0
(1 − F(x)) dx, (2.23)

for continuous c.d.f. F(x). Indeed,

μ1 =
∫ ∞

0
xf (x) dx

=
∫ ∞

0

(∫ x

0
dy

)
f (x) dx

=
∫ ∞

0

(∫ ∞

y

f (x) dx

)
dy

=
∫ ∞

0
(1 − F(y)) dy.

For example, suppose that f (x) = μe−μx , for x ≥ 0. Then F(x) = 1 − e−μx and

∫ ∞

0
(1 − F(x)) dx =

∫ ∞

0
e−μx dx = 1

μ
.

When X is discrete, assuming the values {1, 2, 3, . . .}, then we have a similar
formula

E{X} = 1 +
∞∑
i=1

(1 − F(i)).
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2.2.3 The Standard Deviation, Quantiles, Measures of
Skewness, and Kurtosis

The standard deviation of a distribution F(x) is σ = (V {X})1/2. The standard
deviation is used as a measure of dispersion of a distribution. An important theorem
in probability theory, called theChebychev Theorem, relates the standard deviation
to the probability of deviation from the mean. More formally, the theorem states that
if σ exists, then

Pr {|X − μ1| > λσ } ≤ 1

λ2
. (2.24)

Thus, by this theorem, the probability that a random variable will deviate from its
expected value by more than three standard deviations is less than 1/9, whatever the
distribution is. This theorem has important implications, which will be highlighted
later.

The p-th quantile of a distribution F(x) is the smallest value of x, ξp such
that F(x) ≥ p. We also write ξp = F−1(p).

For example, if F(x) = 1 − e−λx , 0 ≤ x < ∞, where 0 < λ < ∞, then ξp is
such that

F(ξp) = 1 − e−λξp = p.

Solving for ξp we get

ξp = −1

λ
· ln(1 − p).

Themedian of F(x) is Ff −1(.5) = ξ.5. Similarly ξ.25 and ξ.75 are the first and third
quartiles of F .

A distribution F(x) is symmetric about the mean μ1(F ) if

F(μ1 + δ) = 1 − F(μ1 − δ)

for all δ ≥ 0.
In particular, if F is symmetric, then F(μ1) = 1−F(μ1) orμ1 = F−1(.5) = ξ.5.

Accordingly, the mean and median of a symmetric distribution coincide. In terms of
the p.d.f., a distribution is symmetric about its mean if

f (μ1 + δ) = f (μ1 − δ), for all δ ≥ 0.

A commonly used index of skewness (asymmetry) is

β3 = μ∗
3

σ 3 , (2.25)
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where μ∗
3 is the third central moment of F . One can prove that if F(x) is

symmetric, then β3 = 0. If β3 > 0 we say that F(x) is positively skewed;
otherwise, it is negatively skewed.

Example 2.20 Consider the binomial distribution, with p.d.f.

p(x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, · · · , n.

In this case

μ1 =
n∑

x=0

x

(
n

x

)
px(1 − p)n−x

= np

n∑
x=1

(
n − 1

x − 1

)
px−1(1 − p)n−1−(x−1)

= np

n−1∑
j=0

(
n − 1

j

)
pj (1 − p)n−1−j

= np.

Indeed,

x

(
n

x

)
= x

n!
x!(n − x)! = n!

(x − 1)!((n − 1) − (x − 1))!

= n

(
n − 1

x − 1

)
.

Similarly, we can show that

μ2 = n2p2 + np(1 − p),

and

μ3 = np[n(n − 3)p2 + 3(n − 1)p + 1 + 2p2].

The third central moment is

μ∗
3 = μ3 − 3μ2μ1 + 2μ3

1

= np(1 − p)(1 − 2p).
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Furthermore,

V {X} = μ2 − μ2
1

= np(1 − p).

Hence,

σ = √
np(1 − p)

and the index of asymmetry is

β3 = μ∗
3

σ3
= np(1 − p)(1 − 2p)

(np(1 − p))3/2

= 1 − 2p√
np(1 − p)

.

Thus, if p = 1
2 then β3 = 0 and the distribution is symmetric. If p < 1

2 the
distribution is positively skewed, and it is negatively skewed if p > 1

2 . �
In Chap. 1 we mentioned also the index of kurtosis (steepness). This is given by

β4 = μ∗
4

σ 4 . (2.26)

Example 2.21 Consider the exponential c.d.f.

F(x) =
{
0, if x < 0

1 − e−x, if x ≥ 0.

The p.d.f. is f (x) = e−x , x ≥ 0. Thus, for this distribution

μ1 =
∫ ∞

0
xe−x dx = 1

μ2 =
∫ ∞

0
x2e−x dx = 2

μ3 =
∫ ∞

0
x3e−x dx = 6

μ4 =
∫ ∞

0
x4e−x dx = 24.
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Therefore,

V {X} = μ2 − μ2
1 = 1,

σ = 1

μ∗
4 = μ4 − 4μ3μ1 + 6μ2μ

2
1 − 3μ4

1

= 24 − 4 × 6 × 1 + 6 × 2 × 1 − 3 = 9.

Finally, the index of kurtosis is

β4 = 9.

�

2.2.4 Moment Generating Functions

The moment generating function (m.g.f.) of a distribution of X is defined as a
function of a real variable t ,

M(t) = E{etX}. (2.27)

M(0) = 1 for all distributions. M(t), however, may not exist for some t �= 0. To be
useful, it is sufficient that M(t) will exist in some interval containing t = 0.

For example, if X has a continuous distribution with p.d.f.

f (x) =
⎧⎨
⎩

1

b − a
, if a ≤ x ≤ b, a < b

0, otherwise

then

M(t) = 1

b − a

∫ b

a

etx dx = 1

t (b − a)

(
etb − eta

)
.

This is a differentiable function of t , for all t , −∞ < t < ∞.
On the other hand, if for 0 < λ < ∞,

f (x) =
{

λe−λx, 0 ≤ x < ∞
0, x < 0
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then

M(t) = λ

∫ ∞

0
etx−λx dx

= λ

λ − t
, t < λ.

This m.g.f. exists only for t < λ. The m.g.f. M(t) is a transform of the distribution
F(x), and the correspondence between M(t) and F(x) is one-to-one. In the above
example, M(t) is the Laplace transform of the p.d.f. λe−λx . This correspondence is
often useful in identifying the distributions of some statistics, as will be shown later.

Another useful property of the m.g.f. M(t) is that often we can obtain the
moments of F(x) by differentiating M(t). More specifically, consider the r-th order
derivative of M(t). Assuming that this derivative exists, and differentiation can be
interchanged with integration (or summation), then

M(r)(t) = dr

dt r

∫
etxf (x) dx =

∫ (
dr

dt r
etx

)
f (x) dx

=
∫

xretxf (x) dx.

Thus, if these operations are justified, then

M(r)(t)

∣∣∣∣
t=0

=
∫

xrf (x) dx = μr. (2.28)

In the following sections, we will illustrate the usefulness of the m.g.f.

2.3 Families of Discrete Distribution

In the present section, we discuss several families of discrete distributions and
illustrate possible application in modeling industrial phenomena.

2.3.1 The Binomial Distribution

Consider n identical independent trials. In each trial the probability of “success”
is fixed at some value p, and successive events of “success” or “failure” are
independent. Such trials are called Bernoulli trials. The distribution of the number
of “successes,” Jn, is binomial with p.d.f.
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b(j ; n, p) =
(

n

j

)
pj (1 − p)n−j , j = 0, 1, · · · , n. (2.29)

This p.d.f. was derived in Example 2.11 as a special case.
A binomial random variable, with parameters (n, p), will be designated as

B(n, p). n is a given integer and p belongs to the interval (0, 1). The collection
of all such binomial distributions is called the binomial family.

The binomial distribution is a proper model whenever we have a sequence of
independent binary events (0 and 1, or “success” and “failure”) with the same
probability of “success.”

Example 2.22 We draw a random sample of n = 10 items from a mass production
line of light bulbs. Each light bulb undergoes an inspection, and if it complies with
the production specifications, we say that the bulb is compliant (successful event).
Let Xi = 1 if the i-th bulb is compliant and Xi = 0 otherwise. If we can assume
that the probability of {Xi = 1} is the same, p, for all bulbs and if the n events are
mutually independent, then the number of bulbs in the sample which complies with
the specifications, i.e., Jn = ∑n

i=1 Xi , has the binomial p.d.f. b(i; n, p). Notice that
if we draw a sample at random with replacement, RSWR, from a lot of size N ,
which contains M compliant units, then the distribution of Jn is B

(
n, M

N

)
.

Indeed, if sampling is with replacement, the probability that the i-th item
selected is compliant is p = M

N
for all i = 1, · · · , n. Furthermore, selections are

independent of each other. �
The binomial c.d.f. will be denoted by B(i; n, p). Recall that

B(i; n, p) =
i∑

j=0

b(j ; n, p), (2.30)

i = 0, 1, · · · , n. The m.g.f. of B(n, p) is

M(t) = E{etX}

=
n∑

j=0

(
n

j

)
(pet )j (1 − p)n−j

= (pet + (1 − p))n, −∞ < t < ∞.

(2.31)

Notice that

M ′(t) = n(pet + (1 − p))n−1pet

and

M ′′(t) = n(n − 1)p2e2t (pet + (1 − p))n−2 + npet (pet + (1 − p))n−1.
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Table 2.1 Values of the
p.d.f. and c.d.f. of B(30, 0.6)

i b(i; 30, 0.6) B(i; 30, 0.6)
8 0.0002 0.0002

9 0.0006 0.0009

10 0.0020 0.0029

11 0.0054 0.0083

12 0.0129 0.0212

13 0.0269 0.0481

14 0.0489 0.0971

15 0.0783 0.1754

16 0.1101 0.2855

17 0.1360 0.4215

18 0.1474 0.5689

19 0.1396 0.7085

20 0.1152 0.8237

21 0.0823 0.9060

22 0.0505 0.9565

23 0.0263 0.9828

24 0.0115 0.9943

25 0.0041 0.9985

26 0.0012 0.9997

27 0.0003 1.0000

The expected value and variance of B(n, p) are

E{Jn} = np, (2.32)

and

V {Jn} = np(1 − p). (2.33)

This was shown in Example 2.20 and can be verified directly by the above formulae
of M ′(t) and M ′′(t). To obtain the values of b(i; n, p), we can use Python. For
example, suppose we wish to tabulate the values of the p.d.f. b(i; n, p) and those
of the c.d.f. B(i; n, p) for n = 30 and p = 0.60. Below commands generate a data
frame with values as illustrated in Table 2.1.

x = list(range(0, 31))
rv = stats.binom(30, 0.6)
df = pd.DataFrame({

'i': x,
'b': rv.pmf(x),
'B': rv.cdf(x),

})

After tabulating the values of the c.d.f., we can obtain the quantiles (or fractiles)
of the distribution. Recall that in the discrete case, the p-th quantile of a random
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Fig. 2.5 p.d.f. of B(50, p), p = 0.25, 0.50, 0.75

variable X is

xp = smallest x such that F(x) ≥ p.

Thus, from Table 2.1 we find that the lower, median, and upper quartile of B(30, .6)
are Q1 = 16, Me = 18, and Q3 = 20. These values can also be obtained directly
with the scipy package.

stats.binom(30, 0.6).ppf(0.5)

In Fig. 2.5 we present the p.d.f. of three binomial distributions, with n = 50 and
p = 0.25, 0.50, and 0.75. We see that if p = 0.25, the p.d.f. is positively skewed.
When p = 0.5 it is symmetric, and when p = 0.75 it is negatively skewed. This is
in accordance with the index of skewness β3, which was presented in Example 2.20.

2.3.2 The Hypergeometric Distribution

Let Jn denote the number of units, in a RSWOR of size n, from a population of
size N , having a certain property. The number of population units before sampling,
having this property, is M . The distribution of Jn is called the hypergeometric dis-
tribution. We denote a random variable having such a distribution by H(N,M, n).
The p.d.f. of Jn is
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Table 2.2 The p.d.f. and
c.d.f. of H(75, 15, 10)

j h(j ; 75, 15, 10) H(j ; 75, 15, 10)
0 0.0910 0.0910

1 0.2675 0.3585

2 0.3241 0.6826

3 0.2120 0.8946

4 0.0824 0.9770

5 0.0198 0.9968

6 0.0029 0.9997

7 0.0003 1.0000

Fig. 2.6 The p.d.f. h(i; 500, 350, 100)

h(j ;N,M, n) =
(
M
j

)(
N−M
n−j

)
(
N
n

) , j = 0, · · · , n. (2.34)

This formula was shown already in Sect. 2.1.4.
The c.d.f. of H(N,M, n) will be designated by H(j ;N,M, n). In Table 2.2 we

present the p.d.f. and c.d.f. of H(75, 15, 10).

x = list(range(0, 8))
rv = stats.hypergeom(M=75, n=15, N=10)
df = pd.DataFrame({

'j': x,
'h': rv.pmf(x),
'H': rv.cdf(x),

})

In Fig. 2.6 we show the p.d.f. of H(500, 350, 100).
The expected value and variance of H(N,M, n) are
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Table 2.3 The p.d.f. of
H(500, 350, 20) and
B(20, 0.7)

j h(i; 500, 350, 20) b(i; 20, 0.7)
5 0.00003 0.00004

6 0.00016 0.00022

7 0.00082 0.00102

8 0.00333 0.00386

9 0.01093 0.01201

10 0.02928 0.03082

11 0.06418 0.06537

12 0.11491 0.11440

13 0.16715 0.16426

14 0.19559 0.19164

15 0.18129 0.17886

16 0.12999 0.13042

17 0.06949 0.07160

18 0.02606 0.02785

19 0.00611 0.00684

20 0.00067 0.00080

E{Jn} = n
M

N
(2.35)

and

V {Jn} = n
M

N

(
1 − M

N

)(
1 − n − 1

N − 1

)
. (2.36)

Notice that when n = N , the variance of Jn is V {JN } = 0. Indeed, if n = N ,
JN = M , which is not a random quantity. Derivation of these formulae is given in
Sect. 5.2.2. There is no simple expression for the m.g.f.

If the sample size n is small relative to N , i.e., n/N << 0.1, the hypergeometric

p.d.f. can be approximated by that of the binomial B

(
n,

M

N

)
. In Table 2.3 we

compare the p.d.f. of H(500, 350, 20) to that of B(20, 0.7).
The expected value and variance of the binomial and the hypergeometric

distributions are compared in Table 2.4. We see that the expected values have
the same formula but that the variance formulae differ by the correction factor
(N − n)/(N − 1) which becomes 1 when n = 1 and 0 when n = N .

Example 2.23 At the end of a production day, printed circuit boards (PCBs)
soldered by wave soldering process are subjected to sampling audit. A RSWOR
of size n is drawn from the lot, which consists of all the PCBs produced on that
day. If the sample has any defective PCB, another RSWOR of size 2n is drawn from
the lot. If there are more than three defective boards in the combined sample, the
lot is sent for rectification, in which every PCB is inspected. If the lot consists of
N = 100 PCBs, and the number of defective ones is M = 5, what is the probability
that the lot will be rectified, when n = 10?
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Table 2.4 The expected value and variance of the hypergeometric and binomial distribution

Hypergeometric Binomial

H(a; N,M, n) B

(
n,

M

N

)
Expected value

n
M

N
n

M

N
Variance

n
M

N

(
1 − M

N

)(
1 − n − 1

N − 1

)
n

M

N

(
1 − M

N

)

Let J1 be the number of defective items in the first sample. If J1 > 3, then the
lot is rectified without taking a second sample. If J1 = 1, 2, or 3, a second sample
is drawn. Thus, if R denotes the event “the lot is sent for rectification,”

Pr{R} = 1 − H(3; 100, 5, 10)

+
3∑

i=1

h(i; 100, 5, 10) × [1 − H(3 − i; 90, 5 − i, 20)

= 0.00025 + 0.33939 × 0.03313

+ 0.07022 × 0.12291

+ 0.00638 × 0.397 = 0.0227.

�

2.3.3 The Poisson Distribution

A third discrete distribution that plays an important role in quality control is the
Poisson distribution, denoted by P(λ). It is sometimes called the distribution of rare
events, since it is used as an approximation to the binomial distribution when the
sample size, n, is large and the proportion of defectives, p, is small. The parameter
λ represents the “rate” at which defectives occur, i.e., the expected number of
defectives per time interval or per sample. The Poisson probability distribution
function is given by the formula

p(j ; λ) = e−λλj

j ! , j = 0, 1, 2, · · · (2.37)

and the corresponding c.d.f. is

P(j ; λ) =
j∑

i=0

p(i; λ), j = 0, 1, 2, · · · . (2.38)
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Table 2.5 Binomial distributions for np = 2 and the Poisson distribution with λ = 2

Binomial Poisson

n = 20 n = 40 n = 100 n = 1000

k p = 0.1 p = 0.05 p = 0.02 p = 0.002 λ = 2

0 0.121577 0.128512 0.132620 0.135065 0.135335

1 0.270170 0.270552 0.270652 0.270670 0.270671

2 0.285180 0.277672 0.273414 0.270942 0.270671

3 0.190120 0.185114 0.182276 0.180628 0.180447

4 0.089779 0.090122 0.090208 0.090223 0.090224

5 0.031921 0.034151 0.035347 0.036017 0.036089

6 0.008867 0.010485 0.011422 0.011970 0.012030

7 0.001970 0.002680 0.003130 0.003406 0.003437

8 0.000356 0.000582 0.000743 0.000847 0.000859

9 0.000053 0.000109 0.000155 0.000187 0.000191

Example 2.24 Suppose that a machine produces aluminum pins for airplanes. The
probability p that a single pin emerges defective is small, say p = 0.002. In 1 h, the
machine makes n = 1000 pins (considered here to be a random sample of pins). The
number of defective pins produced by the machine in 1 h has a binomial distribution
with a mean of μ = np = 1000(0.002) = 2, so the rate of defective pins for the
machine is λ = 2 pins per hour. In this case, the binomial probabilities are very close
to the Poisson probabilities. This approximation is illustrated below in Table 2.5, by
considering processes which produce defective items at a rate of λ = 2 parts per
hour, based on various sample sizes. In Exercise 2.46 the student is asked to prove
that the binomial p.d.f. converges to that of the Poisson with mean λ when n → ∞,
p → 0 but np → λ. �

The m.g.f. of the Poisson distribution is

M(t) = e−λ
∞∑

j=0

etj λj

j !

= e−λ · eλet = e−λ(1−et ), −∞ < t < ∞.

(2.39)

Thus,

M ′(t) = λM(t)et

M ′′(t) = λ2M(t)e2t + λM(t)et

= (λ2e2t + λet )M(t).

(2.40)

Hence, the mean and variance of the Poisson distribution are

μ = E{X} = λ
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and (2.41)

σ 2 = V {X} = λ.

The Poisson distribution is used not only as an approximation to the binomial.
It is a useful model for describing the number of “events” occurring in a unit of
time (or area, volume, etc.) when those events occur “at random.” The rate at which
these events occur is denoted by λ. An example of a Poisson random variable is
the number of decaying atoms, from a radioactive substance, detected by a Geiger
counter in a fixed period of time. If the rate of detection is 5 per second, then the
number of atoms detected in a second has a Poisson distribution with mean λ = 5.
The number detected in 5 s, however, will have a Poisson distribution with λ = 25.
A rate of 5 per second equals a rate of 25 per 5 s. Other examples of Poisson random
variables include:

1. The number of blemishes found in a unit area of a finished surface (ceramic
plate).

2. The number of customers arriving at a store in 1 h.
3. The number of defective soldering points found on a circuit board.

The p.d.f., c.d.f., and quantiles of the Poisson distribution can be computed using
Python. In Fig. 2.7 we illustrate the p.d.f. for three values of λ.

x = np.linspace(0, 50, 51)
distributions = pd.DataFrame({

'x': x,
'density5': stats.poisson(mu=5).pmf(x),
'density10': stats.poisson(mu=10).pmf(x),
'density15': stats.poisson(mu=15).pmf(x),

})
ax = distributions.plot(x='x', y='density5', color='black')
distributions.plot(x='x', y='density10', color='black', ls='--', ax=ax)
distributions.plot(x='x', y='density15', color='black', ls='-.', ax=ax)
ax.text(8, 0.17, '$\lambda=5$')
ax.text(14, 0.12, '$\lambda=10$')
ax.text(19, 0.10, '$\lambda=15$')
ax.get_legend().remove()
plt.show()

2.3.4 The Geometric and Negative Binomial Distributions

Consider a sequence of independent trials, each one having the same probability
for “success,” say p. Let N be a random variable which counts the number of trials
until the first “success” is realized, including the successful trial. N may assume
positive integer values with probabilities

Pr{N = n} = p(1 − p)n−1, n = 1, 2, · · · . (2.42)
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Fig. 2.7 Poisson p.d.f. λ = 5, 10, 15

This probability function is the p.d.f. of the geometric distribution.
Let g(n;p) designate the p.d.f. The corresponding c.d.f. is

G(n;p) = 1 − (1 − p)n, n = 1, 2, · · · .

From this we obtain that the α-quantile (0 < α < 1) is given by

Nα =
[
log(1 − α)

log(1 − p)

]
+ 1,

where [x] designates the integer part of x.
The expected value and variance of the geometric distribution are

E{N} = 1

p
,

and (2.43)

V {N} = 1 − p

p2 .
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Indeed, the m.g.f. of the geometric distribution is

M(t) = pet
∞∑

j=0

(et (1 − p))j

= pet

1 − et (1 − p)
, if t < − log(1 − p).

(2.44)

Thus, for t < − log(1 − p),

M ′(t) = pet

(1 − et (1 − p))2

and

M ′′(t) = pet

(1 − et (1 − p))2
+ 2p(1 − p)e2t

(1 − et (1 − p))3
.

Hence,

μ1 = M ′(0) = 1

p

μ2 = M ′′(0) = 2 − p

p2 ,

(2.45)

and the above formulae of E{X} and V {X} are obtained.
The geometric distribution is applicable in many problems.We illustrate one such

application in the following example.

Example 2.25 An insertion machine stops automatically if there is failure in
handling a component during an insertion cycle. A cycle starts immediately after the
insertion of a component and ends at the insertion of the next component. Suppose
that the probability of stopping is p = 10−3 per cycle. Let N be the number of
cycles until the machine stops. It is assumed that events at different cycles are
mutually independent. Thus, N has a geometric distribution and E{N} = 1000. We
expect a run of 1000 cycles between consecutive stopping. The number of cycles, N ,

however is a random variable with standard deviation of σ =
(
1−p

p2

)1/2 = 999.5.

This high value of σ indicates that we may see very short runs and also long ones.
Indeed, for α = 0.5 the quantiles of N are N0.05 = 52 and N0.95 = 2995. �
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The number of failures until the first success, N − 1, has a shifted geometric
distribution, which is a special case of the family of negative binomial distribution.

We say that a non-negative integer valued random variable X has a negative
binomial distribution, with parameters (p, k), where 0 < p < 1 and k = 1, 2, · · · ,
if its p.d.f. is

g(j ;p, k) =
(

j + k − 1

k − 1

)
pk(1 − p)j , (2.46)

j = 0, 1, · · · . The shifted geometric distribution is the special case of k = 1.
A more general version of the negative binomial distribution can be formulated,

in which k−1 is replaced by a positive real parameter. A random variable having the
above negative binomial will be designated by NB(p, k). The NB(p, k) represents
the number of failures observed until the k-th success. The expected value and
variance of NB(p, k) are

E{X} = k
1 − p

p
,

and (2.47)

V {X} = k
1 − p

p2
.

In Fig. 2.8 we present the p.d.f. of NB(p, k). The negative binomial distributions
have been applied as a model of the distribution for the periodic demand of parts in
inventory theory.

x = np.linspace(0, 100, 101)
distributions = pd.DataFrame({

'x': x,
'density_2': stats.nbinom(n=5, p=0.2).pmf(x),
'density_1': stats.nbinom(n=5, p=0.1).pmf(x),

})
ax = distributions.plot(x='x', y='density_2', color='black')
distributions.plot(x='x', y='density_1', color='black', ls='--', ax=ax)
ax.text(35, 0.04, '$p=0.2$')
ax.text(70, 0.015, '$p=0.1$')
ax.set_xlabel('$i$')
ax.set_ylabel('$nb(i,5,p)$')
ax.get_legend().remove()
plt.show()
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Fig. 2.8 p.d.f. of NB(p, 5) with p = 0.10, 0.20

2.4 Continuous Distributions

2.4.1 The Uniform Distribution on the Interval (a, b), a < b

We denote a random variable having this distribution by U(a, b). The p.d.f. is given
by

f (x; a, b) =
{
1/(b − a), a ≤ x ≤ b

0, elsewhere,
(2.48)

and the c.d.f. is

F(x; a, b) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x < a

(x − a)/(b − a), if a ≤ x < b

1, if b ≤ x

(2.49)

The expected value and variance of U(a, b) are

μ = (a + b)/2,

and (2.50)

σ 2 = (b − a)2/12.

The p-th quantile is xp = a + p(b − a).
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To verify the formula for μ, we set

μ = 1

b − a

∫ b

a

x dx = 1

b − a

∣∣∣∣12x2
∣∣∣∣
b

a

= 1

2(b − a)
(b2 − a2)

= a + b

2
.

Similarly,

μ2 = 1

b − a

∫ b

a

x2 dx = 1

b − a

∣∣∣∣13x3
∣∣∣∣
b

a

= 1

3(b − a)
(b3 − a3) = 1

3
(a2 + ab + b2).

Thus,

σ 2 = μ2 − μ2
1 = 1

3
(a2 + ab + b2) − 1

4
(a2 + 2ab + b2)

= 1

12
(4a2 + 4ab + 4b2 − 3a2 − 6ab − 3b2)

= 1

12
(b − a)2.

We can get these moments also from the m.g.f., which is

M(t) = 1

t (b − a)
(etb − eta), −∞ < t < ∞.

Moreover, for values of t close to 0

M(t) = 1 + 1

2
t (b + a) + 1

6
t2(b2 + ab + a2) + · · · .

2.4.2 The Normal and Log-Normal Distributions

2.4.2.1 The Normal Distribution

The normal or Gaussian distribution denoted by N(μ, σ) occupies a central role in
statistical theory. Its density function (p.d.f.) is given by the formula

n(x;μ, σ) = 1

σ
√
2π

exp

{
− 1

2σ 2
(x − μ)2

}
. (2.51)
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This p.d.f. is symmetric around the location parameter, μ. σ is a scale parameter.
The m.g.f. of N(0, 1) is

M(t) = 1√
2π

etx− 1
2 x2 dx

= et2/2

√
2π

∫ ∞

−∞
e− 1

2 (x2−2tx+t2) dx

= et2/2.

(2.52)

Indeed, 1√
2π

exp
{
− 1

2 (x − t)2
}
is the p.d.f. of N(t, 1). Furthermore,

M ′(t) = tM(t)

M ′′(t) = t2M(t) + M(t) = (1 + t2)M(t)

M ′′′(t) = (t + t3)M(t) + 2tM(t)

= (3t + t3)M(t)

M(4)(t) = (3 + 6t2 + t4)M(t).

Thus, by substituting t = 0 we obtain that

E{N(0, 1)} = 0,

V {N(0, 1)} = 1,

μ∗
3 = 0,

μ∗
4 = 3.

(2.53)

To obtain the moments in the general case ofN(μ, σ 2), we writeX = μ+σN(0, 1).
Then

E{X} = E{μ + σN(0, 1)}
= μ + σE{N(0, 1)} = μ

V {X} = E{(X − μ)2} = σ 2E{N2(0, 1)} = σ 2

μ∗
3 = E{(X − μ)3} = σ 3E{N3(0, 1)} = 0

μ∗
4 = E{(X − μ)4} = σ 4E{N4(0, 1)} = 3σ 4.

Thus, the index of kurtosis in the normal case is β4 = 3.
The graph of the p.d.f. n(x;μ, σ) is a symmetric bell-shaped curve that is

centered at μ (shown in Fig. 2.9). The spread of the density is determined by the
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Fig. 2.9 The p.d.f. of N(μ, σ), μ = 10, σ = 1, 2, 3

variance σ 2 in the sense that most of the area under the curve (in fact, 99.7% of
the area) lies between μ − 3σ and μ + 3σ . Thus, if X has a normal distribution
with mean μ = 25 and standard deviation σ = 2, the probability is 0.997 that the
observed value of X will fall between 19 and 31.

Areas (i.e., probabilities) under the normal p.d.f. are found in practice using a
table or appropriate statistical software like scipy. Since it is not practical to have
a table for each pair of parameters μ and σ , we use the standardized form of the
normal random variable. A random variable Z is said to have a standard normal
distribution if it has a normal distribution with mean zero and variance one. The
standard normal density function is φ(x) = n(x; 0, 1) and the standard cumulative
distribution function is denoted by (x). This function is also called the standard
normal integral, i.e.,

(x) =
∫ x

−∞
φ(t) dt =

∫ x

−∞
1√
2π

e− 1
2 t2 dt. (2.54)

The c.d.f., (x), represents the area over the x-axis under the standard normal p.d.f.
to the left of the value x (see Fig. 2.10).

If we wish to determine the probability that a standard normal random variable
is less than 1.5, for example, we use the following Python code

stats.norm(loc=0, scale=1).cdf(1.5)

We find that Pr{Z ≤ 1.5} = (1.5) = 0.9332. To obtain the probability that Z

lies between 0.5 and 1.5, we first find the probability that Z is less than 1.5 and then
subtract from this number the probability that Z is less than 0.5. This yields
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Fig. 2.10 Standard normal c.d.f.

Pr{0.5 < Z < 1.5} = Pr{Z < 1.5} − Pr{Z < 0.5}
= (1.5) − (0.5) = 0.9332 − 0.6915 = 0.2417.

Many tables of the normal distribution do not list values of (x) for x < 0. This
is because the normal density is symmetric about x = 0, and we have the relation
(Fig. 2.11)

(−x) = 1 − (x), for all x. (2.55)

Thus, to compute the probability that Z is less than −1, for example, we write

Pr{Z < −1} = (−1) = 1 − (1) = 1 − 0.8413 = 0.1587.

The p-th quantile (percentile of quantile) of the standard normal distribution is
the number zp that satisfies the statement

(zp) = Pr{Z ≤ zp} = p. (2.56)

If X has a normal distribution with mean μ and standard deviation σ we denote
the p-th quantile of the distribution by xp. We can show that xp is related to the
standard normal quantile by

xp = μ + zpσ.

The p-th quantile of the normal distribution can be obtained by using
scipy.stats.
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Fig. 2.11 The symmetry of the normal distribution

stats.norm(loc=0, scale=1).ppf(0.95)

In this command we used p = 0.95. The printed result is z.95 = 1.6449. We can
use any value of μ (loc) and σ (scale) in the command. Thus, for μ = 10 and
σ = 1.5

stats.norm(loc=10, scale=1.5).ppf(0.95)

x.95 = 10 + z.95 × σ = 12.4673.

Now suppose that X is a random variable having a normal distribution with
mean μ and variance σ 2, that is, X has a N(μ, σ) distribution. We define the
standardized form of X as

Z = X − μ

σ
.

By subtracting the mean from X and then dividing by the standard deviation, we
transform X to a standard normal random variable (i.e., Z has expected value zero
and standard deviation one). This will allow us to use the standard normal table to
compute probabilities involving X. Thus, to compute the probability that X is less
than a, we write

Pr{X ≤ a} = Pr

{
X − μ

σ
<

a − μ

σ

}



84 2 Probability Models and Distribution Functions

= Pr

{
Z <

a − μ

σ

}
= 

(
a − μ

σ

)
.

Example 2.26 Let X represent the length (with cap) of a randomly selected
aluminum pin. Suppose we know that X has a normal distribution with mean
μ = 60.02 and standard deviation σ = 0.048 [mm]. What is the probability that
the length with cap of a randomly selected pin will be less than 60.1 [mm]? The
corresponding scipy command is

stats.norm(loc=60.02, scale=0.048).cdf(60.1)

and we obtain Pr{X ≤ 60.1} = 0.9522. If we have to use the table of (Z) we
write

Pr{X ≤ 60.1} = 

(
60.1 − 60.02

0.048

)

= (1.667) = 0.9522.

Continuing with the example, consider the following question: If a pin is
considered “acceptable” when its length is between 59.9 and 60.1 mm, what
proportion of pins is expected to be rejected? To answer this question, we first
compute the probability of accepting a single pin. This is the probability that X

lies between 59.9 and 60.1, i.e.,

Pr{50.9 < X < 60.1} = 

(
60.1 − 60.02

0.048

)
− 

(
59.9 − 60.02

0.048

)

= (1.667) − (−2.5)

= 0.9522 − 0.0062 = 0.946.

Thus, we expect that 94.6% of the pins will be accepted and that 5.4% of them will
be rejected. �

2.4.2.2 The Log-Normal Distribution

A random variable X is said to have a log-normal distribution, LN(μ, σ 2), if
Y = logX has the normal distribution N(μ, σ 2).

The log-normal distribution has been applied for modeling distributions of
strength variables, like the tensile strength of fibers (see Chap. 1), the compressive
strength of concrete cubes, etc. It has also been used for random quantities of
pollutants in water or air and other phenomena with skewed distributions.

The p.d.f. of LN(μ, σ) is given by the formula
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f (x;μ, σ 2) =
⎧⎨
⎩

1√
2πσx

exp

{
− 1

2σ 2 (log x − μ)2
}

, 0 < x < ∞
0, x ≤ 0.

(2.57)

The c.d.f. is expressed in terms of the standard normal integral as

F(x) =
⎧⎨
⎩
0, x ≤ 0



(
log x − μ

σ

)
, 0 < x < ∞.

(2.58)

The expected value and variance of LN(μ, σ) are

E{X} = eμ+σ 2/2

and (2.59)

V {X} = e2μ+σ 2
(eσ 2 − 1).

One can show that the third central moment of LN(μ, σ 2) is

μ∗
3 = e3μ+ 3

2σ 2
(
e3σ

2 − 3eσ 2 + 2
)

.

Hence, the index of skewness of this distribution is

β3 = μ∗
3

σ 3 = e3σ
2 − 3eσ 2 + 2

(eσ 2 − 1)3/2
. (2.60)

It is interesting that the index of skewness does not depend on μ and is positive for
all σ 2 > 0. This index of skewness grows very fast as σ 2 increases. This is shown
in Fig. 2.12.

2.4.3 The Exponential Distribution

We designate this distribution by E(β). The p.d.f. of E(β) is given by the formula

f (x;β) =
{
0, if x < 0

(1/β)e−x/β, if x ≥ 0,
(2.61)

where β is a positive parameter, i.e., 0 < β < ∞. In Fig. 2.13 we present these
p.d.f.s for various values of β.



86 2 Probability Models and Distribution Functions

Fig. 2.12 The index of skewness of LN(μ, σ)

Fig. 2.13 The p.d.f. of E(β), β = 1, 2, 3

The corresponding c.d.f. is

F(x;β) =
{
0, if x < 0

1 − e−x/β, if x ≥ 0.
(2.62)

The expected value and the variance of E(β) are

μ = β,
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and

σ 2 = β2.

Indeed,

μ = 1

β

∫ ∞

0
xe−x/β dx.

Making the change of variable to y = x/β, dx = β dy, we obtain

μ = β

∫ ∞

0
ye−y dy

= β.

Similarly

μ2 = 1

β

∫ ∞

0
x2e−x/β dx = β2

∫ ∞

0
y2e−y dy

= 2β2.

Hence,

σ 2 = β2.

The p-th quantile is xp = −β ln(1 − p).
The exponential distribution is related to the Poisson model in the following way:

If the number of events occurring in a period of time follows a Poisson distribution
with rate λ, then the time between occurrences of events has an exponential
distribution with parameter β = 1/λ. The exponential model can also be used to
describe the lifetime (i.e., time to failure) of certain electronic systems. For example,
if the mean life of a system is 200 h, then the probability that it will work at least
300 h without failure is

Pr{X ≥ 300} = 1 − Pr{X < 300}
= 1 − F(300) = 1 − (1 − e−300/200) = 0.223.

The exponential distribution is positively skewed, and its index of skewness is

β3 = μ∗
3

σ 3 = 2,

irrespective of the value of β. We have seen before that the kurtosis index is β4 = 9.
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2.4.4 The Gamma and Weibull Distributions

Two important distributions for studying the reliability and failure rates of systems
are the gamma and the Weibull distributions. We will need these distributions in
our study of reliability methods (Chapter 9 in the Industrial Statistics book). These
distributions are discussed here as further examples of continuous distributions.

Suppose we use in a manufacturing process a machine which mass produces a
particular part. In a random manner, it produces defective parts at a rate of λ per
hour. The number of defective parts produced by this machine in a time period [0, t]
is a random variable X(t) having a Poisson distribution with mean λt , i.e.,

Pr{X(t) = j} = (λt)j e−(λt)/j !, j = 0, 1, 2, · · · . (2.63)

Suppose we wish to study the distribution of the time until the k-th defective part
is produced. Call this continuous random variable Yk . We use the fact that the k-th
defect will occur before time t (i.e., Yk ≤ t) if and only if at least k defects occur up
to time t (i.e., X(t) ≥ k). Thus the c.d.f. for Yk is

G(t; k, λ) = Pr{Yk ≤ t}
= Pr{X(t) ≥ k}

= 1 −
k−1∑
j=0

(λt)j e−λt /j !.
(2.64)

The corresponding p.d.f. for Yk is

g(t; k, λ) = λk

(k − 1)! t
k−1e−λt , for t ≥ 0. (2.65)

This p.d.f. is a member of a general family of distributions which depend on two
parameters, ν and β, and are called the gamma distributions G(ν, β). The p.d.f. of
a gamma distribution G(ν, β) is

g(x; ν, β) =
⎧⎨
⎩

1

βν�(ν)
xν−1e−x/β, x ≥ 0,

0, x < 0
(2.66)

The scipy function gamma computes c.d.f of a gamma distribution having ν =
shape (a) and β = scale

stats.gamma(a=1, scale=1).cdf(1)

where 0 < ν, β < ∞, �(ν) is called the gamma function of ν and is defined as
the integral



2.4 Continuous Distributions 89

Fig. 2.14 The gamma densities, with β = 1 and ν = 0.5, 1, 2

�(ν) =
∫ ∞

0
xν−1e−x dx, ν > 0. (2.67)

The gamma function satisfies the relationship

�(ν) = (ν − 1)�(ν − 1), for all ν > 1. (2.68)

Hence, for every positive integer k, �(k) = (k − 1)!. Also, �
(
1
2

)
= √

π . We

note also that the exponential distribution, E(β), is a special case of the gamma
distribution with ν = 1. Some gamma p.d.f.s are presented in Fig. 2.14. The value
of �(ν) can be computed in Python by the following commands which compute
�(5). Generally, replace 5 in line 2 by ν.

from scipy.special import gamma
gamma(5)

The expected value and variance of the gamma distribution G(ν, β) are, respec-
tively,

μ = νβ,

and (2.69)

σ 2 = νβ2.

To verify these formulae, we write
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μ = 1

βν�(ν)

∫ ∞

0
x xν−1e−x/β dx

= βν+1

βν�(ν)

∫ ∞

0
yνe−y dy

= β
�(ν + 1)

�(ν)
= νβ.

Similarly,

μ2 = 1

βν�(ν)

∫ ∞

0
x2 xν−1e−x/β dx

= βν+2

βν�(ν)

∫ ∞

0
yν+1e−y dy

= β2�(ν + 2)

�(ν)
= (ν + 1)νβ2.

Hence,

σ 2 = μ2 − μ2
1 = νβ2.

An alternative way is to differentiate the m.g.f.

M(t) = (1 − tβ)−ν, t <
1

β
. (2.70)

Weibull distributions are often used in reliability models in which the system
either “ages” with time or becomes “younger” (see Chapter 9, Industrial Statistics
book). The Weibull family of distributions will be denoted by W(α, β). The
parameters α and β, α, β > 0 are called the shape and the scale parameters,
respectively. The p.d.f. of W(α, β) is given by

w(t;α, β) =

⎧⎪⎨
⎪⎩

αtα−1

βα
e−(t/β)α , t ≥ 0,

0, t < 0.
(2.71)

The corresponding c.d.f. is

W(t;α, β) =
{
1 − e−(t/β)α , t ≥ 0

0, t < 0.
(2.72)

Notice that W(1, β) = E(β). The mean and variance of this distribution are
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Fig. 2.15 Weibull density functions, α = 1.5, 2

μ = β · �

(
1 + 1

α

)
(2.73)

and

σ 2 = β2
{
�

(
1 + 2

α

)
− �2

(
1 + 1

α

)}
(2.74)

respectively. The values of �(1 + (1/α)) and �(1 + (2/α)) can be computed in
Python. If, for example, α = 2, then

μ = β
√

π/2 = 0.8862β

σ 2 = β2(1 − π/4) = 0.2145β2,

since

�

(
1 + 1

2

)
= 1

2
· �

(
1

2

)
= 1

2

√
π,

and

�

(
1 + 2

2

)
= �(2) = 1.

In Fig. 2.15 we present three p.d.f. of W(α, β) for α = 1.5, 2.0 and β = 1.
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2.4.5 The Beta Distributions

Distributions having p.d.f. of the form

f (x; ν1, ν2) =
{

1
B(ν1,ν2)

xν1−1(1 − x)ν2−1, 0 < x < 1,

0, otherwise
(2.75)

where, for ν1, ν2 positive,

B(ν1, ν2) =
∫ 1

0
xν1−1(1 − x)ν2−1 dx (2.76)

are called beta distributions. The function B(ν1, ν2) is called the beta integral. One
can prove that

B(ν1, ν2) = �(ν1)�(ν2)

�(ν1 + ν2)
. (2.77)

The parameters ν1 and ν2 are shape parameters. Notice that when ν1 = 1 and ν2 =
1, the beta distribution reduces to U(0, 1). We designate distributions of this family
by Beta(ν1, ν2). The c.d.f. of Beta(ν1, ν2) is denoted also by Ix(ν1, ν2), which is
known as the incomplete beta function ratio, i.e.,

Ix(ν1, ν2) = 1

B(ν1, ν2)

∫ x

0
uν1−1(1 − u)ν2−1 du, (2.78)

for 0 ≤ x ≤ 1. Notice that Ix(ν1, ν2) = 1 − I1−x(ν2, ν1). The density functions
of the p.d.f. Beta(2.5, 5.0) and Beta(2.5, 2.5) are plotted in Fig. 2.16. Notice that if
ν1 = ν2 then the p.d.f. is symmetric around μ = 1

2 . There is no simple formula for
the m.g.f. of Beta(ν1, ν2). However, the m-th moment is equal to

μm = 1

B(ν1, ν2)

∫ 1

0
um+ν1−1(1 − u)ν2−1 du

= B(ν1 + m, ν2)

B(ν1, ν2)

= ν1(ν1 + 1) · · · (ν1 + m − 1)

(ν1 + ν2)(ν1 + ν2 + 1) · · · (ν1 + ν2 + m − 1)
.

(2.79)
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Fig. 2.16 Beta densities, ν1 = 2.5, ν2 = 2.5; ν1 = 2.5, ν2 = 5.0

Hence,

E{Beta(ν1, ν2)} = ν1

ν1 + ν2

V {Beta(ν1, ν2)} = ν1ν2

(ν1 + ν2)2(ν1 + ν2 + 1)
.

(2.80)

The beta distribution has an important role in the theory of statistics. As will be
seen later, many methods of statistical inference are based on the order statistics (see
Sect. 2.7). The distribution of the order statistics is related to the beta distribution.
Moreover, since the beta distribution can get a variety of shapes, it has been applied
in many cases in which the variable has a distribution on a finite domain. By
introducing a location and a scale parameter, one can fit a shifted-scaled beta
distribution to various frequency distributions.

2.5 Joint, Marginal, and Conditional Distributions

2.5.1 Joint and Marginal Distributions

Let X1, . . . , Xk be random variables which are jointly observed at the same
experiments. In Sect. 2.6 we present various examples of bivariate and multivariate
frequency distributions. In the present section, we present only the fundamentals of
the theory, mainly for future reference. We make the presentation here, focusing on
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continuous random variables. The theory holds generally for discrete or for mixture
of continuous and discrete random variables.

A function F(x1, . . . , xk) is called the joint c.d.f. of X1, . . . , Xk if

F(x1, . . . , xk) = Pr{X1 ≤ x1, . . . , Xk ≤ xk} (2.81)

for all (x1, . . . , xk) ∈ R
k (the Euclidean k-space). By letting one or more variables

tend to infinity, we obtain the joint c.d.f. of the remaining variables. For example,

F(x1,∞) = Pr{X1 ≤ x1, X2 ≤ ∞}
= Pr{X1 ≤ x1} = F1(x1).

(2.82)

The c.d.f.s of the individual variables are called the marginal distributions. F1(x1)

is the marginal c.d.f. of X1.
A non-negative function f (x1, · · · , xk) is called the joint p.d.f. of X1, · · · , Xk ,

if

(i)

f (x1, · · · , xk) ≥ 0 for all (x1, · · · , xk), where −∞ < xi < ∞ (i = 1, · · · , k)

(ii)

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, . . . , xk) dx1 · · · dxk = 1.

and
(iii)

F(x1, . . . , xk) =
∫ x1

−∞
· · ·

∫ xk

−∞
f (y1, . . . , yk) dy1 · · · dyk.

The marginal p.d.f. of Xi (i = 1, · · · , k) can be obtained from the joint p.d.f.
f (x1, . . . , xk), by integrating the joint p.d.f. with respect to all xj , j �= i. For
example, if k = 2, f (x1, x2) is the joint p.d.f. of X1, X2. The marginal p.d.f. of
X1 is

f1(x1) =
∫ ∞

−∞
f (x1, x2) dx2.

Similarly, the marginal p.d.f. of X2 is

f2(x2) =
∫ ∞

−∞
f (x1, x2) dx1.
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Indeed, the marginal c.d.f. of Xi is

F(x1) =
∫ x1

−∞

∫ ∞

−∞
f (y1, y2) dy1 dy2.

Differentiating F(x1) with respect to x1, we obtain the marginal p.d.f. of X1, i.e.,

f (x1) = d

dx1

∫ x1

−∞

∫ ∞

−∞
f (y1, y2) dy1 dy2

=
∫ ∞

−∞
f (x1, y2) dy2.

If k = 3, we can obtain the marginal joint p.d.f. of a pair of random variables by
integrating with respect to the third variable. For example, the joint marginal p.d.f.
of (X1, X2) can be obtained from that of (X1, X2, X3) as

f1,2(x1, x2) =
∫ ∞

−∞
f (x1, x2, x3) dx3.

Similarly,

f1,3(x1, x3) =
∫ ∞

−∞
f (x1, x2, x3) dx2,

and

f2,3(x2, x3) =
∫ ∞

−∞
f (x1, x2, x3) dx1.

Example 2.27 The present example is theoretical and is designed to illustrate the
above concepts.

Let (X, Y ) be a pair of random variables having a joint uniform distribution on
the region

T = {(x, y) : 0 ≤ x, y, x + y ≤ 1}.

T is a triangle in the (x, y)-plane with vertices at (0, 0), (1, 0), and (0, 1). According
to the assumption of uniform distribution, the joint p.d.f. of (X, Y ) is

f (x, y) =
{
2, if (x, y) ∈ T

0, otherwise.

The marginal p.d.f. of X is obtained as
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f1(x) = 2
∫ 1−x

0
dy = 2(1 − x), 0 ≤ x ≤ 1.

Obviously, f1(x) = 0 for x outside the interval [0, 1]. Similarly, the marginal p.d.f.
of Y is

f2(y) =
{
2(1 − y), 0 ≤ y ≤ 1

0, otherwise.

Both X and Y have the same marginal Beta(1, 2) distribution. Thus,

E{X} = E{Y } = 1

3

and

V {X} = V {Y } = 1

18
.

�

2.5.2 Covariance and Correlation

Given any two random variables (X1, X2) having a joint distribution with p.d.f.
f (x1, x2), the covariance of X1 and X2 is defined as

Cov(X1, X2) =
∫ ∞

−∞

∫ ∞

−∞
(x1 − μ1)(x2 − μ2)f (x1, x2) dx1 dx2, (2.83)

where

μi =
∫ ∞

−∞
xfi(x) dx, i = 1, 2,

is the expected value of Xi . Notice that

Cov(X1, X2) = E{(X1 − μ1)(X2 − μ2)}
= E{X1X2} − μ1μ2.

The correlation between X1 and X2 is defined as

ρ12 = Cov(X1, X2)

σ1σ2
, (2.84)
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where σi (i = 1, 2) is the standard deviation of Xi .

Example 2.28 In continuation of the previous example, we compute Cov(X, Y ).
We have seen that E{X} = E{Y } = 1

3 . We compute now the expected value of
their product

E{XY } = 2
∫ 1

0
x

∫ 1−x

0
y dy

= 2
∫ 1

0
x · 1

2
(1 − x)2 dx

= B(2, 3) = �(2)�(3)

�(5)
= 1

12
.

Hence,

Cov(X, Y ) = E{XY } − μ1μ2 = 1

12
− 1

9

= − 1

36
.

Finally, the correlation between X, Y is

ρXY = −1/36

1/18
= −1

2
.

�
The following are some properties of the covariance

(i)

|Cov(X1, X2)| ≤ σ1σ2,

where σ1 and σ2 are the standard deviations of X1 and X2, respectively.
(ii) If c is any constant, then,

Cov(X, c) = 0. (2.85)

(iii) For any constants a1 and a2,

Cov(a1X1, a2X2) = a1a2Cov(X1, X2). (2.86)

(iv) For any constants a, b, c, and d,

Cov(aX1 + bX2, cX3 + dX4) = ac Cov(X1, X3) + ad Cov(X1, X4)

+ bc Cov(X2, X3) + bd Cov(X2, X4).
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Property (iv) can be generalized to be

Cov

⎛
⎝ m∑

i=1

aiXi,

n∑
j=1

bjYj

⎞
⎠ =

m∑
i=1

n∑
j=1

aibj Cov(Xi, Yj ). (2.87)

From property (i) above, we deduce that −1 ≤ ρ12 ≤ 1. The correlation obtains the
values ±1 only if the two variables are linearly dependent.

Definition of Independence
Random variables X1, · · · , Xk are said to be mutually independent if, for every
(x1, · · · , xk),

f (x1, · · · , xk) =
k∏

i=1

fi(xi), (2.88)

where fi(xi) is the marginal p.d.f. of Xi . The variables X, Y of Example 2.28 are
dependent, since f (x, y) �= f1(x)f2(y).

If two random variables are independent, then their correlation (or covariance)
is zero. The converse is generally not true. Zero correlation does not imply
independence.

We illustrate this in the following example.

Example 2.29 Let (X, Y ) be discrete random variables having the following joint
p.d.f.

p(x, y) =
⎧⎨
⎩
1

3
, if X = −1, Y = 0 or X = 0, Y = 0 or X = 1, Y = 1

0, elsewhere.

In this case the marginal p.d.f. are

p1(x) =
⎧⎨
⎩
1

3
, x = −1, 0, 1

0, otherwise

p2(y) =

⎧⎪⎨
⎪⎩
1

3
, y = 0

2

3
, y = 1.

p(x, y) �= p1(x)p2(y) if X = 1, Y = 1, for example. Thus, X and Y are dependent.
On the other hand, E{X} = 0 and E{XY } = 0. Hence, cov(X, Y ) = 0. �

The following result is very important for independent random variables.
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If X1, X2, . . . , Xk are mutually independent, then, for any integrable func-
tions g1(X1), . . . , gk(Xk),

E

{
k∏

i=1

gi(Xi)

}
=

k∏
i=1

E{gi(Xi)}. (2.89)

Indeed,

E

{
k∏

i=1

gi(Xi)

}
=
∫

· · ·
∫

g1(x1) · · · gk(xk) · f (x1, . . . , xk) dx1 · · · dxk

=
∫

· · ·
∫

g1(x1) · · · gk(xk)f1(x1) . . . fk(xk) dx1 · · · dxk

=
∫

g1(x1)f1(x1) dx1 ·
∫

g2(x2)f2(x2) dx2 · · ·
∫

gk(xk)fk(xk) dxk

=
k∏

i=1

E{gi(Xi)}.

2.5.3 Conditional Distributions

If (X1, X2) are two random variables having a joint p.d.f. f (x1, x2) and marginals
ones, f1(·), and f2(·), respectively, then the conditional p.d.f. of X2, given {X1 =
x1}, where f1(x1) > 0, is defined to be

f2·1(x2 | x1) = f (x1, x2)

f1(x1)
. (2.90)

Notice that f2·1(x2 | x1) is a p.d.f. Indeed f2·1(x2 | x1) ≥ 0 for all x2, and

∫ ∞

−∞
f2·1(x2 | x1) dx2 =

∫∞
−∞ f (x1, x2) dx2

f1(x1)

= f1(x1)

f1(x1)
= 1.

The conditional expectation of X2, given {X1 = x1} such that f1(x1) > 0, is the
expected value of X2 with respect to the conditional p.d.f. f2·1(x2 | x1), i.e.,

E{X2 | X1 = x1} =
∫ ∞

−∞
xf2·1(x | x1) dx.
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Similarly, we can define the conditional variance of X2, given {X1 = x1}, as the
variance of X2, with respect to the conditional p.d.f. f2·1(x2 | x1). If X1 and X2 are
independent, then, by substituting f (x1, x2) = f1(x1)f2(xs2) we obtain

f2·1(x2 | x1) = f2(x2),

and

f1·2(x1 | x2) = f1(x1).

Example 2.30 Returning to Examples 2.27 and 2.28, we compute the conditional
distribution of Y , given {X = x}, for 0 < x < 1.

According to the above definition, the conditional p.d.f. of Y , given {X = x}, for
0 < x < 1, is

fY |X(y | x) =
⎧⎨
⎩

1

1 − x
, if 0 < y < (1 − x)

0, otherwise.

Notice that this is a uniform distribution over (0, 1 − x), 0 < x < 1. If x �∈ (0, 1),
then the conditional p.d.f. does not exist. This is, however, an event of probability
zero. From the above result, the conditional expectation of Y , given {X = x}, for
0 < x < 1, is

E{Y | X = x} = 1 − x

2
.

The conditional variance is

V {Y | X = x} = (1 − x)2

12
.

In a similar fashion, we show that the conditional distribution of X, given Y = y,
0 < y < 1, is uniform on (0, 1 − y). �

One can immediately prove that if X1 and X2 are independent, then the
conditional distribution of X1 given {X2 = x2}, when f2(x2) > 0, is just the
marginal distribution of X1. Thus, X1 and X2 are independent if and only if

f2·1(x2 | x1) = f2(x2) for all x2

and

f1·2(x1 | x2) = f1(x1) for all x1,
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provided that the conditional p.d.f. is well defined.
Notice that for a pair of random variables (X, Y ), E{Y | X = x} changes with

x, as shown in Example 2.30, if X and Y are dependent. Thus, we can consider
E{Y | X} to be a random variable, which is a function of X. It is interesting to
compute the expected value of this function of X, i.e.,

E{E{Y | X}} =
∫

E{Y | X = x}f1(x) dx

=
∫ {∫

yfY ·X(y | x) dy

}
f1(x) dx

=
∫ ∫

y
f (x, y)

f1(x)
f1(x) dy dx.

If we can interchange the order of integration (whenever
∫ |y|f2(y) dy < ∞), then

E{E{Y | X}} =
∫

y

{∫
f (x, y) dx

}
dy

=
∫

yf2(y) dy

= E{Y }.

(2.91)

This result, known as the law of the iterated expectation, is often very useful. An
example of the use of the law of the iterated expectation is the following.

Example 2.31 Let (J,N) be a pair of random variables. The conditional distribu-
tion of J , given {N = n}, is the binomial B(n, p). The marginal distribution of N

is Poisson with mean λ. What is the expected value of J ?
By the law of the iterated expectation,

E{J } = E{E{J | N}}
= E{Np} = pE{N} = pλ.

One can show that the marginal distribution of J is Poisson, with mean pλ. �
Another important result relates variances and conditional variances, that is, if

(X, Y ) is a pair of random variables having finite variances, then

V {Y } = E{V {Y | X}} + V {E{Y | X}}. (2.92)

We call this relationship the law of total variance.

Example 2.32 Let (X, Y ) be a pair of independent random variables having finite
variances σ 2

X and σ 2
Y and expected values μX, μY . Determine the variance of W =

XY . By the law of total variance,
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V {W } = E{V {W | X}} + V {E{W | X}}.

Since X and Y are independent

V {W | X} = V {XY | X} = X2V {Y | X}
= X2σ 2

Y .

Similarly,

E{W | X} = XμY .

Hence,

V {W } = σ 2
Y E{X2} + μ2

Y σ 2
X

= σ 2
Y (σ 2

X + μ2
X) + μ2

Y σ 2
X

= σ 2
Xσ 2

Y + μ2
Xσ 2

Y + μ2
Y σ 2

X.

�

2.6 Some Multivariate Distributions

2.6.1 The Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution to cases
of n independent trials in which the results are classified to k possible categories
(e.g., excellent, good, average, poor). The random variables (J1, J2, · · · , Jk) are
the number of trials yielding results in each one of the k categories. These
random variables are dependent, since J1 + J2 + · · · + Jk = n. Furthermore, let
p1, p2, · · · , pk; pi ≥ 0,

∑k
i=1 pi = 1 be the probabilities of the k categories. The

binomial distribution is the special case of k = 2. Since Jk = n− (J1 +· · ·+Jk−1),
the joint probability function is written as a function of k − 1 arguments, and its
formula is

p(j1, · · · , jk−1) =
(

n

j1, · · · , jk−1

)
p

j1
1 · · · pjk−1

k−1p
jk

k (2.93)

for j1, · · · , jk−1 ≥ 0 such that
∑k−1

i=1 ji ≤ n. In this formula,

(
n

j1, · · · , jk−1

)
= n!

j1!j2! · · · jk! , (2.94)
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and jk = n− (j1 +· · ·+ jk−1). For example, if n = 10, k = 3, p1 = 0.3, p2 = 0.4,
p3 = 0.3,

p(5, 2) = 10!
5!2!3! (0.3)

5(0.4)2(0.3)3

= 0.02645.

The marginal distribution of each one of the k variables is binomial, with parameters
n and pi (i = 1, · · · , k). The joint marginal distribution of (J1, J2) is trinomial,
with parameters n, p1, p2, and (1 − p1 − p2). Finally, the conditional distribution
of (J1, · · · , Jr ), 1 ≤ r < k, given {Jr+1 = jr+1, · · · , Jk = jk}, is (r + 1)-nomial,
with parameters nr = n − (jr+1 + · · · + jk), and p′

1, · · · , p′
r , p

′
r+1, where

p′
i = pi

(1 − pr+1 − · · · − pk)
, i = 1, · · · , r

and

p′
r+1 = 1 −

r∑
i=1

p′
i .

Finally, we can show that, for i �= j ,

Cov(Ji, Jj ) = −npipj . (2.95)

Example 2.33 An insertion machine is designed to insert components into
computer-printed circuit boards. Every component inserted on a board is scanned
optically. An insertion is either error-free or its error is classified into the following
two main categories: mis-insertion (broken lead, off pad, etc.) or wrong component.
Thus, we have altogether three general categories. Let

J1 = # of error free components;
J2 = # of misinsertion;
J3 = # of wrong components.

The probabilities that an insertion belongs to one of these categories is p1 = 0.995,
p2 = 0.001, and p2 = 0.004.

The insertion rate of this machine is n = 3500 components per hour of operation.
Thus, we expect during 1 hour of operation n × (p2 + p3) = 175 insertion errors.

Given that there are 16 insertion errors during a particular hour of operation, the

conditional distribution of the number of mis-insertions is binomial B
(
16, 0.01

0.05

)
.

Thus,
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E{J2 | J2 + J3 = 16} = 16 × 0.2 = 3.2.

On the other hand,

E{J2} = 3500 × 0.001 = 3.5.

We see that the information concerning the total number of insertion errors makes a
difference.

Finally,

Cov(J2, J3) = −3500 × 0.001 × 0.004

= −0.014

V {J2} = 3500 × 0.001 × 0.999 = 3.4965

and

V {J3} = 3500 × 0.004 × 0.996 = 13.944.

Hence, the correlation between J2 and J3 is

ρ2,3 = −0.014√
3.4965 × 13.944

= −0.0020.

This correlation is quite small. �

2.6.2 The Multi-Hypergeometric Distribution

Suppose that we draw from a population of size N a RSWOR of size n. Each one of
the n units in the sample is classified to one of k categories. Let J1, J2, · · · , Jk be the
number of sample units belonging to each one of these categories. J1+· · ·+Jk = n.
The distribution of J1, · · · , Jk is k-variate hypergeometric. If M1, · · · ,Mk are the
number of units in the population in these categories, before the sample is drawn,
then the joint p.d.f. of J1, · · · , Jk is

p(j1, · · · , jk−1) =
(
M1
j1

)(
M2
j2

) · · · (Mk

jk

)
(
N
n

) , (2.96)

where jk = n − (j1 + · · · + jk−1). This distribution is a generalization of the hyper-
geometric distribution H(N,M, n). The hypergeometric distribution H(N,Mi, n)
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is the marginal distribution of Ji (i = 1, · · · , k). Thus,

E{Ji} = n
Mi

N
, i = 1, · · · , k

V {Ji} = n
Mi

N

(
1 − Mi

N

)(
1 − n − 1

N − 1

)
, i = 1, · · · , k

(2.97)

and for i �= j

Cov(Ji, Jj ) = −n
Mi

N
· Mj

N

(
1 − n − 1

N − 1

)
.

Example 2.34 A lot of 100 spark plugs contains 20 plugs from vendor V1, 50 plugs
from vendor V2, and 30 plugs from vendor V3.

A random sample of n = 20 plugs is drawn from the lot without replacement.
Let Ji be the number of plugs in the sample from the vendor Vi , i = 1, 2, 3.

Accordingly,

Pr{J1 = 5, J2 = 10} =
(20
5

)(50
10

)(30
5

)
(100
20

)
= 0.00096.

If we are told that 5 out of the 20 plugs in the sample are from vendor V3, then the
conditional distribution of J1 is

Pr{J1 = j1 | J3 = 5} =
(20
j1

)( 50
15−j1

)
(70
15

) , j1 = 0, · · · , 15.

Indeed, given J3 = 5, then J1 can assume only the values 0, 1, · · · , 15. The
conditional probability that j1 out of the 15 remaining plugs in the sample are from
vendor V1 is the same like that of choosing a RSWOR of size 15 from a lot of size
70 = 20 + 50, with 20 plugs from vendor V1. �

2.6.3 The Bivariate Normal Distribution

The bivariate normal distribution is the joint distribution of two continuous random
variables (X, Y ) having a joint p.d.f.
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Fig. 2.17 Bivariate normal
p.d.f.

f (x, y;μ, η, σX, σY , ρ) = 1

2πσXσY

√
1 − ρ2

·

exp

{
− 1

2(1 − ρ2)

[(
x − μ

σx

)2

− 2ρ
x − μ

σX

· y − η

σY

+
(

y − η

σY

)2
]}

− ∞ < x, y < ∞.

(2.98)
μ, η, σX, σY , and ρ are parameters of this distribution.

Integration of y yields that the marginal distribution of X is N(μ, σ 2
x ). Similarly,

the marginal distribution of Y isN(η, σ 2
Y ). Furthermore, ρ is the correlation between

X and Y . Notice that if ρ = 0, then the joint p.d.f. becomes the product of the two
marginal ones, i.e.,

f (x, y);μ, η, σX, σY , 0) = 1√
2πσX

exp

{
−1

2

(
x − μ

σX

)2
}

·

1√
2πσY

exp

{
−1

2

(
y − η

σY

)2
}

, for all − ∞ < x, y < ∞.

Hence, if ρ = 0, then X and Y are independent. On the other hand, if ρ �= 0, then
f (x, y;μ, η, σX, σY , ρ) �= f1(x;μ, σX)f2(y; η, σY ), and the two random variables
are dependent.

In Fig. 2.17 we present the bivariate p.d.f. for μ = η = 0, σX = σY = 1 and
ρ = 0.5.

One can verify also that the conditional distribution of Y , given {X = x}, is
normal with mean
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μY ·x = η + ρ
σY

σX

(x − μ) (2.99)

and variance

σ 2
Y ·x = σ 2

Y (1 − ρ2). (2.100)

It is interesting to see that μY ·x is a linear function of x. We can say that μY ·x =
E{Y | X = x} is, in the bivariate normal case, the theoretical (linear) regression of
Y on X (see Chap. 4). Similarly,

μX·y = μ + ρ
σX

σY

(y − η),

and

σ 2
X·y = σ 2

X(1 − ρ2).

If μ = η = 0 and σX = σY = 1, we have the standard bivariate normal
distribution. The joint c.d.f. in the standard case is denoted by 2(x, y; ρ) and its
formula is

2(x, y; ρ) = 1

2π
√
1 − ρ2

∫ x

−∞

∫ y

−∞
exp

{
− 1

2(1 − ρ2)
(z21 − 2ρz1z2 + z2)

}
dz1 dz2

=
∫ x

−∞
φ(z1)

(
y − ρz1√
1 − ρ2

)
dz1

(2.101)
Values of 2(x, y; ρ) can be obtained by numerical integration. If one has to
compute the bivariate c.d.f. in the general case, the following formula is useful:

F(x, y;μ, η, σX, σY , ρ) = 2

(
x − μ

σX

,
y − η

σY

; ρ

)
.

For computing Pr{a ≤ X ≤ b, c ≤ Y ≤ d} we use the formula

Pr{a ≤ X ≤ b, c ≤ Y ≤ d} = F(b, d;—)

− F(a, d;—) − F(b, c;—) + F(a, c;—).

Example 2.35 Suppose that (X, Y ) deviations in component placement on PCB by
an automatic machine have a bivariate normal distribution with means μ = η = 0,
standard deviations σX = 0.00075 and σY = 0.00046 [Inch], and ρ = 0.160. The
placement errors are within the specifications if |X| < 0.001 [Inch] and |Y | <
0.001 [Inch]. What proportion of components are expected to have X, Y deviations
compliant with the specifications? The standardized version of the spec limits is

Z1 = 0.001

0.00075
= 1.33 and Z2 = 0.001

0.00046
= 2.174. We compute
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Pr{|X| < 0.001, |Y | < 0.001} = 2(1.33, 2.174, .16) − 2(−1.33, 2.174, .16)

− 2(1.33,−2.174; .16) + 2(−1.33,−2.174; .16)

= 0.793.

This is the expected proportion of good placements. �

2.7 Distribution of Order Statistics

As defined in Chap. 1, the order statistics of the sample are the sorted data. More
specifically, let X1, · · · , Xn be identically distributed independent (i.i.d.) random
variables. The order statistics are X(i), i = 1, · · · , n, where

X(1) ≤ X(2) ≤ · · · ≤ X(n).

In the present section, we discuss the distributions of these order statistics, when
F(x) is (absolutely) continuous, having a p.d.f. f (x).

We start with the extremal statistics X(1) and X(n).
Since the random variables Xi (i = 1, · · · , n) are i.i.d., the c.d.f. of X(1) is

F(1)(x) = Pr{X(1) ≤ x}

= 1 − Pr{X(1) ≥ x} = 1 −
n∏

i=1

Pr{Xi ≥ x}

= 1 − (1 − F(x))n.

By differentiation we obtain that the p.d.f. of X(1) is

f(1)(x) = nf (x)[1 − F(x)]n−1. (2.102)

Similarly, the c.d.f. of the sample maximum X(n) is

F(n)(x) =
n∏

i=1

Pr{Xi ≤ x}

= (F (x))n.

The p.d.f. of X(n) is

f(n)(x) = nf (x)(F (x))n−1. (2.103)



2.7 Distribution of Order Statistics 109

Fig. 2.18 Series and parallel
systems

Example 2.36

(i) A switching circuit consists of n modules, which operate independently and
which are connected in series (see Fig. 2.18). Let Xi be the time till failure of
the i-th module. The system fails when any module fails. Thus, the time till
failure of the system is X(1). If all Xi are exponentially distributed with mean
life β, then the c.d.f. of X(1) is

F(1)(x) = 1 − e−nx/β, x ≥ 0.

Thus, X(1) is distributed like E

(
β

n

)
. It follows that the expected time till

failure of the circuit is E{X(1)} = β

n
.

(ii) If the modules are connected in parallel, then the circuit fails at the instant the
last of the n modules fail, which is X(n). Thus, if Xi is E(β), the c.d.f. of X(n)

is

F(n)(x) = (1 − e−(x/β))n.

The expected value of X(n) is

E{X(n)} = n

β

∫ ∞

0
xe−x/β(1 − e−x/β)n−1 dx

= nβ

∫ ∞

0
ye−y(1 − e−y)n−1 dy

= nβ

n−1∑
j=0

(−1)j
(

n − 1

j

)∫ ∞

0
ye−(1+j)y dy

= nβ

n∑
j=1

(−1)j−1
(

n − 1

j − 1

)
1

j2
.

Furthermore, since n
(
n−1
j−1

) = j
(
n
j

)
, we obtain that
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E{X(n)} = β

n∑
j=1

(−1)j−1
(

n

j

)
1

j
.

One can also show that this formula is equivalent to

E{X(n)} = β

n∑
j=1

1

j
.

Accordingly, if the parallel circuit consists of three modules, and the time till
failure of each module is exponential with β = 1000 [hr], the expected time till
failure of the system is 1833.3 [hr]. �

Generally, the distribution of X(i) (i = 1, · · · , n) can be obtained by the
following argument. The event {X(i) ≤ x} is equivalent to the event that the number
of Xi values in the random example which are smaller or equal to x is at least i.

Consider n independent and identical trials, in which “success” is that {Xi ≤ x}
(i = 1, · · · , n). The probability of “success” is F(x). The distribution of the number
of successes is B(n, F (x)). Thus, the c.d.f. of X(i) is

F(i)(x) = Pr{X(i) ≤ x} = 1 − B(i − 1; n, F (x))

=
n∑

j=i

(
n

j

)
(F (x))j (1 − F(x))n−j .

Differentiating this c.d.f. with respect to x yields the p.d.f. of X(i), namely,

f(i)(x) = n!
(i − 1)!(n − i)!f (x)(F (x))i−1(1 − F(x))n−i . (2.104)

Notice that if X has a uniform distribution on (0, 1), then the distribution of X(i) is
like that of Beta (i, n − i + 1), i = 1, · · · , n. In a similar manner, one can derive
the joint p.d.f. of (X(i), X(j)), 1 ≤ i < j ≤ n, etc. This joint p.d.f. is given by

f(i),(j)(x, y) = n!
(i − 1)!(j − 1 − i)!(n − j)!f (x)f (y) ·

· (F (x))i−1[F(y) − F(x)]j−i−1(1 − F(y))n−j ,

(2.105)

for −∞ < x < y < ∞.
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2.8 Linear Combinations of Random Variables

LetX1, X2, · · · , Xn be random variables having a joint distribution, with joint p.d.f.
f (x1, · · · , xn). Let α1, · · · , αn be given constants. Then

W =
n∑

i=1

αiXi

is a linear combination of the Xs. The p.d.f. of W can generally be derived, using
various methods. We discuss in the present section only the formulae of the expected
value and variance of W .

It is straightforward to show that

E{W } =
n∑

i=1

αiE{Xi}. (2.106)

That is, the expected value of a linear combination is the same linear combination
of the expectations.

The formula for the variance is somewhat more complicated and is given by

V {W } =
n∑

i=1

α2
i V {Xi} +

∑∑
i �=j

αiαj cov(Xi,Xj ). (2.107)

Example 2.37 Let X1, X2, · · · , Xn be i.i.d. random variables, with common expec-
tations μ and common finite variances σ 2. The sample mean X̄n = 1

n

∑n
i=1 Xi is a

particular linear combination, with

α1 = α2 = · · · = αn = 1

n
.

Hence,

E{X̄n} = 1

n

n∑
i=1

E{Xi} = μ

and, since X1, X2, · · · , Xn are mutually independent, cov(Xi,Xj ) = 0, all i �= j .
Hence,

V {X̄n} = 1

n2

n∑
i=1

V {Xi} = σ 2

n
.

Thus, we have shown that in a random sample of n i.i.d. random variables, the
sample mean has the same expectation as that of the individual variables, but its
sample variance is reduced by a factor of 1/n.
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Moreover, from Chebychev’s inequality, for any ε > 0

Pr{|X̄n − μ| > ε} <
σ 2

nε2
.

Therefore, since limn→∞
σ 2

nε2
= 0,

lim
n→∞ Pr{|X̄n − μ| > ε} = 0.

This property is called the convergence in probability of X̄n to μ. �

Example 2.38 Let U1, U2, U3 be three i.i.d. random variables having uniform
distributions on (0, 1). We consider the statistic

W = 1

4
U(1) + 1

2
U(2) + 1

4
U(3),

where 0 < U(1) < U(2) < U(3) < 1 are the order statistics. We have seen in Sect. 2.7
that the distribution of U(i) is like that of Beta(i, n − i + 1). Hence,

E{U(1)} = E{Beta(1, 3)} = 1

4

E{U(2)} = E{Beta(2, 2)} = 1

2

E{U(3)} = E{Beta(3, 1)} = 3

4
.

It follows that

E{W } = 1

4
· 1
4

+ 1

2
· 1
2

+ 1

4
· 3
4

= 1

2
.

To find the variance of W , we need more derivations.
First,

V {U(1)} = V {Beta(1, 3)} = 3

42 × 5
= 3

80

V {U(2)} = V {Beta(2, 2)} = 4

42 × 5
= 1

20

V {U(3)} = V {Beta(3, 1)} = 3

42 × 5
= 3

80
.

We need to find Cov(U(1), U(2)), Cov(U(1), U(3)), and Cov(U(2), U(3)). From the
joint p.d.f. formula of order statistics, the joint p.d.f. of (U(1), U(2)) is
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f(1),(2)(x, y) = 6(1 − y), 0 < x ≤ y < 1.

Hence,

E{U(1)U(2)} = 6
∫ 1

0
x

(∫ 1

0
y(1 − y) dy

)
dx

= 6

40
.

Thus,

Cov(U(1), U(2)) = 6

40
− 1

4
· 1
2

= 1

40
.

Similarly, the p.d.f. of (U(1), U(3)) is

f(1),(3)(x, y) = 6(y − x), 0 < x ≤ y < 1.

Thus,

E{U(1)U(3)} = 6
∫ 1

0
x

(∫ 1

x

y(y − x) dy

)
dx

= 6
∫ 1

0
x

(
1

3

(
1 − x3

)
− x

2

(
1 − x2

))
dx

= 1

5
,

E{U(1)U(3)} = 6
∫ 1

0
x

(∫ 1

x

y(y − x) dy

)
dx

= 6
∫ 1

0
x
2y3 − 3xy2

6

∣∣∣∣
1

x

dx

= 6
∫ 1

0
x

(
2 − 3x

6
− 2x3 − 3x3

6

)
dx

= 6
∫ 1

0
x
2 − 3x + x3

6
dx

=
∫ 1

0
x(2 − 3x + x3) dx
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= x5

5
− x3 + x2

∣∣∣∣
1

0

= 1

5
,

and

Cov(U(1), U(3)) = 1

5
− 1

4
× 3

4
= 1

80
.

The p.d.f. of (U(2), U(3)) is

f(2),(3)(x, y) = 6x, 0 < x ≤ y ≤ 1,

and

Cov(U(2), U(3)) = 1

40
.

Finally,

V {W } = 1

16
· 3

80
+ 1

4
· 1

20
+ 1

16
· 3

80

+ 2 · 1
4

· 1
2

· 1

40
+ 2 · 1

4
· 1
4

· 1

80

+ 2 · 1
2

· 1
4

· 1

40

= 1

32
= 0.03125.

�
The following is a useful result:
If X1, X2, · · · , Xn are mutually independent, then the m.g.f. of Tn =∑n
i=1 Xi is

MTn(t) =
n∏

i=1

MXi
(t). (2.108)

Indeed, as shown in Sect. 2.5.2, when X1, . . . , Xn are independent, the expected
value of the product of functions is the product of their expectations. Therefore,

MTn(t) = E
{
et

∑n
i=1 Xi

}
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= E

{
n∏

i=1

etXi

}

=
n∏

i=1

E{etXi }

=
n∏

i=1

MXi
(t).

The expected value of the product is equal to the product of the expectations,
since X1, · · · , Xn are mutually independent.

Example 2.39 In the present example, we illustrate some applications of the last
result.

(i) Let X1, X2, · · · , Xk be independent random variables having binomial dis-
tributions like B(ni, p), i = 1, · · · , k; then their sum Tk has the binomial
distribution. To show this,

MTk
(t) =

k∏
i=1

MXi
(t)

= [
etp + (1 − p)

]∑k
i=1 ni .

That is, Tk is distributed like B
(∑k

i=1 ni, p
)
. This result is intuitively clear.

(ii) If X1, · · · , Xn are independent random variables, having Poisson distributions
with parameters λi (i = 1, · · · , n) , then the distribution of Tn = ∑n

i=1 Xi is
Poisson with parameter μn = ∑n

i=1 λi . Indeed,

MTn(t) =
n∏

j=1

exp{−λj (1 − et )}

= exp

⎧⎨
⎩−

n∑
j=1

λj (1 − et )

⎫⎬
⎭

= exp{−μn(1 − et )}.
(iii) Suppose X1, · · · , Xn are independent random variables, and the distribution

of Xi is normal N(μi, σ
2
i ), then the distribution of W = ∑n

i=1 αiXi is normal
like that of

N

(
n∑

i=1

αiμi,

n∑
i=1

α2
i σ

2
i

)
.
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To verify this we recall that Xi = μi + σiZi , where Zi is N(0, 1) (i =
1, · · · , n). Thus,

MαiXi
(t) = E{et(αiμi+αiσiZi }

= etαiμi MZi
(αiσi t).

We derived before that MZi
(u) = eu2/2. Hence,

MαiXi
(t) = exp

{
αiμit + α2

i σ
2
i

2
t2

}
.

Finally,

MW(t) =
n∏

i=1

MαiXi
(t)

= exp

{(
n∑

i=1

αiμi

)
t +

∑n
i=1 α2

i σ
2
i

2
t2

}
.

This implies that the distribution of W is normal, with

E{W } =
n∑

i=1

αiμi

and

V {W } =
n∑

i=1

α2
i σ

2
i .

(iv) If X1, X2, · · · , Xn are independent random variables, having gamma distri-
bution like G(νi, β), respectively, i = 1, · · · , n, then the distribution of
Tn = ∑n

i=1 Xi is gamma, like that of G
(∑n

i=1 νi, β
)
. Indeed,

MTn(t) =
n∏

i=1

(1 − tβ)−νi

= (1 − tβ)−
∑n

i=1 νi .

�
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2.9 Large Sample Approximations

2.9.1 The Law of Large Numbers

We have shown in Example 2.37 that the mean of a random sample, X̄n, converges
in probability to the expected value ofX, μ (the population mean). This is the law of
large numbers (L.L.N.) which states that, if X1, X2, · · · are i.i.d. random variables
and E{|X1|} < ∞, then, for any ε > 0,

lim
n→∞Pr{|X̄n − μ| > ε} = 0.

We also write,

lim
n→∞ X̄n = μ, in probability.

This is known as the weak L.L.N. There is a stronger law, which states that, under
the above conditions,

Pr{ lim
n→∞ X̄n = μ} = 1.

It is beyond the scope of the book to discuss the meaning of the strong L.L.N.

2.9.2 The Central Limit Theorem

The central limit theorem (CLT) is one of the most important theorems in
probability theory. We formulate here the simplest version of this theorem, which is
often sufficient for applications. The theorem states that if X̄n is the sample mean of
n i.i.d. random variables, then, if the population variance σ 2 is positive and finite, the
sampling distribution of X̄n is approximately normal, as n → ∞. More precisely,

If X1, X2, · · · is a sequence of i.i.d. random variables, with E{X1} = μ

and V {X1} = σ 2, 0 < σ 2 < ∞, then

lim
n→∞Pr

{
(X̄n − μ)

√
n

σ
≤ z

}
= (z), (2.109)

where (z) is the c.d.f. of N(0, 1).
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The proof of this basic version of the CLT is based on a result in probability
theory, stating that if X1, X2, · · · is a sequence of random variables having m.g.f.s,
Mn(T ), n = 1, 2, · · · and if limn→∞ Mn(t) = M(t) is the m.g.f. of a random
variable X∗, having a c.d.f. F ∗(x), then limn→∞ Fn(x) = F ∗(x), where Fn(x) is
the c.d.f. of Xn.

The m.g.f. of

Zn =
√

n(X̄n − μ)

σ
,

can be written as

MZn(t) = E

{
exp

{
t√
nσ

n∑
i=1

(Xi − μ)

}}

=
(

E

{
exp

{
t√
nσ

(X1 − μ)

}})n

,

since the random variables are independent. Furthermore, Taylor expansion of

exp

{
t√
nσ

(X1 − μ)

}
is

1 + t√
nσ

(X1 − μ) + t2

2nσ 2
(X1 − μ)2 + o

(
1

n

)
,

for n large. Hence, as n → ∞

E

{
exp

{
t√
nσ

(X1 − μ)

}}
= 1 + t2

2n
+ o

(
1

n

)
.

Hence,

lim
n→∞ MZn(t) = lim

n→∞

(
1 + t2

2n
+ o

(
1

n

))n

= et2/2,

which is the m.g.f. of N(0, 1). This is a sketch of the proof. For rigorous proofs and
extensions, see textbooks on probability theory.
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2.9.3 Some Normal Approximations

The CLT can be applied to provide an approximation to the distribution of the sum
of n i.i.d. random variables, by a standard normal distribution, when n is large. We
list below a few such useful approximations.

(i) Binomial Distribution
When n is large, then the c.d.f. of B(n, p) can be approximated by

B(k; n, p) ∼= 

(
k + 1

2 − np√
np(1 − p)

)
. (2.110)

We add 1
2 to k, in the argument of (·) to obtain a better approximation when

n is not too large. This modification is called “correction for discontinuity.”
How large should n be to get a “good” approximation? A general rule is

n >
9

p(1 − p)
. (2.111)

(ii) Poisson Distribution
The c.d.f. of Poisson with parameter λ can be approximated by

P(k; λ) ∼= 

(
k + 1

2 − λ√
λ

)
, (2.112)

if λ is large (greater than 30).
(iii) Gamma Distribution

The c.d.f. of G(ν, β) can be approximated by

G(x; ν, β) ∼= 

(
x − νβ

β
√

ν

)
, (2.113)

for large values of ν.

Example 2.40

(i) A lot consists of n = 10,000 screws. The probability that a screw is defective
is p = 0.01. What is the probability that there are more than 120 defective
screws in the lot?
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The number of defective screws in the lot, Jn, has a distribution like
B(10000, 0.01). Hence,

Pr{J10000 > 120} = 1 − B(120; 10000, 0.01)
∼= 1 − 

(
120.5 − 100√

99

)

= 1 − (2.06) = 0.0197.

(ii) In the production of industrial film, we find on the average 1 defect per 100 [ft]2

of film. What is the probability that fewer than 100 defects will be found on
12,000 [ft]2 of film?

We assume that the number of defects per unit area of film is a Poisson
random variable. Thus, our model is that the number of defects, X, per
12,000 [ft]2 has a Poisson distribution with parameter λ = 120. Thus,

Pr{X < 100} ∼= 

(
99.5 − 120√

120

)

= 0.0306.

(iii) The time till failure, T , of radar equipment is exponentially distributed with
mean time till failure (MTTF) of β = 100 [hr].

A sample of n = 50 units is put on test. Let T̄50 be the sample mean. What is the
probability that T̄50 will fall in the interval (95, 105) [hr]?

We have seen that
∑50

i=1 Ti is distributed like G(50, 100), since E(β) is
distributed like G(1, β). Hence, T̄50 is distributed like 1

50G(50, 100) which is
G(50, 2). By the normal approximation

Pr{95 < T̄50 < 105} ∼= 

(
105 − 100

2
√
50

)

− 

(
95 − 100

2
√
50

)
= 2(0.3536) − 1 = 0.2763.

�

2.10 Additional Distributions of Statistics of Normal Samples

In the present section, we assume that X1, X2, · · · , Xn are i.i.d. N(μ, σ 2) random
variables. In the Sects. 2.10.1–2.10.3, we present the chi-squared, t-, and F -
distributions which play an important role in the theory of statistical inference
(Chap. 3).
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2.10.1 Distribution of the Sample Variance

Writing Xi = μ + σZi , where Z1, · · · , Zn are i.i.d. N(0, 1), we obtain that the
sample variance S2 is distributed like

S2 = 1

n − 1

n∑
i=1

(Xi − X̄n)
2

= 1

n − 1

n∑
i=1

(
μ + σZi − (μ + σZ̄n)

)2

= σ 2

n − 1

n∑
i=1

(Zi − Z̄n)
2.

One can show that
∑n

i=1(Zi − Z̄n)
2 is distributed like χ2[n − 1], where χ2[ν]

is called a chi-squared random variable with ν degrees of freedom. Moreover,
χ2[ν] is distributed like G

(
ν
2 , 2

)
.

The α-th quantile of χ2[ν] is denoted by χ2
α[ν]. Accordingly, the c.d.f. of the

sample variance is

HS2(x; σ 2) = Pr

{
σ 2

n − 1
χ2[n − 1] ≤ x

}

= Pr

{
χ2[n − 1] ≤ (n − 1)x

σ 2

}

= Pr

{
G

(
n − 1

2
, 2

)
≤ (n − 1)x

σ 2

}

= G

(
(n − 1)x

2σ 2 ; n − 1

2
, 1

)
.

(2.114)

The probability values of the distribution of χ2[ν], as well as the α-quantiles, can
be computed using Python or read from appropriate tables.

The expected value and variance of the sample variance are

E{S2} = σ 2

n − 1
E{χ2[n − 1]}

= σ 2

n − 1
E

{
G

(
n − 1

2
, 2

)}

= σ 2

n − 1
(n − 1) = σ 2.
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Similarly

V {S2} = σ 4

(n − 1)2
V {χ2[n − 1]}

= σ 4

(n − 1)2
V

{
G

(
n − 1

2
, 2

)}

= σ 4

(n − 1)2
· 2(n − 1)

= 2σ 4

n − 1
.

(2.115)

Thus applying Chebyshev’s inequality, for any given ε > 0,

Pr{|S2 − σ 2| > ε} <
2σ 4

(n − 1)ε2
.

Hence, S2 converges in probability to σ 2. Moreover,

lim
n→∞Pr

{
(S2 − σ 2)

σ 2
√
2

√
n − 1 ≤ z

}
= (z). (2.116)

That is, the distribution of S2 can be approximated by the normal distributions in
large samples.

2.10.2 The “Student” t-Statistic

We have seen that

Zn =
√

n(X̄n − μ)

σ

has a N(0, 1) distribution. As we will see in Chap. 3, when σ is unknown, we test
hypotheses concerning μ by the statistic

t =
√

n(X̄n − μ0)

S
,

where S is the sample standard deviation. If X1, · · · , Xn are i.i.d. like N(μ0, σ
2),

then the distribution of t is called the student t-distribution with ν = n−1 degrees
of freedom. The corresponding random variable is denoted by t[ν].
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Fig. 2.19 Density functions of t[ν], ν = 5, 50

The p.d.f. of t[ν] is symmetric about 0 (see Fig. 2.19). Thus,

E{t[ν]} = 0, for ν ≥ 2 (2.117)

and

V {t[ν]} = ν

ν − 2
, ν ≥ 3. (2.118)

The α-quantile of t[ν] is denoted by tα[ν]. It can be read from a table or determined
using scipy.stats.t.

2.10.3 Distribution of the Variance Ratio

F = S2
1 σ 2

2

S2
2 σ 2

1

.

Consider now two independent samples of size n1 and n2, respectively, which have
been taken from normal populations having variances σ 2

1 and σ 2
2 . Let
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Fig. 2.20 Density function of F(ν1, ν2)

S2
1 = 1

n1 − 1

n1∑
i=1

(X1i − X̄1)
2

and

S2
2 = 1

n2 − 1

n2∑
i=1

(X2i − X̄2)
2

be the variances of the two samples where X̄1 and X̄2 are the corresponding sample
means. The F -ratio has a distribution denoted by F [ν1, ν2], with ν1 = n1 − 1 and
ν2 = n2 − 1. This distribution is called the F -distribution with ν1 and ν2 degrees
of freedom. A graph of the densities of F [ν1, ν2] is given in Fig. 2.20.

The expected value and the variance of F [ν1, ν2] are

E{F [ν1, ν2]} = ν2/(ν2 − 2), ν2 > 2, (2.119)

and

V {F [ν1, ν2]} = 2ν22(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
, ν2 > 4. (2.120)

The (1 − α)-th quantile of F [ν1, ν2], i.e., F1−α[ν1, ν2], can be computed with
scipy in Python. If we wish to obtain the α-th quantile Fα[ν1, ν2] for values of
α < 0.5, we can apply the relationship
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F1−α[ν1, ν2] = 1

Fα[ν2, ν1] . (2.121)

Thus, for example, to compute F.05[15, 10], we write

F0.05[15, 10] = 1/F0.95[10, 15] = 1/2.54 = 0.3937.

2.11 Chapter Highlights

The concepts and definitions introduced are:

• Sample space
• Elementary events
• Operations with events
• Disjoint events
• Probability of events
• Random sampling with replacement (RSWR)
• Random sampling without replacement (RSWOR)
• Conditional probabilities
• Independent events
• Bayes’ theorem
• Prior probability
• Posterior probability
• Probability distribution function (p.d.f.)
• Discrete random variable
• Continuous random variable
• Cumulative distribution function
• Central moments
• Expected value
• Standard deviation
• Chebyshev’s inequality
• Moment generating function
• Skewness
• Kurtosis
• Independent trials
• P -th quantile
• Joint distribution
• Marginal distribution
• Conditional distribution
• Mutual independence
• Conditional independence
• Law of total variance
• Law of iterated expectation
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• Order statistics
• Convergence in probability
• Central limit theorem
• Law of large numbers

2.12 Exercises

Exercise 2.1 An experiment consists of making 20 observations on the quality of
chips. Each observation is recorded as G or D.

(i) What is the sample space, S, corresponding to this experiment?
(ii) How many elementary events in S?

(iiii) Let An, n = 0, · · · , 20, be the event that exactly n G observations are made.
Write the events An formally. How many elementary events belong to An?

Exercise 2.2 An experiment consists of ten measurements w1, · · · , w10 of the
weights of packages. All packages under consideration have weights between 10
and 20 pounds. What is the sample space S? Let A = {(w1, w2, · · · , w10) :
w1 + w2 = 25}. Let B = {(w1, · · · , w10) : w1 + w2 ≤ 25}. Describe the events A

and B graphically. Show that A ⊂ B.

Exercise 2.3 Strings of 30 binary (0, 1) signals are transmitted.

(i) Describe the sample space, S.
(ii) Let A10 be the event that the first ten signals transmitted are all 1s. How many

elementary events belong to A10?
(iii) Let B10 be the event that exactly 10 signals, out of 30 transmitted, are 1s. How

many elementary events belong to B10? Does A10 ⊂ B10?

Exercise 2.4 Prove De Morgan’s laws

(i) (A ∪ B)c = Ac ∩ Bc.
(ii) (A ∩ B)c = Ac ∪ Bc.

Exercise 2.5 Consider Exercise [3.1] Show that the events A0, A1, · · · , A20 are a
partition of the sample space S.

Exercise 2.6 Let A1, · · · , An be a partition of S. Let B be an event. Show that
B = ⋃n

i=1 AiB, where AiB = Ai ∩ B, is a union of disjoint events.

Exercise 2.7 Develop a formula for the probability Pr{A ∪ B ∪ C}, where A, B,
and C are arbitrary events.
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Exercise 2.8 Show that if A1, · · · , An is a partition, then for any event B, P {B} =∑n
i=1 P {AiB}. [Use the result of 2.6.]

Exercise 2.9 An unbiased die has the numbers 1, 2, · · · , 6 written on its faces. The
die is thrown twice. What is the probability that the two numbers shown on its upper
face sum up to 10?

Exercise 2.10 The time till failure, T , of electronic equipment is a random quantity.
The event At = {T > t} is assigned the probability Pr{At } = exp{−t/200}, t ≥ 0.
What is the probability of the event B = {150 < T < 280}?

Exercise 2.11 A box contains 40 parts, 10 of type A, 10 of type B, 15 of type C,
and 5 of type D. A random sample of eight parts is drawn without replacement.
What is the probability of finding two parts of each type in the sample?

Exercise 2.12 How many samples of size n = 5 can be drawn from a population
of size N = 100,

(i) with replacement?
(ii) without replacement?

Exercise 2.13 A lot of 1000 items contain M = 900 “good” ones and 100
“defective” ones. A random sample of size n = 10 is drawn from the lot. What
is the probability of observing in the sample of at least eight good items,

(i) when sampling is with replacement?
(ii) when sampling is without replacement?

Exercise 2.14 In continuation of the previous exercise, what is the probability of
observing in an RSWR at least one defective item?

Exercise 2.15 Consider the problem of Exercise 2.10. What is the conditional
probability Pr{T > 300 | T > 200}?

Exercise 2.16 A point (X, Y ) is chosen at random within the unit square, i.e.,

S = {(x, y) : 0 ≤ x, y ≤ 1}.

Any set A contained in S having area given by

Area{A} =
∫∫

A

dx dy

is an event, whose probability is the area of A. Define the events
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B =
{
(x, y) : x >

1

2

}

C = {(x, y) : x2 + y2 ≤ 1}
D = {(x, y) : (x + y) ≤ 1}.

(i) Compute the conditional probability Pr{D | B}.
(ii) Compute the conditional probability Pr{C | D}.

Exercise 2.17 Show that if A and B are independent events, then Ac and Bc are
also independent events.

Exercise 2.18 Show that ifA and B are disjoint events, thenA andB are dependent
events.

Exercise 2.19 Show that if A and B are independent events, then

Pr{A ∪ B} = Pr{A}(1 − Pr{B}) + Pr{B}
= Pr{A} + Pr{B}(1 − Pr{A}).

Exercise 2.20 A machine which tests whether a part is defective, D, or good, G,
may err. The probabilities of errors are given by

Pr{A | G} = 0.95,

Pr{A | D} = 0.10,

where A is the event “the part is considered G after testing.” If Pr{G} = 0.99, what
is the probability of D given A?

Additional Problems in Combinatorial and Geometric Probabilities

Exercise 2.21 Assuming 365 days in a year, if there are 10 people in a party, what
is the probability that their birthdays fall on different days? Show that if there are
more than 22 people in the party, the probability is greater than 1/2 that at least 2
will have birthdays on the same day.

Exercise 2.22 A number is constructed at random by choosing 10 digits from
{0, . . . , 9} with replacement. We allow the digit 0 at any position. What is the
probability that the number does not contain three specific digits?

Exercise 2.23 A caller remembers all the seven digits of a telephone number but
is uncertain about the order of the last four. He keeps dialing the last four digits
at random, without repeating the same number, until he reaches the right number.
What is the probability that he will dial at least ten wrong numbers?
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Exercise 2.24 One hundred lottery tickets are sold. There are four prizes and ten
consolation prizes. If you buy five tickets, what is the probability that you win:

(i) one prize?
(ii) a prize and a consolation prize?
(iii) Something?

Exercise 2.25 Ten PCBs are in a bin, of which two of these are defective. The
boards are chosen at random, one by one, without replacement. What is the
probability that exactly five good boards will be found between the drawing of the
first and second defective PCB?

Exercise 2.26 A random sample of 11 integers is drawn without replacement from
the set {1, 2, . . . , 20}. What is the probability that the sample median, Me, is equal
to the integer k? 6 ≤ k ≤ 15.

Exercise 2.27 A stick is broken at random into three pieces. What is the probability
that these pieces can be the sides of a triangle?

Exercise 2.28 A particle is moving at a uniform speed on a circle of unit radius and
is released at a random point on the circumference. Draw a line segment of length
2h (h < 1) centered at a point A of distance a > 1 from the center of the circle, O.
Moreover, the line segment is perpendicular to the line connecting O with A. What
is the probability that the particle will hit the line segment? [The particle flies along
a straight line tangential to the circle.]

Exercise 2.29 A block of 100 bits is transmitted over a binary channel, with
probability p = 10−3 of bit error. Errors occur independently. Find the probability
that the block contains at least three errors.

Exercise 2.30 A coin is tossed repeatedly until two “heads” occur. What is the
probability that four tosses are required?

Exercise 2.31 Consider the sample space S of all sequences of ten binary numbers
(0-1 signals). Define on this sample space two random variables and derive their
probability distribution function, assuming the model that all sequences are equally
probable.

Exercise 2.32 The number of blemishes on a ceramic plate is a discrete random
variable. Assume the probability model, with p.d.f.

p(x) = e−5 5
x

x! , x = 0, 1, · · ·

(i) Show that
∑∞

x=0 p(x) = 1
(ii) What is the probability of at most one blemish on a plate?
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(iii) What is the probability of no more than seven blemishes on a plate?

Exercise 2.33 Consider a distribution function of a mixed type with c.d.f.

Fx(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x < −1

0.3 + 0.2(x + 1), if − 1 ≤ x < 0

0.7 + 0.3x, if 0 ≤ x < 1

1, if 1 ≤ x.

(i) What is Pr{X = −1}?
(ii) What is Pr{−0.5 < X < 0}?
(iii) What is Pr{0 ≤ X < 0.75}?
(iv) What is Pr{X = 1}?
(v) Compute the expected value, E{X}, and variance, V {X}.

Exercise 2.34 A random variable has the Rayleigh distribution, with c.d.f.

F(x) =
{
0, x < 0

1 − e−x2/2σ 2
, x ≥ 0

where σ 2 is a positive parameter. Find the expected value E{X}.

Exercise 2.35 A random variable X has a discrete distribution over the integers
{1, 2, . . . , N} with equal probabilities. Find E{X} and V {X}.

Exercise 2.36 A random variable has expectation μ = 10 and standard deviation
σ = 0.5. Use Chebyshev’s inequality to find a lower bound to the probability

Pr{8 < X < 12}.

Exercise 2.37 Consider the random variable X with c.d.f.

F(x) = 1

2
+ 1

π
tan−1(x), −∞ < x < ∞.

Find the 0.25-th, 0.50-th, and 0.75-th quantiles of this distribution.

Exercise 2.38 Show that the central moments μ∗
l relate to the moments μl around

the origin, by the formula
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μ∗
l =

l−2∑
j=0

(−1)j
(

l

j

)
μl−jμ

j

1 + (−1)l−1(l − 1)μl
1.

Exercise 2.39 Find the expected valueμ1 and the second momentμ2 of the random
variable whose c.d.f. is given in Exercise 2.33.

Exercise 2.40 A random variable X has a continuous uniform distribution over the
interval (a, b), i.e.,

f (x) =
⎧⎨
⎩

1

b − a
, if a ≤ x ≤ b

0, otherwise.

Find the moment generating function of X. Find the mean and variance by
differentiating the m.g.f.

Exercise 2.41 Consider the moment generating function (m.g.f.) of the exponential
distribution, i.e.,

M(t) = λ

λ − t
, t < λ.

(i) Find the first four moments of the distribution, by differentiating M(t).
(ii) Convert the moments to central moments.
(iii) What is the index of kurtosis β4?

Exercise 2.42 Using Python, prepare a table of the p.d.f. and c.d.f. of the binomial
distribution B(20, 0.17).

Exercise 2.43 What are the first quantile (Q1), median (Me), and third quantile
(Q3) of B(20, 0.17)?

Exercise 2.44 Compute the mean E{X} and standard deviation, σ , of B(45, 0.35).

Exercise 2.45 A PCB is populated by 50 chips which are randomly chosen from
a lot. The probability that an individual chip is non-defective is p. What should be
the value of p so that no defective chip is installed on the board is γ = 0.99? [The
answer to this question shows why the industry standards are so stringent.]

Exercise 2.46 Let b(j ; n, p) be the p.d.f. of the binomial distribution. Show that as
n → ∞, p → 0 so that np → λ, 0 < λ < ∞, then
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lim
n→∞
p→0
np→λ

b(j ; n, p) = e−λ λj

j ! , j = 0, 1, . . . .

Exercise 2.47 Use the result of the previous exercise to find the probability that
a block of 1000 bits, in a binary communication channel, will have less than four
errors, when the probability of a bit error is p = 10−3.

Exercise 2.48 Compute E{X} and V {X} of the hypergeometric distribution
H(500, 350, 20).

Exercise 2.49 A lot of size N = 500 items contains M = 5 defective ones. A
random sample of size n = 50 is drawn from the lot without replacement (RSWOR).
What is the probability of observing more than one defective item in the sample?

Exercise 2.50 Consider Example 2.23. What is the probability that the lot will be
rectified if M = 10 and n = 20?

Exercise 2.51 Use the m.g.f. to compute the third and fourth central moments of
the Poisson distribution P(10). What is the index of skewness and kurtosis of this
distribution?

Exercise 2.52 The number of blemishes on ceramic plates has a Poisson distri-
bution with mean λ = 1.5. What is the probability of observing more than two
blemishes on a plate?

Exercise 2.53 The error rate of an insertion machine is 380 PPM (per 106 parts
inserted). What is the probability of observing more than six insertion errors in 2 h
of operation, when the insertion rate is 4000 parts per hour?

Exercise 2.54 In continuation of the previous exercise, letN be the number of parts
inserted until an error occurs. What is the distribution of N? Compute the expected
value and the standard deviation of N .

Exercise 2.55 What are Q1, Me, and Q3 of the negative binomial N.B. (p, k) with
p = 0.01 and k = 3?

Exercise 2.56 Derive the m.g.f. of NB(p, k).

Exercise 2.57 Differentiate the m.g.f. of the geometric distribution, i.e.,

M(t) = pet

(1 − et (1 − p))
, t < − log(1 − p),

to obtain its first four moments, and derive then the indices of skewness and kurtosis.
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Exercise 2.58 The proportion of defective RAM chips is p = 0.002. You have to
install 50 chips on a board. Each chip is tested before its installation. How many
chips should you order so that, with probability greater than γ = 0.95, you will
have at least 50 good chips to install?

Exercise 2.59 The random variable X assumes the values {1, 2, . . .} with prob-
abilities of a geometric distribution, with parameter p, 0 < p < 1. Prove the
“memoryless” property of the geometric distribution, namely,

P [X > n + m | X > m] = P [X > n],
for all n,m = 1, 2, . . ..

Exercise 2.60 Let X be a random variable having a continuous c.d.f. F(x). Let
Y = F(X). Show that Y has a uniform distribution on (0, 1). Conversely, if U has
a uniform distribution on (0, 1), then X = F−1(U) has the c.d.f. F(x).

Exercise 2.61 Compute the expected value and the standard deviation of a uniform
distribution U(10, 50).

Exercise 2.62 Show that if U is uniform on (0, 1), then X = − log(U) has an
exponential distribution E(1).

Exercise 2.63 Use Python to compute the probabilities, for N(100, 15), of

(i) 92 < X < 108;
(ii) X > 105;
(iii) 2X + 5 < 200.

Exercise 2.64 The 0.9-quantile of N(μ, σ) is 15 and its 0.99-quantile is 20. Find
the mean μ and standard deviation σ .

Exercise 2.65 A communication channel accepts an arbitrary voltage input v and
outputs a voltage v +E, where E ∼ N(0, 1). The channel is used to transmit binary
information as follows:

(i) to transmit 0, input −v

(ii) to transmit 1, input v
(iii) The receiver decides a 0 if the voltage Y is negative and 1 otherwise.

What should be the value of v so that the receiver’s probability of bit error is α =
0.01?

Exercise 2.66 Aluminum pins manufactured for an aviation industry have a ran-
dom diameter, whose distribution is (approximately) normal with mean of μ = 10
[mm] and standard deviation σ = 0.02 [mm]. Holes are automatically drilled on
aluminum plates, with diameters having a normal distribution with mean μd [mm]
and σ = 0.02 [mm]. What should be the value of μd so that the probability that a
pin will not enter a hole (too wide) is α = 0.01?
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Exercise 2.67 Let X1, . . . , Xn be a random sample (i.i.d.) from a normal distribu-
tion N(μ, σ 2). Find the expected value and variance of Y = ∑n

i=1 iXi .

Exercise 2.68 Concrete cubes have compressive strength with log-normal distri-
bution LN(5, 1). Find the probability that the compressive strength X of a random
concrete cube will be greater than 300 [kg/cm2].

Exercise 2.69 Using the m.g.f. of N(μ, σ), derive the expected value and variance
of LN(μ, σ). [Recall that X ∼ eN(μ,σ).]

Exercise 2.70 What are Q1, Me, and Q3 of E(β)?

Exercise 2.71 Show that if the life length of a chip is exponential E(β), then only
36.7% of the chips will function longer than the mean time till failure β.

Exercise 2.72 Show that the m.g.f. of E(β) is M(t) = (1 − βt)−1, for t <
1

β
.

Exercise 2.73 Let X1, X2, X3 be independent random variables having an identical
exponential distribution E(β). Compute Pr{X1 + X2 + X3 ≥ 3β}.

Exercise 2.74 Establish the formula

G(t; k,
1

λ
) = 1 − e−λt

k−1∑
j=0

(λt)j

j ! ,

by integrating in parts the p.d.f. of

G

(
k; 1

λ

)
.

Exercise 2.75 Use Python to compute �(1.17), �

(
1

2

)
, �

(
3

2

)
.

Exercise 2.76 Using m.g.f., show that the sum of k independent exponential
random variables, E(β), has the gamma distribution G(k, β).

Exercise 2.77 What is the expected value and variance of the Weibull distribution
W(2, 3.5)?

Exercise 2.78 The time till failure (days) of an electronic equipment has the
Weibull distribution W(1.5, 500). What is the probability that the failure time will
not be before 600 days?
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Exercise 2.79 Compute the expected value and standard deviation of a random

variable having the Beta distribution Beta

(
1

2
,
3

2

)
.

Exercise 2.80 Show that the index of kurtosis of Beta(ν, ν) is β2 = 3(1 + 2ν)

3 + 2ν
.

Exercise 2.81 The joint p.d.f. of two random variables (X, Y ) is

f (x, y) =
⎧⎨
⎩
1

2
, if (x, y) ∈ S

0, otherwise

where S is a square of area 2, whose vertices are (1, 0), (0, 1), (−1, 0), (0,−1).

(i) Find the marginal p.d.f. of X and Y .
(ii) Find E{X}, E{Y }, V {X}, V {Y }.
Exercise 2.82 Let (X, Y ) have a joint p.d.f.

f (x, y) =
⎧⎨
⎩
1

y
exp

{
−y − x

y

}
, if 0 < x, y < ∞

0, otherwise.

Find COV(X, Y ) and the coefficient of correlation ρXY .

Exercise 2.83 Show that the random variables (X, Y ) whose joint distribution is
defined in Example 2.27 are dependent. Find COV(X, Y ).

Exercise 2.84 Find the correlation coefficient of N and J of Example 2.31.

Exercise 2.85 Let X and Y be independent random variables, X ∼ G(2, 100) and
W(1.5, 500). Find the variance of XY .

Exercise 2.86 Consider the trinomial distribution of Example 2.33.

(i) What is the probability that during 1 h of operation there will be no more than
20 errors?

(ii) What is the conditional distribution of wrong components, given that there are
15 mis-insertions in a given hour of operation?

(iii) Approximating the conditional distribution of (ii) by a Poisson distribution,
compute the conditional probability of no more than 15 wrong components?

Exercise 2.87 In continuation of Example 2.34, compute the correlation between
J1 and J2.

Exercise 2.88 In a bivariate normal distribution, the conditional variance of Y given
X is 150 and the variance of Y is 200. What is the correlation ρXY ?
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Exercise 2.89 n = 10 electronic devices start to operate at the same time. The times
till failure of these devices are independent random variables having an identical
E(100) distribution.

(i) What is the expected value of the first failure?
(ii) What is the expected value of the last failure?

Exercise 2.90 A factory has n = 10 machines of a certain type. At each given day,
the probability is p = 0.95 that a machine will be working. Let J denote the number
of machines that work on a given day. The time it takes to produce an item on a
given machine is E(10), i.e., exponentially distributed with mean μ = 10 [min].
The machines operate independently of each other. Let X(1) denote the minimal
time for the first item to be produced. Determine

(i) P [J = k,X(1) ≤ x], k = 1, 2, . . .
(ii) P [X(1) ≤ x | J ≥ 1].
Notice that when J = 0 no machine is working. The probability of this event is
(0.05)10.

Exercise 2.91 Let X1, X2, . . . , X11 be a random sample of exponentially dis-
tributed random variables with p.d.f. f (x) = λe−λx , x ≥ 0.

(i) What is the p.d.f. of the median Me = X(6)?
(ii) What is the expected value of Me?

Exercise 2.92 Let X and Y be independent random variables having an E(β)

distribution. Let T = X + Y and W = X − Y . Compute the variance of T + 1

2
W .

Exercise 2.93 Let X and Y be independent random variables having a common
variance σ 2. What is the covariance cov(X,X + Y )?

Exercise 2.94 Let (X, Y ) have a bivariate normal distribution. What is the variance
of αX + βY ?

Exercise 2.95 Let X have a normal distribution N(μ, σ). Let (z) be the standard
normal c.d.f. Verify that E{(X)} = P {U < X}, where U is independent of X and
U ∼ N(0, 1). Show that

E{(X)} = 

(
η√

1 + σ 2

)
.

Exercise 2.96 Let X have a normal distribution N(μ, σ). Show that

E{2(X)} = 2

(
μ√

1 + σ 2
,

μ√
1 + σ 2

; σ 2

1 + σ 2

)
.
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Exercise 2.97 X and Y are independent random variables having Poisson distribu-
tions, with means λ1 = 5 and λ2 = 7, respectively. Compute the probability that
X + Y is greater than 15.

Exercise 2.98 Let X1 and X2 be independent random variables having continuous
distributions with p.d.f. f1(x) and f2(x), respectively. Let Y = X1 + X2. Show that
the p.d.f. of Y is

g(y) =
∫ ∞

−∞
f1(x)f2(y − x) dx.

[This integral transform is called the convolution of f1(x) with f2(x). The convolu-
tion operation is denoted by f1 ∗ f2.]

Exercise 2.99 Let X1 and X2 be independent random variables having the uniform
distributions on (0, 1). Apply the convolution operation to find the p.d.f. of Y =
X1 + X2.

Exercise 2.100 Let X1 and X2 be independent random variables having a common
exponential distribution E(1). Determine the p.d.f. of U = X1 − X2. [The

distribution ofU is called bi-exponential or Laplace and its p.d.f. is f (u) = 1

2
e−|u|.]

Exercise 2.101 Apply the central limit theorem to approximate P {X1+· · ·+X20 ≤
50}, where X1, · · · , X20 are independent random variables having a common mean
μ = 2 and a common standard deviation σ = 10.

Exercise 2.102 Let X have a binomial distribution B(200, .15). Find the normal
approximation to Pr{25 < X < 35}.
Exercise 2.103 Let X have a Poisson distribution with mean λ = 200. Find,
approximately, Pr{190 < X < 210}.
Exercise 2.104 X1, X2, · · · , X200 are 200 independent random variables having a
common beta distribution B(3, 5). Approximate the probability Pr{|X̄200−0.375| <

0.2282}, where

X̄n = 1

n

n∑
i=1

Xi, n = 200.

Exercise 2.105 Use Python to compute the 0.95-quantiles of t[10], t[15], t[20].
Exercise 2.106 Use Python to compute the 0.95-quantiles of F [10, 30], F [15, 30],
F [20, 30].

Exercise 2.107 Show that, for each 0 < α < 1, t21−α/2[n] = F1−α[1, n].
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Exercise 2.108 Verify the relationship

F1−α[ν1, ν2] = 1

Fα[ν2, ν1] , 0 < α < 1,

ν1, ν2 = 1, 2, · · · .

Exercise 2.109 Verify the formula

V {t[ν]} = ν

ν − 2
, ν > 2.

Exercise 2.110 Find the expected value and variance of F [3, 10].



Chapter 3
Statistical Inference and Bootstrapping

Preview In this chapter we introduce basic concepts and methods of statistical
inference. The focus is on estimating the parameters of statistical distributions
and testing hypotheses about them. Problems of testing if certain distributions fit
observed data are also considered.

We begin with some basic problems of estimation theory. A statistical population
is represented by the distribution function(s) of the observable random variable(s)
associated with its elements. The actual distributions representing the population
under consideration are generally unspecified or only partially specified. Based on
some theoretical considerations, and/or practical experience, we often assume that
a distribution belongs to a particular family such as normal, Poisson, Weibull, etc.
Such assumptions are called the statistical model. If the model assumes a specific
distribution with known parameters, there is no need to estimate the parameters.
We may, however, use sample data to test whether the hypothesis concerning the
specific distribution in the model is valid. This is a “goodness of fit” testing problem.
If the model assumes only the family to which the distribution belongs, while the
specific values of the parameters are unknown, the problem is that of estimating the
unknown parameters. The present chapter presents the basic principles and methods
of statistical estimation and testing hypotheses for infinite population models.

3.1 Sampling Characteristics of Estimators

The means and the variances of random samples vary randomly around the true
values of the parameters. In practice we usually take one sample of data and
then construct a single estimate for each population parameter. To illustrate the
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Fig. 3.1 Histogram of 100 sample means

concept of error in estimation, consider what happens if we take many samples
from the same population. The collection of estimates (one from each sample)
can itself be thought of as a sample taken from a hypothetical population of all
possible estimates. The distribution of all possible estimates is called the sampling
distribution. The sampling distributions of the estimates may be of a different type
than the distribution of the original observations. In Figs. 3.1 and 3.2, we present the
frequency distributions of X̄10 and of S2

10 for 100 random samples of size n = 10,
drawn from the uniform distribution over the integers {1, · · · , 100}.

We see in Fig. 3.1 that the frequency distribution of sample means does not
resemble a uniform distribution but seems to be close to normal. Moreover, the
spread of the sample means is from 46 to 57, rather than the original spread
from 1 to 100. We have discussed in Chap. 2 the CLT which states that when the
sample size is large, the sampling distribution of the sample mean of a simple
random sample, X̄n, for any population having a finite positive variance σ 2, is
approximately normal with mean

E{X̄} = μ (3.1)

and variance

V {X̄n} = σ 2

n
. (3.2)

Notice that

lim
n→∞ V {X̄n} = 0.
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Fig. 3.2 Histogram of 100 sample variances

This means that the precision of the sample mean, as an estimator of the population
mean μ, grows with the sample size.

Generally, if a function of the sample values X1, · · · , Xn, θ̂ (X1, · · · , Xn) is an
estimator of a parameter θ of a distribution, then θ̂n is called an unbiased estimator
if

E{θ̂n} = θ for all θ. (3.3)

Furthermore, θ̂n is called a consistent estimator of θ , if for any ε > 0,
limn→∞ Pr{|θ̂n − θ | > ε} = 0. Applying Chebyshev’s inequality, we see that a
sufficient condition for consistency is that limn→∞ V {θ̂n} = 0. The sample mean is
generally a consistent estimator. The standard deviation of the sampling distribution
of θ̂n is called the standard error of θ̂n, i.e., S.E. {θ̂n} = (V {θ̂n})1/2.

3.2 Some Methods of Point Estimation

Consider a statistical model, which specifies the family F of the possible distri-
butions of the observed V random variable. The family F is called a parametric
family if the distributions inF are of the same functional type and differ only by the
values of their parameters. For example, the family of all exponential distributions
E(β), when 0 < β < ∞, is a parametric family. In this case we can write

F = {E(β) : 0 < β < ∞}.
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Another example of a parametric family is

F = {N(μ, σ);−∞ < μ < ∞, 0 < σ < ∞},

which is the family of all normal distributions. The range � of the parameter(s)
θ , is called the parameter space. Thus, a parametric statistical model specifies
the parametric family F . This specification gives both the functional form of the
distribution and its parameter(s) space �.

We observe a random sample from the infinite population, which consists of
the values of i.i.d. random variables X1, X2, · · · , Xn, whose common distribution
F(x; θ) is an element of F .

A function of the observable random variables is called a statistic. A statistic
cannot depend on unknown parameters. A statistic is thus a random variable, whose
value can be determined from the sample values (X1, · · · , Xn). In particular, a
statistic θ̂ (X1, · · · , Xn), which yields values in the parameter space is called a point
estimator of θ . If the distributions in F depend on several parameters we have to
determine point estimators for each parameter, or for a function of the parameters.
For example, the p-th quantile of a normal distribution is ξp = μ + zpσ , where μ

and σ are the parameters and zp = −1(p). This is a function of two parameters.
An important problem in quality control is to estimate such quantiles. In this section
we discuss a few methods of deriving point estimators.

3.2.1 Moment Equation Estimators

If X1, X2, · · · , Xn are i.i.d. random variables (a random sample), then the sample
l-th moment (l = 1, 2, · · · ) is

Ml = 1

n

n∑
i=1

Xl
i . (3.4)

The law of large numbers (strong) says that if E{|X|l} < ∞ , then Ml converges
with probability one to the population l-th moment μl(F ). Accordingly, we know
that if the sample size n is large, then, with probability close to 1, Ml is close to
μl(F ). The method of moments, for parametric models, equates Ml to μl , which
is a function of θ , and solves for θ . Generally, if F(x; θ) depends on k parameters
θ1, θ2, · · · , θk , then we set up k equations
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M1 = μ1(θ1, · · · , θk),

M2 = μ2(θ1, · · · , θk),

...

Mk = μk(θ1, · · · , θk),

(3.5)

and solve for θ1, · · · , θk . The solutions are functions of the sample statistics
M1, · · · ,Mk and are therefore estimators. This method does not always yield simple
or good estimators. We give now a few examples in which the estimators obtained
by this method are reasonable.

Example 3.1 Consider the family F of Poisson distributions, i.e.,

F = {P(x; θ); 0 < θ < ∞}.

The parameter space is � = (0,∞). The distributions depend on one parameter,
and

μ1(θ) = Eθ {X} = θ.

Thus, the method of moments yields the estimator

θ̂n = X̄n.

This is an unbiased estimator with V {θ̂n} = θ

n
. �

Example 3.2 Consider a random sample of X1, X2, · · · , Xn from a log-normal
distribution LN(μ, σ ). The distributions depend on k = 2 parameters.

We have seen that

μ1(μ, σ 2) = exp{μ + σ 2/2),

μ2(μ, σ 2) = exp{2μ + σ 2}(eσ 2 − 1).

Thus, let θ1 = μ, θ2 = σ 2 and set the equations

exp{θ1 + θ2/2} = M1

exp{2θ1 + θ2}(eθ2 − 1) = M2.

The solutions θ̂1 and θ̂2 of this system of equations are
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θ̂1 = logM1 − 1

2
log

(
1 + M2

M2
1

)
,

and

θ̂2 = log

(
1 + M2

M2
1

)
.

The estimators obtained are biased, but we can show that they are consistent.
Simple formulae for V {θ̂1}, V {θ̂2} and cov(θ̂1, θ̂2) do not exist. We can derive large
sample approximations to these characteristics or approximate them by a method of
resampling, called bootstrapping, which is discussed later in Sect. 3.10. �

3.2.2 The Method of Least Squares

If μ = E{X}, then the method of least squares chooses the estimator μ̂, which
minimizes

Q(μ) =
n∑

i=1

(Xi − μ)2. (3.6)

It is immediate to show that the least squares estimator (LSE) is the sample mean,
i.e.,

μ̂ = X̄n.

Indeed, write

Q(μ) =
n∑

i=1

(Xi − X̄n + X̄n − μ)2

=
n∑

i=1

(Xi − X̄n)
2 + n(X̄n − μ)2.

Thus, Q(μ̂) ≥ Q(X̄n) for all μ and Q(μ̂) is minimized only if μ̂ = X̄n. This
estimator is in a sense non-parametric. It is unbiased and consistent. Indeed,

V {μ̂} = σ 2

n
,
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provided that σ 2 < ∞.
The LSE is more interesting in the case of linear regression (see Chap. 4).
In the simple linear regression case, we have n independent random variables

Y1, · · · , Yn, with equal variances, σ 2, but expected values which depend linearly on
known regressors (predictors) x1, · · · , xn. That is,

E{Yi} = β0 + β1xi, i = 1, · · · , n. (3.7)

The least squares estimators of the regression coefficients β0 and β1 are the values
which minimize

Q(β0, β1) =
n∑

i=1

(Yi − β0 − β1xi)
2. (3.8)

These LSEs are

β̂0 = Ȳn − β̂1x̄n, (3.9)

and

β̂1 =
∑n

i=1 Yi(xi − x̄n)∑n
i=1(xi − x̄n)2

, (3.10)

where x̄n and Ȳn are the sample means of the xs and the Y s, respectively. Thus, β̂0
and β̂1 are linear combinations of the Y s, with known coefficients. From the results
of Sect. 2.8,

E{β̂1} =
n∑

i=1

(xi − x̄n)

SSx

E{Yi}

=
n∑

i=1

(xi − x̄n)

SSx

(β0 + β1xi)

= β0

n∑
i=1

(xi − x̄n)

SSx

+ β1

n∑
i=1

(xi − x̄n)xi

SSx

,

where SSx = ∑n
i=1(xi − x̄n)

2. Furthermore,

n∑
i=1

xi − x̄n

SSx

= 0

and
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n∑
i=1

(xi − x̄n)xi

SSx

= 1.

Hence, E{β̂1} = β1. Also,

E{β̂0} = E{Ȳn} − x̄nE{β̂1}
= (β0 + β1x̄n) − β1x̄n

= β0.

Thus, β̂0 and β̂1 are both unbiased. The variances of these LSE are given by

V {β̂1} = σ 2

SSx

,

V {β̂0} = σ 2

n
+ σ 2x̄2

n

SSx

,

(3.11)

and

cov(β̂0, β̂1) = −σ 2x̄n

SSx

. (3.12)

Thus, β̂0 and β̂1 are not independent. A hint for deriving these formulae is given in
Exercise 3.8.

The correlation between β̂0 and β̂1 is

ρ = − x̄n(
1

n

∑n
i=1 x2

i

)1/2 . (3.13)

3.2.3 Maximum Likelihood Estimators

Let X1, X2, · · · , Xn be i.i.d. random variables having a common distribution
belonging to a parametric family F . Let f (x; θ) be the p.d.f. of X, θ ∈ �. This is
either a density function or a probability distribution function of a discrete random
variable. Since X1, · · · , Xn are independent, their joint p.d.f. is

f (x1, · · · , xn; θ) =
n∏

i=1

f (xi; θ).

The likelihood function of θ over � is defined as
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L(θ; x1, · · · , xn) =
n∏

i=1

f (xi; θ). (3.14)

The likelihood of θ is thus the probability in the discrete case, or the joint density
in the continuous case, of the observed sample values under θ . In the likelihood
function L(θ; x1, . . . , xn), the sample values (x1, . . . , xn) are playing the role
of parameters. A maximum likelihood estimator (MLE) of θ is a point in the
parameter space, θ̂n, for which L(θ;X1, · · · , Xn) is maximized. The notion of
maximum is taken in a general sense. For example, the function

f (x; λ) =
{

λe−λx, x ≥ 0

0, x < 0

as a function of λ, 0 < λ < ∞, attains a maximum at λ = 1

x
.

On the other hand, the function

f (x; θ) =
⎧⎨
⎩
1

θ
, 0 ≤ x ≤ θ

0, otherwise

as a function of θ , over (0,∞) attains a lowest upper bound (supremum) at θ = x,

which is
1

x
. We say that it is maximized at θ = x. Notice that it is equal to zero for

θ < x. We give a few examples.

Example 3.3 Suppose that X1, X2, · · · , Xn is a random sample from a normal
distribution. Then, the likelihood function of (μ, σ 2) is

L(μ, σ 2;X1, · · · , Xn) = 1

(2π)n/2σn
exp

{
− 1

2σ 2

n∑
i=1

(Xi − μ)2

}

= 1

(2π)n/2(σ 2)n/2
exp

{
− 1

2σ 2

n∑
i=1

(Xi − X̄n)
2 − n

2σ 2
(X̄n − μ)2

}
.

Notice that the likelihood function of (μ, σ 2) depends on the sample variables only
through the statistics (X̄n,Qn), where Qn = ∑n

i=1(Xi − X̄n)
2. These statistics are

called the likelihood or sufficient statistics. To maximize the likelihood, we can
maximize the log likelihood

l(μ, σ 2; X̄n,Qn) = −n

2
log(2π) − n

2
log(σ 2) − Qn

2σ 2 − n(X̄n − μ)2

2σ 2 .
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With respect to μ, we maximize by μ̂n = X̄n. With respect to σ 2, differentiate

l(μ̂n, σ
2; X̄n,Qn) = −n

2
log(2π) − n

2
log(σ 2) − Qn

2σ 2 .

This is

∂

∂σ 2 log(μ̂, σ 2; X̄n,Qn) = − n

2σ 2 + Qn

2σ 4 .

Equating the derivative to zero and solving yields the MLE

σ̂ 2
n = Qn

n
.

Thus, the MLEs are μ̂n = X̄n and

σ̂ 2
n = n − 1

n
S2

n.

σ̂ 2
n is biased, but the bias goes to zero as n → ∞. �

Example 3.4 Let X have a negative binomial distribution NB(k, p). Suppose that k
is known and 0 < p < 1. The likelihood function of p is

L(p;X, k) =
(

X + k − 1

k − 1

)
pk(1 − p)X.

Thus, the log likelihood is

l(p;X, k) = log

(
X + k − 1

k − 1

)
+ k logp + X log(1 − p).

The MLE of p is

p̂ = k

X + k
.

We can show that p̂ has a positive bias, i.e., E{p̂} > p. For large values of k, the
bias is approximately

Bias(p̂; k) = E{p̂; k} − p

∼= 3p(1 − p)

2k
, large k.



3.3 Comparison of Sample Estimates 149

The variance of p̂ for large k is approximately V {p̂; k} ∼= p2(1−p)
k

. �

3.3 Comparison of Sample Estimates

3.3.1 Basic Concepts

Statistical hypotheses are statements concerning the parameters, or some charac-
teristics, of the distribution representing a certain random variable (or variables)
in a population. For example, consider a manufacturing process. The parameter of
interest may be the proportion, p, of nonconforming items. If p ≤ p0, the process
is considered to be acceptable. If p > p0 the process should be corrected.

Suppose that 20 items are randomly selected from the process and inspected. Let
X be the number of nonconforming items in the sample. Then X has a binomial
distribution B(20, p). On the basis of the observed value of X, we have to decide
whether the process should be stopped for adjustment. In the statistical formulation
of the problem, we are testing the hypothesis

H0 : p ≤ p0,

against the hypothesis

H1 : p > p0.

The hypothesis H0 is called the null hypothesis, while H1 is called the alternative
hypothesis. Only when the data provides significant evidence that the null hypoth-
esis is wrong do we reject it in favor of the alternative. It may not be justifiable to
disrupt a production process unless we have ample evidence that the proportion of
nonconforming items is too high. It is important to distinguish between statistical
significance and practical or technological significance. The statistical level of
significance is the probability of rejecting H0 when it is true. If we reject H0 at a
low level of significance, the probability of committing an error is small, and we are
confident that our conclusion is correct. Rejecting H0 might not be technologically
significant, if the true value of p is not greater than p0 + δ, where δ is some
acceptable level of indifference. If p0 < p < p0 + δ, H1 is true, but there is no
technological significance to the difference p − p0.

To construct a statistical test procedure based on a test statistic, X, consider first
all possible values that could be observed. In our example X can assume the values
0, 1, 2, · · · , 20. Determine a critical region or rejection region, so that whenever
the observed value of X belongs to this region, the null hypothesis H0 is rejected.
For example, if we were testing H0 : P ≤ 0.10 against H1 : P > 0.10, we might
reject H0 if X > 4. The complement of this region, X ≤ 3, is called the acceptance
region.
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There are two possible errors that can be committed. If the true proportion of
nonconforming items, for example, were only 0.05 (unknown to us) and our sample
happened to produce four items, we would incorrectly decide to reject H0 and shut
down the process that was performing acceptably. This is called a type I error. On
the other hand, if the true proportion were 0.15 and only three nonconforming items
were found in the sample, we would incorrectly allow the process to continue with
more than 10% defectives (a type II error).

We denote the probability of committing a type I error by α(p), for p ≤ p0, and
the probability of committing a type II error by β(p), for p > p0.

In most problems the critical region is constructed in such a way that the
probability of committing a type I error will not exceed a preassigned value called
the significance level of the test. Let α denote the significance level. In our example
the significance level is

α = Pr{X ≥ 4;p = 0.1} = 1 − B(3; 20, .1) = 0.133.

Notice that the significance level is computed with p = 0.10, which is the largest p
value for which the null hypothesis is true.

To further evaluate the test procedure, we would like to know the probability of
not rejecting (in practical terms “accepting”) the null hypothesis for various values
of p. Such a function is called the operating characteristic function and is denoted
by OC(p). The graph of OC(p) vs. p is called theOC curve. Ideally we would like
OC(p) = 1 whenever H0 : p ≤ p0 is true and OC(p) = 0 when H1 : p > p0
is true. This, however, cannot be obtained when the decision is based on a random
sample of items.

In our example we can compute the OC function as

OC(p) = Pr{X ≤ 3;p} = B(3; 20, p).

From Table 3.1 we find that

Table 3.1 The binomial
c.d.f. B(x; n, p), for n = 20,
p = 0.10(0.05)0.25

x p = 0.10 p = 0.15 p = 0.20 p = 0.25

0 0.1216 0.0388 0.0115 0.0032

1 0.3917 0.1756 0.0692 0.0243

2 0.6769 0.4049 0.2061 0.0913

3 0.8670 0.6477 0.4114 0.2252

4 0.9568 0.8298 0.6296 0.4148

5 0.9887 0.9327 0.8042 0.6172

6 0.9976 0.9781 0.9133 0.7858

7 0.9996 0.9941 0.9679 0.8982

8 0.9999 0.9987 0.9900 0.9591

9 1.0000 0.9998 0.9974 0.9861

10 1.0000 1.0000 0.9994 0.9961
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Fig. 3.3 The OC curve for testing H0 : p ≤ 0.1 Against H1 : p > 0.1 with a sample of size
n = 20 and rejection region X ≥ 4

OC(0.10) = 0.8670

OC(0.15) = 0.6477

OC(0.20) = 0.4114

OC(0.25) = 0.2252.

Notice that the significance level α is the maximum probability of rejectingH0 when
it is true. Accordingly, OC(p0) = 1 − α. The OC curve for this example is shown
in Fig. 3.3.

We see that as p grows, the value of OC(p) decreases, since the probability of
observing at least four nonconforming items out of 20 is growing with p.

Suppose that the significance level of the test is decreased, in order to reduce
the probability of incorrectly interfering with a good process. We may choose the
critical region to be X ≥ 5. The new OC function is

OC(p) = Pr{X ≤ 4;p} = B(4; 20, p).

For this new critical region,

OC(0.10) = 0.9568,

OC(0.15) = 0.8298,

OC(0.20) = 0.6296,

OC(0.25) = 0.4148.
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The new significance level is α = 1 − OC(0.1) = 0.0432. Notice that, although we
reduced the risk of committing a type I error, we increased the risk of committing a
type II error. Only with a larger sample size can we reduce simultaneously the risks
of both type I and II errors.

Instead of the OC function, one may consider the power function, for evaluating
the sensitivity of a test procedure. The power function, denoted by ψ(p), is the
probability of rejecting the null hypothesis when the alternative is true. Thus,
ψ(p) = 1 − OC(p).

Finally, we consider an alternative method of performing a test. Rather than
specifying in advance the desired significance level, say α = 0.05, we can compute
the probability of observing X0 or more nonconforming items in a random sample
if p = p0. This probability is called the attained significance level or the P -
value of the test. If the P -value is small, say ≤ 0.05, we consider the results
to be significant and we reject the null hypothesis. For example, suppose we
observed X0 = 6 nonconforming items in a sample of size 20. The P -value is
Pr{X ≥ 6;p = 0.10} = 1 − B(5; 20, 0.10) = 0.0113. This small probability
suggests that we could reject H0 in favor of H1 without much of a risk.

The term P -value should not be confused with the parameter p of the binomial
distribution.

3.3.2 Some Common One-Sample Tests of Hypotheses

3.3.2.1 The Z-Test: Testing the Mean of a Normal Distribution, σ 2 Known

One-Sided Test
The hypothesis for a one-sided test on the mean of a normal distribution is

H0 : μ ≤ μ0,

against

H1 : μ > μ0,

where μ0 is a specified value. Given a sample X1, · · · , Xn, we first compute the
sample mean X̄n. Since large values of X̄n, relative to μ0, would indicate that H0
is possibly not true, the critical region should be of the form X̄ ≥ C, where C is
chosen so that the probability of committing a type I error is equal to α. (In many
problems we use α = 0.01 or 0.05 depending on the consequences of a type I error.)
For convenience we use a modified form of the test statistic, given by the Z-statistic

Z = √
n(X̄n − μ0)/σ. (3.15)
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Fig. 3.4 Critical regions for the one-sided Z-test

The critical region, in terms of Z, is given by

{Z : Z ≥ z1−α},

where z1−α is the 1 − α quantile of the standard normal distribution. This critical
region is equivalent to the region

{X̄n : X̄n ≥ μ0 + z1−ασ/
√

n}.

These regions are illustrated in Fig. 3.4.
The operating characteristic function of this test is given by

OC(μ) = (z1−α − δ
√

n), (3.16)

where

δ = (μ − μ0)/σ. (3.17)

Example 3.5 Suppose we are testing the hypothesis H0 : μ ≤ 5, against H1 : μ >

5, with a sample of size n = 100 from a normal distribution with known standard
deviation σ = 0.2. With a significance level of size α = 0.05 we reject H0 if
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Table 3.2 OC values in the
normal case

mu δ
√

n z OC(μ)

5.00 0.0 1.645 0.9500

5.01 0.5 1.145 0.8739

5.02 1.0 0.645 0.7405

5.03 1.5 0.145 0.5576

5.04 2.0 −0.355 0.3612

5.05 2.5 −0.855 0.1962

Z ≥ z.95 = 1.645.

The values of the OC function are computed in the Table 3.2. In this table z =
z1−α − δ

√
n and OC(μ) = (z). �

If the null hypothesis is H0 : μ ≥ μ0 against the alternative H1 : μ < μ0, we
reverse the direction of the test and reject H0 if Z ≤ −z1−α .

Two-Sided Test
The two-sided test has the form

H0 : μ = μ0

against

H1 : μ �= μ0.

The corresponding critical region is given by

{Z : Z ≥ z1−α/2} ∪ {Z : Z ≤ −z1−α/2}.

The operating characteristic function is

OC(μ) = (z1−α/2 + δ
√

n) − (−z1−α/2 − δ
√

n). (3.18)

The P -value of the two-sided test can be determined in the following manner.
First compute

|Z0| = √
n|X̄n − μ0|/σ,

and then compute the P -value

P = Pr{Z ≥ |Z0|} + P {Z ≤ −|Z0|}
= 2(1 − (|Z0|)).

(3.19)
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3.3.2.2 The t-Test: Testing the Mean of a Normal Distribution, σ 2

Unknown

In this case, we replace σ in the above Z-test with the sample standard deviation, S,
and z1−α (or z1−α/2) with t1−α[n − 1] (or t1−α/2[n − 1]). Thus, the critical region
for the two-sided test becomes

{t : |t | ≥ t1−α/2[n − 1]},

where

t = (X̄n − μ0)
√

n/S. (3.20)

The operating characteristic function of the one-sided test is given approximately
by

OC(μ) ∼= 1 − 

(
δ
√

n − t1−α[n − 1](1 − 1/8(n − 1))

(1 + t21−α[n − 1]/2(n − 1))1/2

)
(3.21)

where δ = |μ − μ0|/σ . (This is a good approximation to the exact formula, which
is based on the complicated non-central t-distribution.)

In Table 3.3, we present some numerical comparisons of the power of the one-
sided test for the cases of σ 2 known and σ 2 unknown, when n = 20 and α = 0.05.
Notice that when σ is unknown, the power of the test is somewhat smaller than
when it is known.

Example 3.6 The cooling system of a large computer consists of metal plates that
are attached together, so as to create an internal cavity, allowing for the circulation
of special-purpose cooling liquids. The metal plates are attached with steel pins
that are designed to measure 0.5 mm in diameter. Experience with the process
of manufacturing similar steel pins has shown that the diameters of the pins are
normally distributed, with mean μ and standard deviation σ . The process is aimed
at maintaining a mean of μ0 = 0.5 [mm]. For controlling this process, we want
to test H0 : μ = 0.5 against H1 : μ �= 0.5. If we have prior information that the
process standard deviation is constant at σ = 0.02, we can use the Z-test to test the

Table 3.3 Power functions
of Z- and t-tests

δ σ known σ unknown

0.0 0.050 0.050

0.1 0.116 0.111

0.2 0.226 0.214

0.3 0.381 0.359

0.4 0.557 0.527

0.5 0.723 0.691
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above hypotheses. If we apply a significance level of α = 0.05, then we will reject
H0 if |Z| ≥ z1−α/2 = 1.96.

Suppose that the following data were observed:

0.53, 0.54, 0.48, 0.50, 0.50, 0.49, 0.52.

The sample size is n = 7 with a sample mean of X̄ = 0.509. Therefore,

Z = |0.509 − 0.5|√7/.02 = 1.191.

Since this value of Z does not exceed the critical value of 1.96, do not reject the null
hypothesis.

If there is no prior information about σ , use the sample standard deviation S and
perform a t-test, and reject H0 if |t | > t1−α/2[6]. In the present example S = 0.022,
and t = 1.082. Since |t | < t.975[6] = 2.447, we reach the same conclusion. �

3.3.2.3 The Chi-Squared Test: Testing the Variance of a Normal
Distribution

Consider a one-sided test of the hypothesis

H0 : σ 2 ≤ σ 2
0 ,

against

H1 : σ 2 > σ 2
0 .

The test statistic corresponding to this hypothesis is

Q2 = (n − 1)S2/σ 2
0 , (3.22)

with a critical region

{Q2 : Q2 ≥ χ2
1−α[n − 1]}.

The operating characteristic function for this test is given by

OC(σ 2) = Pr{χ2[n − 1] ≤ σ 2
0

σ 2
χ2
1−α[n − 1]}, (3.23)

where χ2[n − 1] is a chi-squared random variable with n − 1 degrees of freedom.

Example 3.7 Continuing the previous example, let us test the hypothesis
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H0 : σ 2 ≤ 0.0004,

against

H1 : σ 2 > 0.0004.

Since the sample standard deviation is S = 0.022, we find

Q2 = (7 − 1)(0.022)2/0.0004 = 7.26.

H0 is rejected at level α = 0.05 if

Q2 ≥ χ2
0.95[6] = 12.59.

Since Q2 < χ2
.95[6], H0 is not rejected. �

Whenever n is odd, that is n = 2m + 1 (m = 0, 1, · · · ), the c.d.f. of χ2[n − 1]
can be computed according to the formula

Pr{χ2[2m] ≤ x} = 1 − P
(
m − 1; x

2

)
,

where P(a; λ) is the c.d.f. of the Poisson distribution with mean λ. For example,
if n = 21, m = 10 and χ2

.95[20] = 31.41. Thus, the value of the OC function at
σ 2 = 1.5 σ 2

0 is

OC(1.5σ 2
0 ) = Pr

{
χ2[20] ≤ 31.41

1.5

}

= 1 − P(9; 10.47) = 1 − .4007

= 0.5993.

If n is even, i.e., n = 2m, we can compute the OC values for n = 2m − 1 and
for n = 2m + 1 and take the average of these OC values. This will yield a good
approximation.

The power function of the test is obtained by subtracting the OC function from
1.

In Table 3.4 we present a few numerical values of the power function for n =
20, 30, 40 and for α = 0.05. Here we have let ρ = σ 2/σ 2

0 and have used the values
χ2
0.95[19] = 30.1, χ2

0.95[29] = 42.6, and χ2
0.95[39] = 54.6.

As illustrated in Table 3.4, the power function changes more rapidly as n grows.
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Table 3.4 Power of the
χ2-test, α = 0.05,
ρ = σ 2/σ 2

0

n

ρ 20 30 40

1.00 0.050 0.050 0.050

1.25 0.193 0.236 0.279

1.50 0.391 0.497 0.589

1.75 0.576 0.712 0.809

2.00 0.719 0.848 0.920

3.3.2.4 Testing Hypotheses About the Success Probability, p, in Binomial
Trials

Consider one-sided tests, for which

• The null hypothesis is H0 : p ≤ p0.
• The alternative hypothesis is H1 : p > p0.
• The critical region is {X : X > cα(n, p0)},
where X is the number of successes among n trials and cα(n, p0) is the first value
of k for which the binomial c.d.f., B(k; n, p0), exceeds 1 − α.

The operating characteristic function

OC(p) = B(cα(n, p0); n, p). (3.24)

Notice that cα(n, p0) = B−1(1 − α; n, p0) is the (1 − α) quantile of the
binomial distribution B(n, p0). In order to determine c(n, p0), one can use Python’s
stats.binom(n, p0) which, for α = 0.05, n = 20 and p0 = 0.20, gives

stats.binom(20, 0.2).ppf(0.95)

7.0

Table 3.5 is an output for the binomial distribution with n = 20 and p = 0.2.
The smallest value of k for which B(k; 20, .2) = Pr{X ≤ k} ≥ 0.95 is 7. Thus, we
set c0.05(20, 0.20) = 7. H0 is rejected whenever X > 7. The level of significance
of this test is actually 0.032, which is due to the discrete nature of the binomial
distribution. The OC function of the test for n = 20 can be easily determined from
the corresponding distribution of B(20, p). For example, the B(n, p) distribution
for n = 20 and p = 0.25 is presented in Table 3.6.

We see that B(7; 20, 0.25) = 0.8982. Hence, the probability of accepting H0
when p = 0.25 is OC(0.25) = 0.8982.

A large sample test in the binomial case can be based on the normal approxima-
tion to the binomial distribution. If the sample is indeed large, we can use the test
statistic

Z = p̂ − p0√
p0q0

√
n, (3.25)
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Table 3.5 p.d.f. and c.d.f. of
B(20, .2)

Binomial distribution: n = 20 p = 0.2

a Pr(X = a) Pr(X ≤ a)

0 0.0115 0.0115

1 0.0576 0.0692

2 0.1369 0.2061

3 0.2054 0.4114

4 0.2182 0.6296

5 0.1746 0.8042

6 0.1091 0.9133

7 0.0546 0.9679

8 0.0222 0.9900

9 0.0074 0.9974

10 0.0020 0.9994

11 0.0005 0.9999

12 0.0001 1.0000

Table 3.6 p.d.f. and c.d.f. of
B(20, .25)

Binomial distribution: n = 20 p = 0.25

a Pr(X = a) Pr(X ≤ a)

0 0.0032 0.0032

1 0.0211 0.0243

2 0.0669 0.0913

3 0.1339 0.2252

4 0.1897 0.4148

5 0.2023 0.6172

6 0.1686 0.7858

7 0.1124 0.8982

8 0.0609 0.9591

9 0.0271 0.9861

10 0.0099 0.9961

11 0.0030 0.9991

12 0.0008 0.9998

13 0.0002 1.0000

with the critical region

{Z : Z ≥ z1−α},

where q0 = 1 − p0. Here p̂ is the sample proportion of successes. The operating
characteristic function takes the form

OC(p) = 1 − 

(
(p − p0)

√
n√

pq
− z1−α

√
p0q0

pq

)
, (3.26)

where q = 1 − p and q0 = 1 − p0.
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For example, suppose that n = 450 and the hypotheses are H0 : p ≤ .1 against
H1 : p > 0.1. The critical region, for α = 0.05, is

{p̂ : p̂ ≥ 0.10 + 1.645
√

(0.1)(0.9)/450} = {p̂ : p̂ ≥ 0.1233}.

Thus, H0 is rejected whenever p̂ ≥ 0.1233. The OC value of this test, at p = 0.15
is approximately

OC(0.15) ∼= 1 − 

(
0.05

√
450√

(0.15)(0.85)
− 1.645

√
(0.1)(0.9)

(0.15)(0.85)

)

= 1 − (2.970 − 1.382)

= 1 − 0.944 = 0.056.

The corresponding value of the power function is 0.949. Notice that the power of
rejecting H0 for H1 when p = 0.15 is so high because of the large sample size.

3.4 Confidence Intervals

Confidence intervals for unknown parameters are intervals, determined around the
sample estimates of the parameters, having the property that whatever the true value
of the parameter is, in repetitive sampling a prescribed proportion of the intervals,
say 1 − α, will contain the true value of the parameter. The prescribed proportion,
1 − α, is called the confidence level of the interval. In Fig. 3.5, we illustrate 50
simulated confidence intervals, which correspond to independent samples. All of
these intervals are designed to estimate the mean of the population from which
the samples were drawn. In this particular simulation, the population was normally
distributed with mean μ = 10. We see from the figure that 47 of these 50 random
intervals cover the true value of μ.

If the sampling distribution of the estimator θ̂n is approximately normal, one can
use, as a rule of thumb, the interval estimator with limits

θ̂n ± 2 S.E.{θ̂n}.

The confidence level of such an interval will be close to 0.95 for all θ .
Generally, if one has a powerful test procedure for testing the hypothesis H0 :

θ = θ0 versus H1 : θ �= θ0, one can obtain good confidence intervals for θ by the
following method.

Let T = T (X) be a test statistic for testing H0 : θ = θ0. Suppose that H0 is
rejected if T ≥ K̄α(θ0) or if T ≤ Kα(θ0), where α is the significance level. The
interval (Kα(θ0), K̄α(θ0)) is the acceptance region for H0. We can now consider
the family of acceptance regions � = {(Kα(θ), K̄α(θ)), θ ∈ �}, where � is the
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Fig. 3.5 Simulated confidence intervals for the mean of a normal distribution, samples of size
n = 10 from N(10, 1)

parameter space. The interval (Lα(T ), Uα(T )) defined as

Lα(T ) = inf{θ : T ≤ K̄α(θ)}
Uα(T ) = sup{θ : T ≥ Kα(θ)} (3.27)

is a confidence interval for θ at level of confidence 1−α. Indeed, any hypothesis H0
with Lα(T ) < θ0 < Uα(T ) is accepted with the observed value of the test statistic.
By construction, the probability of accepting such hypothesis is 1−α, that is, if θ0 is
the true value of θ , the probability that H0 is accepted is (1−α). But H0 is accepted
if, and only if, θ0 is covered by the interval (Lα(T ), Uα(T )).

3.4.1 Confidence Intervals for μ; σ Known

For this case, the sample mean X̄ is used as an estimator of μ, or as a test statistic
for the hypothesis H0 : μ = μ0. H0 is rejected, at level of significance α, if X̄ ≥
μ0 − z1−α/2

σ√
n
or X̄ ≤ μ0 + z1−α/2

σ√
n
, where z1−α/2 = −1(1 − α/2). Thus,

K̄α(μ) = μ+z1−α/2
σ√
n
andKα(μ) = μ−z1−α/2

σ√
n
. The limits of the confidence

interval are, accordingly, the roots μ of the equation

K̄α(μ) = X̄
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and

Kα(μ) = X̄.

These equations yield the confidence interval for μ,

(
X̄ − z1−α/2

σ√
n
, X̄ + z1−α/2

σ√
n

)
. (3.28)

3.4.2 Confidence Intervals for μ; σ Unknown

A confidence interval for μ, at level 1 − α, when σ is unknown, is obtained from
the corresponding t-test. The confidence interval is

(
X̄ − t1−α/2[n − 1] S√

n
, X̄ + t1−α/2[n − 1] S√

n

)
, (3.29)

where X̄ and S are the sample mean and standard deviation, respectively. t1−α/2[n−
1] is the (1 − α/2)-th quantile of the t-distribution with n − 1 degrees of freedom.

3.4.3 Confidence Intervals for σ 2

We have seen that, in the normal case, the hypothesis H0 : σ = σ0, is rejected at
level of significance α if

S2 ≥ σ 2
0

n − 1
χ2
1−α/2[n − 1]

or

S2 ≤ σ 2
0

n − 1
χ2

α/2[n − 1],

where S2 is the sample variance and χ2
α/2[n−1] and χ2

1−α/2[n−1] are the α/2-th and

(1 − α/2)-th quantiles of χ2, with (n − 1) degrees of freedom. The corresponding
confidence interval for σ 2, at confidence level (1 − α), is

(
(n − 1)S2

χ2
1−α[n − 1] ,

(n − 1)S2

χ2
α/2[n − 1]

)
, (3.30)
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Example 3.8 Consider a normal distribution with unknown mean μ and unknown
standard deviation σ . Suppose that we draw a random sample of size n = 16 from
this population and the sample values are

16.16, 9.33, 12.96, 11.49,

12.31, 8.93, 6.02, 10.66,

7.75, 15.55, 3.58, 11.34,

11.38, 6.53, 9.75, 9.47.

The mean and variance of this sample are X̄ = 10.20 and S2 = 10.977. The
sample standard deviation is S = 3.313. For a confidence level of 1− α = 0.95, we
find

t.975[15] = 2.131,

χ2
.975[15] = 27.50,

χ2
.025[15] = 6.26.

Thus, the confidence interval for μ is (8.435, 11.965). The confidence interval for
σ 2 is (5.987, 26.303). �

3.4.4 Confidence Intervals for p

LetX be the number of “success” in n independent trials, with unknown probability
of “success,” p. The sample proportion, p̂ = X/n, is an unbiased estimator of p. To
construct a confidence interval for p, using p̂, we must find limits pL(p̂) and pU(p̂)

that satisfy

Pr{pL(p̂) < p < pU(p̂)} = 1 − α.

The null hypothesis H0 : p = p0 is rejected if p̂ ≥ K̄α(p0) or p̂ ≤ Kα(p0) where

K̄α(p0) = 1

n
B−1(1 − α/2; n, p0)

and (3.31)

Kα(p0) = 1

n
B−1(α/2; n, p0).
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B−1(γ ; n, p) is the γ -th quantile of the binomial distribution B(n, p). Thus, if X =
np̂, the upper confidence limit for p, pU(p̂), is the largest value of p satisfying the
equation

B(X; n, p) ≥ α/2.

The lower confidence limit for p is the smallest value of p satisfying

B(X; n, p) ≤ 1 − α/2.

Exact solutions to this equation can be obtained using tables of the binomial
distribution. This method of searching for the solution in binomial tables is tedious.
However, from the relationship between the F -distribution, the beta distribution,
and the binomial distribution, the lower and upper limits are given by the formulae

pL = X

X + (n − X + 1)F1
(3.32)

and

pU = (X + 1)F2

n − X + (X + 1)F2
, (3.33)

where

F1 = F1−α/2[2(n − X + 1), 2X] (3.34)

and

F2 = F1−α/2[2(X + 1), 2(n − X)] (3.35)

are the (1 − α/2)-th quantiles of the F -distribution with the indicated degrees of
freedom.

Example 3.9 Suppose that among n = 30 Bernoulli trials we find X = 8 successes.
For level of confidence 1 − α = 0.95, the confidence limits are pL = 0.123 and
pU = 0.459. Indeed,

B(7; 30, 0.123) = 0.975,

and

B(8; 30, 0.459) = 0.025.

Moreover,
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F1 = F.975[46, 16] = 2.49

and

F2 = F.975[18, 44] = 2.07.

Hence,

pL = 8/(8 + 23(2.49)) = 0.123

and

pU = 9(2.07)/(22 + 9(2.07)) = 0.459.

�
When the sample size n is large, we may use the normal approximation to the

binomial distribution. This approximation yields the following formula for a (1−α)

confidence interval

(
p̂ − z1−α/2

√
p̂q̂/n, p̂ + z1−α/2

√
p̂q̂/n

)
, (3.36)

where q̂ = 1 − p̂. Applying this large sample approximation to our previous
example, in which n = 30, we obtain the approximate 0.95-confidence interval
(0.108, 0.425). This interval is slightly different from the interval obtained with the
exact formulae. This difference is due to the inaccuracy of the normal approxima-
tion.

It is sometimes reasonable to use only a one-sided confidence interval, for
example, if p̂ is the estimated proportion of nonconforming items in a population.
Obviously, the true value of p is always greater than 0, and we may wish to
determine only an upper confidence limit. In this case we apply the formula given
earlier but replace α/2 by α. For example, in the case of n = 30 and X = 8, the
upper confidence limit for p, in a one-sided confidence interval, is

pU = (X + 1)F2

n − X + (X + 1)F2

where F2 = F1−α[2(X + 1), 2(n − X)] = F.95[18, 44] = 1.855. Thus, the upper
confidence limit of a 0.95 one-sided interval is PU = 0.431. This limit is smaller
than the upper limit of the two-sided interval.
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3.5 Tolerance Intervals

Technological specifications for a given characteristicX may require that a specified
proportion of elements of a statistical population satisfies certain constraints. For
example, in the production of concrete, we may have the requirement that at least
90% of all concrete cubes, of a certain size, will have a compressive strength of at
least 240 kg/cm2. As another example, suppose that, in the production of washers, it
is required that at least 99% of the washers produced will have a thickness between
0.121 and 0.129 inches. In both examples we want to be able to determine whether
or not the requirements are satisfied. If the distributions of strength and thickness
were completely known, we could determine if the requirements are met without
data. However, if the distributions are not completely known, we can make these
determinations only with a certain level of confidence and not with certainty.

3.5.1 Tolerance Intervals for the Normal Distributions

In order to construct tolerance intervals, we first consider what happens when the
distribution of the characteristic X is completely known. Suppose, for example, that
the compressive strength X of the concrete cubes is such that Y = lnX has a normal
distribution with mean μ = 5.75 and standard deviation σ = 0.2. The proportion of
concrete cubes exceeding the specification of 240 kg/cm2 is

Pr{X ≥ 240} = Pr{Y ≥ log 240}
= 1 − ((5.481 − 5.75)/0.2)

= (1.345) = 0.911

Since this probability is greater than the specified proportion of 90%, the require-
ment is satisfied.

We can also solve this problem by determining the compressive strength that is
exceeded by 90% of the concrete cubes. Since 90% of the Y values are greater than
the 0.1-th quantile of the N(5.75, 0.04) distribution,

Y0.1 = μ + z0.1σ

= 5.75 − 1.28(0.2)

= 5.494.

Accordingly, 90% of the compressive strength values should exceed e5.494 = 243.2
kg/cm2. Once again we see that the requirement is satisfied, since more than 90%
of the cubes have strength values that exceed the specification of 240 kg/cm2.
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Notice that no sample values are required, since the distribution of X is known.
Furthermore, we are certain that the requirement is met.

Consider the situation in which we have only partial information on the distribu-
tion of Y . Suppose we know that Y is normally distributed with standard deviation
σ = 0.2, but the mean μ is unknown. The 0.1-th quantile of the distribution,
y0.1 = μ+z0.1σ , cannot be determined exactly. Let Y1, · · · , Yn be a random sample
from this distribution and let Ȳn represent the sample mean. From the previous
section, we know that

L(Ȳn) = Ȳn − z1−ασ/
√

n

is a 1 − α lower confidence limit for the population mean, that is,

Pr{Ȳn − z1−ασ/
√

n < μ} = 1 − α.

Substituting this lower bound for μ in the expression for the 0.1-th fractile, we
obtain a lower tolerance limit for 90% of the log-compressive strengths, with
confidence level 1 − α. More specifically, the lower tolerance limit at level of
confidence 1 − α is

Lα,.1(Ȳn) = Ȳn − (z1−α/
√

n + z.9)σ.

In general we say that, with confidence level of 1 − α, the proportion of
population values exceeding the lower tolerance limit is at least 1 − β. This
lower tolerance limit is

Lα,β(Ȳn) = Ȳn − (z1−α/
√

n + z1−β)σ. (3.37)

It can also be shown that the upper tolerance limit for a proportion 1− β of the
values, with confidence level 1 − α, is

Uα,β(Ȳn) = Ȳn + (z1−α/
√

n + z1−β)σ (3.38)

and a tolerance interval containing a proportion 1−β of the values, with confidence
1 − α, is

(Ȳn − (z1−α/2/
√

n + z1−β/2)σ, Ȳn + (z1−α/2/
√

n + z1−β/2)σ ).

When the standard deviation σ is unknown, we should use the sample standard
deviation S to construct the tolerance limits and interval. The lower tolerance limits
will be of the form Ȳn − kSn where the factor k = k(α, β, n) is determined so that
with confidence level 1 − α we can state that a proportion 1 − β of the population
values will exceed this limit. The corresponding upper limit is given by Ȳn + kSn

and the tolerance interval is given by



168 3 Statistical Inference and Bootstrapping

(Ȳn − k′Sn, Ȳn + k′Sn).

The “two-sided” factor k′ = k′(α, β, n) is determined so that the interval will
contain a proportion 1 − β of the population with confidence 1 − α. Approximate
solutions, for large values of n, are given by

k(α, β, n)
.= t (α, β, n) (3.39)

and

k′(α, β, n)
.= t (α/2, β/2, n), (3.40)

where

t (a, b, n) = z1−b

1 − z21−a/2n
+ z1−a(1 + z2b/2 − z21−a/2n)1/2√

n(1 − z21−a/2n)
. (3.41)

Example 3.10 The following data represent a sample of 20 compressive strength
measurements (kg/cm2) of concrete cubes at age of 7 days.

349.09 308.88
238.45 196.20
385.59 318.99
330.00 257.63
388.63 299.04
348.43 321.47
339.85 297.10
348.20 218.23
361.45 286.23
357.33 316.69

Applying the transformation Y = lnX, we find that Ȳ20 = 5.732 and S20 = 0.184.
To obtain a lower tolerance limit for 90% of the log-compressive strengths with 95%
confidence, we use the factor k(0.05, 0.10, 20) = 2.548. Thus, the lower tolerance
limit for the transformed data is

Ȳ20 − kS20 = 5.732 − 2.548 × 0.184 = 5.263,

and the corresponding lower tolerance limit for the compressive strength is

e5.263 = 193.09 [kg/cm2].

�
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Fig. 3.6 Normal Q-Q plot of
simulated values from
N(10, 1)

If the tolerance limits are within the specification range, we have a satisfactory
production.

3.6 Testing for Normality with Probability Plots

It is often assumed that a sample is drawn from a population which has a normal
distribution. It is, therefore, important to test the assumption of normality. We
present here a simple test based on the normal-scores (NSCORES) of the sample
values (Fig. 3.6). The normal scores corresponding to a sample x1, x2, · · · , xn are
obtained in the following manner. First, we let

ri = rank of xi, i = 1, · · · , n. (3.42)

Here the rank of xi is the position of xi in a listing of the sample when it is arranged
in increasing order. Thus, the rank of the smallest value is 1, that of the second
smallest is 2, etc. We then let

pi = (ri − 3/8)/(n + 1/4), i = 1, · · · , n. (3.43)

Then the normal score of xi is

zi = −1(pi),
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Fig. 3.7 Normal Q-Q plot of simulated values From N(10, 1) with confidence intervals

i.e., the pi-th quantile of the standard normal distribution. If the sample is drawn
at random from a normal distribution N(μ, σ 2), the relationship between the
normal scores, NSCORES, and xi should be approximately linear. Accordingly,
the correlation between x1, · · · , xn and their NSCORES should be close to 1 in
large samples. The graphical display of the sample values versus their NSCORES is
called a normal Q-Q plot.

In the following example, we provide a normal probability plotting of n = 50
values simulated from N(10, 1), given in the previous section. If the simulation
is good, and the sample is indeed generated from N(10, 1), the X vs. NSCORES
should be scattered randomly around the line X = 10 + NSCORES. We see in
Fig. 3.7 that this is indeed the case. Also, the correlation between the x-values and
their NSCORES is 0.976.

The linear regression of the x values on the NSCORES is

X = 10.043 + 0.953 ∗ NSCORES.

We see that both the intercept and slope of the regression equation are close to the
nominal values of μ and σ . Chapter 4 provides more details on linear regression,
including testing statistical hypothesis on these coefficients.

In Table 3.7, we provide some critical values for testing whether the correlation
between the sample values and their NSCORES is sufficiently close to 1. If the
correlation is smaller than the critical value, an indication of non-normality has been
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Table 3.7 Critical values for
the correlation between
sample values and their
NSCORES (adapted from
Ryan and Joiner (2000))

n \ α 0.10 0.05 0.01

10 0.9347 0.9180 0.8804

15 0.9506 0.9383 0.9110

20 0.9600 0.9503 0.9290

30 0.9707 0.9639 0.9490

50 0.9807 0.9764 0.9664

Fig. 3.8 Normal probability plot n = 100 random numbers generated from a log-normal
distribution

established. In the example of Fig. 3.7, the correlation is R2 = 0.972. This value is
almost equal to the critical value for α = 0.05 given in the following table. The
hypothesis of normality is accepted.

In Python, we find implementations of Q-Q plots, for example, in the scipy,
statsmodels, or pingouin packages. Figure 3.6 was created using the
statsmodels package. The implementation in the pingouin package can
display confidence intervals for the regression (see Fig. 3.8).

Both implementations can manage general distributions, and we will see these
being used in the following example where we draw the sample from a non-normal
distribution.

Example 3.11 Consider a sample of n = 100 observations from a log-normal
distribution. The normalQ-Q plot of this sample is shown in Fig. 3.8 on the left. The
correlation here is only 0.730. It is apparent that the relation between the NSCORES
and the sample values is not linear. We reject the hypothesis that the sample has
been generated from a normal distribution. If, on the other hand, we compare the
distribution against a theoretical log-normal distribution, the correlation is 0.982
and we accept the hypothesis of log-normality.
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Fig. 3.9 Histogram of 100 random numbers, 50 generated from a N(10, 1) and 50 from N(15, 1)

The code for generating a Q-Q plot to compare against a log-normal is shown
here.

np.random.seed(1)
dist=stats.lognorm(s=0.1,loc=10)
x = dist.rvs(100)

fig, ax = plt.subplots(figsize=[5, 5])
stats.probplot(x, dist=stats.lognorm, sparams=[0.1, 10, 1], plot=ax)
plt.show()

�

Example 3.12 We consider here a sample of n = 100 values, with 50 of the
values generated from N(10, 1) and 50 from N(15, 1). Thus, the sample represents
a mixture of two normal distributions. The histogram is given in Fig. 3.9 and a
normal probability plot in Fig. 3.10. The normal probability plot is definitely not
linear. Although the correlation is 0.885, the hypothesis of a normal distribution is
rejected. �
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Fig. 3.10 Normal probability plot of 100 random Numbers Generated From a Mixture of Two
Normal Distributions

3.7 Tests of Goodness of Fit

3.7.1 The Chi-Square Test (Large Samples)

The chi-square test is applied by comparing the observed frequency distribution of
the sample to the expected one under the assumption of the model. More specifically,
consider a (large) sample of size N . Let ξ0 < ξ1 < · · · < ξk be the limit points of k

subintervals of the frequency distribution, and let fi be the observed frequency in the
i-th subinterval. If, according to the model, the c.d.f. is specified by the distribution
function F(x), then the expected frequency ei in the i-th subinterval is

ei = N(F(ξi) − F(ξi−1)), i = 1, · · · , k.

The chi-square statistic is defined as

χ2 =
k∑

i=1

(fi − ei)
2

ei

.

We notice that
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k∑
i=1

fi =
k∑

i=1

ei = N,

and hence,

χ2 =
k∑

i=1

f 2
i

ei

− N.

The value of χ2 is distributed approximately like χ2[k−1]. Thus, if χ2 ≥ χ2
1−α[k−

1], the distribution F(x) does not fit the observed data.
Often, the c.d.f. F(x) is specified by its family, e.g., normal or Poisson, but

the values of the parameters have to be estimated from the sample. In this case,
we reduce the number of degrees of freedom of χ2 by the number of estimated
parameters. For example, if F(x) is N(μ, σ 2), where both μ and σ 2 are unknown,
we use N(X̄, S2) and compare χ2 to χ2

1−α[k − 3].
Example 3.13 In Sect. 3.1, we considered the sampling distribution of sample
means from the uniform distribution over the integers {1, · · · , 100}. The frequency
distribution of the means of samples of size n = 10 is given in Fig. 3.1. We test here
whether the model N(50.5, 83.325) fits this data.

The observed and expected frequencies (for N = 100) are summarized in
Table 3.8.

The sum of ei here is 99.13, due to truncation of the tails of the normal
distribution. The value of χ2 is 12.86. The value of χ2

.95[8] is 15.5. Thus, the
deviation of the observed frequency distribution from the expected one is not
significant at the α = 0.05 level. �

Example 3.14 We consider here a sample of 100 cycle times of a piston, which
is described in detail in Chap. 2 in the Industrial Statistics book. We make a chi-

Table 3.8 Observed and
expected frequencies of 100
sample means

Interval fi ei

27.5 – 32.5 3 1.84

32.5 – 37.5 11 5.28

37.5 – 42.5 12 11.32

42.5 – 47.5 11 18.08

47.4 – 52.5 19 21.55

52.5 – 57.5 24 19.70

57.5 – 62.5 14 12.73

62.5 – 67.5 4 6.30

67.5 – 72.5 2 2.33

Total 100 99.13
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Table 3.9 Observed and expected frequencies of 100 cycle times

Lower limit Upper limit Observed frequency Expected frequency

at or below 0.1050 7 6.1

0.1050 0.1100 9 7.7

0.1100 0.1150 17 12.6

0.1150 0.1200 12 16.8

0.1200 0.1250 18 18.1

0.1250 0.1300 11 15.9

0.1300 0.1350 12 11.4

at or above 0.1350 14 11.4

squared test whether the distribution of cycle times is normal. The estimated values
of μ and σ are μ̂ = 0.1219 and σ̂ = 0.0109.

In Table 3.9 we provide the observed and expected frequencies over k = 8
intervals.

The calculated value of χ2 is 5.4036. We should consider the distribution of χ2

with k − 3 = 5 degrees of freedom. The P value of the test is 0.37. The hypothesis
of normality is not rejected. �

3.7.2 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is a more accurate test of goodness of fit than
the chi-squared test of the previous section.

Suppose that the hypothesis is that the sample comes from a specified distribution
with c.d.f. F0(x). The test statistic compares the empirical distribution of the sample,
F̂n(x), to F0(x), and considers the maximal value, over all x values, that the distance
|F̂n(x) − F0(x)| may assume. Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be the ordered sample

values. Notice that F̂n(x(i)) = i

n
. The KS test statistic can be computed according

to the formula

Dn = max
1≤i≤n

{
max

{
i

n
− F0(x(i)), F0(x(i)) − i − 1

n

}}
(3.44)

We have shown earlier that U = F(X) has a uniform distribution on (0, 1).
Accordingly, if the null hypothesis is correct, F0(X(i)) is distributed like the i-th

order statisticU(i) from a uniform distribution on (0, 1), irrespective of the particular
functional form of F0(x). The distribution of the KS test statistic, Dn, is therefore
independent of F0(x), if the hypothesis, H , is correct. Tables of the critical values
kα and Dn are available. One can also estimate the value of kα by the bootstrap
method, discussed later.
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Table 3.10 Some critical
values δ∗

α

α 0.15 0.10 0.05 0.025 0.01

δ∗
α 0.775 0.819 0.895 0.995 1.035

If F0(x) is a normal distribution, i.e., F0(x) = 

(
x − μ

σ

)
, and if the mean μ

and the Standard deviation, σ , are unknown, one can consider the test statistic

D∗
n = max

1≤i≤n

{
max

{
i

n
− 

(
X(i) − X̄n

Sn

)
,

(
X(i) − X̄n

Sn

)
− i − 1

n

}}
,

(3.45)
where X̄n and Sn are substituted for the unknown μ and σ . The critical values k∗

α

for D∗
n are given approximately by

k∗
α = δ∗

α/

(√
n − 0.01 + 0.85√

n

)
, (3.46)

where δ∗
α is given in Table 3.10.

To compute the Kolmogorov-Smirnov statistics in Python, use the function
scipy.stats.kstest.

oturb = mistat.load_data('OTURB')

result = stats.kstest(oturb, 'norm',
args=(np.mean(oturb), np.std(oturb, ddof=1)),
alternative='two-sided')

For the data in Example 3.14 (file name OTURB.csv), we obtain D∗
n = 0.1108.

According to Table 3.10, the critical value for α = 0.05 is k∗
.05 = 0.895/(10 −

0.01+ 0.085) = 0.089. Thus, the hypothesis of normality for the piston cycle time
data is rejected at α = 0.05.

3.8 Bayesian Decision Procedures

It is often the case that optimal decision depends on unknown parameters of
statistical distributions. The Bayesian decision framework provides us the tools
to integrate information that one may have on the unknown parameters with the
information obtained from the observed sample in such a way that the expected loss
due to erroneous decisions will be minimized. In order to illustrate an industrial
decision problem of such nature, consider the following example.

Example 3.15 (Inventory Management) The following is the simplest inventory
problem that is handled daily by organizations of all sizes worldwide. One such
organization is Starbread Express that supplies bread to a large community in the
Midwest. Every night, the shift manager has to decide howmany loafs of bread, s, to
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bake for next day’s consumption. Let X (a random variable) be the number of units
demanded during the day. If a manufactured unit is left at the end of the day, we lose
$ c1 on that unit. On the other hand, if a unit is demanded and is not available, due
to shortage, the loss is $ c2. How many units, s, should be manufactured so that the
total expected loss due to overproduction or to shortages will be minimized?

The loss at the end of the day is

L(s,X) = c1(s − X)+ + c2(X − s)+, (3.47)

where a+ = max(a, 0). The loss function L(s,X) is a random variable. If the p.d.f.
of X is f (x), x = 0, 1, · · · then the expected loss, is a function of the quantity s, is

R(s) = c1

s∑
x=0

f (x)(s − x) + c2

∞∑
x=s+1

f (x)(x − s)

= c2E{X} − (c1 + c2)

s∑
x=0

xf (x)

+ s(c1 + c2)F (s) − c2s,

(3.48)

where F(s) is the c.d.f. of X, at X = s, and E{X} is the expected demand.
The optimal value of s, s0, is the smallest integer s for whichR(s+1)−R(s) ≥ 0.

Since, for s = 0, 1, · · ·

R(s + 1) − R(s) = (c1 + c2)F (s) − c2,

we find that

s0 = smallest non-negative integer s, such that F(s) ≥ c2

c1 + c2
. (3.49)

In other words, s0 is the c2/(c1 + c2)-th quantile of F(x). We have seen that
the optimal decision is a function of F(x). If this distribution is unknown, or only
partially known, one cannot determine the optimal value s0.

After observing a large number, N , of X values, one can consider the empirical
distribution, FN(x), of the demand and determine the level S0(FN) = smallest s

value such that FN(s) ≥ c2

c1 + c2
. The question is what to do when N is small. �

3.8.1 Prior and Posterior Distributions

We will focus attention here on parametric models. Let f (x; θ) denote the p.d.f.
of some random variable X, which depends on a parameter θ . θ could be a
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vector of several real parameters, like in the case of a normal distribution. Let
� denote the set of all possible parameters θ . � is called the parameter space.
For example, the parameter space � of the family of normal distribution is the set
� = {(μ, σ );−∞ < μ < ∞, 0 < σ < ∞}. In the case of Poisson distributions,

� = {λ; 0 < λ < ∞}.

In a Bayesian framework, we express our prior belief (based on prior information)
on which θ values are plausible, by a p.d.f. on �, which is called the prior
probability density function. Let h(θ) denote the prior p.d.f. of θ . For example,
suppose that X is a discrete random variable having a binomial distribution B(n, θ).
n is known, but θ is unknown. The parameter space is� = {θ; 0 < θ < 1}. Suppose
we believe that θ is close to 0.8, with small dispersion around this value. In Fig. 3.11
we illustrate the p.d.f. of a beta distribution, Beta(80,20), whose functional form is

h(θ; 80, 20) = 99!
79!19!θ

79(1 − θ)19, 0 < θ < 1.

If we wish, however, to give more weight to small values of θ , we can choose the
Beta(8,2) as a prior density, i.e.,

h(θ; 8, 2) = 72θ7(1 − θ), 0 < θ < 1

(see Fig. 3.12).
The average p.d.f. of X, with respect to the prior p.d.f. h(θ), is called the

predictive p.d.f. of X. This is given by

Fig. 3.11 The p.d.f. of Beta(80, 20)
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Fig. 3.12 The p.d.f. of Beta(8, 2)

fh(x) =
∫

�

f (x; θ)h(θ) dθ . (3.50)

For the example above, the predictive p.d.f. is

fh(x) = 72

(
n

x

)∫ 1

0
θ7+x(1 − θ)n−x+1 dθ

= 72

(
n

x

)
(7 + x)!(n + 1 − x)!

(n + 9 − x)! , x = 0, 1, · · · , n.

Before taking observations on X, we use the predictive p.d.f. fh(x), to predict the
possible outcomes of observations on X. After observing the outcome of X, say x,
we convert the prior p.d.f. to a posterior p.d.f., by employing Bayes’ theorem. If
h(θ | x) denotes the posterior p.d.f. of θ , given that {X = x}, Bayes’ theorem yields

h(θ | x) = f (x | θ)h(θ)

fh(x)
. (3.51)

In the example above,

f (x | θ) =
(

n

x

)
θx(1 − θ)n−x, x = 0, 1, · · · , n,

h(θ) = 72θ7(1 − θ), 0 < θ < 1,

and hence,
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Fig. 3.13 The posterior p.d.f. of θ , n = 10, X = 6, 7, 8

h(θ | x) = (n + 9)!
(7 + x)!(n + 1 − x)!θ

7+x(1 − θ)n+1−x, 0 < θ < 1.

This is again the p.d.f. of a beta distribution Beta(8 + x, n − x + 2).
In Fig. 3.13 we present some of these posterior p.d.f. for the case of n = 10,

x = 6, 7, 8. Notice that the posterior p.d.f. h(θ | x) is the conditional p.d.f. of θ ,
given {X = x}. If we observe a random sample of n independent and identically
distributed (i.i.d.) random variables, and the observed values of X1, · · · , Xn are
x1, · · · , xn, then the posterior p.d.f. of θ is

h(θ | x1, · · · , xn) =
∏n

i=1 f (xi, θ)h(θ)

fh(x1, · · · , xn)
, (3.52)

where

fh(x1, · · · , xn) =
∫

�

n∏
i=1

f (xi, θ)h(θ) dθ (3.53)

is the joint predictive p.d.f. of X1, · · · , Xn. If the i.i.d. random variables
X1, X2, . . . are observed sequentially (time-wise), then the posterior p.d.f. of θ ,
given x1, · · · , xn, n ≥ 2 can be determined recursively, by the formula

H(θ | x1, · · · , xn) = f (xn; θ)h(θ | x1, · · · , xn−1)∫
�

f (xn; θ ′)h(θ ′ | x1, · · · , xn−1) dθ ′ .

The function
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fh(xn | x1, · · · , xn−1) =
∫

�

f (xn; θ)h(θ | x1, · · · , xn−1) dθ

is called the conditional predictive p.d.f. ofXn, givenX1 = x1, · · · , Xn−1 = xn−1.
Notice that

fh(xn | x1, · · · , xn−1) = fh(x1, · · · , xn)

fh(x1, · · · , xn−1)
. (3.54)

3.8.2 Bayesian Testing and Estimation

3.8.2.1 Bayesian Testing

We discuss here the problem of testing hypotheses as a Bayesian decision problem.
Suppose that we consider a null hypothesis H0 concerning a parameter θ of the
p.d.f. of X. Suppose also that the parameter space � is partitioned to two sets �0
and �1. �0 is the set of θ values corresponding to H0, and �1 is the complementary
set of elements of � which are not in �0. If h(θ) is a prior p.d.f. of θ , then the prior
probability that H0 is true is π = ∫

�0
h(θ) dθ . The prior probability that H1 is true

is π̄ = 1 − π .
The statistician has to make a decision whether H0 or H1 is true. Let d(π) be a

decision function, assuming the values 0 and 1, i.e.,

d(π) =
{
0, decision to accept H0 (H0 is true)

1, decision to reject H0 (H1 is true).

Let w be an indicator of the true situation, i.e.,

w =
{
0, if H0 is true.

1, if H1 is true.

We also impose a loss function for erroneous decision

L(d(π),w) =

⎧⎪⎪⎨
⎪⎪⎩
0, if d(π) = w

r0, if d(π) = 0, w = 1

r1, if d(π) = 1, w = 0,

(3.55)

where r0 and r1 are finite positive constants. The prior risk associated with the
decision function d(π) is
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R(d(π), π) = d(π)r1π + (1 − d(π))r0(1 − π)

= r0(1 − π) + d(π)[π(r0 + r1) − r0].
(3.56)

We wish to choose a decision function which minimizes the prior risk R(d(π), π).
Such a decision function is called the Bayes decision function, and the prior risk
associated with the Bayes decision function is called the Bayes risk. According to
the above formula of R(d(π), π), we should choose d(π) to be 1 if, and only if,
π(r0 + r1) − r0 < 0. Accordingly, the Bayes decision function is

d0(π) =

⎧⎪⎨
⎪⎩
0, if π ≥ r0

r0 + r1

1, if π <
r0

r0 + r1

(3.57)

Let π∗ = r0/(r0 + r1), and define the indicator function

I (π;π∗) =
{
1, if π ≥ π∗

0, if π < π∗

then, the Bayes risk is

R0(π) = r0(1 − π)I (π;π∗) + πr1(1 − I (π;π∗)). (3.58)

In Fig. 3.14 we present the graph of the Bayes risk function R0(π), for r0 = 1
and r1 = 5. We see that the function R0(π) attains its maximum at π = π∗. The
maximal Bayes risk is R0(π∗) = r0r1/(r0 + r1) = 5/6. If the value of π is close to
π∗, the Bayes risk is close to R0(π∗).

The analysis above can be performed even before observations commenced. If π

is close to 0 or 1, the Bayes risk R0(π) is small; we may reach decision concerning
the hypotheses without even making observations. Recall that observations cost
money, and it might not be justifiable to spend this money. On the other hand, if the
cost of observations is negligible compared to the loss due to erroneous decision, it
might be prudent to take as many observations as required to reduce the Bayes risk.

After observing a random sample, x1, · · · , xn, we convert the prior p.d.f. of θ to
posterior and determine the posterior probability of H0, namely,

πn =
∫

�

h(θ | x1, · · · , xn) dθ .

The analysis then proceeds as before, replacing π with the posterior probability πn.
Accordingly, the Bayes decision function is

d0(x1, · · · , xn) =
{
0, if πn ≥ π∗

1, if πn < π∗
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Fig. 3.14 The Bayes risk
function

and the Bayes posterior risk is

R0(πn) = r0(1 − πn)I (πn;π∗) + πnr1(1 − I (πn;π∗)).

Under certain regularity conditions, limn→∞ πn = 1 or 0, according to whether
H0 is true or false. We illustrate this with a simple example.

Example 3.16 Suppose that X has a normal distribution, with known σ 2 = 1. The
mean μ is unknown. We wish to test H0 : μ ≤ μ0 against H1 : μ > μ0. Suppose
that the prior distribution of μ is also normal, N(μ∗, τ 2). The posterior distribution
of μ, given X1, · · · , Xn, is normal with mean

E{μ | X1, · · · , Xn} = μ∗ 1

(1 + nτ 2)
+ nτ 2

1 + nτ 2
X̄n

and posterior variance

V {μ | X1, · · · , Xn} = τ 2

1 + nτ 2
.

Accordingly, the posterior probability of H0 is

πn = 

⎛
⎜⎜⎜⎜⎝

μ0 − μ∗

1 + nτ 2
− nτ 2

1 + nτ 2
X̄n√

τ 2

1 + nτ 2

⎞
⎟⎟⎟⎟⎠ .
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According to the law of large numbers, X̄n → μ (the true mean), as n → ∞, with
probability one. Hence,

lim
n→∞ πn =

⎧⎪⎪⎨
⎪⎪⎩
1, if μ < μ0
1

2
, if μ = μ0

0, if μ > μ0.

Notice that the prior probability that μ = μ0 is zero. Thus, if μ < μ0 or μ > μ0,
limn→∞ R0(πn) = 0, with probability one, that is, if n is sufficiently large, the
Bayes risk is, with probability close to one, smaller than some threshold r∗. This
suggests to continue, step-wise or sequentially, collecting observations, until the

Bayes risk R0(πn) is, for the first time, smaller than r∗. At stopping, πn ≥ 1 − r∗

r0

or πn ≤ r∗

r1
. We obviously choose r∗ <

r0r1

r0 + r1
. �

3.8.2.2 Bayesian Estimation

In an estimation problem, the decision function is an estimator θ̂(x1, · · · , xn), which
yields a point in the parameter space �. Let L(θ̂(x1, · · · , xn), θ) be a loss function
which is non-negative, and L(θ, θ) = 0. The posterior risk of an estimator
θ̂(x1, · · · , xn) is the expected loss, with respect to the posterior distribution of θ ,
given (x1, · · · , xn), i.e.,

Rh(θ̂, xn) =
∫

�

L(θ̂(xn), θ)h(θ | xn) dθ , (3.59)

where xn = (x1, · · · , xn). We choose an estimator which minimizes the posterior
risk. Such an estimator is called a Bayes estimator and designated by θ̂B(xn). We
present here a few cases of importance.

Case A θ real, L(θ̂, θ) = (θ̂ − θ)2.
In this case, the Bayes estimator of θ is posterior expectation of θ , i.e.,

θ̂B(xn) = Eh{θ | xn}. (3.60)

The Bayes risk is the expected posterior variance, i.e.,

R0
h =

∫
Vh{θ | xn}fh(x1, · · · , xn) dx1, · · · , dxn.



3.8 Bayesian Decision Procedures 185

Case B θ real, L(θ̂, θ) = c1(θ̂ − θ)+ + c2(θ − θ̂ )+, with c1, c2 > 0, and (a)+ =
max(a, 0).

As shown in inventory Example 3.15, at the beginning of the section, the Bayes
estimator is

θ̂B(xn) = c2

c1 + c2
th quantile of the posterior distribution of θ, given xn.

When c1 = c2 we obtain the posterior median.

3.8.3 Credibility Intervals for Real Parameters

We restrict attention here to the case of a real parameter, θ . Given the values
x1, · · · , xn of a random sample, let h(θ | xn) be the posterior p.d.f. of θ . An interval
C1−α(xn) such that

∫
C1−α(xn)

h(θ | xn) dθ ≥ 1 − α (3.61)

is called a credibility interval for θ . A credibility interval C1−α(xn) is called a
highest posterior density (HPD) interval if for any θ ∈ C1−α(xn) and θ ′ �∈
C1−α(xn), h(θ | xn) > h(θ ′ | xn).

Example 3.17 Let x1, · · · , xn be the values of a random sample from a Poisson
distribution P(λ), 0 < λ < ∞. We assign λ a Gamma distribution G(ν, τ). The
posterior p.d.f. of λ, given xn = (x1, · · · , xn), is

h(λ | xn) = (1 + nτ)ν+�xi

�(ν + �xi)τ ν+�xi
λν+�xi−1e−λ 1+nτ

τ .

In other words, the posterior distribution is a gamma distribution G
(
ν + ∑n

i=1 xi,

τ
1+nτ

)
. From the relationship between the gamma and the χ2-distributions, we can

express the limits of a credibility interval for λ, at level (1 − α) as

τ

2(1 + nτ)
χ2

α/2[φ] and
τ

2(1 + nτ)
χ2
1−α/2[φ]

where φ = 2ν+2
∑n

i=1 xi . This interval is called an equal tail credibility interval.
However, it is not an HPD credibility interval. In Fig. 3.15 we present the posterior
density for the special case of n = 10, ν = 2, τ = 1, and

∑10
i=1 xi = 15. For these

values the limits of the credibility interval for λ, at level 0.95, are 0.9 and 2.364.
As we see in Fig. 3.15, h(0.9 | xn) > h(2.364 | xn). Thus, the equal-tail credibility
interval is not an HPD interval. The limits of the HPD interval can be determined by
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Fig. 3.15 The posterior p.d.f. and credibility intervals

trial and error. In the present case, they are approximately 0.86 and 2.29, as shown
in Fig. 3.15. �

3.9 Random Sampling from Reference Distributions

We have seen in Sect. 1.4.1 an example of blemishes on ceramic plates. In that
example (Table 1.2), the proportion of plates having more than one blemish is
0.23. Suppose that we decide to improve the manufacturing process and reduce this
proportion. How can we test whether an alternative production process with new
operating procedures and machine settings is indeed better so that the proportion
of plates with more than one blemish is significantly smaller? The objective is to
operate a process with a proportion of defective units (i.e., with more than one
blemish) which is smaller than 0.10. After various technological modifications, we
are ready to test whether the modified process conforms with the new requirement.
Suppose that a random sample of ceramic plates is drawn from the modified
manufacturing process. One has to test whether the proportion of defective plates
in the sample is not significantly larger than 0.10. In the parametric model, it was
assumed that the number of plates having more than one defect, in a random sample
of n plates, has a binomial distribution B(n, p). For testing H0 : p ≤ 0.1 a test was
constructed based on the reference distribution B(n, .1).
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One can create, artificially on a computer, a population having ninety 0s and
ten 1s. In this population the proportion of 1s is p0 = 0.10. From this population
one can draw a large number, M , of random samples with replacement (RSWR)
of a given size n. In each sample, the sample mean X̄n is the proportion of 1s in
the sample. The sampling distribution of the M sample means is our empirical
reference distribution for the hypothesis that the proportion of defective plates is
p ≤ p0. We pick a value α close to zero and determine the (1 − α)-th quantile of
the empirical reference distribution. If the observed proportion in the real sample is
greater than this quantile, the hypothesis H : p ≤ p0 is rejected.

Example 3.18 To illustrate, we created an empirical reference distribution of M =
1000 proportions of 1s in RSWR of size n = 50 using the following code.

random.seed(1)

# Create a population of 90 0s and 10 1s
population = [0] * 90
population.extend([1] * 10)

proportions = []
for m in range(1000):

# sample 50 values from population using RSWR
sample = random.choices(population, k=50)
# keep the mean of the sample
proportions.append(np.mean(sample))

It was assumed that population contained ninety 0s and ten 1s. We can get the
frequency distribution of the calculated proportions using the Python Counter
class.

from collections import Counter
from pprint import pprint

frequencies = Counter(proportions)
pprint(sorted(frequencies.items()))

[(0.0, 7),
(0.02, 24),
(0.04, 76),
(0.06, 123),
(0.08, 176),
(0.1, 193),
(0.12, 150),
(0.14, 110),
(0.16, 80),
(0.18, 35),
(0.2, 17),
(0.22, 9)]

This frequency distribution represents the reference distribution. An outcome of
such a simulation is given in Table 3.11.

For α = 0.05, the 0.95-quantile of the empirical reference distribution is 0.15,
since at least 50 out of 1000 observations are greater than 0.15. Thus, if in a real
sample, of size n = 50, the defective proportion is greater than 0.15, the null
hypothesis is rejected. �
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Table 3.11 Frequency
distribution of M = 1000
means of RSWR from a set
with ninety 0s and ten 1s

x̄ f x̄ f

0.03 10 0.11 110

0.04 17 0.12 100

0.05 32 0.13 71

0.06 61 0.14 50

0.07 93 0.15 28

0.08 128 0.16 24

0.09 124 0.17 9

0.10 133 >0.17 10

Example 3.19 Consider a hypothesis on the length of aluminum pins (with cap),
H0 : μ ≥ 60.1 [mm]. We create now an empirical reference distribution for
this hypothesis. In the dataset ALMPIN.csv, we have the actual sample values.
The mean of the variable lenWcp is X̄70 = 60.028. Since the hypothesis states
that the process mean is μ ≥ 60.1, we transform the sample values to Y =
X − 60.028 + 60.1. This transformed sample has a mean of 60.1. We now create a
reference distribution of sample means, by drawing M RSWR of size n = 70 from
the transformed sample. We can perform this using the following Python code.

random.seed(1)

# Load the dataset
X = mistat.load_data('ALMPIN')['lenWcp']
Y = X - np.mean(X) + 60.1

means = []
for m in range(1000):

# sample 70 values from population using RSWR
sample = random.choices(Y, k=70)
# keep the mean of the sample
sample_mean = np.mean(sample)
means.append(0.005 * round(sample_mean/0.005))

quant_001 = np.quantile(means, 0.01)

After executing the code, we obtain an empirical reference distribution whose
frequency distribution is given in Table 3.12.

In the dataset ALMPIN.csv, there are six variables, measuring various dimen-
sions of aluminum pins. We calculate the transformed variable from the column
lenWcp.

Since X̄70 = 60.028 is smaller than 60.1, we consider as a test criterion the α-
quantile of the reference distribution. If X̄70 is smaller than this quantile, we reject
the hypothesis. For α = 0.01, the 0.01-quantile in the above reference distribution
is 60.08995. Accordingly we reject the hypothesis, since it is very implausible (less
than one chance in a hundred) that μ ≥ 60.1. The estimated P -value is less than
10−3, since the smallest value in the reference distribution is 60.08. �
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Table 3.12 Frequency
distribution of X̄70 from 1000
RSWR from lengthwcp

Midpoint Count

60.080 1

60.085 9

60.090 78

60.095 230

60.100 350

60.105 239

60.110 79

60.115 12

60.120 2

3.10 Bootstrap Sampling

3.10.1 The Bootstrap Method

The bootstrap methodology was introduced in 1979 by B. Efron, as an elegant
method of performing statistical inference by harnessing the power of the computer
and without the need for extensive assumptions and intricate theory. Some of the
ideas of statistical inference with the aid of computer sampling were presented in the
previous sections. In the present section, we introduce the bootstrap method in more
detail. In Chap. 7 we deal with predictive analytic models where the data is split into
a training and a validation set. An extended approach to assessing predictive models
is to apply cross-validation.

Given a sample of size n, Sn = {x1, · · · , xn}, let tn denote the value of some
specified sample statistic T . The bootstrap method draws M random samples with
replacement (RSWR) of size n from Sn. For each such sample, the statistic T is
computed. Let {t∗1 , t∗2 , · · · , t∗M } be the collection of these sample statistics. The
distribution of these M values of T is called the empirical bootstrap distribution
(EBD). It provides an approximation, if M is large, to the bootstrap distribution
of all possible values of the statistic T that can be generated by repeatedly sampling
from Sn.

General Properties of the (EBD)

1. The EBD is centered at the sample statistic tn.
2. The mean of the EBD is an estimate of the mean of the sampling distribution of

the statistic T , over all possible samples.
3. The standard deviation of the EBD is the bootstrap estimate of the standard

error of T .
4. The α/2-th and (1 − α/2)-th quantiles of the EBD are bootstrap confidence

limits for the parameter which are estimated by tn, at level of confidence (1−α).
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Fig. 3.16 Result of a bootstrap analysis of the ETCHRATE dataset

Example 3.20 We illustrate the bootstrap method with dataset ETCHRATE.csv
in which we want to test if the sample is derived from a population with a
specific mean. In principle, we could use Python code similar to the one we
introduced in the previous section. However, there are packages that contain
bootstrap implementations which provide additional functionality. Here, we use the
compute_bootci method from the pingouin package.

etchrate = mistat.load_data('ETCHRATE')

B = pg.compute_bootci(etchrate, func=np.mean, n_boot=1000,
confidence=0.95, return_dist=True, seed=1)

ci, distribution = B
print(f' Mean: {np.mean(distribution)}')
print(f' 95%-CI: {ci[0]:.1f} - {ci[1]:.1f}')

Mean: 508.53783333333337
95%-CI: 481.7 - 533.7

Figure 3.16 shows the distribution of the data and the resampled means as
histograms. The analysis returns the bootstrap confidence limits, at confidence level
(1−α) = 0.95. The bootstrap interval (481.7, 533.7) is called a bootstrap confidence
interval for μ. We see that this interval does not cover the tested mean of 550. �

3.10.2 Examining the Bootstrap Method

In the previous section, we introduced the bootstrap method as a computer intensive
technique for making statistical inference. In this section some of the properties of
the bootstrap methods are examined in light of the theory of sampling from finite
populations. As we recall, the bootstrap method is based on drawing repeatedly M

simple RSWR from the original sample.
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Let SX = {x1, · · · , xn} be the values of the n original observations on X. We can
consider SX as a finite population P of size n. Thus, the mean of this population, μn,

is the sample mean X̄n, and the variance of this population is σ 2
n = n − 1

n
S2

n , where

S2
n is the sample variance, S2

n = 1

n − 1

∑n
i=1(xi − X̄n)

2. Let S∗
X = {X∗

1, · · · , X∗
n}

denote a simple RSWR from SX. S∗
X is the bootstrap sample. Let X̄∗

n denote the
mean of the bootstrap sample.

We have shown in Chap. 2 that the mean of a simple RSWR is an unbiased
estimator of the corresponding sample mean. Thus,

E∗{X̄∗
n} = X̄n, (3.62)

where E∗{·} is the expected value with respect to the bootstrap sampling. Moreover,
the bootstrap variance of X̄∗

n is

V ∗{X̄∗
n} =

n − 1

n
S2

n

n

= S2
n

n

(
1 − 1

n

)
.

(3.63)

Thus, in large sample

V ∗{X̄∗
n} ∼= S2

n

n
. (3.64)

If the original sample SX is a realization of n i.i.d. random variables, having a
c.d.f. F(x), with finite expected value μF and a finite variance σ 2

F , then, as shown
in Sect. 4.8, the variance of X̄n is σ 2

F /n. The sample variance S2
n is an unbiased

estimator of σ 2
F . Thus,

S2
n

n
is an unbiased estimator of σ 2

F /n. Finally, the variance

of the EBD of X̄∗
1, · · · , X̄∗

M obtained by repeating the bootstrap sampling M times

independently is an unbiased estimator of
S2

n

n

(
1 − 1

n

)
. Thus, the variance of the

EBD is an approximation to the variance of X̄n.
We remark that this estimation problem is a simple one, and there is no need for

bootstrapping in order to estimate the variance or standard error of the estimator X̄n.
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3.10.3 Harnessing the Bootstrap Method

The effectiveness of the bootstrap method manifests itself when a formula for the
variance of an estimator is hard to obtain. In Sect. 2.1.4, we provided a formula
for the variance of the estimator S2

n , in simple RSWR. By bootstrapping from the
sample SX, we obtain an EBD of S2

n

∗
. The variance of this EBD is an approximation

to the true variance of S2
n . Thus, for example, when P = {1, 2, · · · , 100}, the

true variance of S2
n is 31,131.2, while the bootstrap approximation, for a particular

sample, is 33,642.9. Another sample will yield a different approximation. The
approximation obtained by the bootstrap method becomes more precise as the
sample size grows. For the above problem, if n = 100, V {Sn} = 5693.47 and
the bootstrap approximation is distributed around this value.

The following are values of four approximations of V {Sn} for n = 100, when
M = 100. Each approximation is based on different random samples from P

6293.28, 5592.07, 5511.71, 5965.89.

Each bootstrap approximation is an estimate of the true value of V {Sn}.

3.11 Bootstrap Testing of Hypotheses

In this section we present some of the theory and the methods of testing hypotheses
by bootstrapping. Given a test statistic T = T (X1, · · · , Xn), the critical level for the
test, kα , is determined according to the distribution of T under the null hypothesis,
which is the reference distribution.

The bootstrapping method, as explained before, is a randomization method which
resamples the sample values and thus constructs a reference distribution for T,
independently of the unknown distribution F of X. For each bootstrap sample,
we compute the value of the test statistic T∗ = T (x∗

1 , · · · , x∗
n). Let T∗

1, · · · ,T∗
M

be the M values of the test statistic obtained from the M samples from BP. Let
F ∗

M(t) denote the empirical c.d.f. of these values. F ∗
M(t) is an estimator of the

bootstrap distribution F ∗(t), from which we can estimate the critical value k∗.
Specific procedures are given in the following subsections.

3.11.1 Bootstrap Testing and Confidence Intervals
for the Mean

Suppose that {x1, · · · , xn} is a random sample from a parent population, having an
unknown distribution, F , with mean μ and a finite variance σ 2.

We wish to test the hypothesis
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H0 : μ ≤ μ0 against H1 : μ > μ0.

Let X̄n and Sn be the sample mean and sample standard deviation. Suppose that
we draw from the original sample M bootstrap samples. Let X̄∗

1, · · · , X̄∗
M be the

means of the bootstrap samples. Recall that, since the bootstrap samples are RSWR,
E∗{X̄∗

j } = X̄n for j = 1, · · · ,M , where E∗{·} designates the expected value, with
respect to the bootstrap sampling. Moreover, for large n,

S.E.∗{X̄∗
j } ∼= Sn√

n
, j = 1, · · · ,M.

Thus, if n is not too small, the central limit theorem implies that F ∗
M(X̄∗) is approx-

imately 

(
X̄∗ − X̄n

Sn/
√

n

)
, i.e., the bootstrap means X̄∗

1, · · · , X̄∗
m are distributed

approximately normally aroundμ∗ = X̄n. We wish to rejectH0 if X̄n is significantly
larger thanμ0. According to this normal approximation toF ∗

M(X̄∗), we should reject

H0, at level of significance α, if
μ0 − X̄n

Sn/
√

n
≤ zα or X̄n ≥ μ0 + z1−α

Sn√
n
. This is

approximately the t-test of Sect. 3.3.2.2.
Notice that the reference distribution can be obtained from the EBD by subtract-

ing � = X̄n − μ0 from X̄∗
j (j = 1, . . . , M). The reference distribution is centered

at μ0. The (1 − α/2)-th quantile of the reference distribution is μ0 + z1−α/2
Sn√
n
.

Thus, if X̄n ≥ μ0 + z1−α/2
Sn√
n
, we reject the null hypothesis H0 : μ ≤ μ0.

If the sample size n is not large, it might not be justified to use the normal
approximation. We use bootstrap procedures in the following sections.

3.11.2 Studentized Test for the Mean

A studentized test statistic, for testing the hypothesis H0 : μ ≤ μ0, is

tn = X̄n − μ0

Sn/
√

n
. (3.65)

H is rejected if tn is significantly greater than zero. To determine what is the
rejection criterion, we construct an EBD by the following procedure:

1. Draw a RSWR, of size n, from the original sample.
2. Compute X̄∗

n and S∗
n of the bootstrap sample.

3. Compute the studentized statistic
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t∗n = X̄∗
n − X̄n

S∗
n/

√
n

. (3.66)

4. Repeat this procedure M times.

Let t∗p denote the p-th quantile of the EBD.

Case I H : μ ≤ μ0.
The hypothesis H is rejected if

tn ≥ t∗1−α.

Case II H : μ ≥ μ0.
We reject H if

tn ≤ t∗α.

Case III H : μ = μ0.
We reject H if

|tn| ≥ t∗1−α/2.

The corresponding P ∗-levels are:

For Case I: The proportions of t∗n values greater than tn.
For Case II: The proportions of t∗n values smaller than tn.
For Case III: The proportion of t∗n values greater than |tn| or smaller than −|tn|.
H is rejected if P ∗ is small.

Notice the difference in definition between tn and t∗n . tn is centered around μ0
while t∗n around X̄n.

Example 3.21 In data file HYBRID1.csv, we find the resistance (in ohms) of Res3
in a hybrid microcircuit labeled hybrid 1 on n = 32 boards. The mean of Res 3 in
hybrid 1 is X̄32 = 2143.4. The question is whether Res 3 in hybrid 1 is significantly
different from μ0 = 2150. We consider the hypothesis

H : μ = 2150 (Case III).

With M = 500, we obtain with the Python commands below the following 0.95-
confidence level bootstrap interval (2111, 2176). We see that μ0 = 2150 is covered
by this interval. We therefore infer that X̄32 is not significantly different than μ0.
The hypothesis H is not rejected. With stats.ttest_1samp, we see that the
studentized difference between the sample mean X̄32 and μ0 is tn = −0.374. M =
500 bootstrap replicas yield the value P ∗ = 0.692. The hypothesis is not rejected.
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The commands in Python are:

hybrid1 = mistat.load_data('HYBRID1')

ci = pg.compute_bootci(hybrid1, func='mean', n_boot=500,
confidence=0.95, method='per', seed=1)

print('bootstrap: ', ci)
print()

print(stats.ttest_1samp(hybrid1, 2150))
n = len(hybrid1) - 1
t_test_confinterval = stats.t.interval(0.95, n, loc=np.mean(hybrid1),

scale=np.std(hybrid1)/np.sqrt(n))
print('t-test 95% conf-interval', t_test_confinterval)
print()

# get distribution of bootstrapped pvalues and determine percentage of
# values less than pvalue calculated from ttest_1samp
def stat_func(x):

return stats.ttest_1samp(x, 2150).pvalue

ci, dist = pg.compute_bootci(hybrid1, func=stat_func, n_boot=500,
confidence=0.95, method='per',
seed=1, return_dist=True)

sum(dist < stats.ttest_1samp(hybrid1, 2150).pvalue) / len(dist)

bootstrap: [2111.34 2175.69]

Ttest_1sampResult(statistic=-0.3743199001200656,
pvalue=0.7107146634282755)
t-test 95% conf-interval (2107.4796487616936, 2179.3328512383064)

0.692

�

3.11.3 Studentized Test for the Difference of Two Means

The problem is whether two population means μ1 and μ2 are the same. This
problem is important in many branches of science and engineering, when two
“treatments” are compared.

Suppose that one observes a random sample X1, · · · , Xn1 from population 1 and
another random sample Y1, · · · , Yn2 from population 2. Let X̄n1 , Ȳn2 , Sn1 , and Sn2

be the means and standard deviations of these two samples, respectively. Compute
the studentized difference of the two sample means as

t = X̄n1 − Ȳn2 − δ0(
S2

n1
n1

+ S2
n2
n2

)1/2 , (3.67)

where δ = μ1 − μ2. The question is whether this value is significantly different
from zero. The hypothesis under consideration is
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H : μ1 = μ2, or δ0 = 0.

By the bootstrap method, we draw RSWR of size n1 from the x-sample and an
RSWR of size n2 from the y-sample. Let X∗

1, · · · , X∗
n1

and Y ∗
1 , · · · , Y ∗

n2
be these

two bootstrap samples, with means and standard deviations X̄∗
n1
, Ȳ ∗

n2
and S∗

n1
, S∗

n2
.

We compute then the studentized difference

t∗ = X̄∗
n1

− Ȳ ∗
n2

− (X̄n1 − Ȳn2)(
S∗2

n1
n1

+ S∗2
n2
n2

)1/2 . (3.68)

This procedure is repeated independently M times, to generate an EBD of
t∗1 , · · · , t∗M .

Let (D∗
α/2,D

∗
1−α/2) be a (1 − α) level confidence interval for δ, based on the

EBD. If t∗α/2 is the α/2-quantile of t∗ and t∗1−α/2 is its (1 − α/2)-quantile, then

D∗
α/2 = (X̄n1 − Ȳn2) + t∗α/2

(
S2

n1

n1
+ S2

n2

n2

)1/2

D∗
1−α/2 = (X̄n1 − Ȳn2) + t∗1−α/2

(
S2

n1

n1
+ S2

n2

n2

)1/2

.

(3.69)

If this interval does not cover the value δ0 = 0, we reject the hypothesis H : μ1 =
μ2. The P ∗-value of the test is the proportion of t∗i values which are either smaller
than −|t | or greater than |t |.
Example 3.22 We compare the resistance coverage of Res 3 in hybrid 1 and hybrid
2. The data file HYBRID2.csv consists of two columns. The first represents the
sample of n1 = 32 observations on hybrid 1, and the second column consists of
n2 = 32 observations on hybrid 2. Using Python, we calculate M = 500 bootstrap
samples of t∗.

random.seed(1)
hybrid2 = mistat.load_data('HYBRID2')
X = hybrid2['hyb1']
Y = hybrid2['hyb2']
Xbar = np.mean(X)
Ybar = np.mean(Y)
SX = np.std(X, ddof=1)
SY = np.std(Y, ddof=1)
print('Xbar {Xbar:.2f} / SX {SX:.3f}')
print('Ybar {Xbar:.2f} / SY {SX:.3f}')

def stat_func(x, y):
return stats.ttest_ind(x, y, equal_var=False).statistic

tstar = []
for _ in range(500):

Xstar = np.array(random.choices(X, k=len(X))) - Xbar
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Ystar = np.array(random.choices(Y, k=len(Y))) - Ybar
tstar.append(stat_func(Xstar, Ystar))

# calculate confidence interval for t* and D*
alpha = 0.05
tstar_ci = np.quantile(tstar, [alpha/2, 1-alpha/2])
Dstar_ci = Xbar - Ybar + np.sqrt(SX**2/len(X) + SY**2/len(Y))*tstar_ci

print('tstar-CI', tstar_ci)
print('Dstar-CI', Dstar_ci)

t0 = stat_func(X, Y)
print(f't0 {t0:.3f}')
pstar = (sum(tstar < -abs(t0)) + sum(abs(t0) < tstar)) / len(tstar)
print(f'P*-value {pstar:.2f}')

Xbar {Xbar:.2f} / SX {SX:.3f}
Ybar {Xbar:.2f} / SY {SX:.3f}
tstar-CI [-2.26597133 1.99806399]
Dstar-CI [175.28976673 298.17679872]
t0 8.348
P*-value 0.00

ax = pd.Series(tstar).hist()
ax.axvline(t0, color='black', lw=2)
ax.axvline(-t0, color='black', lw=2)
ax.set_xlabel('t* values')
plt.show()

We see that X̄n1 = 2143.41, Ȳn2 = 1902.81, Sn1 = 99.647, and Sn2 = 129.028.
The studentized difference between the means is t = 8.348. The bootstrap (1 − α)-

level confidence interval for δ/

(
S2

n1
n1

+ S2
n2
n2

)1/2

is (-2.27, 2.00). The hypothesis that

μ1 = μ2 or δ = 0 is rejected with P ∗ ≈ 0. In Fig. 3.17 we present the histogram
of the EBD of t∗.

�

3.11.4 Bootstrap Tests and Confidence Intervals
for the Variance

Let S∗2
1 , · · · , S∗2

M be the variances of M bootstrap samples. These statistics are
distributed around the sample variance S2

n . Consider the problem of testing the
hypotheses H0 : σ 2 ≤ σ 2

0 against H1 : σ 2 > σ 2
0 , where σ 2 is the variance of the

parent population. As in Sect. 3.3.2.3, H0 is rejected if S2/σ 2
0 is sufficiently large.

Let G∗
M(x) be the bootstrap empirical c.d.f. of S∗2

1 , · · · , S∗2
M . The bootstrap P ∗

value for testing H0 is

P ∗ = 1 − G∗
M

(
S4

σ 2
0

)
. (3.70)
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Fig. 3.17 Histogram of the EBD of M = 500 studentized differences

If P ∗ is sufficiently small, we reject H0. For example, in a random sample of size
n = 20, the sample standard deviation is S20 = 24.837. Suppose that we wish
to test whether it is significantly larger than σ0 = 20. We can create M = 500
bootstrapped samples using Python. The P ∗ value for testing the hypothesis H0
is the proportion of bootstrap standard deviations greater than S2

20/σ0 = 30.843.
Running the program we obtain P ∗ = 0.016. The hypothesis H 0 is rejected. S20
is significantly greater than σ0 = 20. In a similar manner, we test the hypotheses
H0 : σ 2 ≥ σ 2

0 against H1 : σ 2 < σ 2
0 or the two-sided hypothesis H0 : σ 2 = σ 2

0
against H0 : σ 2 �= σ 2

0 . Percentile bootstrap confidence limits for σ 2, at level 1 − α,

are given by
α

2
-th and

(
1 − α

2

)
-th quantiles of G∗

M(x), or

S∗2
(jα/2)

and S∗2
(1+j1−α/2)

.

These bootstrap confidence limits for σ 2 at level 0.95, are 282.144 and 931.708.
The corresponding chi-squared confidence limits (see Sect. 3.4.3) are 356.77 and
1315.97. Another type of bootstrap confidence interval is given by the limits

S4
n

S∗2
(j1−α/2)

,
S4

n

S∗2
(jα/2)

.

These limits are similar to the chi-squared confidence interval limits but use the
quantiles of S∗2

n /Sn instead of those of χ2[n − 1]. For the sample of size n = 20
with S20 = 24.837, the above confidence interval for σ 2 is (408.43, 1348.74).
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# create random sample with standard deviation 24.8
from statsmodels.distributions.empirical_distribution import ECDF
np.random.seed(seed=150)
X = stats.norm.rvs(scale=20, size=20)
S20 = np.std(X, ddof=1)
print(f'S20 = {S20:.3f}')

random.seed(1)
sigma0 = 20
GM = []
for _ in range(500):

Xstar = random.choices(X, k=20)
GM.append(np.std(Xstar, ddof=1)**2)

Pstar = sum(GM > (S20**2/sigma0)**2) / len(GM)
print(S20**2/sigma0)
print(f'Pstar = {Pstar:.3f}')

alpha=0.05
ci = np.quantile(GM, [alpha/2, 1-alpha/2])
print(f'0.95-ci [{ci[0]}, {ci[1]}]')

# chi2 confidence limit
n = 20
ci = (n-1)*S20**2 / stats.chi2.ppf([1-alpha/2, alpha/2], n-1)
print(f'chi2-ci [{ci[0]}, {ci[1]}]')

# bootstrapped based
GMquant = np.quantile(GM, [1-alpha/2, alpha/2])
ci = S20**4 / GMquant
print(f'boot-ci [{ci[0]}, {ci[1]}]')

S20 = 24.837
30.843882606534628
Pstar = 0.016
0.95-ci [282.1441534165316, 931.7079647027307]
chi2-ci [356.7685004417997, 1315.9662831350934]
boot-ci [408.4305942578152, 1348.7362154780665]

3.11.5 Comparing Statistics of Several Samples

It is often the case that we have to test whether the means or the variances of three
or more populations are equal. In Chaps. 5, 6, and 7 in the Industrial Statistics
book, we discuss the design and analysis of experiments where we study the
effect of changing levels of different factors. Typically, we perform observations at
different experimental conditions. The question is whether the observed differences
between the means and variances of the samples observed under different factor
level combinations are significant. The test statistic which we will introduce to test
differences between means might be affected also by differences between variances.
It is therefore prudent to test first whether the population variances are the same. If
this hypothesis is rejected, one should not use the test for means, which is discussed
below, but refer to a different type of analysis.
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3.11.5.1 Comparing Variances of Several Samples

Suppose we have k samples, k ≥ 2. Let S2
n1

, S2
n2

, · · · , S2
nk

denote the variances of
these samples. Let S2

max = max{S2
n1

, · · · , S2
nk

} and S2
min = min{S2

n1
, · · · , S2

nk
}. The

test statistic which we consider is the ratio of the maximal to the minimal variances,
i.e.,

F̃ = S2
max/S

2
min. (3.71)

The hypothesis under consideration is

H : σ 2
1 = σ 2

2 = · · · = σ 2
k .

To test this hypothesis, we construct the following EBD.

• Step 1. Sample independently RSWR of sizes n1, · · · , nk respectively, from
the given samples. Let S∗2

n1
, · · · , S∗2

nk
be the sample variances of these bootstrap

samples.

• Step 2. Compute W ∗2
i = S∗2

ni

S2
ni

, i = 1, · · · , k.

• Step 3. Compute F̃ ∗ = max1≤i≤k{W ∗2
i }/min1≤i≤k{W ∗2

i }.
Repeat these steps M times to obtain the EBD of F̃ ∗

1 , · · · , F̃ ∗
M .

Let F̃ ∗
1−α denote the (1−α)-th quantile of this EBD distribution. The hypothesis

H is rejected with level of significance α, if F̃ > F̃ ∗
1−α . The corresponding P ∗

level is the proportion of F̃ ∗ values which are greater than F̃ .

Example 3.23 We compare now the variances of the resistance Res 3 in three
hybrids. The data file isHYBRID.csv. In the present example, n1 = n2 = n3 = 32.
We find that S2

n1
= 9929.54, S2

n2
= 16648.35, and S2

n3
= 21001.01. The ratio of the

maximal to minimal variance is F̃ = 2.11. With M = 500 bootstrap samples, we
find that P ∗ = 0.544. For α = 0.05 we find that F̃ ∗

.95 = 2.389. The sample F̃ is
smaller than F̃ ∗

.95. The hypothesis of equal variances cannot be rejected at a level of
significance of α = 0.05.

In Python:

hybrid = mistat.load_data('HYBRID')

# variance for each column
S2 = hybrid.var(axis=0)
F0 = max(S2) / min(S2)
print('S2', S2)
print('F0', F0)

# Step 1: sample variances of bootstrapped samples for each column
B = {}
for seed, column in enumerate(hybrid.columns):

B[column] = pg.compute_bootci(hybrid[column], func='var', n_boot=500,
confidence=0.95, seed=seed, return_dist=True)

Bt = pd.DataFrame({column: B[column][1] for column in hybrid.columns})
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# Step 2: compute Wi
Wi = Bt / S2

# Step 3: compute F*
FBoot = Wi.max(axis=1) / Wi.min(axis=1)
FBoot95 = np.quantile(FBoot, 0.95)
print('FBoot 95%', FBoot95)
print('ratio', sum(FBoot >= F0)/len(FBoot))

S2 hyb1 9929.539315
hyb2 16648.350806
hyb3 21001.007056
dtype: float64
F0 2.1150031629110884
FBoot 95% 2.3889715227387565
ratio 0.102

�

3.11.5.2 Comparing Several Means: The One-Way Analysis of Variance

The one-way analysis of variance (ANOVA) is a procedure of testing the equality of
means, assuming that the variances of the populations are all equal. The hypothesis
under test is

H : μ1 = μ2 · · · = μk.

Let X̄n1, S
2
n1

, · · · , X̄nk
, S2

nk
be the means and variances of the k samples. We

compute the test statistic

F =
∑k

i=1 ni(X̄ni
− ¯̄X)2/(k − 1)∑k

i=1(ni − 1)S2
ni

/(N − k)
, (3.72)

where

¯̄X = 1

N

k∑
i=1

niX̄ni
(3.73)

is the weighted average of the sample means, called the grand mean, and N =∑k
i=1 ni is the total number of observations.
According to the bootstrap method, we repeat the following procedure M times:

• Step 1: Draw k RSWR of sizes n1, · · · , nk from the k given samples.
• Step 2: For each bootstrap sample, compute the mean and variance X̄∗

ni
and S∗2

ni
,

i = 1, · · · , k.
• Step 3: For each i = 1, · · · , k compute
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Ȳ ∗
i = X̄∗

ni
− (X̄ni

− ¯̄X).

[Notice that ¯̄Y ∗ = 1

N

∑k
i=1 niȲ

∗
i = ¯̄X∗, which is the grand mean of the k

bootstrap samples.]
• Step 4: Compute

F ∗ =
∑k

i=1 ni(Ȳ
∗
i − ¯̄Y ∗)2/(k − 1)∑k

i=1(ni − 1)S∗2
ni

/(N − k)

=
[∑k

i=1 ni(X̄
∗
ni

− X̄ni
)2 − N( ¯̄X − ¯̄X∗)2

]
/(k − 1)∑k

i=1(ni − 1)S∗2
ni

/(N − k)
.

(3.74)

After M repetitions we obtain the EBD of F ∗
1 , · · · , F ∗

M .
Let F ∗

1−α be the (1 − α)-th quantile of this EBD. The hypothesis H is rejected,
at level of significance α, if F > F ∗

1−α . Alternatively H is rejected if the P ∗-level
is small, where

P ∗ = proportion of F ∗ values greater than F

Example 3.24 Testing the equality of the means in theHYBRID.csv file, we obtain,
using M = 500 bootstrap replicates, the following statistics:

Hybrid1: X̄32 = 2143.406, S2
32 = 9929.539.

Hybrid2: X̄32 = 1902.813, S2
32 = 16648.351.

Hybrid3: X̄32 = 1850.344, S2
32 = 21001.007.

The test statistic is F = 50.333. The P ∗ level for this F is 0. Thus, the hypothesis
H is rejected. The histogram of the EBD of the F ∗ values is presented in Fig. 3.18.

In Python:

hybrid = mistat.load_data('HYBRID')
hybrid_long = pd.melt(hybrid, value_vars=hybrid.columns)

def test_statistic_F(samples):
''' Calculate test statistic F from samples '''
k = len(samples)
Ni = np.array([len(sample) for sample in samples])
N = np.sum(Ni)
XBni = np.array([np.mean(sample) for sample in samples])
S2ni = np.array([np.var(sample, ddof=1) for sample in samples])
XBB = np.sum(Ni * XBni) / N
Sn = np.sum(Ni*(XBni - XBB)**2) / (k-1)
Sd = np.sum((Ni-1)*S2ni) / (N-1)
F0 = Sn / Sd
return F0, XBni, XBB
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Fig. 3.18 Histogram of the EBD of M = 500 F ∗ values. The vertical line shows the observed F

value

samples = [hybrid['hyb1'], hybrid['hyb2'], hybrid['hyb3']]
F0, XBni, XBB = test_statistic_F(samples)
DB = XBni - XBB
print(f'F = {F0:.3f}')

Ns = 1000
Fstar = []
for _ in range(Ns):

Ysamples = []
for sample, DBi in zip(samples, DB):

Xstar = np.array(random.choices(sample, k=len(sample)))
Ystar = Xstar - DBi
Ysamples.append(Ystar)

Fs = test_statistic_F(Ysamples)[0]
Fstar.append(Fs)

ax = pd.Series(Fstar).hist(bins=14, color='grey')
ax.axvline(F0, color='black', lw=2)
ax.set_xlabel('F* values')
plt.show()

F = 50.333

Instead of using our own implementation of one-way ANOVA as the test
statistic, we can also use one of several available implementations; here we use
stats.f_oneway. Note that the F values are slightly different due to a more
robust implementation used in the library implementation.

def test_statistic_F(samples):
return stats.f_oneway(*samples).statistic

F0 = test_statistic_F(samples)
print(f'F = {F0:.3f}')

# Calculate sample shifts
Ni = np.array([len(sample) for sample in samples])
N = np.sum(Ni)
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XBni = np.array([np.mean(sample) for sample in samples])
XBB = np.sum(Ni * XBni) / N
DB = XBni - XBB

Ns = 1000
Fstar = []
for _ in range(Ns):

Ysamples = []
for sample, DBi in zip(samples, DB):

Xstar = np.array(random.choices(sample, k=len(sample)))
Ysamples.append(Xstar - DBi)

Fs = test_statistic_F(Ysamples)
Fstar.append(Fs)

F = 49.274

�

3.12 Bootstrap Tolerance Intervals

3.12.1 Bootstrap Tolerance Intervals for Bernoulli Samples

Trials (experiments) are called Bernoulli trials, if the results of the trials are either
0 or 1 (head or tail; good or defective, etc.); the trials are independently performed,
and the probability for 1 in a trial is a fixed constant p, 0 < p < 1. A random sample
(RSWR) of size n, from a population of 0s and 1s, whose mean is p (proportion of
1’s) will be called a Bernoulli sample. The number of 1s in such a sample has a
binomial distribution. This is the sampling distribution of the number of 1s in all
possible Bernoulli sample of size n and population mean p. p is the probability that
in a random drawing of an element from the population, the outcome is 1.

Let X be the number of 1s in a RSWR of size n from such a population. If
p is known, we can determine two integers Iβ/2(p) and I1−β/2(p) such that the
proportion of Bernoulli samples for which Iβ/2(p) ≤ X ≤ I1−β/2(p) is (1 − β).

For example, if n = 50, if p = 0.1, β = 0.05 we obtain I.025(0.1) = 1, and
I.975(0.1) = 9. Using Python:

stats.binom.ppf([0.025, 0.975], 50, 0.1)

array([1., 9.])

If p is unknown, and has to be estimated from a given Bernoulli sample of
size n, we determine first the bootstrap (1 − α)-level confidence interval for
p. If the limits for this interval are (p∗

α/2, p
∗
1−α/2), then the prediction interval

(Iβ/2(p
∗
α/2), I1−β/2(p

∗
1−α/2)) is a bootstrap tolerance interval of confidence (1−α)

and content (1 − β).

Example 3.25 Consider the n = 99 electric voltage outputs of circuits, which is in
data fileOELECT.csv. Suppose that it is required that the output X will be between



3.12 Bootstrap Tolerance Intervals 205

216 and 224 volts. We create a Bernoulli sample in which we give a circuit the value
1 if its electric output is in the interval (216, 224) and the value 0 otherwise. This
Bernoulli sample is stored in the variable elec_index.

The objective is to determine a (0.95, 0.95) tolerance interval for a future batch
of n = 100 circuits from this production process. We create M = 500 RSWR from
elec_index and determine for each sample the expected confidence interval. Due
to limitations of the pg.compute_bootci implementation, we create samples
for the upper and lower bound separately. In each case, we determine the 0.025 and
0.975 quartiles to finally derive the tolerance interval.

oelect = mistat.load_data('OELECT')

elec_index = np.array([1 if 216 <= value <= 224 else 0
for value in oelect])

def qbinomBoot(x, p):
return stats.binom.ppf(p, 100, p=x.mean())

B_025 = pg.compute_bootci(elec_index, func=lambda x: qbinomBoot(x, p=0.025),
n_boot=500, seed=1, return_dist=True)

B_975 = pg.compute_bootci(elec_index, func=lambda x: qbinomBoot(x, p=0.975),
n_boot=500, seed=1, return_dist=True)

tol_int = [np.quantile(B_025[1], 0.025),np.quantile(B_975[1], 0.975)]
print(f'Tolerance interval ({tol_int[0]}, {tol_int[1]})')

Tolerance interval (49.0, 86.0)

The bootstrap tolerance interval is (49.0,86.0). In other words, with confidence
level of 0.95, we predict that 95% of future batches of n = 100 circuits will have
between 49.0 and 86.0 circuits which comply to the standard. The exact tolerance
intervals are given by

Lower = B−1
(

β

2
; n, p

α

)

Upper = B−1
(
1 − β

2
; n, p̄α

) (3.75)

where (p
α
, p̄α) is a (1 − α) confidence interval for p. In the present data, the 0.95-

confidence interval for p is (0.585, 0.769). Thus, the (0.95,0.95) tolerance interval
is (48,84), which is close to the bootstrap interval. �

3.12.2 Tolerance Interval for Continuous Variables

In a RSWR of size n, the p-th quantile, i.e., X(np), is an estimator of the p-th
quantile of the distribution. Thus, we expect that the proportion of X-values in the
population, falling in the interval (X(nβ/2), X(n(1−β/2))), is approximately (1−β) in
large samples. As was explained in Chap. 1, X(j), (j = 1, · · · , n) is the j -th order
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statistic of the sample, and for 0 < p < 1, X(j.p) = X(j)+p(X(j+1)−X(j)). By the
bootstrap method, we generate M replicas of the statistics X∗

(nβ/2) and X∗
(n(1−β/2)).

The (1 − α, 1 − β)-tolerance interval is given by (Y ∗
(Mα/2), Y

∗∗
(M(1−α/2))), where

Y ∗
(Mα/2) is the α/2-quantile of the EBD of X∗

(nβ/2) and Y ∗∗
(M(1−α/2)) is the (1− α/2)-

quantile of the EBD of X∗
(n(1−β/2)).

Example 3.26 Let us determine (0.95,0.95) tolerance interval for samples of size
n = 100, of piston cycle times. Use the sample in the data file CYCLT.csv. The
original sample is of size n0 = 50. Since future samples are of size n = 100, we
draw from the original sample RSWR of size n = 100.

In Python, the calculations from Example 3.26 are straightforward:

cyclt = mistat.load_data('CYCLT')
cyclt = [*cyclt, *cyclt] # create a dataset of size 100 by duplication

def getQuantile(x, p):
return np.quantile(x, p)

B_025 = pg.compute_bootci(cyclt, func=lambda x: getQuantile(x, p=0.025),
n_boot=500, seed=1, return_dist=True)

B_975 = pg.compute_bootci(cyclt, func=lambda x: getQuantile(x, p=0.975),
n_boot=500, seed=1, return_dist=True)

print('0.025%', np.quantile(B_025[1], 0.025))
print('0.975%', np.quantile(B_975[1], 0.975))

0.025% 0.175
0.975% 1.141

The bootstrap (0.95,0.95) tolerance interval for n = 100 piston cycle times was
estimated as (0.175,1.141). �

3.12.3 Distribution-Free Tolerance Intervals

The tolerance limits described above are based on the model of normal distribution.
Distribution-free tolerance limits for (1 − β) proportion of the population, at
confidence level (1 − α), can be obtained for any model of continuous c.d.f. F(x).
As we will show below, if the sample size n is large enough, so that the following
inequality is satisfied, i.e.,

(
1 − β

2

)n

− 1

2
(1 − β)n ≤ α

2
(3.76)

then the order statistics X(1) and X(n) are lower and upper tolerance limits. This is
based on the following important property:
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If X is a random variable having a continuous c.d.f. F(x), then U = F(x)

has a uniform distribution on (0, 1).

Indeed

Pr{F(X) ≤ η} = Pr{X ≤ F−1(η)}
= F(F−1(η)) = η, 0 < η < 1.

If X(i) is the i-th order statistic of a sample of n i.i.d. random variables having a
common c.d.f. F(x), then U(i) = F(X(i)) is the i-th order statistic of n i.i.d. random
having a uniform distribution.

Now, the interval (X(1), X(n)) contains at least a proportion (1 − β) of the
population if X(1) ≤ ξβ/2 and X(n) ≥ ξ1−β/2, where ξβ/2 and ξ1−β/2 are the β/2

and

(
1 − β

2

)
quantiles of F(x).

Equivalently, (X(1), X(n)) contains at least a proportion (1 − β) if

U(1) ≤ F(ξβ/2) = β

2

U(n) ≥ F(ξ1−β/2) = 1 − β/2.

By using the joint p.d.f. of (U(1), U(n)), we show that

Pr

{
U(1) ≤ β

2
, U(n) ≥ 1 − β

2

}
= 1 − 2

(
1 − β

2

)n

+ (1 − β)n. (3.77)

This probability is the confidence that the interval (X(1), X(n)) covers the interval
(ξβ/2, ξ1−β/2). By finding n which satisfies

1 − 2

(
1 − β

2

)n

+ (1 − β)n ≥ 1 − α. (3.78)

we can assure that the confidence level is at least (1 − α).
In Table 3.13 we give the values of n for some α and β values.
Table 3.13 can also be used to obtain the confidence level associated with fixed

values of β and n. We see that with a sample of size 104, (X(1), X(n)) is a tolerance
interval for at least 90% of the population with approximately 99% confidence level
or a tolerance interval for at least 95% of the population with slightly less than 90%
confidence.

Other order statistics can be used to construct distribution-free tolerance inter-
vals, that is, we can choose any integers j and k, where 1 ≤ j, k ≤ n/2, and form
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Table 3.13 Sample size
required for (X(1), X(n)) to be
a (1 − α, 1 − β)-level
tolerance interval

β α n

0.10 0.10 58

0.05 72

0.01 104

0.05 0.10 118

0.05 146

0.01 210

0.01 0.10 593

0.05 734

0.01 1057

the interval (X(j), X(n−k+1)). When j > 1 and k > 1, the interval will be shorter
than the interval (X(1), X(n)), but its confidence level will be reduced.

3.13 Non-Parametric Tests

Testing methods like the Z-tests, t-tests, etc. presented in this chapter were designed
for specific distributions. The Z- and t-tests are based on the assumption that
the parent population is normally distributed. What would be the effect on the
characteristics of the test if this basic assumption is wrong? This is an important
question, which deserves special investigation. We remark that if the population
variance σ 2 is finite and the sample is large, then the t-test for the mean has
approximately the required properties even if the parent population is not normal. In
small samples, if it is doubtful whether the distribution of the parent population, we
should perform a distribution free test or compute the P -value of the test statistic by
the bootstrapping method. In the present section we present three non-parametric
tests, namely, sign test, the randomization test, and the Wilcoxon signed-rank
test.

3.13.1 The Sign Test

Suppose that X1, · · · , Xn is a random sample from some continuous distribution,
F , and has a positive p.d.f. throughout the range of X. Let ξp, for some 0 < p < 1,
be the p-th quantile of F . We wish to test the hypothesis that ξp does not exceed a
specified value ξ∗, i.e.,

H0 : ξp ≤ ξ∗

against the alternative
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H1 : ξp > ξ∗.

If the null hypothesis H0 is true, the probability of observing an X-value smaller
than ξ∗ is greater or equal to p; and if H1 is true, then this probability is smaller
than p. The sign test of H0 versus H1 reduces the problem to a test for p in a
binomial model. The test statistic is Kn = #{Xi ≤ ξ∗}, i.e., the number of observed
X-values in the sample which do not exceed ξ∗. Kn has a binomial distribution
B(n, θ), irrespective of the parent distribution F . According to H0, θ ≥ p, and
according to H1, θ < p. The test proceeds then as in Sect. 3.3.2.

Example 3.27 We wish to test whether the median, ξ.5, of the distribution of piston
cycle times is greater than 0.50 [min]. The sample data is in file CYCLT.csv. The
sample size is n = 50. Let K50 = ∑50

i=1 I {Xi ≤ 0.5}. The null hypothesis is
H0 : p ≤ 1

2 vs. H1 : p > 1
2 . From the sample values, we find K50 = 24. The

P -value is 1 − B(23; 50, .5) = 0.664. The null hypothesis H0 is not rejected. The
sample median is Me = 0.546. This is however not significantly greater than 0.5. �

The sign test can be applied also to test whether tolerance specifications hold.
Suppose that the standard specifications require that at least (1 − β) proportion of
products will have an X value in the interval (ξ∗, ξ∗∗). If we wish to test this, with
level of significance α, we can determine the (1 − α, 1 − β) tolerance interval for
X, based on the observed random sample, and accept the hypothesis

H0 : ξ∗ ≤ ξβ/2 and ξ1−β/2 ≤ ξ∗∗

if the tolerance interval is included in (ξ∗, ξ∗∗).
We can also use the sign test. Given the random sample X1, . . . , Xn, we compute

Kn =
n∑

i=1

I {ξ∗ ≤ Xi ≤ ξ∗∗}.

The null hypothesis H0 above is equivalent to the hypothesis

H ∗
0 : p ≥ 1 − β

in the binomial test. H ∗
0 is rejected, with level of significance α, if

Kn < B−1(α; n, 1 − β),

where B−1(α; n, 1 − β) is the α-quantile of the binomial distribution B(n, 1 − β).

Example 3.28 In Example 3.26 we have found that the bootstrap (0.95, 0.95)
tolerance interval for the CYCLT.csv sample is (0.175, 1.141). Suppose that the
specification requires that the piston cycle time in 95% of the cases will be in the
interval (0.2,1.1) [min]. Can we accept the hypothesis
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H ∗
0 : 0.2 ≤ ξ.025 and ξ.975 ≤ 1.1

with level of significance α = 0.05? For the data CYCLT.csv we find

K50 =
50∑
i=1

I {.2 ≤ Xi ≤ 1.1} = 41.

Also B−1(0.05; 50, 0.95) = 45. Thus, since K50 < 45, H ∗
0 is rejected. This is

in accord with the bootstrap tolerance interval, since (0.175, 1.141) contains the
interval (0.2, 1.1). �

3.13.2 The Randomization Test

The randomization test described here can be applied to test whether two random
samples come from the same distribution, F , without specifying the distribution F .

The null hypothesis, H0, is that the two distributions, from which the samples are
generated, are the same. The randomization test constructs a reference distribution
for a specified test statistic, by randomly assigning to the observations the labels of
the samples. For example, let us consider two samples, which are denoted by A1
and A2. Each sample is of size n = 3. Suppose that we observed

A2 A2 A2 A1 A1 A1

1.5 1.1 1.8 0.75 0.60 0.80.

The sum of the values in A2 is T2 = 4.4 and that of A1 is T1 = 2.15. Is there an
indication that the two samples are generated from different distributions? Let us
consider the test statistic D = (T2 − T1)/3 and reject H0 if D is sufficiently large.
For the given samples, D = 0.75. We construct now the reference distribution for
D under H0.

There are
(6
3

) = 20 possible assignments of the letters A1 and A2 to the six
values. Each such assignment yields a value for D. The reference distribution
assigns each such value of D an equal probability of 1/20. The 20 assignments
of letters and the corresponding D values are given in Table 3.14.

Under the reference distribution, each one of these values of D is equally

probable, and the P -value of the observed value of the observed D is P = 1

20
=

0.05. The null hypothesis is rejected at the α = 0.05 level. If n is large, it becomes
impractical to construct the reference distribution in this manner. For example, if
t = 2 and n1 = n2 = 10, we have

(20
10

) = 184,756 assignments.
We can, however, estimate the P -value, by sampling, with replacement, from this

reference distribution.
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Table 3.14 Assignments for the randomized test

Aij Assignments

0.75 1 1 1 1 1 1 1 1 1 1

0.6 1 1 1 1 2 2 2 2 2 2

0.8 1 2 2 2 1 1 1 2 2 2

1.5 2 1 2 2 1 2 2 1 1 2

1.1 2 2 1 2 2 1 2 1 2 1

1.8 2 2 2 1 2 2 1 2 1 1

D 0.750 0.283 0.550 0.083 0.150 0.417 −0.050 −0.050 −0.517 −0.250

Aij Assignments

0.75 2 2 2 2 2 2 2 2 2 2

0.6 1 1 1 1 1 1 2 2 2 2

0.8 1 1 1 2 2 2 1 1 1 2

1.5 1 2 2 1 1 2 1 1 2 1

1.1 2 1 2 1 2 1 1 2 1 1

1.8 2 2 1 2 1 1 2 1 1 1

D 0.250 0.517 0.050 0.050 −0.417 −0.150 −0.083 −0.550 −0.283 −0.750

Example 3.29 File OELECT.csv contains n1 = 99 random values of the output in
volts of a rectifying circuit. File OELECT1.csv contains n2 = 25 values of outputs
of another rectifying circuit. The question is whether the differences between the
means of these two samples is significant. Let X̄ be the mean of OELECT and Ȳ

be that of OELECT1. We find that D = X̄ − Ȳ = −10.7219. In Python, we can
use the function randomizationTest that is included in mistat package.

oelect = mistat.load_data('OELECT')
oelect1 = mistat.load_data('OELECT1')

_ = mistat.randomizationTest(oelect, oelect1, np.mean,
aggregate_stats=lambda x: x[0] - x[1],
n_boot=500, seed=1)

Original stat is -10.721980
Original stat is at quantile 1 of 501 (0.20%)
Distribution of bootstrap samples:
min: -4.94, median: 0.16, max: 4.55

The original mean −10.721 is the minimum, and the test rejects the hypothesis

of equal means with a P -value P = 1

501
. �

3.13.3 The Wilcoxon Signed-Rank Test

In Sect. 3.13.1 we discussed the sign test. The Wilcoxon signed -rank (WSR) test is
a modification of the sign test, which brings into consideration not only the signs



212 3 Statistical Inference and Bootstrapping

of the sample values but also their magnitudes. We construct the test statistic in two
steps. First, we rank the magnitudes (absolute values) of the sample values, giving
the rank 1 to the value with smallest magnitude and the rank n to that with the
maximal magnitude. In the second step, we sum the ranks multiplied by the signs
of the values. For example, suppose that a sample of n = 5 is −1.22, −.53, 0.27,
2.25, 0.89. The ranks of the magnitudes of these values are, respectively, 4, 2, 1, 5,
3. The signed rank statistic is

W5 = 0 × 4 + 0 × 2 + 1 + 5 + 3 = 9.

Here we assigned each negative value the weight 0 and each positive value the
weight 1.

The WSR test can be used for a variety of testing problems. If we wish to test
whether the distribution median, ξ.5, is smaller or greater than some specified value
ξ∗, we can use the statistics

Wn =
n∑

i=1

I {Xi > ξ∗}Ri, (3.79)

where

I {Xi > ξ∗} =
{
1, if Xi > ξ∗

0, otherwise.

Ri = rank(|Xi |).
The WSR test can be applied to test whether two random samples are generated

from the same distribution against the alternative that one comes from a distribution
having a larger location parameter (median) than the other. In this case we can give
the weight 1 to elements of sample 1 and the weight 0 to the elements of sample 2.
The ranks of the values are determined by combining the two samples. For example,
consider two random samples X1, . . . , X5 and Y1, . . . , Y5 generated from N(0, 1)
and N(2, 1). These are

X 0.188 0.353 −0.257 0.220 0.168

Y 1.240 1.821 2.500 2.319 2.190

The ranks of the magnitudes of these values are

X 2 5 4 3 1

Y 6 7 10 9 8

The value of the WSR statistic is
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W10 = 6 + 7 + 10 + 9 + 8 = 40.

Notice that all the ranks of the Y values are greater than those of the X values. This
yields a relatively large value ofW10. Under the null hypothesis that the two samples
are from the same distribution, the probability that the sign of a given rank is 1 is
1/2. Thus, the reference distribution, for testing the significance of Wn, is like that
of

W 0
n =

n∑
j=1

jBj

(
1,

1

2

)
, (3.80)

where B1

(
1,

1

2

)
, . . . , Bn

(
1,

1

2

)
are mutually independent B

(
1,

1

2

)
random

variables. The distribution of W 0
n can be determined exactly. W 0

n can assume

the values 0, 1, . . . ,
n(n + 1)

2
with probabilities which are the coefficients of the

polynomial in t

P (t) = 1

2n

n∏
j=1

(
1 + tj

)
.

These probabilities can be computed exactly. For large values of n, W 0
n is approxi-

mately normal with mean

E{W 0
n } = 1

2

n∑
j=1

j = n(n + 1)

4
(3.81)

and variance

V {W 0
n } = 1

4

n∑
j=1

j2 = n(n + 1)(2n + 1)

24
. (3.82)

This can yield a large sample approximation to the P -value of the test. The WSR
test, to test whether the median of a symmetric continuous distribution F is equal to
ξ∗, can be performed in Python using the implementation in scipy.wilcoxon.

X = [0.188, 0.353, -0.257, 0.220, 0.168]
Y = [1.240, 1.821, 2.500, 2.319, 2.190]

print('Wilcoxon signed-rank test (unsuitable for ties)')
print(stats.ranksums(X, Y))
print('Mann-Whitney U test (suitable for ties)')
print(stats.mannwhitneyu(X, Y))
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Wilcoxon signed-rank test (unsuitable for ties)
RanksumsResult(statistic=-2.6111648393354674,
pvalue=0.009023438818080326)
Mann-Whitney U test (suitable for ties)
MannwhitneyuResult(statistic=0.0, pvalue=0.007936507936507936)

3.14 Chapter Highlights

This chapter provides theoretical foundations for statistical inference. Inference on
parameters of infinite populations is discussed using classical point estimation,
confidence intervals, tolerance intervals, and hypothesis testing. Properties of
point estimators such as moment equation estimators and maximum likelihood
estimators are discussed in detail. Formulas for parametric confidence intervals and
distribution-free tolerance intervals are provided. Statistical tests of hypothesis are
presented with examples, including tests for normality with probability plots and the
chi-square and Kolmogorov-Smirnov tests of goodness of fit. The chapter includes
a section on Bayesian testing and estimation. Statistical inference is introduced by
exploiting the power of the personal computer. Reference distributions are con-
structed through bootstrapping methods. Testing for statistical significance and the
significance of least square methods in simple linear regression using bootstrapping
is demonstrated. Industrial applications are used throughout with specially written
software simulations. Through this analysis, confidence intervals and reference
distributions are derived and used to test statistical hypothesis. Bootstrap analysis
of variance is developed for testing the equality of several population means.
Construction of tolerance intervals with bootstrapping is also presented. Three
nonparametric procedures for testing are given: the sign test, randomization test,
and Wilcoxon signed-rank test.

The main concepts and definitions introduced in this chapter include:

• Statistical inference
• Sampling distribution
• Unbiased estimators
• Consistent estimators
• Standard error
• Parameter space
• Statistic
• Point estimator
• Least squares estimators
• Maximum likelihood estimators
• Likelihood function
• Confidence intervals
• Tolerance intervals
• Testing statistical hypotheses
• Operating characteristic function
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• Rejection region
• Acceptance region
• Type I error
• Type II error
• Power function
• OC curve
• Significance level
• P-value
• Normal scores
• Normal probability plot
• Chi-squared test
• Kolmogorov-Smirnov test
• Bayesian decision procedures
• Statistical inference
• The bootstrap method
• Sampling distribution of an estimate
• Reference distribution
• Bootstrap confidence intervals
• Bootstrap tolerance interval
• Bootstrap ANOVA
• Nonparametric tests

3.15 Exercises

Exercise 3.1 The consistency of the sample mean, X̄n, in RSWR, is guaranteed by
the WLLN, whenever the mean exists. Let Ml = 1

n

∑n
i=1 Xl

i be the sample estimate
of the l-th moment, which is assumed to exist (l = 1, 2, · · · ). Show that Mr is a
consistent estimator of μr .

Exercise 3.2 Consider a population with mean μ and standard deviation σ = 10.5.
Use the CLT to find approximately how large should the sample size, n, be so that
Pr{|X̄n − μ| < 1} = 0.95.

Exercise 3.3 Let X1, · · · , Xn be a random sample from a normal distribution
N(μ, σ). What is the moment-equation estimator of the p-th quantile ξp = μ +
zpσ?

Exercise 3.4 Let (X1, Y1), · · · , (Xn, Yn) be a random sample from a bivariate
normal distribution. What is the moment-equation estimator of the correlation ρ?

Exercise 3.5 LetX1, X2, . . . , Xn be a sample from a beta distribution Beta(ν1, ν2);
0 < ν1, ν2 < ∞. Find the moment-equation estimators of ν1 and ν2.



216 3 Statistical Inference and Bootstrapping

Exercise 3.6 Let Ȳ1, · · · , Ȳk be the means of k independent RSWR from normal
distributions, N(μ, σi), i = 1, · · · , k, with common means and variances σ 2

i

known. Let n1, · · · , nk be the sizes of these samples. Consider a weighted average

Ȳw =
∑k

i=1 wiȲi∑k
i=1 wi

, with wi > 0. Show that for the estimator Ȳw having smallest

variance, the required weights are wi = ni

σ 2
i

.

Exercise 3.7 Using the formula

β̂1 =
n∑

i=1

wiYi,

with wi = xi − x̄n

SSx

, i = 1, . . . , n, for the LSE of the slope β in a simple linear

regression, derive the formula for V {β̂1}. We assume that V {Yi} = σ 2 for all i =
1, · · · , n. You can refer to Chap. 4 for a detailed exposition of linear regression.

Exercise 3.8 In continuation of the previous exercise, derive the formula for the
variance of the LSE of the intercept β0 and Cov(β̂0, β̂1).

Exercise 3.9 Show that the correlation between the LSEs, β̂0 and β̂1, in the simple
linear regression is

ρ = − x̄n(
1

n

∑
x2
i

)1/2
.

Exercise 3.10 Let X1, · · · , Xn be i.i.d. random variables having a Poisson distri-
bution P(λ), 0 < λ < ∞. Show that the MLE of λ is the sample mean X̄n.

Exercise 3.11 Let X1, · · · , Xn be i.i.d. random variables from a gamma distribu-

tion, G(ν, β), with known ν. Show that the MLE of β is β̂n = 1

ν
X̄n, where X̄n is

the sample mean. What is the variance of β̂n?

Exercise 3.12 Consider Example 3.4. Let X1, · · · , Xn be a random sample from a
negative binomial distribution, N.B.(2, p). Show that the MLE of p is

p̂n = 2

X̄n + 2
,

where X̄n is the sample mean.
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(i) On the basis of the WLLN, show that p̂n is a consistent estimator of p [Hint:
X̄n → E{X} = (2 − p)/p in probability as n → ∞].

(ii) Using the fact that if X1, · · · , Xn are i.i.d. like NB(k, p), then Tn = ∑n
i=1 Xi is

distributed like N.B.(nk, p), and the results of Example 3.4 show that for large
values of n,

Bias(p̂n) ∼= 3p(1 − p)

4n
and

V {p̂n} ∼= p2(1 − p)

2n
.

Exercise 3.13 Let X1, . . . , Xn be a random sample from a shifted exponential
distribution

f (x;μ, β) = 1

β
exp

{
−x − μ

β

}
, x ≥ μ,

where 0 < μ, β < ∞.

(i) Show that the sample minimum X(1) is an MLE of μ.
(ii) Find the MLE of β.
(iii) What are the variances of these MLEs?

Exercise 3.14 We wish to test that the proportion of defective items in a given lot
is smaller than P0 = 0.03. The alternative is that P > P0. A random sample of
n = 20 is drawn from the lot with replacement (RSWR). The number of observed
defective items in the sample is X = 2. Is there sufficient evidence to reject the null
hypothesis that P ≤ P0?

Exercise 3.15 Compute and plot the operating characteristic curve OC(p), for
binomial testing of H0 : P ≤ P0 versus H1 : P > P0, when the hypothesis is
accepted if two or less defective items are found in a RSWR of size n = 30.

Exercise 3.16 For testing the hypothesis H0 : P = 0.01 versus H1 : P = 0.03,
concerning the parameter P of a binomial distribution, how large should the sample
be, n, and what should be the critical value, k, if we wish that error probabilities will
be α = 0.05 and β = 0.05? [Use the normal approximation to the binomial.]

Exercise 3.17 As will be discussed in Chap. 2 in the Industrial Statistics book, the
Shewhart 3-σ control charts for statistical process control provide repeated tests of
the hypothesis that the process mean is equal to the nominal one, μ0. If a sample

mean X̄n falls outside the limits μ0 ± 3
σ√
n
, the hypothesis is rejected.



218 3 Statistical Inference and Bootstrapping

(i) What is the probability that X̄n will fall outside the control limits when μ =
μ0?

(ii) What is the probability that when the process is in control, μ = μ0, all sample
means of 20 consecutive independent samples, will be within the control
limits?

(iii) What is the probability that a sample mean will fall outside the control limits

when μ changes from μ0 to μ1 = μ0 + 2
σ√
n
?

(iv) What is the probability that a change from μ0 to μ1 = μ0 + 2
σ√
n
will not be

detected by the next ten sample means?

Exercise 3.18 Consider the data in file SOCELL.csv. Use Python to test whether
the mean ISC at time t1 is significantly smaller than 4 (Amp). [Use 1-sample t-test.]

Exercise 3.19 Is the mean of ISC for time t2 significantly larger than 4 (Amp)?

Exercise 3.20 Consider a one-sided t-test based on a sample of size n = 30, with
α = 0.01. Compute the OC(δ) as a function of δ = (μ − μ0)/σ , μ > μ0.

Exercise 3.21 Compute the OC function for testing the hypothesis H0 : σ 2 ≤ σ 2
0

versus H1 : σ 2 > σ 2
0 , when n = 31 and α = 0.10.

Exercise 3.22 Compute the OC function in testing H0 : p ≤ p0 versus H1 : p >

p0 in the binomial case, when n = 100 and α = 0.05.

Exercise 3.23 Let X1, . . . , Xn be a random sample from a normal distribution
N(μ, σ). For testing H0 : σ 2 ≤ σ 2

0 against H1 : σ 2 > σ 2
0 , we use the test which

rejects H0 if S2
n ≥ σ 2

0

n − 1
χ2
1−α[n − 1], where S2

n is the sample variance. What is the

power function of this test?

Exercise 3.24 Let S2
n1

and S2
n2

be the variances of two independent samples from

normal distributions N(μi, σi), i = 1, 2. For testing H0 : σ 2
1

σ 2
2

≤ 1 against H1 :
σ 2
1

σ 2
2

> 1, we use the F -test, which rejectsH0 when F = S2
n1

S2
n2

> F1−α[n1−1, n2−1].
What is the power of this test, as a function of ρ = σ 2

1 /σ 2
2 ?

Exercise 3.25 A random sample of size n = 20 from a normal distribution gave
the following values: 20.74, 20.85, 20.54, 20.05, 20.08, 22.55, 19.61, 19.72, 20.34,
20.37, 22.69, 20.79, 21.76, 21.94, 20.31, 21.38, 20.42, 20.86, 18.80, 21.41. Compute
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(i) Confidence interval for the mean μ, at level of confidence 1 − α = 0.99.
(ii) Confidence interval for the variance σ 2, at confidence level 1 − α = 0.99.
(iii) A confidence interval for σ , at level of confidence 1 − α = 0.99.

Exercise 3.26 Let C1 be the event that a confidence interval for the mean, μ, covers
it. Let C2 be the event that a confidence interval for the standard deviation σ covers
it. The probability that both μ and σ are simultaneously covered is

Pr{C1 ∩ C2} = 1 − Pr{C1 ∩ C2}
= 1 − Pr{C̄1 ∪ C̄2} ≥ 1 − Pr{C̄1} − Pr{C̄2}.

This inequality is called the Bonferroni inequality. Apply this inequality and the
results of the previous exercise to determine the confidence interval for μ + 2σ , at
level of confidence not smaller than 0.98.

Exercise 3.27 Twenty independent trials yielded X = 17 successes. Assuming that
the probability for success in each trial is the same, θ , determine the confidence
interval for θ at level of confidence 0.95.

Exercise 3.28 Let X1, · · · , Xn be a random sample from a Poisson distribution
with mean λ. Let Tn = ∑n

i=1 Xi . Using the relationship between the Poisson and
the gamma c.d.f., we can show that a confidence interval for the mean λ, at level
1 − α, has lower and upper limits, λL and λU , where

λL = 1

2n
χ2

α/2[2Tn + 2], and

λU = 1

2n
χ2
1−α/2[2Tn + 2].

The following is a random sample of size n = 10 from a Poisson distribution
14, 16, 11, 19, 11, 9, 12, 15, 14, 13. Determine a confidence interval for λ at
level of confidence 0.95. You can calculate the confidence intervals using either
the exact value χ2

p[ν] or use an approximation. For large number of degrees of

freedom, χ2
p[ν] ≈ ν + zp

√
2ν, where zp is the p-th quantile of the standard normal

distribution.

Exercise 3.29 The mean of a random sample of size n = 20, from a normal
distribution with σ = 5, is Ȳ20 = 13.75. Determine a 1−β = 0.90 content tolerance
interval with confidence level 1 − α = 0.95.

Exercise 3.30 Use the YARNSTRG.csv data file to determine a (0.95,0.95) toler-
ance interval for log yarn strength. [Hint: notice that the interval is Ȳ100 ± kS100,
where k = t (0.025, 0.025, 100).]
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Exercise 3.31 Use the minimum and maximum of the log yarn strength (see
previous problem) to determine a distribution free tolerance interval. What are the
values of α and β for your interval? How does it compare with the interval of the
previous problem?

Exercise 3.32 Make a normal Q-Q plot to test, graphically, whether the ISC-t1 of
data file SOCELL.csv, is normally distributed.

Exercise 3.33 Using Python and data file CAR.csv.

(i) Test graphically whether the turn diameter is normally distributed.
(ii) Test graphically whether the log (horsepower) is normally distributed.

Exercise 3.34 Use the CAR.csv file. Make a frequency distribution of turn diam-
eter, with k = 11 intervals. Fit a normal distribution to the data and make a
chi-squared test of the goodness of fit.

Exercise 3.35 Using Python and the CAR.csv data file, compute the K.S. test
statistic D∗

n for the turn diameter variable, testing for normality. Compute k∗
α for

α = 0.05. Is D∗
n significant?

Exercise 3.36 The daily demand (loaves) for whole wheat bread at a certain
bakery has a Poisson distribution with mean λ = 100. The loss to the bakery for
undemanded unit at the end of the day is C1 = $0.10. On the other hand, the penalty
for a shortage of a unit is C2 = $0.20. How many loaves of whole wheat bread
should be baked every day?

Exercise 3.37 A random variable X has the binomial distribution B(10, p). The
parameter p has a beta prior distribution Beta(3, 7). What is the posterior distribu-
tion of p, given X = 6?

Exercise 3.38 In continuation to the previous exercise, find the posterior expecta-
tion and posterior standard deviation of p.

Exercise 3.39 A random variable X has a Poisson distribution with mean λ. The
parameter λ has a gamma, G(2, 50), prior distribution.

(i) Find the posterior distribution of λ given X = 82.
(ii) Find the 0.025-th and 0.975-th quantiles of this posterior distribution.

Exercise 3.40 A random variable X has a Poisson distribution with mean which is
either λ0 = 70 or λ1 = 90. The prior probability of λ0 is 1/3. The losses due to
wrong actions are r1 = $100 and r2 = $150. Observing X = 72, which decision
would you take?
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Exercise 3.41 A random variable X is normally distributed, with mean μ and
standard deviation σ = 10. The mean μ is assigned a prior normal distribution
with mean μ0 = 50 and standard deviation τ = 5. Determine a credibility interval
for μ, at level 0.95. Is this credibility interval also a HPD interval?

Exercise 3.42 Read file CAR.csv in Python using mistat.load_data. There
are five variables stored in columns. Write a function which samples 64 values
from column mpg (MPG/City), with replacement and store in a variable. Let k1
be the mean of the sample. Execute this function M = 200 times to obtain a
sampling distribution of the sample means. Check graphically whether this sampling
distribution is approximately normal. Also check whether the standard deviation of
the sampling distribution is approximately S/8, where S is the standard deviation of
mpg.

Exercise 3.43 Read file YARNSTRG.csv using Python. Use bootstrap sampling
M = 500 times, to obtain confidence intervals for the mean. Use samples of size
n = 30. Check in what proportion of samples the confidence intervals cover the
mean.

Exercise 3.44 The average turn diameter of 58 US-made cars, in data fileCAR.csv,
is X̄ = 37.203 [m]. Is this mean significantly larger than 37 [m]? In order to check
this, use Python. After loading the data, you will need to filter the dataset to extract
the data for the 58 US-made cars (origin = 1).

Write a function which samples with replacement from the turn column 58
values, and store them in a list. Repeat this 100 times. An estimate of the P -value
is the proportion of means smaller than 36, greater than 2× 37.203− 37 = 37.406.
What is your estimate of the P -value?

Exercise 3.45 You have to test whether the proportion of nonconforming units in
a sample of size n = 50 from a production process is significantly greater than
p = 0.03. Use Python to determine when should we reject the hypothesis that
p ≤ 0.03 with α = 0.05.

Exercise 3.46 Generate 1000 bootstrap samples of the sample mean and sample
standard deviation of the data in CYCLT.csv on 50 piston cycle times.

(i) Compute 95% confidence intervals for the sample mean and sample standard
deviation.

(ii) Draw histograms of the EBD of the sample mean and sample standard
deviation.

Exercise 3.47 Use Python to generate 1000 bootstrapped quartiles of the data in
CYCLT.csv.

(i) Compute 95% confidence intervals for the first quartile, median, and third
quartile.
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(ii) Draw histograms of the bootstrap quartiles.

Exercise 3.48 Generate the EBD of size M = 1000, for the sample correlation
ρXY between ISC-t1 and ISC-t2 in data file SOCELL.csv. Compute the bootstrap
confidence interval for ρXY , at confidence level of 0.95.

Exercise 3.49 Generate the EBD of the regression coefficients (a, b) of miles
per gallon/city, Y , versus horsepower, X, in data file CAR.csv. For each of the
M = 100 bootstrap samples, run a simple regression with the scipy command
stats.linregress. The result (e.g., called result) of this command contains
the slope (b: result.slope) and the intercept (a: result.intercept).

(i) Determine a bootstrap confidence interval for the intercept, at level 0.95.
(ii) Determine a bootstrap confidence interval for the slope, at level 0.95.
(iii) Compare the bootstrap standard errors of intercept and slope to those obtained

from the formulae of Sect. 4.3.2.1.

Exercise 3.50 Test the hypothesis that the data in CYCLT.csv comes from a
distribution with mean μ0 = 0.55 s.

(i) Calculate and compare the t-test P -value and the boostrapped P ∗-value.
(ii) Does the confidence interval derived in Exercise 3.46 include μ0 = 0.55?
(iii) Could we have guessed the answer of part (ii) after completing part (i)?

Exercise 3.51 Compare the variances of the two measurements recorded in data
file ALMPIN2.csv

(i) What is the P -value?
(ii) Draw box plots of the two measurements.

Exercise 3.52 Compare the means of the two measurements on the two variables
Diameter1 and Diameter2 in ALMPIN2.csv. What is the bootstrap estimate of the
P -values for the means and variances?

Exercise 3.53 Compare the variances of the gasoline consumption (MPG/City) of
cars by origin. The data is saved in file MPG.csv. There are k = 3 samples of
sizes n1 = 58, n2 = 14 and n3 = 37. Do you accept the null hypothesis of equal
variances?

Exercise 3.54 Test the equality of mean gas consumption (MPG/city) of cars by
origin. The data file to use isMPG.csv. The sample sizes are n1 = 58, n2 = 14 and
n3 = 37. The number of samples is k = 3. Do you accept the null hypothesis of
equal means using a bootstrap approach?

Exercise 3.55 Use Python to generate 50 randomBernoulli numbers, with p = 0.2.
Use these numbers to obtain tolerance limits with α = 0.05 and β = 0.05, for the
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number of nonconforming items in future batches of 50 items, when the process
proportion defectives is p = 0.2. Repeat this for p = 0.1 and p = 0.05.

Exercise 3.56 Use Python to calculate a (0.95, 0.95) tolerance interval for the
piston cycle time from the data in OTURB.csv.

Exercise 3.57 Using the sign test, test the hypothesis that the median, ξ.5, of the
distribution of cycle time of the piston is not exceeding ξ∗ = 0.7 [min]. The sample
data is in file CYCLT.csv. Use α = 0.10 for level of significance.

Exercise 3.58 Use the WSR test on the data of file OELECT.csv to test whether
the median of the distribution ξ.5 = 220 [Volt].

Exercise 3.59 Apply the randomization test on the CAR.csv file to test whether
the turn diameter of foreign cars, having four cylinders, is different from that of
US-made cars with four cylinders.



Chapter 4
Variability in Several Dimensions and
Regression Models

Preview When surveys or experiments are performed, measurements are usually
taken on several characteristics of the observation elements in the sample. In such
cases we have multivariate observations, and the statistical methods which are used
to analyze the relationships between the values observed on different variables are
called multivariate methods. In this chapter we introduce some of these methods. In
particular, we focus attention on graphical methods, linear regression methods, and
the analysis of contingency tables. The linear regression methods explore the linear
relationship between a variable of interest and a set of variables, by which we try to
predict the values of the variable of interest. Contingency tables analysis studies the
association between qualitative (categorical) variables, on which we cannot apply
the usual regression methods.

Several techniques for graphical analysis of data in several dimensions are intro-
duced and demonstrated using case studies. These include matrix scatterplots,
3D-scatterplots, and multiple boxplots. Topics covered also include simple linear
regression, multiple regression models, and contingency tables. Prediction intervals
are constructed for currents of solar cells and resistances on hybrid circuits.
Robust regression is used to analyze data on placement errors of components on
circuit boards. A special section on indices of association for categorical variables
includes an analysis of a customer satisfaction survey designed to identify the main
components of customer satisfaction and dissatisfaction.

The analysis of variance (ANOVA) for testing the significance of differences
between several sample means is introduced, as well as the method of multiple
comparisons, which protects the overall level of significance. The comparisons of
proportions for categorical data (binomial or multinomial) are also discussed.
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4.1 Graphical Display and Analysis

4.1.1 Scatterplots

Suppose we are given a data set consisting of N records (elements). Each record
contains observed values on k variables. Some of these variables might be qualitative
(categorical) and some quantitative. Scatterplots display the values of pairwise
quantitative variables, in two-dimensional plots.

Example 4.1 Consider the data set PLACE.csv. The observations are the displace-
ments (position errors) of electronic components on printed circuit boards. The data
was collected by a large US manufacturer of automatic insertion machines used in
mass production of electronic devices. The components are fed to the machine on
reals. A robot arm picks the components and places them in a prescribed location
on a printed circuit board. The placement of the component is controlled by a
computer built into the insertion machine. There are 26 boards. Sixteen components
are placed on each board. Each component has to be placed at a specific location
(x, y) on a board and with correct orientation t . Due to mechanical and other design
or environmental factors, some errors are committed in placement. It is interesting
to analyze whether these errors are within the specified tolerances. There are k = 4
variables in the data set. The first one is categorical and gives the board number.
The three other variables are continuous. The variable “x Dev” provides the error in
placement along the x-axis of the system. The variable “y Dev” presents the error in
placement along the y-axis. The variable “t Dev” is the error in angular orientation.

In Fig. 4.1 we present a scatterplot of y Dev versus x Dev of each record. The
picture reveals immediately certain unexpected clustering of the data points. The

Fig. 4.1 Scatterplots of y Dev versus x Dev
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Fig. 4.2 Scatterplot matrix

y Dev of placements should not depend on their x Dev. The scatterplot of Fig. 4.1
shows three distinct clusters of points, which will be investigated later.

In a similar manner, we can plot the values of t Dev against those of x Dev or y

Dev. This can be accomplished by performing what is called amultiple scatterplot
or a scatterplot matrix. In Fig. 4.2 we present the scatterplot matrix of x Dev, y

Dev, and t Dev.
The multiple (matrix) scatterplot gives us a general picture of the relationships

between the three variables. Figure 4.1 is the middle left box in Fig. 4.2. Figure 4.2
directs us into further investigations. For example, we see in Fig. 4.2 that the variable
t Dev has high concentration around zero with many observations to bigger than zero
indicating a tilting of the components to the right. The frequency distribution of t
Dev, which is presented in Fig. 4.3, reinforces this conclusion. Indeed, 50% of the t
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Fig. 4.3 Histogram of t Dev

Fig. 4.4 3D-scatterplot

Dev values are close to zero. The other values tend to be positive. The histogram in
Fig. 4.3 is skewed toward positive values.

An additional scatterplot can present the three-dimensional variability simultane-
ously. This graph is called a 3D-scatterplot. In Fig. 4.4 we present this scatterplot
for the three variables x Dev (X direction), y Dev (Y direction), and “t Dev” (Z
direction). This plot expands the two-dimensional scatterplot by adding horizontally
a third variable. �
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Fig. 4.5 Multiple boxplots of x Dev versus board number

4.1.2 Multiple Boxplots

Multiple boxplot or side-by-side boxplot is another graphical technique by which we
present distributions of a quantitative variable at different categories of a categorical
variable.

Example 4.2 Returning to the data set PLACE.csv, we wish to further investigate
the apparent clusters, indicated in Fig. 4.1. As mentioned before, the data was
collected in an experiment in which components were placed on 26 boards in a
successive manner. The board number “board_n” is in the first column of the data
set. We would like to examine whether the deviations in x, y, or θ tend to change
with time. We can, for this purpose, plot the x Dev, y Dev, or t Dev against board_n.
A more concise presentation is to graph multiple boxplots, by board number. In
Fig. 4.5 we present these multiple boxplots of the x Dev against board number. We
see in this figure an interesting picture. Boards 1–9 yield similar boxplots, while
those of boards 10–12 are significantly above those of the first group, and those of
boards 13–26 constitute a third group. These groups seem to be connected with the
three clusters seen in Fig. 4.1. To verify it, we introduce a code variable to the data
set, which assumes value 1 if board # ≤ 9, value 2 if 10 ≤ board# ≤ 12, and value
3 if board # ≥ 13. We then plot again y-dev against x-dev, denoting the points in
the scatterplot by the code variable symbols �, +, and ◦.

In Fig. 4.6 we see this coded scatterplot. It is clear now that the three clusters are
formed by these three groups of boards. The differences between these groups might
be due to some deficiency in the placement machine, which caused the apparent time
related drift in the errors. Other possible reasons could be the printed circuit board
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Fig. 4.6 Scatterplot of y Dev versus x Dev by code variables

composition or different batches of raw material, such as the glue used for placing
the components. �

4.2 Frequency Distributions in Several Dimensions

In Chap. 1 we studied how to construct frequency distributions of single variables,
categorical or continuous. In the present section, we extend those concepts to several
variables simultaneously. For the sake of simplification, we restrict the discussion to
the case of two variables. The methods of this section can be generalized to a larger
number of variables in a straightforward manner.

In order to enrich the examples, we introduce here two additional data sets. One is
called ALMPIN.csv, and the other one is called HADPAS.csv. The ALMPIN.csv
set consists of 70 records on 6 variables measured on aluminum pins used in
airplanes. The aluminum pins are inserted with air-guns in pre-drilled holes in order
to combine critical airplane parts such as wings, engine supports, and doors. Typical
lot sizes consist of at least 1000 units providing a prime example of the discrete mass
production operations in an industrial environment. The main role of the aluminum
pins is to reliably secure the connection of two metal parts. The surface area where
contact is established between the aluminum pins and the connected part determines
the strength required to disconnect the part. A critical feature of the aluminum pin
is that it fits perfectly to the pre-drilled holes. Parallelism of the aluminum pin is
therefore essential, and the part diameter is measured in three different locations
producing three measurements of the part width. Diameters 1, ,2 and 3 should
be all equal. Any deviation indicates lack of parallelism and therefore potential
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reliability problems since the surface area with actual contact is not uniform. The
measurements were taken in a computerized numerically controlled (CNC) metal
cutting operation. The six variables are Diameter 1, Diameter 2, Diameter 3, Cap
Diameter, LengthNocp, and LengthWcp. All the measurements are in millimeters.
The first three variables give the pin diameter at three specified locations. Cap
Diameter is the diameter of the cap on top of the pin. The last two variables are
the length of the pin, without and with the cap, respectively.

Data set HADPAS.csv provides several resistance measurements (ohms) of five
types of resistances (Res 3, Res 18, Res 14, Res 7, and Res 20), which are located in
six hybrid micro circuits simultaneously manufactured on ceramic substrates. There
are altogether 192 records for 32 ceramic plates.

4.2.1 Bivariate Joint Frequency Distributions

A joint frequency distribution is a function which provides the frequencies in the
data set of elements (records) having values in specified intervals. More specifically,
consider two variables X and Y . We assume that both variables are continuous. We
partition the x-axis to k subintervals (ξi−1, ξi), i = 1, · · · , k1. We then partition the
y-axis to k2 subintervals (ηj−1, ηj ), j = 1, · · · , k2. We denote by fij the number
(count) of elements in the data set (sample) having x values in (ξi−1, ξi) and y values
in (ηj−1, ηj ), simultaneously. fij is called the joint frequency of the rectangle
(ξi−1, ξi)× (ηj−1, ηj ). If N denotes the total number of elements in the data set and
then obviously

∑
i

∑
j

fij = N. (4.1)

The frequencies fij can be represented in a table, called a table of the frequency
distribution. The column totals provide the frequency distribution of the variable
Lengthwcp. These row and column totals are called marginal frequencies. Gener-
ally, the marginal frequencies are

fi. =
k2∑

j=1

fij , i = 1, · · · , k1 (4.2)

and

f.j =
k1∑

i=1

fij , j = 1, · · · , k2. (4.3)

These are the sums of the frequencies in a given row or in a given column.
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Table 4.1 Joint frequency distribution

LengthWcp

LengthNocp 59.9–60.0 60.0–60.1 60.1–60.2 Row total

49.8–49.9 16 17 0 33

49.9–50.0 5 27 2 34

50.0–50.1 0 0 3 3

Column total 21 44 5 70

Example 4.3 In Table 4.1 we present the joint frequency distribution of Length-
Nocp and LengthWcp of the data set ALMPIN.csv. You can create this analysis in
Python using a combination of binning and cross-tabulation.

almpin = mistat.load_data('ALMPIN')
binned_almpin = pd.DataFrame({

'lenWcp': pd.cut(almpin['lenWcp'], bins=np.arange(59.9, 60.2, 0.1)),
'lenNocp': pd.cut(almpin['lenNocp'], bins=np.arange(49.8, 50.1, 0.1)),

})
join_frequencies = pd.crosstab(binned_almpin['lenNocp'],

binned_almpin['lenWcp'])
print(join_frequencies)

lenWcp (59.9, 60.0] (60.0, 60.1] (60.1, 60.2]
lenNocp
(49.8, 49.9] 16 17 0
(49.9, 50.0] 5 27 2
(50.0, 50.1] 0 0 3

The marginal frequencies can be obtained from the joint frequencies by summing
the data along the rows or columns.

print('Row Totals', join_frequencies.sum(axis=1))
print('Column Totals', join_frequencies.sum(axis=0))

Row Totals lenNocp
(49.8, 49.9] 33
(49.9, 50.0] 34
(50.0, 50.1] 3
dtype: int64
Column Totals lenWcp
(59.9, 60.0] 21
(60.0, 60.1] 44
(60.1, 60.2] 5
dtype: int64

The row totals provide the frequency distribution of lenNocp.
We can visualize this table using a mosaic plot where the table entries are

proportional to the size of the rectangles in the plot. A mosaic plot is an interesting
way of visualizing the joint frequency distribution. Figures 4.7 presents a mosaic
plot of the data in Table 4.1. It was created using the mosaic function in
statsmodels.

Similar tabulation can be done of the frequency distributions of resistances, in
data set HADPAS.csv. In Table 4.2 we provide the joint frequency distribution of
Res 3 and Res 7.

�
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Fig. 4.7 Mosaic plot of data in Table 4.1

Table 4.2 Joint frequency distribution of Res 3 and Res 7 (in ohms)

Res 7

Res 3 1300–1500 1500–1700 1700–1900 1900–2100 2100–2300 Row total

1500–1700 1 13 1 0 0 15

1700–1900 0 15 31 1 0 47

1900–2100 0 1 44 40 2 87

2100–2300 0 0 5 31 6 42

2300–2500 0 0 0 0 1 1

Column total 1 29 81 72 9 192

The bivariate frequency distribution provides us also information on the associ-
ation or dependence between the two variables. In Table 4.2 we see that resistance
values of Res 3 tend to be similar to those of Res 7. For example, if the resistance
value of Res 3 is in the interval (1500, 1700), 13 out of 15 resistance values of Res
7 are in the same interval. This association can be illustrated by plotting the box and
whiskers plots of the variable Res 3 by the categories (intervals) of the variable Res
7. In order to obtain these plots, we partition first the 192 cases to five subgroups,
according to the resistance values of Res 7. The single case having Res 7 in the
interval (1300, 1500) belongs to subgroup 1. The 29 cases having Res 7 values in
(1500, 1700) belong to subgroup 2 and so on. We can then perform an analysis
by subgroups. Such an analysis yields Table 4.3. The Python commands for this
analysis are:
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Table 4.3 Means and standard deviations of Res 3

Interval of

Subgroup Res 7 Sample size Mean Standard deviation

1 1300–1500 1 1600.0 –

2 1500–1700 29 1718.9 80.27

3 1700–1900 81 1932.5 101.02

4 1900–2100 72 2076.5 93.53

5 2100–2300 9 2204.0 115.49

hadpas = mistat.load_data('HADPAS')
hadpas['res7fac'] = pd.cut(hadpas['res7'], bins=range(1300, 2500, 200))
hadpas['res3'].groupby(hadpas['res7fac']).agg(['count', 'mean', 'std'])

count mean std
res7fac
(1300, 1500] 1 1600.000000 NaN
(1500, 1700] 29 1718.931034 80.266045
(1700, 1900] 81 1932.543210 101.018816
(1900, 2100] 72 2076.458333 93.530584
(2100, 2300] 9 2204.000000 115.489177

We see in Table 4.3 that the subgroup means grow steadily with the values of
Res 7. The standard deviations do not change much. (There is no estimate of the
standard deviation of subgroup 1.) A better picture of the dependence of Res 3 on
the intervals of Res 7 is given by Fig. 4.8, in which the boxplots of the Res 3 values
are presented by subgroup.

ax = hadpas.boxplot(column='res3', by='res7fac',
color={'boxes':'grey', 'medians':'black', 'whiskers':'black'},
patch_artist=True)

ax.set_title('')
ax.get_figure().suptitle('')
ax.set_xlabel('res7fac')
plt.show()

4.2.2 Conditional Distributions

Consider a population (or a sample) of elements. Each element assumes random
values of two (or more) variables X, Y,Z, · · · . The distribution of X, over elements
whose Y value is restricted to a given interval (or set) A, is called the conditional
distribution of X, given Y is in A. If the conditional distributions of X given Y

is different from the marginal distribution of X, we say that the variables X and Y

are statistically dependent. We will learn later how to test whether the differences
between the conditional distributions and the marginal ones are significant and not
due just to randomness in small samples.
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Fig. 4.8 Boxplots of Res 3 by intervals of Res 7

Table 4.4 Conditional and marginal frequency distributions of Res 3

Res 7

Marginal

Res 3 1300–1500 1500–1700 1700–1900 1900–2100 2100–2300 distrib.

1500–1700 100.0 44.8 1.2 0.0 0.0 7.8

1700–1900 0.0 51.7 38.3 1.4 0.0 24.5

1900–2100 0.0 3.4 54.3 55.6 22.2 45.3

2100–2300 0.0 0.0 6.2 43.0 66.7 21.9

2300–2500 0.0 0.0 0.0 0.0 11.1 0.5

Column sums 100.0 100.0 100.0 100.0 100.0 100.0

Example 4.4 If we divide the frequencies in Table 4.2 by their column sums, we
obtain the proportional frequency distributions of Res 3, given the intervals of Res 7.
In Table 4.4 we compare these conditional frequency distributions, with the marginal
frequency distribution of Res 3. We see in Table 4.4 that the proportional frequencies
of the conditional distributions of Res 3 depend strongly on the intervals of Res 7 to
which they are restricted.

�

4.3 Correlation and Regression Analysis

In the previous sections, we presented various graphical procedures for analyzing
multivariate data. In particular, we showed the multivariate scatterplots, three-
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dimensional histograms, conditional boxplots, etc. In the present section, we start
with numerical analysis of multivariate data.

4.3.1 Covariances and Correlations

We introduce now a statistic which summarizes the simultaneous variability of two
variables. The statistic is called the sample covariance. It is a generalization of
the sample variance statistics, S2

x , of one variable, X. We will denote the sample
covariance of two variables, X and Y , by Sxy . The formula of Sxy is

Sxy = 1

n − 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ), (4.4)

where X̄ and Ȳ are the sample means of X and Y , respectively. Notice that Sxx is
the sample variance S2

x and Syy is S2
y . The sample covariance can assume positive

or negative values. If one of the variables, say X, assumes a constant value c, for all
Xi (i = 1, · · · , n), then Sxy = 0. This can be immediately verified, since X̄ = c

and Xi − X̄ = 0 for all i = 1, · · · , n.
It can be proven that, for any variables X and Y ,

S2
xy ≤ S2

x · S2
y . (4.5)

This inequality is the celebrated Schwarz inequality. By dividing Sxy by Sx ·Sy , we
obtain a standardized index of dependence, which is called the sample correlation
(Pearson’s product-moment correlation), namely:

Rxy = Sxy

Sx · Sy

. (4.6)

From the Schwarz inequality, the sample correlation always assumes values between
−1 and +1. In Table 4.5 we present the sample covariances of the six variables
measured on the aluminum pins. Since Sxy = Syx (covariances and correlations are
symmetric statistics), it is sufficient to present the values at the bottom half of the
table (on and below the diagonal).

Example 4.5 In Tables 4.5 and 4.6, we present the sample covariances and sample
correlations in the data file ALMPIN.csv.

We see in Table 4.6 that the sample correlations between Diameter 1, Diameter
2, Diameter 3, and Cap Diameter are all greater than 0.9. As we see in Fig. 4.9
(the multivariate scatterplots), the points of these variables are scattered close to
straight lines. On the other hand, no clear relationship is evident between the first
four variables and the length of the pin (with or without the cap). The negative
correlations usually indicate that the points are scattered around a straight line
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Table 4.5 Sample covariances of aluminum pins variables

Y

X Diameter 1 Diameter 2 Diameter 3 Cap Diameter Length Nocp Length Wcp

Diameter 1 0.0270

Diameter 2 0.0285 0.0329

Diameter 3 0.0255 0.0286 0.0276

Cap Diameter 0.0290 0.0314 0.0285 0.0358

LengthNocp −0.0139 −0.0177 −0.0120 −0.0110 0.1962

LengthWcp −0.0326 −0.0418 −0.0333 −0.0319 0.1503 0.2307

Table 4.6 Sample Correlations of Aluminum Pins Variables

Y

X Diameter 1 Diameter 2 Diameter 3 Cap Diameter Length Nocp Length Wcp

Diameter 1 1.000

Diameter 2 0.958 1.000

Diameter 3 0.935 0.949 1.000

Cap Diameter 0.933 0.914 0.908 1.000

LengthNocp −0.191 −0.220 −0.163 −0.132 1.000

LengthWcp −0.413 −0.480 −0.417 −0.351 0.707 1.000

having a negative slope. In the present case, it seems that the magnitude of these
negative correlations is due to the one outlier (pin # 66). If we delete it from the data
sets, the correlations are reduced in magnitude, as shown in Table 4.7.

We see that the correlations between the four diameter variables and the
LengthNocp are much closer to zero after excluding the outlier. Moreover, the
correlation with the Cap Diameter changed its sign. This shows that the sample
correlation, as defined above, is sensitive to the influence of extreme observations
(outliers). �

An important question to ask is, how significant is the value of the correlation
statistic? In other words, what is the effect on the correlation of the random
components of the measurements? If Xi = ξi + ei , i = 1, · · · , n, where ξi are
deterministic components and ei are random, and if Yi = α+βξi +fi , i = 1, · · · , n,
where α and β are constants and fi are random components, how large could be the
correlation between X and Y if β = 0?

Questions which deal with assessing the significance of the results will be
discussed later.

4.3.2 Fitting Simple Regression Lines to Data

We have seen examples before in which the relationship between two variables X

and Y is close to linear. This is the case when the (x, y) points scatter along a straight
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Fig. 4.9 Multiple scatterplots of the aluminum pins measurements

Table 4.7 Sample correlations of aluminum pins variables, after excluding outlying observation #66

Y

X Diameter 1 Diameter 2 Diameter 3 Cap Diameter Length Nocp Length Wcp

Diameter 1 1.000

Diameter 2 0.925 1.000

Diameter 3 0.922 0.936 1.000

Cap Diameter 0.876 0.848 0.876 1.000

LengthNocp −0.056 −0.103 −0.054 0.022 1.000

LengthWcp −0.313 −0.407 −0.328 −0.227 0.689 1.000
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line. Suppose that we are given n pairs of observations {(xi, yi), i = 1, · · · , n}. If
the Y observations are related to those on X, according to the linear model :

yi = α + βxi + ei, i = 1, · · · , n (4.7)

where α and β are constant coefficients and ei are random components, with zero
mean and constant variance, we say that Y relates to X according to a simple linear
regression. The coefficients α and β are called the regression coefficients. α is
the intercept, and β is the slope coefficient. Generally, the coefficients α and β

are unknown. We fit to the data points a straight line, which is called the estimated
regression line or prediction line.

4.3.2.1 The Least Squares Method

The most common method of fitting a regression line is the method of least squares.
Suppose that ŷ = a + bx is the straight line fitted to the data. The principle of

least squares requires to determine estimates of α and β, a and b, whichminimize
the sum of squares of residuals around the line, i.e.:

SSE =
n∑

i=1

(yi − a − bxi)
2. (4.8)

If we require that the regression line will pass through the point (x̄, ȳ), where x̄ and
ȳ are the sample means of the xs and ys, then

ȳ = a + bx̄,

or the coefficient a should be determined by the equation

a = ȳ − bx̄. (4.9)

Substituting this equation above, we obtain that

SSE =
n∑

i=1

(yi − ȳ − b(xi − x̄))2

=
n∑

i=1

(yi − ȳ)2 − 2b
n∑

i=1

(xi − x̄)(yi − ȳ) + b2
n∑

i=1

(xi − x̄)2.

Dividing the two sides of the equation by (n − 1) we obtain

SSE

n − 1
= S2

y − 2bSxy + b2S2
x .
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The coefficient b should be determined to minimize this quantity. One can write

SSE

n − 1
= S2

y + S2
x

(
b2 − 2b

Sxy

S2
x

+ S2
xy

S4
x

)
− S2

xy

S2
x

= S2
y(1 − R2

xy) + S2
x

(
b − Sxy

S2
x

)2

.

It is now clear that the least squares estimate of β is

b = Sxy

S2
x

= Rxy

Sy

Sx

. (4.10)

The value of SSE/(n − 1), corresponding to the least squares estimate, is

S2
y|x = S2

y(1 − R2
xy). (4.11)

S2
y|x is the sample variance of the residuals around the least squares regression line.

By definition, S2
y|x ≥ 0, and hence R2

xy ≤ 1, or −1 ≤ Rxy ≤ 1. Rxy = ±1 only if

S2
y|x = 0. This is the case when all the points (xi, yi), i = 1, · · · , n, lie on a straight

line. If Rxy = 0, then the slope of the regression line is b = 0 and S2
y|x = S2

y .
Notice that

R2
xy =

(
1 − S2

y|x
S2

y

)
. (4.12)

Thus, R2
xy is the proportion of variability in Y , which is explainable by the linear

relationship ŷ = a + bx. For this reason, R2
xy is also called the coefficient of

determination. The coefficient of correlation (squared) measures the extent of
linear relationship in the data. The linear regression line, or prediction line, could
be used to predict the values of Y corresponding to X values, when R2

xy is not too
small. To interpret the coefficient of determination—particularly when dealing with
multiple regression models (see Sect. 4.4)—it is sometimes useful to consider an
“adjusted” R2. The adjustment accounts for the number of predictor or explanatory
variables in the model and the sample size. In simple linear regression, we define

R2
xy(adjusted) = 1 −

[
(1 − R2

xy)
n − 1

n − 2

]
. (4.13)

Example 4.6 Telecommunication satellites are powered while in orbit by solar
cells. Tadicell, a solar cell producer that supplies several satellite manufacturers,
was requested to provide data on the degradation of its solar cells over time. Tadicell
engineers performed a simulated experiment in which solar cells were subjected to
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Fig. 4.10 Relationship of ISC values at t1 and t2

temperature and illumination changes similar to those in orbit and measured the
short circuit current (ISC) (amperes) of solar cells at three different time periods, in
order to determine their rate of degradation. In the following table, we present the
ISC values of n = 16 solar cells, measured at three time epochs, 1 month apart. The
data is given in file SOCELL.csv. In Fig. 4.10 we see the scatter of the ISC values
at t1 and at t2

socell = mistat.load_data('SOCELL')
socell.plot.scatter(x='t1', y='t2', color='black')
plt.show()

We now make a regression analysis of ISC at time t2, Y , versus ISC at time t1, X.
The computations can be easily performed in Python. There are several packages for
linear regression. Here, we use statsmodels as it provides detailed information
(Table 4.8).

socell = mistat.load_data('SOCELL')
model = smf.ols(formula='t2 ~ 1 + t1', data=socell).fit()
print(model.summary2())

Results: Ordinary least squares
==================================================================
Model: OLS Adj. R-squared: 0.957
Dependent Variable: t2 AIC: -30.8366
Date: 2022-05-18 21:13 BIC: -29.2914
No. Observations: 16 Log-Likelihood: 17.418
Df Model: 1 F-statistic: 330.8
Df Residuals: 14 Prob (F-statistic): 3.88e-11
R-squared: 0.959 Scale: 0.0075846
--------------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
--------------------------------------------------------------------
Intercept 0.5358 0.2031 2.6375 0.0195 0.1001 0.9715
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Table 4.8 ISC values of
solar cells at three time
epochs

Time

Cell t1 t2 t3

1 4.18 4.42 4.55

2 3.48 3.70 3.86

3 4.08 4.39 4.45

4 4.03 4.19 4.28

5 3.77 4.15 4.22

6 4.01 4.12 4.16

7 4.49 4.56 4.52

8 3.70 3.89 3.99

9 5.11 5.37 5.44

10 3.51 3.81 3.76

11 3.92 4.23 4.14

12 3.33 3.62 3.66

13 4.06 4.36 4.43

14 4.22 4.47 4.45

15 3.91 4.17 4.14

16 3.49 3.90 3.81

t1 0.9287 0.0511 18.1890 0.0000 0.8192 1.0382
------------------------------------------------------------------
Omnibus: 1.065 Durbin-Watson: 2.021
Prob(Omnibus): 0.587 Jarque-Bera (JB): 0.871
Skew: -0.322 Prob(JB): 0.647
Kurtosis: 2.056 Condition No.: 39
==================================================================

We see in the summary output that the least squares regression (prediction) line
is ŷ = 0.536 + 0.929x. We read also that the coefficient of determination is R2

xy =
0.959. This means that only 4% of the variability in the ISC values, at time period t2,
are not explained by the linear regression on the ISC values at time t1. Observation
#9 is an “unusual observation.” It has relatively much influence on the regression
line, as can be seen in Fig. 4.10.

The model summary provides also additional analysis. The Stdev corresponding
to the least squares regression coefficients is the square root of the variances of these
estimates, which are given by the formulae:

S2
a = S2

e

[
1

n
+ x̄2∑n

i=1(xi − x̄)2

]
(4.14)

and

S2
b = S2

e /

n∑
i=1

(xi − x̄)2, (4.15)

where
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Table 4.9 Observed and
predicted values of ISC at
time t2

i yi ŷi êi

1 4.42 4.419 0.0008

2 3.70 3.769 −0.0689

3 4.39 4.326 0.0637

4 4.19 4.280 −0.0899

5 4.15 4.038 0.1117

6 4.12 4.261 −0.1413

7 4.56 4.707 −0.1472

8 3.89 3.973 −0.0833

9 5.37 5.283 0.0868

10 3.81 3.797 0.0132

11 4.23 4.178 0.0523

12 3.62 3.630 −0.0096

13 4.36 4.308 0.0523

14 4.47 4.456 0.0136

15 4.17 4.168 0.0016

16 3.90 3.778 0.1218

S2
e = (1 − R2

xy)

n − 2

n∑
i=1

(yi − ȳ)2. (4.16)

We see here that S2
e = n−1

n−2S
2
y|x . The reason for this modification is for testing

purposes. The value of S2
e in the above analysis is 0.0076. The standard deviation of

y is Sy = 0.4175. The standard deviation of the residuals around the regression line
is Se = 0.08709. This explains the high value of R2

y|x .
In Table 4.9 we present the values of ISC at time t2, y, and their predicted values,

according to those at time t1, ŷ. We present also a graph (Fig. 4.11) of the residuals,
ê = y − ŷ, versus the predicted values ŷ. If the simple linear regression explains
the variability adequately, the residuals should be randomly distributed around zero,
without any additional relationship to the regression x.

In Fig. 4.11 we plot the residuals ê = y − ŷ, versus the predicted values ŷ, of
the ISC values for time t2. It seems that the residuals are randomly dispersed around
zero. Later we will learn how to test whether this dispersion is indeed random. �

4.3.2.2 Regression and Prediction Intervals

Suppose that we wish to predict the possible outcomes of the Y for some specific
value of X, say x0. If the true regression coefficients α and β are known, then the
predicted value of Y is α + βx0. However, when α and β are unknown, we predict
the outcome at x0 to be ŷ(x0) = a+bx0. We know, however, that the actual value of
Y to be observed will not be exactly equal to ŷ(x0). We can determine a prediction
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Fig. 4.11 Residual versus predicted ISC values

interval around ŷ(x0) such that the likelihood of obtaining a Y value within this
interval will be high. Generally, the prediction interval limits, given by the formula

ŷ(x0) ± 3S2
e ·

[
1 + 1

n
+ (x0 − x̄)2∑

i (xi − x̄)2

]1/2
, (4.17)

will yield good predictions. In Table 4.10 we present the 99% and 95% prediction
intervals for the ISC values at time t2, for selected ISC values at time t1. In Fig. 4.12
we present the scatterplot, regression line, and prediction limits for Res 3 versus Res
7, of the HADPAS.csv set.

result = model.get_prediction(pd.DataFrame({'t1': [4.0,4.4,4.8,5.2]}))
columns = ['mean', 'obs_ci_lower', 'obs_ci_upper']
print(0.01)
print(result.summary_frame(alpha=0.01)[columns].round(3))
print(0.05)
print(result.summary_frame(alpha=0.05)[columns].round(3))

0.01
mean obs_ci_lower obs_ci_upper

0 4.251 3.983 4.518
1 4.622 4.346 4.898
2 4.994 4.697 5.290
3 5.365 5.038 5.692
0.05

mean obs_ci_lower obs_ci_upper
0 4.251 4.058 4.443
1 4.622 4.423 4.821
2 4.994 4.780 5.207
3 5.365 5.129 5.601
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Table 4.10 Prediction
intervals for ISC values at
time t2

x0 ŷ(x0) Lower limit Upper limit

4.0 4.251 3.983 4.518

4.4 4.622 4.346 4.898

4.8 4.993 4.697 5.290

5.2 5.364 5.038 5.692

Fig. 4.12 Prediction intervals for Res 3 values, given the Res 7 values

4.4 Multiple Regression

In the present section, we generalize the regression to cases where the variability of
a variable Y of interest can be explained, to a large extent, by the linear relationship
between Y and k predicting or explaining variables X1, . . . , Xk . The number of
explaining variables is k ≥ 2. All the k variables X1, . . . , Xk are continuous ones.
The regression analysis of Y on several predictors is called multiple regression,
and multiple regression analysis is an important statistical tool for exploring the
relationship between the dependence of one variable Y on a set of other variables.
Applications of multiple regression analysis can be found in all areas of science
and engineering. This method plays an important role in the statistical planning and
control of industrial processes.

The statistical linear model for multiple regression is

yi = β0 +
k∑

j=1

βjxij + ei, i = 1, · · · , n,

where β0, β1, · · · , βk are the linear regression coefficients and ei are random
components. The commonly used method of estimating the regression coefficients,
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and testing their significance, is called multiple regression analysis. The method
is based on the principle of least squares, according to which the regression
coefficients are estimated by choosing b0, b1, · · · , bk to minimize the sum of
residuals

SSE =
n∑

i=1

(yi − (b0 + b1xi1 + · · · + bkxik))
2.

The first subsections of the present chapter are devoted to the methods of
regression analysis, when both the regressant Y and the regressors x1, . . . , xk are
quantitative variables. In Sect. 4.5 we present quantal response regression, in which
the regressant is a qualitative (binary) variable and the regressors x1, . . . , xk are
quantitative. In particular we present the logistic model and the logistic regression.
In Sect. 4.6 we discuss the analysis of variance, for the comparison of sample means,
when the regressant is quantitative, but the regressors are categorical variables.

4.4.1 Regression on Two Variables

The multiple regression linear model, in the case of two predictors, assumes the
form

yi = β0 + β1x1i + β2x2i + ei, i = 1, · · · , n. (4.18)

e1, . . . , en are independent r.v.s, with E{ei} = 0 and V {ei} = σ 2, i = 1, . . . , n. The
principle of least squares calls for the minimization of SSE. One can differentiate
SSE with respect to the unknown parameters. This yields the least squares estima-
tors, b0, b1, and b2 of the regression coefficients, β0, β1, and β2. The formula for
these estimators are:

b0 = Ȳ − b1X̄1 − b2X̄2; (4.19)

and b1 and b2 are obtained by solving the set of linear equations

S2
x1

b1 + Sx1x2b2 = Sx1y

Sx1x2b1 + S2
x2

b2 = Sx2y

⎫⎬
⎭ . (4.20)

As before, S2
x1
, Sx1x2 , S2

x2
, Sx1y , and Sx2y denote the sample variances and

covariances of x1, x2, and y.
By simple substitution we obtain, for b1 and b2, the explicit formulae:
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b1 = S2
x2

Sx1y − Sx1x2Sx2y

S2
x1

S2
x2

− S2
x1x2

, (4.21)

and

b2 = S2
x1

Sx2y − Sx1x2Sx1y

S2
x1

S2
x2

− S2
x1x2

. (4.22)

The values ŷi = b0 + b1x1i + b2x2i (i = 1, · · · , n) are called the predicted values
of the regression, and the residuals around the regression plane are

êi = yi − ŷi

= yi − (b0 + b1x1i + b2x2i ), i = 1, · · · , n.

The mean square of the residuals around the regression plane is

S2
y|(x1,x2) = S2

y(1 − R2
y|(x1,x2)), (4.23)

where

R2
y|(x1,x2) = 1

S2
y

(b1Sx1y + b2Sx2y), (4.24)

is the multiple squared correlation (multiple-R2), and S2
y is the sample variance

of y. The interpretation of the multiple-R2 is as before, i.e., the proportion of the
variability of y which is explainable by the predictors (regressors) x1 and x2.

Example 4.7 We illustrate the fitting of a multiple regression on the following
data, labeled GASOL.csv. The data set consists of 32 measurements of distillation
properties of crude oils (see Daniel and Wood 1999). There are five variables,
x1, · · · , x4 and y. These are:

x1 Crude oil gravity, ◦API
x2 Crude oil vapour pressure, psi
astm Crude oil ASTM 10% point, ◦F
endPt Gasoline ASTM endpoint, ◦F
yield Yield of gasoline (in percentage of crude oil)

The measurements of crude oil and gasoline volatility measure the temperatures at
which a given amount of liquid has been vaporized.

The sample correlations between these five variables are :
We see that yield is highly correlated with endPt and to a lesser degree with

astm (or x2).
The following is the statsmodels result of the regression of yield on astm

and endPt:
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x2 astm endPt yield

x1 0.621 −0.700 −0.322 0.246

x2 −0.906 −0.298 0.384

astm 0.412 −0.315

endPt 0.712

gasol = mistat.load_data('GASOL')
# rename column 'yield' to 'Yield' as 'yield' is a special keyword in Python
gasol = gasol.rename(columns={'yield': 'Yield'})
model = smf.ols(formula='Yield ~ astm + endPt + 1', data=gasol).fit()
print(model.summary2())

Results: Ordinary least squares
=================================================================
Model: OLS Adj. R-squared: 0.949
Dependent Variable: Yield AIC: 150.3690
Date: 2022-05-18 21:13 BIC: 154.7662
No. Observations: 32 Log-Likelihood: -72.184
Df Model: 2 F-statistic: 288.4
Df Residuals: 29 Prob (F-statistic): 7.26e-20
R-squared: 0.952 Scale: 5.8832
------------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
------------------------------------------------------------------
Intercept 18.4676 3.0090 6.1374 0.0000 12.3135 24.6217
astm -0.2093 0.0127 -16.4349 0.0000 -0.2354 -0.1833
endPt 0.1558 0.0069 22.7308 0.0000 0.1418 0.1698
-----------------------------------------------------------------
Omnibus: 1.604 Durbin-Watson: 1.076
Prob(Omnibus): 0.448 Jarque-Bera (JB): 1.055
Skew: 0.085 Prob(JB): 0.590
Kurtosis: 2.127 Condition No.: 2920
=================================================================
* The condition number is large (3e+03). This might indicate
strong multicollinearity or other numerical problems.

We compute now these estimates of the regression coefficients using the above
formulae. The variances and covariances of endPt, astm, and yield are:

astm endPt yield

astm 1409.355

endPt 1079.565 4865.894

yield −126.808 532.188 114.970

# Covariance
gasol[['astm', 'endPt', 'Yield']].cov()
# Means
gasol[['astm', 'endPt', 'Yield']].mean()

The means of these variables are astm = 241.500, endPt = 332.094, and
yield = 19.6594. Thus, the least squares estimators of b1 and b2 are obtained by
solving the equations
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1409.355b1 + 1079.565b2 = −126.808

1079.565b1 + 4865.894b2 = 532.188.

The solution is

b1 = −0.20933,

and

b2 = 0.15581.

Finally, the estimate of β0 is

b0 = 19.6594 + 0.20933 × 241.5 − 0.15581 × 332.094

= 18.469.

These are the same results as in the Python output. Moreover, the multiple-R2 is

R2
y|(astm,endPt) = 1

114.970
[0.20932 × 126.808 + 0.15581 × 532.88]

= 0.9530.

In addition,

S2
y|(astm,endPt) = S2

y(1 − R2
y|(astm,endPt))

= 114.97(1 − .9530)

= 5.4036.

In Fig. 4.13 we present a scatterplot of the residuals êi (i = 1, · · · , n) against the
predicted values ŷi (i = 1, · · · , n). This scatterplot does not reveal any pattern
different than random. It can be concluded that the regression of y on x3 and x4
accounts for all the systematic variability in the yield, y. Indeed, R2 = .952, and no
more than 4.8% of the variability in y is unaccounted by the regression. �

The following are formulae for the variances of the least squares coefficients.
First we convert S2

y|(x1,x2) to S2
e , i.e.:

S2
e = n − 1

n − 3
S2

y|x. (4.25)

S2
e is an unbiased estimator of σ 2. The variance formulae are:
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Fig. 4.13 Scatterplot of ê versus Ŷ

S2
b0

= S2
e

n
+ x̄2

1S
2
b1

+ x̄2
2S

2
b2

+ 2x̄1x̄2Sb1b2,

S2
b1

= S2
e

n − 1
· S2

x2

D
,

S2
b2

= S2
e

n − 1
· S2

x1

D
,

Sb1b2 = − S2
e

n − 1
· Sx1x2

D
,

(4.26)

where

D = S2
x1

S2
x2

− (Sx1x2)
2.

Example 4.8 Using the numerical Example 4.7 on the GASOL.csv data, we find
that

S2
e = 5.8869,

D = 5, 692, 311.4,

S2
b1

= 0.0001624,

S2
b2

= 0.0000470,

Sb1,b2 = −0.0000332,
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and

S2
b0

= 9.056295.

The square roots of these variance estimates are the “std err” values printed in the
Python output. The Se value is shown in the regression summary output as Scale.
�

4.4.2 Partial Regression and Correlation

In performing the multiple least squares regression, one can study the effect of
the predictors on the response in stages. This more pedestrian approach does not
simultaneously provide all regression coefficients but studies the effect of predictors
in more detail.

In Stage I we perform a simple linear regression of the yield y on one of the
predictors, x1 say. Let a

(1)
0 and a

(1)
1 be the intercept and slope coefficients of this

simple linear regression. Let ê(1) be the vector of residuals:

ê
(1)
i = yi − (a

(1)
0 + a

(1)
1 x1i ), i = 1, · · · , n. (4.27)

In Stage II we perform a simple linear regression of the second predictor, x2, on
the first predictor x1. Let c

(2)
0 and c

(2)
1 be the intercept and slope coefficients of this

regression. Let ê(2) be the vector of residuals:

ê
(2)
i = x2i − (c

(2)
0 + c

(2)
1 x1i ), i = 1, · · · , n. (4.28)

In Stage III we perform a simple linear regression of ê(1) on ê(2). It can be shown
that this linear regression must pass through the origin, i.e., it has a zero intercept.
Let d(3) be the slope coefficient.

The simple linear regression of ê(1) on ê(2) is called the partial regression. The
correlation between ê(1) and ê(2) is called the partial correlation of y and x2, given
x1, and is denoted by ryx2·x1 .

From the regression coefficients obtained in the three stages, one can determine
the multiple regression coefficients of y on x1 and x2, according to the formulae:

b0 = a
(1)
0 − d(3)c

(2)
0 ,

b1 = a
(1)
1 − d(3)c

(2)
1 ,

b2 = d(3).

(4.29)
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Example 4.9 For the GASOL data, let us determine the multiple regression of the
yield (y) on the astm (x3) and the endPt (x4) in stages.

stage1 = smf.ols(formula='Yield ~ 1 + astm', data=gasol).fit()
print(stage1.params)
print('R2(y, astm)', stage1.rsquared)

Intercept 41.388571
astm -0.089976
dtype: float64
R2(y, astm) 0.09924028202169999

In Stage I, the simple linear regression of y on astm is

ŷ = 41.4 − 0.08998 · x3.

The residuals of this regression are ê(1). Also R2
y x3

= 0.099.

stage2 = smf.ols(formula='endPt ~ 1 + astm', data=gasol).fit()
print(stage2.params)
print('R2(endPt, astm)', stage2.rsquared)

Intercept 147.104971
astm 0.765999
dtype: float64
R2(endPt, astm) 0.16994727072324556

In Stage II, the simple linear regression of endPt on astm is

x̂4 = 147 + 0.766 · x3.

The residuals of this regression are ê(2). In Fig. 4.14 we see the scatterplot of ê(1)

versus ê(2). The partial correlation is ryx4·x3 = 0.973. This high partial correlation
means that, after adjusting the variability of y for the variability of x3, and the
variability of x4 for that of x3, the adjusted x4 values, namely, ê(2)

i (i = 1, · · · , n),

are still good predictors for the adjusted y values, namely, ê(1)
i (i = 1, · · · , n).

residuals = pd.DataFrame({
'e1': stage1.resid,
'e2': stage2.resid,

})
print(np.corrcoef(stage1.resid, stage2.resid))

# use -1 in the formula to fix intercept to 0
stage3 = smf.ols(formula='e1 ~ e2 - 1', data=residuals).fit()
print(stage3.params)
print('R2(e1, e2)', stage3.rsquared)

[[1. 0.97306538]
[0.97306538 1. ]]

e2 0.155813
dtype: float64
R2(e1, e2) 0.9468562311053541

The regression of ê(1) on ê(2), determined in Stage III, is
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Fig. 4.14 Scatterplot of ê1 versus ê2

ˆ̂e(1) = 0.156 · ê(2).

We have found the following estimates:

a
(1)
0 = 41.4, a

(1)
1 = −0.08998

c(2) = 147.0, c
(2)
1 = 0.766

d(3) = 0.156.

From the above formulae, we get

b0 = 41.4 − 0.156 × 147.0 = 18.468,

b1 = −0.0900 − 0.156 × 0.766 = −0.2095

b2 = 0.156.

These values coincide with the previously determined coefficients. Finally, the
relationship between the multiple and the partial correlations is

R2
y|(x1,x2) = 1 − (1 − R2

yx1
)(1 − r2yx2·x1). (4.30)

In the present example,

R2
y|(x3,x4) = 1 − (1 − 0.099)(1 − .94673) = 0.9520.

�
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4.4.3 Multiple Linear Regression

In the general case, we have k predictors (k ≥ 1). Let (X) denote an array of n rows
and (k + 1) columns, in which the first column consists of value 1 in all entries, and
the second to (k + 1)st columns consist of the values of the predictors x1, · · · , xk .
(X) is called the predictors matrix. Let Y be an array of n rows and one column,
consisting of the values of the regressant. The linear regression model can be written
in matrix notation as

Y = (X)β + e, (4.31)

where β ′ = (β0, β1, · · · , βk) is the vector of regression coefficients and e is a vector
of random residuals.

The sum of squares of residuals can be written as

SSE = (Y − (X)β)′(Y − (X)β) (4.32)

( )′ denotes the transpose of the vector of residuals. Differentiating SSE partially
with respect to the components of β, and equating the partial derivatives to zero, we
obtain a set of linear equations in the LSE b, namely,

(X)′(X)b = (X)′Y. (4.33)

(X)′ is the transpose of the matrix (X). These linear equations are called the normal
equations.

If we define the matrix,

B = [(X)′(X)]−1(X)′, (4.34)

where [ ]−1 is the inverse of [ ], then the general formula of the least squares
regression coefficient vector b′ = (b0, · · · , bk) is given in matrix notation as

b = (B)Y. (4.35)

The vector of predicted y values, or FITS, is given by ŷ = (H)y, where (H) =
(X)(B). The vector of residuals ê = y − ŷ is given by

ê = (I − H)y, (4.36)
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where (I ) is the n × n identity matrix. The variance of ê, around the regression
surface, is

S2
e = 1

n − k − 1

n∑
i=1

ê2i

= 1

n − k − 1
Y′(I − H)Y.

The sum of squares of êi (i = 1, · · · , n) is divided by (n − k − 1) to attain an
unbiased estimator of σ 2. The multiple-R2 is given by

R2
y|(x) = 1

(n − 1)S2
y

(b′(X)′Y − nȳ2) (4.37)

where xi0 = 1 for all i = 1, · · · , n, and S2
y is the sample variance of y. Finally, an

estimate of the variance-covariance matrix of the regression coefficients b0, · · · , bk

is

(Sb) = S2
e [(X)′(X)]−1. (4.38)

Example 4.10 We use again the ALMPIN data set and regress the Cap Diameter
(y) on Diameter 1 (x1), Diameter 2 (x2), and Diameter 3 (x3). The “stdev” of the
regression coefficients is the square root of the diagonal elements of the (Sb) matrix.
To see this we present first the inverse of the (X)′(X) matrix, which is given by the
following symmetric matrix :

[(X)′(X)]−1 =

⎡
⎢⎢⎣
5907.2 −658.63 558.05 −490.70

· 695.58 −448.15 −181.94
· · 739.77 −347.38
· · · 578.77

⎤
⎥⎥⎦

almpin = mistat.load_data('ALMPIN')
# create the X matrix
X = almpin[['diam1', 'diam2', 'diam3']]
X = np.hstack((np.ones((len(X), 1)), X))
# calculate the inverse of XtX
np.linalg.inv(np.matmul(X.transpose(), X))

array([[5907.19803233, -658.62798437, 558.04560732, -490.70308612],
[-658.62798432, 695.57552698, -448.14874864, -181.93582393],
[ 558.04560746, -448.14874866, 739.77378683, -347.37983108],
[-490.7030863 , -181.93582392, -347.37983108, 578.76516931]])

The value of S2
e is the square of the printed s value, i.e., S2

e = 0.0000457. Thus,
the variances of the regression coefficients are:

S2
b0

= 0.0000457 × 5907.2 = 0.2699590
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S2
b1

= 0.0000457 × 695.58 = 0.0317878

S2
b2

= 0.0000457 × 739.77 = 0.0338077

S2
b3

= 0.0000457 × 578.77 = 0.0264496.

Thus, Sbi
(i = 0, · · · 3) are the “Stdev” in the printout. The t-ratios are given by

ti = bi

Sbi

, i = 0, · · · , 3.

The t-ratios should be large to be considered significant. The significance criterion
is given by the P -value. Large value of P indicates that the regression coefficient is
not significantly different from zero. In the above table, see that b2 is not significant.
Notice that Diameter 2 by itself, as the sole predictor of Cap Diameter, is very
significant. This can be verified by running a simple regression of y on x2. However,
in the presence of x1 and x3, x2 loses its significance. This analysis can be done in
Python as shown below.

almpin = mistat.load_data('ALMPIN')
model = smf.ols('capDiam ~ 1 + diam1 + diam2 + diam3', data=almpin).fit()
print(model.summary2())
print()
print(sms.anova.anova_lm(model))

Results: Ordinary least squares
===================================================================
Model: OLS Adj. R-squared: 0.874
Dependent Variable: capDiam AIC: -496.9961
Date: 2022-05-18 21:13 BIC: -488.0021
No. Observations: 70 Log-Likelihood: 252.50
Df Model: 3 F-statistic: 159.9
Df Residuals: 66 Prob (F-statistic): 3.29e-30
R-squared: 0.879 Scale: 4.5707e-05
---------------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
---------------------------------------------------------------------
Intercept 4.0411 0.5196 7.7771 0.0000 3.0037 5.0786
diam1 0.7555 0.1783 4.2371 0.0001 0.3995 1.1115
diam2 0.0173 0.1839 0.0939 0.9255 -0.3499 0.3844
diam3 0.3227 0.1626 1.9840 0.0514 -0.0020 0.6474
-------------------------------------------------------------------
Omnibus: 2.922 Durbin-Watson: 2.307
Prob(Omnibus): 0.232 Jarque-Bera (JB): 2.161
Skew: 0.266 Prob(JB): 0.339
Kurtosis: 2.323 Condition No.: 11328
===================================================================

* The condition number is large (1e+04). This might indicate
strong multicollinearity or other numerical problems.

df sum_sq mean_sq F PR(>F)
diam1 1.0 0.021657 0.021657 473.822506 7.918133e-32
diam2 1.0 0.000084 0.000084 1.832486 1.804520e-01
diam3 1.0 0.000180 0.000180 3.936223 5.141819e-02
Residual 66.0 0.003017 0.000046 NaN NaN

The “analysis of variance” table provides a global summary of the contribution
of the various factors to the variability of y. The total sum of squares of y, around
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Fig. 4.15 A scatterplot of the residual versus the predicted values of CapDiam

its mean, is

SST = (n − 1)S2
y =

n∑
i=1

(yi − ȳ)2 = .024938.

This value of SST is partitioned into the sum of the variability explainable by the
coefficients (SSR) and that due to the residuals around the regression (error, SSE).
These are given by

SSE = (n − k − 1)S2
e

SSR = SST − SSE

= b′(X)′y − nȲ2
n

=
k∑

j=0

bj ·
n∑

i=1

Xijyi −
(

n∑
i=1

y(i)

)2

/n.

We present in Fig. 4.15 the scatterplot of the residuals, êi , versus the predicted
values (FITS), ŷi . We see in this figure one point, corresponding to element # 66 in
the data set, whose x-values have strong influence on the regression. �

The multiple regression can be used to test whether two or more simple linear
regressions are parallel (same slopes) or have the same intercepts. We will show this
by comparing two simple linear regressions.

Let (x
(1)
i , Y

(1)
i ), i = 1, . . . , n be the data set of one simple linear regression of

Y on x, and let (x
(2)
j , Y

(2)
j ), j = 1, . . . , n2 be that of the second regression. By



258 4 Variability in Several Dimensions and Regression Models

combining the data on the regression x from the two sets, we get the x vector

x = (x
(1)
1 , . . . , x(1)

n1
, x

(2)
1 , . . . , x(2)

n2
)′.

In a similar fashion, we combine the Y values and set

Y = (Y
(1)
1 , . . . , Y (1)

n1
, Y

(2)
1 , . . . , Y (2)

n2
)′.

Introduce a dummy variable z. The vector z has n1 zeros at the beginning followed
by n2 ones. Consider now the multiple regression

Y = b01 + b1x + b2z + b3w + e, (4.39)

where 1 is a vector of (n1 + n2) ones and w is a vector of length (n1 + n2) whose
ith component is the product of the corresponding components of x and z, i.e.,
wi = xizi (i = 1, . . . , n1+n2). Perform the regression analysis ofY on (x, z,w). If
b2 is significantly different than 0, we conclude that the two simple regression lines
have different intercepts. If b3 is significantly different from zero, we conclude that
the two lines have different slopes.

Example 4.11 In the present example, we compare the simple linear regressions of
MPG/city (Y ) on Turndiameter (x) of US-made cars and of Japanese cars. The data
is in the file CAR.csv. The simple linear regression for US cars is

Ŷ = 49.0769 − 0.7565x

with R2 = 0.432, Se = 2.735 [56 degrees of freedom]. The simple linear regression
for Japanese cars is

Ŷ = 42.0860 − 0.5743x,

with R2 = 0.0854, Se = 3.268 [35 degrees of freedom]. The combined multiple
regression of Y on x, z, w yields the following table of P -values of the coefficients.

Coefficients:
Value Std. error t − value Pr(> |t |)

(Intercept) 49.0769 5.3023 9.2557 0.0000
mpgc −0.7565 0.1420 −5.3266 0.0000

z −6.9909 10.0122 −0.6982 0.4868
w 0.1823 0.2932 0.6217 0.5357

We see in this table that the P -values corresponding to z and w are 0.4868 and
0.5357, respectively. Accordingly, both b2 and b3 are not significantly different than
zero. We can conclude that the two regression lines are not significantly different.
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Fig. 4.16 Linear regression analysis for US (filled circle, dashed line) and Japanese cars (filled
triangle, dotted line). The solid line is the linear regression of the combined data set

We can combine the data and have one regression line for both US and Japanese
cars, namely:

Ŷ = 44.8152 − 0.6474x

with R2 = .3115, Se = 3.337 [93 degrees of freedom].
Here is how you can run this analysis in Python. Figure 4.16 compares the

different regression equations.

# load dataset and split into data for US and Asia
car = mistat.load_data('CAR.csv')
car_US = car[car['origin'] == 1].copy()
car_Asia = car[car['origin'] == 3].copy()
# add the indicator variable z
car_US['z'] = 0
car_Asia['z'] = 1
# combine datasets and add variable w
car_combined = pd.concat([car_US, car_Asia])
car_combined['w'] = car_combined['z'] * car_combined['turn']

model_US = smf.ols('mpg ~ 1 + turn', data=car_US).fit()
model_Asia = smf.ols('mpg ~ 1 + turn', data=car_Asia).fit()
model_combined = smf.ols('mpg ~ 1 + turn+z+w', data=car_combined).fit()
model_simple = smf.ols('mpg ~ 1 + turn', data=car_combined).fit()
print('US\n', model_US.params)
print('Europe\n', model_Asia.params)
print(model_combined.summary2())

US
Intercept 49.076922

turn -0.756540
dtype: float64
Europe
Intercept 42.086008
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turn -0.574288
dtype: float64

Results: Ordinary least squares
=================================================================
Model: OLS Adj. R-squared: 0.298
Dependent Variable: mpg AIC: 503.3067
Date: 2022-05-18 21:13 BIC: 513.5223
No. Observations: 95 Log-Likelihood: -247.65
Df Model: 3 F-statistic: 14.31
Df Residuals: 91 Prob (F-statistic): 1.03e-07
R-squared: 0.320 Scale: 11.233
------------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
------------------------------------------------------------------
Intercept 49.0769 5.3023 9.2557 0.0000 38.5445 59.6094
turn -0.7565 0.1420 -5.3266 0.0000 -1.0387 -0.4744
z -6.9909 10.0122 -0.6982 0.4868 -26.8790 12.8971
w 0.1823 0.2932 0.6217 0.5357 -0.4001 0.7646
-----------------------------------------------------------------
Omnibus: 0.985 Durbin-Watson: 1.670
Prob(Omnibus): 0.611 Jarque-Bera (JB): 0.491
Skew: -0.059 Prob(JB): 0.782
Kurtosis: 3.332 Condition No.: 1164
=================================================================

* The condition number is large (1e+03). This might indicate
strong multicollinearity or other numerical problems.

# create visualization
ax = car_US.plot.scatter(x='turn', y='mpg', color='gray', marker='o')
car_Asia.plot.scatter(x='turn', y='mpg', ax=ax, color='gray', marker='^')

car_combined = car_combined.sort_values(['turn'])
ax.plot(car_combined['turn'], model_US.predict(car_combined),

color='gray', linestyle='--')
ax.plot(car_combined['turn'], model_Asia.predict(car_combined),

color='gray', linestyle=':')
ax.plot(car_combined['turn'], model_simple.predict(car_combined),

color='black', linestyle='-')
plt.show()

�

4.4.4 Partial-F Tests and the Sequential SS

In the multiple regression analysis, a column typically entitled SEQ SS provides
a partition of the regression sum of squares, SSR, to additive components of
variance, each one with one degree of freedom. We have seen that the multiple-
R2, R2

y|(x1,...,xk)
= SSR/SST is the proportion of the total variability which is

explainable by the linear dependence of Y on all the k regressors. A simple linear
regression on the first variable x1 yields a smaller R2

y|x1 . The first component of

the SEQ SS is SSRy|(x1) = SST · R2
y|(x1). If we determine the multiple regression

of Y on x1 and x2, then SSRy|(x1,x2) = SST R2
y|(x1,x2) is the amount of variability

explained by the linear relationship with the two variables. The difference
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DSSx2|x1 = SST (R2
y|(x1x2) − R2

y|(x1)) (4.40)

is the additional amount of variability explainable by x2, after accounting for x1.
Generally, for i = 2, . . . , k

DSSxi |x1...,xi−1 = SST (R2
y|(x1,...,xi )

− R2
y|(x1,...,xi−1)

) (4.41)

is the additional contribution of the ith variable after controlling for the first (i − 1)
variables.

Let

s2e(i) = SST

n − i − 1
(1 − R2

y|(x1,...,xi )
), i = 1, . . . , k (4.42)

then

F (i) = DSSxi |x1,...,xi−1

S2
e(i)

, i = 1, . . . , k (4.43)

is called the partial-F for testing the significance of the contribution of the variable
xi , after controlling for x1, . . . , xi−1. If F (i) is greater than the (1 − α)th quantile
F1−α[1, n − i − 1] of the F distribution, the additional contribution of Xi is
significant. The partial-F test is used to assess whether the addition of the ith
regression significantly improves the prediction of Y , given that the first (i − 1)
regressors have already been included.

Example 4.12 In the previous example, we have examined the multiple regression
of CapDiam, Y , on Diam1, Diam2, and Diam3 in the ALMPIN.csv file. We
compute here the partial-F statistics corresponding to the SEQ SS values. We get the
SEQ SS from calling anova_lm with the full model in the sum_sq column. The
partial-F values are obtained by calling anova_lm with two models. It will return
an analysis of the impact of changing the first to the second model. The reported F
value is partial-F and Pr(>F) the P -value.

import warnings
almpin = mistat.load_data('ALMPIN')
model3 = smf.ols('capDiam ~ 1 + diam1+diam2+diam3', data=almpin).fit()
model2 = smf.ols('capDiam ~ 1 + diam1+diam2', data=almpin).fit()
model1 = smf.ols('capDiam ~ 1 + diam1', data=almpin).fit()
model0 = smf.ols('capDiam ~ 1', data=almpin).fit()

print('Full model\n', sms.anova.anova_lm(model))
print(f'SSE: diam1: {model1.ssr:.6f}')
print(f' diam2: {model2.ssr:.6f}')
print(f' diam3: {model3.ssr:.6f}')

# we capture a few irrelevant warnings here -
with warnings.catch_warnings():

warnings.simplefilter("ignore")
print('diam1:\n', sms.anova.anova_lm(model0, model1))
print('diam2:\n', sms.anova.anova_lm(model1, model2))
print('diam3:\n', sms.anova.anova_lm(model2, model3))
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Full model
df sum_sq mean_sq F PR(>F)

diam1 1.0 0.021657 0.021657 473.822506 7.918133e-32
diam2 1.0 0.000084 0.000084 1.832486 1.804520e-01
diam3 1.0 0.000180 0.000180 3.936223 5.141819e-02
Residual 66.0 0.003017 0.000046 NaN NaN
SSE: diam1: 0.003280

diam2: 0.003197
diam3: 0.003017

diam1:
df_resid ssr df_diff ss_diff F Pr(>F)

0 69.0 0.024937 0.0 NaN NaN NaN
1 68.0 0.003280 1.0 0.021657 448.941202 1.153676e-31
diam2:

df_resid ssr df_diff ss_diff F Pr(>F)
0 68.0 0.003280 0.0 NaN NaN NaN
1 67.0 0.003197 1.0 0.000084 1.75555 0.189682
diam3:

df_resid ssr df_diff ss_diff F Pr(>F)
0 67.0 0.003197 0.0 NaN NaN NaN
1 66.0 0.003017 1.0 0.00018 3.936223 0.051418

Variable SEQ SS SSE d.f. Partial-F P -value
Diam1 .021657 .003280 68 448.94 0
Diam2 .000084 .003197 67 1.75 0.190
Diam3 .000180 .003017 66 3.93 0.052

We see from these partial-F values, and their corresponding P -values, that after
using Diam1 as a predictor, the additional contribution of Diam2 is insignificant.
Diam3, however, in addition to the regressor Diam1, significantly decreases the
variability which is left unexplained. �

The partial-F test is called sometimes sequential-F test (Draper and Smith
1998). We use the terminology Partial-F statistic because of the following rela-
tionship between the partial-F and the partial correlation. In Sect. 4.4.2 we defined
the partial correlation ryx2·x1 , as the correlation between ê(1), which is the vector
of residuals around the regression of Y on x1, and the vector of residuals ê(2), of x2
around its regression on x1. Generally, suppose that we have determined the multiple
regression of Y on (x1, . . . , xi−1). Let ê(y | x1, . . . , xi−1) be the vector of residuals
around this regression. Let ê(xi | x1, . . . , xi−1) be the vector of residuals around
the multiple regression of xi on x1, . . . , xi−1 (i ≥ 2). The correlation between
ê(y | x1, . . . , xi−1) and ê(xi | x1, . . . , xi−1) is the partial correlation between Y

and xi , given x1, . . . , xi−1. We denote this partial correlation by ryxi ·x1,...,xi−1 . The
following relationship holds between the partial-F , F (i), and the partial correlation

F (i) = (n − i − 1)
r2yxi ·x1,...,xi−1

1 − r2yxi ·x1,...,xi−1

, i ≥ 2. (4.44)
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This relationship is used to test whether ryxi ·x1,...,xi−1 is significantly different than
zero. F (i) should be larger than F1−α[1, n − i − 1].

4.4.5 Model Construction: Step-Wise Regression

It is often the case that data can be collected on a large number of regressors, which
might help us predict the outcomes of a certain variable, Y . However, the different
regressors vary generally with respect to the amount of variability in Y which
they can explain. Moreover, different regressors or predictors are sometimes highly
correlated, and therefore not all of them might be needed to explain the variability
in Y and to be used as predictors.

The following example is given by Draper and Smith (1998). The amount of
steam [Pds] which is used monthly, Y , in a plant may depend on six regressors:

x1 = Pounds of real fatty acid in storage per month

x2 = Pounds of crude glycerine made in a month

x3 = Monthly average wind velocity [miles/hour]

x4 = Plant operating days per month

x5 = Number of days per month with temperature below 32 ◦F

x6 = Monthly average atmospheric temperature [F]

Are all these six regressors required to be able to predict Y ? If not, which variables
should be used? This is the problem of model construction.

There are several techniques for constructing a regression model. So far no
implementation is available in any of the major Python packages. However,
implementations are available in less popular packages. Here, we demonstrate how
step-wise selection can be implemented in Python.

In the first step, we select the variable xj (j = 1, . . . , k) whose correlation with
Y has maximal magnitude, provided it is significantly different than zero.

At each step the procedure computes a partial-F , or partial correlation, for each
variable, xl , which has not been selected in the previous steps. A variable having the
largest significant partial-F is selected. The addition is followed by identifying the
variable whose elimination has the largest partial-F . The procedure stops when
no additional variables can be selected or removed. We illustrate the step-wise
regression in the following example.

Example 4.13 In Example 4.7 we introduced the data file GASOL.csv and per-
formed a multiple regression of Y on endPt and astm. In the following Python
code, we derive a linear model which includes all variables which contribute
significantly to the prediction. The code makes use of an implementation of step-
wise regression in the mistat package.
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gasol = mistat.load_data('GASOL')
gasol = gasol.rename(columns={'yield': 'Yield'})

outcome = 'Yield'
all_vars = set(gasol.columns)
all_vars.remove(outcome)

include, model = mistat.stepwise_regression(outcome, all_vars, gasol)

formula = ' + '.join(include)
formula = f'{outcome} ~ 1 + {formula}'
print()
print('Final model')
print(formula)
print(model.params)

Step 1 add - (F: 30.76) endPt
Step 2 add - (F: 270.11) astm endPt
Step 3 add - (F: 4.72) astm endPt x1

Final model
Yield ~ 1 + x1 + astm + endPt
Intercept 4.032034
x1 0.221727
astm -0.186571
endPt 0.156527
dtype: float64

The output shows at each step the variable whose partial-F value is maximal but
greater than F_to_add, which is 4.00. Adding endPt (x4) to the constant model
has the largest partial-F statistic of 30.76 and is therefore added in Step 1. The fitted
regression equation is

Ŷ = −16.662 + 0.1094x4

with R2
y|(x4) = .5063. The partial-F for endPt is F = 30.76. Since this value is

greater than F_to_remove, which is 4.00, endPt remains in the model.
In Step 2 the maximal partial correlation of Y and x1, x2,astm given endPt is

that of astm, with a partial-F = 270.11. Variable astm (x3) is selected, and the
new regression equation is

Ŷ = 18.468 + .1558x4 − .2090x3,

with R2
y|(x4,x3) = .9521. Since the partial-F of x4 is (22.73)2 = 516.6529, the two

variables remain in the model.
In Step 3 the variable x1 is chosen. Since its partial-F is 4.72, it is included too.

The final regression equation is

Ŷ = 4.032 + .1565x4 − .1870x3 + .2200x1

with R2
y|(x4,x3,x1) = .959. Only 4.1% of the variability in Y is left unexplained. �
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4.4.6 Regression Diagnostics

As mentioned earlier, the least squares regression line is sensitive to extreme x

or y values of the sample elements. Sometimes even one point may change the
characteristics of the regression line substantially. We illustrate this in the following
example.

Example 4.14 Consider again the SOCELL data. We have seen earlier that the
regression line (L1) of ISC at time t2 on ISC at time t1 is ŷ = 0.536 + 0.929x,
with R2 = .959. In Fig. 4.17 we demonstrate how changes in the data can influence
the regression.

The point having the largest x-value has a y-value of 5.37 (point #8).1

If the y-value of this point is changed to 4.37, we obtain a different
regression line (dashed), given by ŷ = 2.04 + 0.532x, with R2 = .668.
If on the other hand we change a point in the middle (point #5) of the
possible x values at the same amount, the regression line changes only
little (dotted). Here, we get ŷ = 0.52 + 0.947x, with R2 = .773.
�

Fig. 4.17 Influence of data changes on linear regression for SOCELL data

1 Note that this corresponds to row 9 of the data, as Python starts counting at 0.



266 4 Variability in Several Dimensions and Regression Models

In the present section, we present the diagnostic tools which are commonly
used. The objective is to measure the degree of influence the points have on the
regression line. In statsmodels, we get access to such information using the
get_influence method.

socell = mistat.load_data('SOCELL')

model = smf.ols(formula='t2 ~ 1 + t1', data=socell).fit()
influence = model.get_influence()
# leverage: influence.hat_matrix_diag
# std. residuals: influence.resid_studentized
# Cook-s distance: influence.cooks_distance[0]
# DFIT: influence.dffits[0]

We start with the notion of the x-leverage of a point.
Consider the matrix (H) defined in Sect. 4.4.3. The vector of predicted values, ŷ,

is obtained as (H)y. The x-leverage of the ith point is measured by the ith diagonal
element of (H), which is

hi = x′
i ((X)′(X))−1xi , i = 1, · · · , n. (4.45)

Here x′
i denotes the ith row of the predictors matrix (X), i.e.,

x′
i = (1, xi1, · · · , xik).

In the special case of simple linear regression (k = 1), we obtain the formula

hi = 1

n
+ (xi − x̄)2∑n

j=1(xj − x̄)2
, i = 1, · · · , n. (4.46)

Notice that Se

√
hi is the standard error (square root of variance) of the predicted

value ŷi . This interpretation holds also in the multiple regression case (k > 1). In
Fig. 4.18 we present the x-leverage values of the various points in the SOCELL
example.

From the above formula, we deduce that, when k = 1,
∑n

i=1 hi = 2. Generally,
for any k,

∑n
i=1 hi = k + 1. Thus, the average x-leverage is h̄ = k+1

n
. In the above

solar cell example, the average x-leverage of the 16 points is 2
16 = 0.125. Point #8,

(5.21,4.37), has a leverage value of h8 = .521. This is indeed a high x-leverage.
Point #5, in contrast, has a low leverage value of h5 = 0.064.
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Fig. 4.18 x-Leverage of ISC values. Point #8 is marked as an unusual point

leverage = influence.hat_matrix_diag
print(f'average leverage: {np.mean(leverage):.3f}')
print(f'point #8: {leverage[8]:.3f}')
print(f'point #5: {leverage[5]:.3f}')

average leverage: 0.125
point #8: 0.521
point #5: 0.064

The standard error of the ith residual, êi , is given by

S{êi} = Se

√
1 − hi. (4.47)

The standardized residuals are therefore given by

ê∗
i = êi

S{êi} = êi

Se

√
1 − hi

, (4.48)

i = 1, · · · , n. There are several additional indices, which measure the effects of the
points on the regression. We mention here two such measures, the Cook distance
and the fits distance.

If we delete the ith point from the data set and recompute the regression, we
obtain a vector of regression coefficients b(i) and standard deviation of residuals
S

(i)
e . The standardized difference

Di = (b(i) − b)′((X)′(X))(b(i) − b)

(k + 1)Se

(4.49)
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Fig. 4.19 Cook’s distance for aluminum pins data

is the so-called Cook’s distance. In Fig. 4.19 we present the Cook distance, for the
ALMPIN data set.

The influence of the fitted values, denoted by DFIT, is defined as

DFITi = Ŷi − Ŷ
(i)
i

S
(i)
e

√
hi

, i = 1, · · · , n (4.50)

where Ŷ
(i)
i = b

(i)
0 +∑k

j=1 b
(i)
j xij are the predicted values of Y , at (1, xi1, · · · , xik),

when the regression coefficients are b(i). It is recommended to investigate observa-

tions with DFITi larger than 2
√

k
n
where k is the number of parameters. This metric

is also calculated by statsmodels.

4.5 Quantal Response Analysis: Logistic Regression

We consider the case where the regressant Y is a binary random variable, and the
regressors are quantitative. The distribution of Y at a given combination of x values
x = (x1, . . . , xk) is binomial B(n, p(x)), where n is the number of identical and
independent repetitions of the experiment at x. p(x) = P {Y = 1 | x}. The question
is how to model the function p(x). An important class of models is the so-called
quantal response models, according to which

p(x) = F(β ′x), (4.51)
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where F(·) is a c.d.f. and

β ′x = β0 + β1x1 + · · · + βkxk. (4.52)

The logistic regression is a method of estimating the regression coefficients β, in
which

F(z) = ez

1 + ez
, −∞ < z < ∞, (4.53)

is the logistic c.d.f.
The experiment is conducted at m different, and linearly independent, combina-

tions of x values. Thus, let

(X) = (1, x1, x2, . . . , xk)

be the predictors matrix of m rows and (k + 1) columns. We assumed that m >

(k + 1) and the rank of (X) are (k + 1). Let x(i), i = 1, . . . , m denote the ith row
vector of (X).

As mentioned above, we replicate the experiment at each x(i) n times. Let p̂i

(i = 1, . . . , m) be the proportion of 1s observed at x(i), i.e., p̂i,n = 1

n

∑n
j=1 Yij ,

i = 1, . . . , m; where Yij = 0, 1 is the observed value of the regressant at the j th
replication (j = 1, . . . , n).

We have proven before that E{p̂i,n} = p(x(i)), and V {p̂i,n} = 1

n
p(x(i))(1 −

p(x(i))), i = 1, . . . , m. Also, the estimators p̂i (i = 1, . . . , m) are independent.
According to the logistic model,

p(x(i)) = eβ ′x(i)

1 + eβ ′x(i)
, i = 1, . . . , m. (4.54)

The problem is to estimate the regression coefficients β. Notice that the log-odds at
x(i) is

log
p(x(i))

1 − p(x(i))
= β ′x(i), i = 1, . . . , m. (4.55)

Define Yi,n = log
p̂i,n

1 − p̂i,n

, i = 1, . . . , m. Yi,n is finite if n is sufficiently large.

Since p̂i,n → p(x(i)) in probability, as n → ∞ (WLLN), and since log
x

1 − x
is a

continuous function of x on (0, 1), Yi,n is a consistent estimator of β ′x(i). For large
values of n, we can write the regression model

Yi,n = β ′x(i) + ei,n + e∗
i,n, i = 1, . . . , m (4.56)
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where

ei,n = p̂i,n − p(x(i))

p(x(i))(1 − p(x(i)))
(4.57)

e∗
i,n is a negligible remainder term if n is large. e∗

i,n → 0 in probability at the rate of
1

n
. If we omit the remainder term e∗

i,n, we have the approximate regression model

Yi,n
∼= β ′x(i) + ei,n, i = 1, . . . , m (4.58)

where

E{ei,n} = 0,

V {ei,n} = 1

n
· 1

p(x(i))(1 − p(x(i)))

=
(
1 + eβ ′x(i)

)2
n · eβ ′x(i)

,

(4.59)

i = 1, . . . , m. The problem here is that V {ei,n} depends on the unknown β

and varies from one x(i) to another. An ordinary LSE of β is given by β̂ =
[(X)′(X)]−1(X)′Y , where Y′ = (Y1,n, . . . , Ym,n). Since the variances of ei,n are
different, an estimator having smaller variances is the weighted LSE

β̂w = [(X)′W(β)(X)]−1(X)′W(β)Y, (4.60)

where W(β) is a diagonal matrix, whose ith term is

Wi(β) = neβ ′x(i)

(
1 + eβ ′x(i)

)2 , i = 1, . . . , m. (4.61)

The problem is that the weights Wi(β) depend on the unknown vector β. An
iterative approach to obtain β̂w is to substitute on the r.h.s. the value of β̂ obtained
in the previous iteration, starting with the ordinary LSE, β̂. Other methods of
estimating the coefficients β of the logistic regression are based on the maximum
likelihood method. For additional information see Kotz et al. (1988), Encyclopedia
of Statistical Sciences and Ruggeri et al. (2008), and Encyclopedia of Statistics in
Quality and Reliability.
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4.6 The Analysis of Variance: The Comparison of Means

4.6.1 The Statistical Model

When the regressors x1, x2, . . . , xk are qualitative (categorical) variables and the
variable of interest Y is quantitative, the previously discussed methods of multiple
regression are invalid. The different values that the regressors obtain are different
categories of the variables. For example, suppose that we study the relationship
between film speed (Y ) and the type of gelatine x used in the preparation of the
chemical emulsion for coating the film, the regressor is a categorical variable.
The values it obtains are the various types of gelatine, as classified according to
manufacturers.

When we have k, k ≥ 1, such qualitative variables, the combination of
categorical levels of the k variables are called treatment combinations (a term
introduced by experimentalists). Several observations, ni , can be performed at the
ith treatment combination. These observations are considered a random sample
from the (infinite) population of all possible observations under the specified
treatment combination. The statistical model for the j th observation is

Yij = μi + eij , i = 1, . . . t j = 1, . . . , ni

where μi is the population mean for the ith treatment combination, t is the number
of treatment combinations, and eij (i = 1, . . . , t; j = 1, . . . , ni) are assumed to be
independent random variables (experimental errors) with E{eij } = 0 for all (i, j)

and v{eij } = σ 2 for all (i, j). The comparison of the means μi (i = 1, . . . , t)
provides information on the various effects of the different treatment combinations.
The method used to do this analysis is called analysis of variance (ANOVA).

4.6.2 The One-Way Analysis of Variance (ANOVA)

In Sect. 3.11.5.1 we introduced the ANOVA F test statistics and presented the
algorithm for bootstrap ANOVA for comparing the means of k populations. In
the present section, we develop the rationale for the ANOVA. We assume here
that the errors eij are independent and normally distributed. For the ith treatment
combination (sample), let

Ȳi = 1

ni

ni∑
j=1

Yij , i = 1, · · · , t (4.62)

and
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SSDi =
ni∑

j=1

(Yij − Ȳi )
2, i = 1, · · · , t. (4.63)

Let ¯̄Y = 1

N

∑t
i=1 niȲi be the grand mean of all the observations.

The one-way ANOVA is based on the following partition of the total sum of

squares of deviations around ¯̄Y :
t∑

i=1

ni∑
j=1

(Yij − ¯̄Y )2 =
t∑

i=1

SSDi +
t∑

i=1

ni(Ȳi − ¯̄Y )2. (4.64)

We denote the l.h.s. by SST and the r.h.s. by SSW and SSB, i.e.,

SST = SSW + SSB. (4.65)

SST , SSW , and SSB are symmetric quadratic forms in deviations like Yij − ¯̄Y ,
Ȳij − Ȳi and Ȳi − ¯̄Y . Since ∑i

∑
j (Yij − ¯̄Y ) = 0, only N − 1, linear functions

Yij − ¯̄Y = ∑
i′
∑

j ′ ci′j ′Yi′j ′ , with

ci′j ′ =

⎧⎪⎨
⎪⎩
1 − 1

N
, i′ = i, j ′ = j

− 1

N
, otherwise

are linearly independent, where N = ∑t
i=1 ni . For this reason we say that the

quadratic form SST has (N − 1) degrees of freedom (d.f.). Similarly, SSW has
(N − t) degrees of freedom, since SSW = ∑t

i=1 SSDi , and the number of degrees
of freedom of SSDi is (ni −1). Finally, SSB has (t −1) degrees of freedom. Notice
that SSW is the total sum of squares of deviations within the t samples, and SSB

is the sum of squares of deviations between the t sample means.
Dividing a quadratic form by its number of degrees of freedom, we obtain

the mean squared statistic. We summarize all these statistics in a table called the
ANOVA table. The ANOVA table for comparing t treatments is given in Table 4.11.

Generally, in an ANOVA table, D.F. designates degrees of freedom, S.S.
designates the sum of squares of deviations, and M.S. designates the mean squared.
In all tables,

Table 4.11 ANOVA table
for one-way layout

Source of variation D.F. S.S. M.S.

Between treatments t − 1 SSB MSB

Within treatments N − t SSW MSW

Total (adjusted for mean) N − 1 SST –
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M.S. = S.S.

D.F.
(4.66)

We show now that

E{MSW } = σ 2. (4.67)

Indeed, according to the model, and since {Yij , j = 1, · · · , ni} is a RSWR from the
population corresponding to the ith treatment,

E

{
SSDi

ni − 1

}
= σ 2, i = 1, · · · , t.

Since MSW = ∑t
i=1 νi

(
SSDi

ni − 1

)
, where νi = ni − 1

N − t
, i = 1, · · · , t ,

E{MSW } =
t∑

i=1

νiE

{
SSDi

ni − 1

}
= σ 2

t∑
i=1

νi

= σ 2.

Another important result is

E{MSB} = σ 2 + 1

t − 1

t∑
i=1

niτ
2
i , (4.68)

where τi = μi − μ̄ (i = 1, . . . , t) and μ̄ = 1

N

∑t
i=1 niμi . Thus, under the null

hypothesis H0 : μ1 = . . . = μt , E{MSB} = σ 2. This motivates us to use, for
testing H0, the F statistic

F = MSB

MSW
. (4.69)

H0 is rejected, at the level of significance α, if

F > F1−α[t − 1, N − t].

Example 4.15 Three different vendors are considered for supplying cases for floppy
disk drives. The question is whether the latch mechanism that opens and closes
the disk loading slot is sufficiently reliable. In order to test the reliability of this
latch, three independent samples of cases, each of size n = 10, were randomly
selected from the production lots of these vendors. The testing was performed on
a special apparatus that opens and closes a latch, until it breaks. The number of
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Fig. 4.20 Boxplots of Y by vendor. The errorbar next to each boxplot shows the linear regression
result with the confidence interval

cycles is required until latch failure was recorded. In order to avoid uncontrollable
environmental factors to bias the results, the order of testing of cases of different
vendors was completely randomized. In file VENDOR.csv, we can find the results
of this experiment, arranged in three columns. Column 1 represents the sample from
vendor A1; column 2 that of vendor A2, and column 3 of vendor A3. An ANOVA
was performed. The analysis was done on Y = (Number of Cycles)1/2, in order
to have data which is approximately normally distributed. The original data are
expected to have positively skewed distribution, since it reflects the life length of
the latch.

The following is the one-way ANOVA using the statsmodels package. We
first load the data and convert it into a format where all values are in one column
and the vendor indicated in second column. Figure 4.20 compares the distributions
of values by vendor.

vendor = mistat.load_data('VENDOR')
vendor_long = pd.melt(vendor, value_vars=vendor.columns)
vendor_long['value'] = np.sqrt(vendor_long['value'])

0 1
variable[vendor1] 58.000928 84.123334
variable[vendor2] 91.546689 117.669096
variable[vendor3] 104.114252 130.236658
variable[vendor1] 13.061203
variable[vendor2] 13.061203
variable[vendor3] 13.061203
dtype: float64

Next, we create a regression model of the outcome as a function of the vendor.
The anova_lm function returns the ANOVA analysis of the model.
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model = smf.ols('value ~ variable', data=vendor_long).fit()
table = sm.stats.anova_lm(model, typ=1)
print(table)

df sum_sq mean_sq F PR(>F)
variable 2.0 11365.667752 5682.833876 14.024312 0.000067
Residual 27.0 10940.751619 405.213023 NaN NaN

We can also calculate confidence intervals for the reliability of the latches for
each of the vendors. In this case, it is useful to exclude the intercept from the
regression model.

model = smf.ols('value ~ -1 + variable', data=vendor_long).fit()
print(model.conf_int())

0 1
variable[vendor1] 58.000928 84.123334
variable[vendor2] 91.546689 117.669096
variable[vendor3] 104.114252 130.236658

The ANOVA table shows that the F statistic is significantly large, having a P -
value close to 0. The null hypothesis H0 is rejected. The reliability of the latches
from the three vendors is not the same (see Fig. 4.20). The 0.95 confidence intervals
for the means show that vendors A2 and A3 manufacture latches with similar
reliability. That of vendor A1 is significantly lower. �

4.7 Simultaneous Confidence Intervals: Multiple
Comparisons

Whenever the hypothesis of no difference between the treatment means is rejected,
the question arises, which of the treatments have similar effects, and which ones
differ significantly? In Example 4.15 we analyzed data on the strength of latches
supplied by three different vendors. It was shown that the differences are very
significant. We also saw that the latches from vendor A1 were weaker from those
of vendors A2 and A3, which were of similar strength. Generally, if there are t

treatments, and the ANOVA shows that the differences between the treatment means
are significant, we may have to perform up to

(
t
2

)
comparisons, to rank the different

treatments in terms of their effects.
If we compare the means of all pairs of treatments, we wish to determine

(
t
2

) =
t (t−1)

2 confidence intervals to the true differences between the treatment means. If
each confidence interval has a confidence level (1 − α), the probability that all(
t
2

)
confidence intervals cover the true differences simultaneously is smaller than

(1 − α). The simultaneous confidence level might be as low as (1 − tα).
There are different types of simultaneous confidence intervals. We present here

the method of Scheffé, for simultaneous confidence intervals for any number of
contrasts (Scheffé 1999). A contrast between t means Ȳ1, · · · , Ȳt is a linear
combination

∑t
i=1 ci Ȳi , such that

∑t
i=1 ci = 0. Thus, any difference between two

means is a contrast, e.g., Ȳ2 − Ȳ1. Any second-order difference, e.g.,



276 4 Variability in Several Dimensions and Regression Models

(Ȳ3 − Ȳ2) − (Ȳ2 − Ȳ1) = Ȳ3 − 2Ȳ2 + Ȳ1,

is a contrast. The space of all possible linear contrasts has dimension (t − 1).
For this reason, the coefficient we use, according to Scheffé’s method, to obtain
simultaneous confidence intervals of level (1 − α) is

Sα = ((t − 1)F1−α[t − 1, t (n − 1)])1/2 (4.70)

where F1−α[t − 1, t (n − 1)] is the (1 − α)th quantile of the F distribution. It is
assumed that all the t samples are of equal size n. Let σ̂ 2

p denote the pooled estimator

of σ 2, i.e.,

σ̂ 2
p = 1

t (n − 1)

t∑
i=1

SSDi. (4.71)

Then the simultaneous confidence intervals for all contrasts of the form
∑t

i=1 ciμi

have limits

t∑
i=1

ci Ȳi ± Sα

σ̂p√
n

(
t∑

i=1

c2i

)1/2

. (4.72)

Example 4.16 In data file HADPAS.csv, we have the resistance values (ohms) of
several resistors on six different hybrids at 32 cards. We analyze here the differences
between the means of the n = 32 resistance values of resistor RES3, where the
treatments are the t = 6 hybrids. The boxplots of the samples corresponding to the
six hybrids are presented in Fig. 4.21.

In Table 4.12, we present the means and standard deviations of these six samples
(treatments) (Fig. 4.21 and Table 4.12).

The pooled estimator of σ is

σ̂p = 133.74.

The Scheffé coefficient, for α = 0.05, is

S.05 = (5F.95[5, 186])1/2 = 3.332.

Upper and lower simultaneous confidence limits, with 0.95 level of significance, are
obtained by adding to the differences between means

±Sα

σ̂p√
16

= ±111.405.
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Fig. 4.21 Boxplots of resistance in six hybrids

Table 4.12 Means and std.
of resistance RES3 by hybrid

Hybrid Ȳ Sy

1 2143.41 99.647

2 1902.81 129.028

3 1850.34 144.917

4 1900.41 136.490

5 1980.56 146.839

6 2013.91 139.816

Differences which are smaller in magnitude than 111.405 are considered insignif-
icant.

Thus, if we order the sample means, we obtain:

Hybrid Mean Group mean

1 2143.41 2143.41

6 2013.91
1997.24

5 1980.56

2 1902.81
1884.524 1900.41

3 1850.34

Thus, the difference between the means of Hybrid 1 and all the others are
significant. The mean of Hybrid 6 is significantly different than those of 2, 4, and
3. The mean of Hybrid 5 is significantly larger than that of Hybrid 3. We suggest
therefore the following homogeneous group of treatments (all treatments within
the same homogeneous group have means which are not significantly different).



278 4 Variability in Several Dimensions and Regression Models

Homog group Group mean

{1} 2143.41

{5,6} 1997.24

{2,3,4} 1884.52

Homog Means
group of groups
{1} 2143.41

{5, 6} 1997.24
{2, 3, 4} 1884.52

The difference between the means of {5, 6} and {2, 3, 4} is the contrast

−1

3
Ȳ2 − 1

3
Ȳ3 − 1

3
Ȳ4 + 1

2
Ȳ5 + 1

2
Ȳ6.

This contrast is significant, if it is greater than

Sα

σ̂p√
32

√(
1

2

)2

+
(
1

2

)2

+
(
1

3

)2

+
(
1

3

)2

+
(
1

3

)2

= 71.912.

The above difference is thus significant. �
Tukey’s Honest Significant Difference (HSD) test is a post hoc test commonly

used to assess the significance of differences between pairs of group means. The
assumptions in applying it are that the observations are independent and normality
of distribution with homogeneity of variance. These are the same assumptions as for
one-way ANOVA.

Example 4.17 We can apply the Tukey’s HSD test on the HADPAS.csv data
set from Example 4.16 using the function pairwise_tukeyhsd from the
statsmodels package.

from statsmodels.stats.multicomp import pairwise_tukeyhsd
hadpas = mistat.load_data('HADPAS')
mod = pairwise_tukeyhsd(hadpas['res3'], hadpas['hyb'])
print(mod)

Multiple Comparison of Means - Tukey HSD, FWER=0.05
=========================================================
group1 group2 meandiff p-adj lower upper reject
---------------------------------------------------------

1 2 -240.5938 0.001 -336.8752 -144.3123 True
1 3 -293.0625 0.001 -389.3439 -196.7811 True
1 4 -243.0 0.001 -339.2814 -146.7186 True
1 5 -162.8438 0.001 -259.1252 -66.5623 True
1 6 -129.5 0.002 -225.7814 -33.2186 True
2 3 -52.4688 0.6036 -148.7502 43.8127 False
2 4 -2.4062 0.9 -98.6877 93.8752 False
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2 5 77.75 0.189 -18.5314 174.0314 False
2 6 111.0938 0.0135 14.8123 207.3752 True
3 4 50.0625 0.6448 -46.2189 146.3439 False
3 5 130.2188 0.0019 33.9373 226.5002 True
3 6 163.5625 0.001 67.2811 259.8439 True
4 5 80.1562 0.1626 -16.1252 176.4377 False
4 6 113.5 0.0107 17.2186 209.7814 True
5 6 33.3438 0.9 -62.9377 129.6252 False

---------------------------------------------------------

�

4.8 Contingency Tables

4.8.1 The Structure of Contingency Tables

When the data is categorical, we generally summarize it in a table which presents
the frequency of each category, by variable, in the data. Such a table is called a
contingency table.

Example 4.18 Consider a test of a machine which inserts components into a board.
The displacement errors of such a machine were analyzed in Example 4.1. In this
test we perform a large number of insertions with k = 9 different components.
The result of each trial (insertion) is either success (no insertion error) or failure
(insertion error). In the present test, there are two categorical variables: component
type and insertion result. The first variable has nine categories:

• C1 : Diode
• C2 : 1/2 watt canister
• C3 : Jump wire
• C4 : Small corning
• C5 : Large corning
• C6 : Small bullet
• C7 : 1/8 watt dogbone
• C8 : 1/4 watt dogbone
• C9 : 1/2 watt dogbone

The second variable, insertion result, has two categories only (success, failure).
Contingency Table 4.13 presents the frequencies of the various insertion results by
component type.

Table 4.13 shows that the proportional frequency of errors in insertions is very
small (190/1, 056, 764 = 0.0001798), which is about 180 FPM (failures per
million). This may be judged to be in conformity with the industry standard. We
see, however, that there are apparent differences between the failure proportions,
by component types. In Fig. 4.22 we present the FPMs of the insertion failures, by
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Table 4.13 Contingency
table of insertion results by
component type

Insertion result

Component type Failure Success Row total

C1 61 108,058 108,119

C2 34 136,606 136,640

C3 10 107,328 107,338

C4 23 105,042 105,065

C5 25 108,829 108,854

C6 9 96,864 96,873

C7 12 107,379 107,391

C8 3 105,851 105,854

C9 13 180,617 180,630

Column total 190 1,056,574 1,056,764

Fig. 4.22 Bar-chart of components error rates

component type. The largest one is that of C1 (diode), followed by components
{C2, C4, C5}. Smaller proportions are those of {C3, C6, C9}. The smallest error
rate is that of C8. The differences in the components error rates can be shown to be
very significant. �

The structure of the contingency table might be considerably more complicated
than that of Table 4.13. We illustrate here a contingency table with three variables.

Example 4.19 The data are the placement errors of an OMNI 4621 automatic
insertion machine. The variables are:

(i) Machine structure: Basic, EMI1, EMI2, EMI4
(ii) Components: 805, 1206, SOT_23
(iii) Placement result: Error, No_Error
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Table 4.14 Contingency table of placement errors

805 1206 SOT_23 Total comp.

Comp. structure Err No Err Err No Err Err No Err Err No Err Total rows

Basic 11 40,279 7 40,283 16 40,274 34 120,836 120,870

EMI1 11 25,423 8 25,426 2 25,432 21 76,281 76,302

EMI2 19 54,526 15 54,530 12 54,533 46 163,589 163,635

EMI4 14 25,194 4 25,204 5 25,203 23 75,601 75,624

Total 55 145,422 34 145,443 35 145,442 124 436,307 436,431

Table 4.15 Failure rates
(FPM) by structure and
component type

Component

Structure 805 1206 SOT_23

Basic 273 174 397

EMI1 433 315 79

EMI2 348 275 220

EMI4 555 159 198

The contingency table is given in Table 4.14 and summarizes the results of 436,431
placements.

We see in Table 4.14 that the total failure rate of this machine type is
124/436, 307 = 284 (FPM). The failure rates, by machine structure, in FPMs,
are 281, 275, 281, and 304, respectively. The first three structural types have almost
the same FPMs, while the fourth one is slightly larger. The component failure
rates are 378, 234, and 241 FPM, respectively. It remains to check the failure rates
according to structure × component. These are given in Table 4.15.

We see that the effect of the structure is different on different components. Again,
one should test whether the observed differences are statistically significant or due
only to chance variability. Methods for testing this will be discussed in Chapter 6
(Industrial Statistics book). �

The construction of contingency tables can be done from pandas DataFrames
in Python. We illustrate this on the data in file CAR.csv. This file consists of
information on 109 car models from 1989. The file contains 109 records on 5
variables: number of cylinders (4,6,8), origin (USA = 1, Europe = 2, Asia = 3),
turn diameter [meters], horsepower, and number of miles per gallon in city driving.
One variable, origin, is categorical, while the other four are interval-scaled variables.
One discrete (number of cylinders) and the other three are continuous.

The following code returns the contingency table illustrated in Table 4.16.
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Table 4.16 Contingency
table of the number of
cylinders and origin

Origin

Num. Cyl. 1 2 3

4 33 7 26 66

6 13 7 10 30

8 12 0 1 13

Total 58 14 37 109

Table 4.17 Contingency
table of turn diameter versus
miles/gallon city

Miles/gallon city

Turn diameter 12–18 19–24 25– Total

27.0–30.6 2 0 4 6

30.7–34.2 4 12 15 31

34.3–37.8 10 26 6 42

37.9– 15 15 0 30

Total 31 53 25 109

car = mistat.load_data('CAR')
count_table = car[['cyl', 'origin']].pivot_table(

index='cyl', columns='origin', aggfunc=len, fill_value=0)
print(count_table)

origin 1 2 3
cyl
4 33 7 26
6 13 7 10
8 12 0 1

One can prepare a contingency table also from continuous data, by selecting
the number and length of intervals for each variable and counting the frequencies
of each cell in the table. For example, for the car data, if we wish to construct a
contingency table of turn diameter versus miles/gallon, we obtain the contingency
table presented in Table 4.17.

4.8.2 Indices of association for contingency tables

In the present section, we construct several indices of association, which reflect the
degree of dependence or association between variables. For the sake of simplicity,
we consider here indices for two-way tables, i.e., association between two variables.

4.8.2.1 Two Interval-Scaled Variables

If the two variables are continuous ones, measured on an interval scale, or some
transformation of it, we can use some of the dependence indices discussed earlier.
For example, we can represent each interval by its mid-point and compute the
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correlation coefficient between these mid-points. As in Sect. 4.2, if variable X is
classified into k intervals,

(ξ0, ξ1), (ξ1, ξ2), · · · , (ξk−1, ξk)

and variable Y is classified into m intervals (η0, η1), · · · , (ηm−1, ηm), let

ξ̃i = 1

2
(ξi−1 + ξi), i = 1, · · · , k

η̃j = 1

2
(ηj−1 + ηj ), j = 1, · · · ,m.

Let pij = fij /N denote the proportional frequency of the (i, j)th cell, i.e., X values
in (ξi−1, ξi) and Y values in (ηj−1, ηj ). Then, an estimate of the coefficient of
correlation obtained from the contingency table is

ρ̂XY =
∑k

i=1
∑m

j=1 pij (ξ̃i − ξ̄ )(η̃j − η̄)[∑k
i=1 pi.(ξ̃i − ξ̄ )2

]1/2 [∑m
j=1 p.j (η̃j − η̄)2

]1/2 , (4.73)

where

pi. =
m∑

j=1

pij , i = 1, · · · , k,

p.j =
k∑

i=1

pij , j = 1, · · · ,m,

ξ̄ =
k∑

i=1

pi.ξ̃i ,

and

η̄ =
m∑

j=1

p.j η̃j .

Notice that the sample correlation rXY , obtained from the sample data, is
different from ρ̂XY , due to the reduced information that is given by the contingency
table. We illustrate this in the following example.

Example 4.20 Consider the data in file CAR.csv. The sample correlation between
the turn diameter, X, and the gas consumption (Miles/Gal) in a city is rXY =
−0.541. If we compute this correlation on the basis of the data in Table 4.17, we
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obtain ρ̂XY = −.472. The approximation given by ρ̂XY depends on the number of
intervals, k and m, on the length of the intervals and the sample size N . �

4.8.2.2 Indices of Association for Categorical Variables

If one of the variables or both are categorical, there is no meaning to the correlation
coefficient. We should devise another index of association. Such an index should
not depend on the labeling or ordering of the categories. Common indices of
association are based on comparison of the observed frequencies fij of the cells
(i = 1, · · · , k; j = 1, · · · ,m) to the expected ones if the events associated with the
categories are independent. The concept of independence, in a probability sense,
is defined in Chap. 3. We have seen earlier conditional frequency distributions. If
Ni. = ∑m

j=1 fij , the conditional proportional frequency of the j th category of Y ,
given the ith category of X, is

pj |i = fij

Ni.

, j = 1, · · · ,m.

We say that X and Y are not associated if

pj |i = p.j for all i = 1, · · · , k,

where

p.j = N.j

N
j = 1, · · · ,m

and

N.j =
k∑

i=1

fij .

Accordingly, the expected frequency of cell (i, j), if there is no association, is

f̃ij = Ni.N.j

N
, i = 1, · · · , k, j = 1, · · · ,m.

A common index of discrepancy between fij and f̃ij is

X2 =
k∑

i=1

m∑
j=1

(fij − f̃ij )
2

f̃ij

. (4.74)
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Table 4.18 Observed and
expected frequencies of turn
diameter by miles/gallon,
CAR.csv (f̃ij under f̃ij )

Miles/gallon city Total

Turn diameter 12–18 19–24 25–

27.0–30.6 2 0 4 6

1.71 2.92 1.38

30.7–34.2 4 12 15 31

8.82 15.07 7.11

34.3–37.8 10 26 6 42

11.94 20.42 9.63

37.9– 15 15 0 30

8.53 14.59 6.88

Total 31 53 25 109

This index is called the chi-squared statistic. This statistic can be computed with
the scipy chi2_contingency command.

Example 4.21 For the CAR.csv data, the chi-squared statistic for the association
between origin and num cycl is X2 = 12.13. In Chapter 6 Industrial Statistics book,
we will study how to assess the statistical significance of such a magnitude of X2.

The chi2_contingency command returns a tuple of the chi2 statistic, the
associated p-value, the degrees of freedom, and the matrix of expected frequencies.

chi2 = stats.chi2_contingency(count_table)
print(f'chi2 statistic {chi2[0]:.2f}')

chi2 statistic 12.13

The chi2 statistic can of course also be applied to the frequency Table 4.17.
Table 4.18 shows the actual and expected frequencies. The chi-squared statistic is

X2 = (2 − 1.71)2

1.71
+ · · · + 6.882

6.88
= 34.99.

�
There are several association indices in the literature, based on the X2. Three

popular indices are:

Mean Squared Contingency

2 = X2

N
(4.75)

Tschuprow’s index

T = /
√

(k − 1)(m − 1) (4.76)
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Cramér’s index

C = /
√
min(k − 1,m − 1) (4.77)

No association corresponds to 2 = T = C = 0. The larger the index, the stronger
the association. For the data of Table 4.18,

2 = 34.99

109
= 0.321

T = 0.283

C = 0.401.

We provide an additional example of contingency tables analysis, using the
Cramér index.

Example 4.22 CompuStar, a service company providing technical support and sales
of personal computers and printers, decided to investigate the various components of
customer satisfaction that are specific to the company. A special questionnaire with
13 questions was designed and, after a pilot run, was mailed to a large sample of
customers with a self-addressed stamped envelope and a prize incentive. The prize
was to be awarded by lottery among the customers who returned the questionnaire.

The customers were asked to rate, on a 1–6 ranking order, various aspects of the
service. The rating of 1 corresponding to very poor and the rating of 6 to very good.
These questions include:

Q1: First impression of service representative
Q2: Friendliness of service representative
Q3: Speed in responding to service request
Q4: Technical knowledge of service representative
Q5: Professional level of service provided
Q6: Helpfulness of service representative
Q7: Additional information provided by service representative
Q8: Clarity of questions asked by service representative
Q9: Clarity of answers provided by service representative

Q10: Efficient use of time by service representative
Q11: Overall satisfaction with service
Q12: Overall satisfaction with product
Q13: Overall satisfaction with company

The response ranks are:

1. Very poor
2. Poor
3. Below average
4. Above average
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Table 4.19 Two-by-two
contingency table of customer
responses, for Q3 and Q13

Q3\Q13 1 2 3 4 5 6

1 0 1 0 0 3 1

2 0 2 0 1 0 0

3 0 0 4 2 3 0

4 0 1 1 10 7 5

5 0 0 0 10 71 38

6 0 0 0 1 30 134

Table 4.20 Cramer’s indices of Q1–Q10 by Q11–Q13

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q11: Overall
satisfaction
with service

• ++ • + •

Q12: Overall
satisfaction
with product

+ • • ++ • •

Q13: Overall
satisfaction
with
company

• ++ + ++ • •

5. Good
6. Very good

The responses were tallied, and contingency tables were computed linking the
questions on overall satisfaction with questions on specific service dimensions. For
example, Table 4.19 is a contingency table of responses to Q13 versus Q3.

Cramer’s index for Table 4.19 is:

C = 1.07

2.23
= 0.478.

There were ten detailed questions (Q1–Q10) and three questions on overall customer
satisfaction (Q11–Q13). A table was constructed for every combination of the three
overall customer satisfaction questions and the ten specific questions. For each
of these 30 tables, Cramer’s index was computed, and using a code of graphical
symbols, we present these indices in Table 4.20.

The indices are coded according to the following key:

Cramer’s index Code

0–0.2

0.2–0.3 •
0.3–0.4 +
0.4–0.5 ++
0.5– + + +
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We can see from Table 4.20 that “Overall satisfaction with company” (Q13) is
highly correlated with “Speed in responding to service requests” (Q3). However, the
“Efficient use of time” (Q10) was not associated with overall satisfaction.

On the other hand, we also notice that questions Q1, Q5, and Q10 show no
correlation with overall satisfaction. Many models have been proposed in the
literature for the analysis of customer satisfaction surveys. For a comprehensive
review with applications using R, see Kenett and Salini (2012). For more examples
of indices of association and graphical analysis of contingency tables, see Kenett
(1983). Contingency tables are closely related to the data mining technique of
association rules. For more on this, see Kenett and Salini (2008). �

4.9 Categorical Data Analysis

If all variables x1, . . . , xk and Y are categorical, we cannot perform the ANOVA
without special modifications. In the present section, we discuss the analysis
appropriate for such cases.

4.9.1 Comparison of Binomial Experiments

Suppose that we have performed t-independent binomial experiments, each one
corresponding to a treatment combination. In the ith experiment, we ran ni-
independent trials. The yield variable, Ji , is the number of successes among the
ni trials (i = 1, · · · , t). We further assume that in each experiment, the ni trials are
independent and have the same, unknown, probability for success, θi ; i.e., Ji has a
binomial distribution B(ni, θi), i = 1, · · · , t . We wish to compare the probabilities
of success, θi (i = 1, · · · , k). Accordingly, the null hypothesis is of equal success
probabilities, i.e.,

H0 : θ1 = θ2 = · · · = θk.

We describe here a test, which is good for large samples. Since by the CLT, p̂i =
Ji/ni has a distribution which is approximately normal for large ni , with mean θi

and variance θi (1−θi )
ni

, one can show that the large sample distribution of

Yi = 2 arcsin

(√
Ji + 3/8

ni + 3/4

)
(4.78)
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Table 4.20 The arcsin
transformation

i Ji ni Yi

1 61 108119 0.0476556

2 34 136640 0.0317234

3 10 107338 0.0196631

4 23 105065 0.0298326

5 25 108854 0.0305370

6 9 96873 0.0196752

7 12 107391 0.0214697

8 3 105854 0.0112931

9 13 180630 0.0172102

(in radians) is approximately normal, with mean ηi = 2 arcsin(
√

θi) and variance
V {Yi} = 1/ni , i = 1, · · · , t .

Using this result, we obtain that under the assumption of H0 the sampling
distribution of the test statistic

Q =
k∑

i=1

ni(Yi − Ȳ )2, (4.79)

where

Ȳ =
∑k

i=1 niYi∑k
i=1 ni

, (4.80)

is approximately chi-squared with k − 1 DF, χ2[k − 1]. In this test, we reject H0, at
the level of significance α, if Q > χ2

1−α[k − 1].
Another test statistic for general use in contingency tables will be given in the

following section.

Example 4.23 In Table 4.13 we presented the frequency of failures of nine different
components in inserting a large number of components automatically. In the present
example, we test the hypothesis that the failure probabilities, θi , are the same for
all components. In Table 4.20 we present the values of Ji (# of failures), ni , and

Yi = 2 arcsine

(√
Ji + 3/8

ni + 3/4

)
, for each component.

We can calculate the Yi values in Python to obtain Table 4.20.

df = pd.DataFrame({
'i': [1, 2, 3, 4, 5, 6, 7, 8, 9],
'Ji': [61, 34, 10, 23, 25, 9, 12, 3, 13],
'ni': [108119,136640,107338,105065,108854,96873,107391,105854,180630],
})

df['Yi'] = 2*np.arcsin(np.sqrt((df['Ji'] + 3/8)/(df['ni'] + 3/4)))

Using this result, we can compute the test statistic Q like this.
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Ybar = np.sum(df['ni'] * df['Yi']) / np.sum(df['ni'])
Q = np.sum(df['ni'] * (df['Yi'] - Ybar) ** 2)
print(Q)

105.43139783460373

The value of Q is 105.43. The P -value of this statistic is 0. The null hypothesis is
rejected. To determine this P -value using Python, since the distribution of Q under
H0 is χ2[8], we use the commands:

stats.chi2.cdf(105.43, df=8)

1.0

We find that Pr{χ2[8] ≤ 105.43} .= 1. This implies that P = 0. �

4.10 Chapter Highlights

The main concepts and tools introduced in this chapter include:

• Matrix scatterplots
• 3D-scatterplots
• Multiple boxplots
• Code variables
• Joint, marginal, and conditional frequency distributions
• Sample correlation
• Coefficient of determination
• Simple linear regression
• Multiple regression
• Predicted values, FITS
• Residuals around the regression
• Multiple squared correlation
• Partial regression
• Partial correlation
• Partial-F test
• Sequential SS

• Step-wise regression
• Regression diagnostics
• x-Leverage of a point
• Standard error of predicted value
• Standardized residual
• Cook distance
• Fits distance, DFIT
• Analysis of variance
• Treatment combinations
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• Simultaneous confidence intervals
• Multiple comparisons
• Contrasts
• Scheffé’s method
• Contingency tables analysis
• Categorical data analysis
• Arcsin transformation
• Chi-squared test for contingency tables

4.11 Exercises

Exercise 4.1 Use file CAR.csv to prepare multiple or matrix scatterplots of turn
diameter versus horsepower versus miles per gallon. What can you learn from these
plots?

Exercise 4.2 Make a multiple (side-by-side) boxplots of the turn diameter by car
origin, for the data in file CAR.csv. Can you infer that turn diameter depends on
the car origin?

Exercise 4.3 Data file HADPAS.csv contains the resistance values (ohms) of
five resistors placed in 6 hybrids on 32 ceramic substrates. The file contains eight
columns. The variables in these columns are:

1. Record number
2. Substrate number
3. Hybrid number
4. Res 3
5. Res 18
6. Res 14
7. Res 7
8. Res 20

(i) Make a multiple boxplot of the resistance in Res 3, by hybrid.
(ii) Make a matrix plot of all the Res variables. What can you learn from the plots?

Exercise 4.4 Construct a joint frequency distribution of the variables horsepower
and MPG/city for the data in file CAR.csv.

Exercise 4.5 Construct a joint frequency distribution for the resistance values
of res3 and res14, in data file HADPAS.csv. [Code the variables first; see
instructions in Example 4.3.]
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Exercise 4.6 Construct the conditional frequency distribution of res3, given that
the resistance values of res14 is between 1300 and 1500 (ohms).

Exercise 4.7 In the present exercise, we compute the conditional means and
standard deviations of one variable given another one. Use file HADPAS.csv.

We classify the data according to the values of Res 14 (res14) to five subgroups.
Bin the values for Res 14 using bin edges at [900, 1200, 1500, 1800, 2100, 3000],
and use the groupby method to split the hadpas data set by these bins. For each
group, determine the mean and standard deviation of the Res 3 (res3) column.
Collect the results and combine into a data frame for presentation.

Exercise 4.8 Given below are four data sets of (X, Y ) observations:

(i) Compute the least squares regression coefficients of Y on X, for the four data
sets.

(ii) Compute the coefficient of determination, R2, for each set.

Data set 1 Data set 2 Data set 3 Data set 4

X(1) Y (1) X(2) Y (2) X(3) Y (3) X(4) Y (4)

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.68

8.0 6.95 8.0 8.14 8.0 6.67 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 11.0 9.13 12.0 8.16 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Exercise 4.9 Compute the correlation matrix of the variables turn diameter, horse-
power, and miles per gallon/city for the data in file CAR.csv.

Exercise 4.10

(i) Differentiate partially the quadratic function

SSE =
n∑

i=1

(Yi − β0 − β1Xi1 − β2Xi2)
2
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with respect to β0, β1, and β2 to obtain the linear equations in the least
squares estimates b0, b1, and b2. These linear equations are called the normal
equations.

(ii) Obtain the formulae for b0, b1, and b2 from the normal equations.

Exercise 4.11 Consider the variables miles per gallon, horsepower, and turn diam-
eter in the data set CAR.csv. Find the least squares regression line of MPG (y) on
horsepower (x1) and turn diameter (x2). For this purpose use first the equations in
Sect. 4.4 and then verify your computations by using statsmodels ols method.

Exercise 4.12 Compute the partial correlation between miles per gallon and horse-
power, given the number of cylinders, in data file CAR.csv.

Exercise 4.13 Compute the partial regression of miles per gallon and turn diameter,
given horsepower, in data file CAR.csv.

Exercise 4.14 Use the three-stage algorithm of Sect. 4.4.2 to obtain the multiple
regression of Exercise 4.11 from the results of 4.13.

Exercise 4.15 Consider Example 4.10. From the calculation output, we see that,
when regression CapDiam on Diam1, Diam2, and Diam3, the regression coefficient
of Diam2 is not significant (P value = .925), and this variable can be omitted.
Perform a regression of CapDiam on Diam2 and Diam3. Is the regression coefficient
for Diam2 significant? How can you explain the difference between the results of
the two regressions?

Exercise 4.16 Regress the yield in GASOL.csv on all the four variables x1, x2,
astm, and endP t :

(i) What is the regression equation?
(ii) What is the value of R2?
(iii) Which regression coefficient(s) is (are) non-significant?
(iv) Which factors are important to control the yield?
(v) Are the residuals from the regression distributed normally? Make a graphical

test.

Exercise 4.17

(i) Show that the matrix (H) = (X)(B) is idempotent, i.e., (H)2 = (H).
(ii) Show that the matrix (Q) = (I − H) is idempotent, and therefore s2e =

y′(Q)y/(n − k − 1).

Exercise 4.18 Show that the vectors of fitted values, ŷ, and of the residuals, ê, are
orthogonal, i.e., ŷ′ê = 0.
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Exercise 4.19 Show that the 1−R2
y|(x) is proportional to ||ê||2, which is the squared

Euclidean norm of ê.

Exercise 4.20 In Sect. 2.5.2 we presented properties of the cov(X, Y ) operator.
Prove the following generalization of property (iv). Let X′ = (X1, . . . , Xn) be a
vector of n random variables. Let ( |Σ) be an n × n matrix whose (i, j)th element is
|Σ ij = cov(Xi,Xj ), i, j = 1, . . . , n. Notice that the diagonal elements of ( |Σ)

are the variances of the components of X. Let β and γ be two n-dimensional
vectors. Prove that cov(β ′X, γ ′X) = β ′( |Σ)γ . [The matrix |Σ is called the variance-
covariance matrix of X.]

Exercise 4.21 Let X be an n-dimensional random vector, having a variance-
covariance matrix ( |Σ). Let W = (B)X, where (B) is an m × n matrix. Show that
the variance-covariance matrix ofW is (B)( |Σ)(B)′.

Exercise 4.22 Consider the linear regression model y = (X)β + e. e is a vector of
random variables, such that E{ei} = 0 for all i = 1, . . . , n and

cov(ei, ej ) =
{

σ 2, if i = j

0, if i �= j

i, j = 1, . . . , n. Show that the variance-covariance matrix of the LSE b = (B)y is
σ 2[(X)′(X)]−1.

Exercise 4.23 Consider SOCELL.csv data file. Compare the slopes and intercepts
of the two simple regressions of ISC at time t3 on ISC at time t1 and ISC at t3 on
ISC at t2.

Exercise 4.24 The following data (see Draper and Smith 1998) gives the amount
of heat evolved in hardening of element (in calories per gram of cement) and the
percentage of four various chemicals in the cement (relative to the weight of clinkers
from which the cement was made). The four regressors are

x1 : Amount of tricalcium aluminate

x2 : Amount of tricalcium silicate

x3 : Amount of tetracalcium alumino ferrite

x4 : Amount of dicalcium silicate

The regressant Y is the amount of heat evolved. The data are given in the following
table and as data set CEMENT.csv.

Compute in a sequence the regressions of Y on X1; of Y on X1, X2; of Y on
X1, X2, X3; and of Y on X1, X2, X3, X4. For each regression compute the partial-
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X1 X2 X3 X4 Y

7 26 6 60 78.5

1 29 15 52 74.3

11 56 8 20 104.3

11 31 8 47 87.6

7 52 6 33 95.9

11 55 9 22 109.2

3 71 17 6 102.7

1 31 22 44 72.5

2 54 18 22 93.1

21 47 4 26 115.9

1 40 23 34 83.8

11 66 9 12 113.3

10 68 8 12 109.4

F of the new regression added, the corresponding partial correlation with Y , and the
sequential SS.

Exercise 4.25 For the data of Exercise 4.24, construct a linear model of the
relationship between Y and X1, . . . , X4, by the forward step-wise regression
method.

Exercise 4.26 Consider the linear regression of miles per gallon on horsepower for
the cars in data file CAR.csv, with origin = 3. Compute for each car the residuals,
RESI; the standardized residuals, SRES; the leverage HI; and the Cook distance, D.

Exercise 4.27 A simulation of the operation of a piston is available as the piston
simulator function pistonSimulation. In order to test whether changing the piston
weight from 30 to 60 [kg] affects the cycle time significantly, run the simulation
program four times at weight 30, 40, 50, and 60 [kg], keeping all other factors at
their low level. In each run make n = 5 observations. Perform a one-way ANOVA
of the results, and state your conclusions.

Exercise 4.28 In experiments performed for studying the effects of some factors
on the integrated circuits fabrication process, the following results were obtained,
on the pre-etch line width (μm)

Perform an ANOVA to find whether the results of the three experiments are
significantly different by using Python. Do the two test procedures (normal and
bootstrap ANOVA) yield similar results?

Exercise 4.29 In manufacturing film for industrial use, samples from two different
batches gave the following film speed:
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Exp. 1 Exp. 2 Exp. 3

2.58 2.62 2.22

2.48 2.77 1.73

2.52 2.69 2.00

2.50 2.80 1.86

2.53 2.87 2.04

2.46 2.67 2.15

2.52 2.71 2.18

2.49 2.77 1.86

2.58 2.87 1.84

2.51 2.97 1.86

Batch A: 103, 107, 104, 102, 95, 91, 107, 99, 105, 105

Batch B: 104, 103, 106, 103, 107, 108, 104, 105, 105, 97

Test whether the differences between the two batches are significant, by using (i) a
randomization test and (ii) an ANOVA.

Exercise 4.30 Use a randomization test to test the significance of the differences
between the results of the three experiments in Exercise 4.28.

Use this statistic:

δ =
∑3

k=1 nkx̄
2
k − nx̄2

S2
x

with n = n1 + n2 + n3 and x the combined set of all results.

Exercise 4.31 In data file PLACE.csv, we have 26 samples, each one of size n =
16 and of x-, y-, and θ -deviations of components placements. Make an ANOVA, to
test the significance of the sample means in the x-deviation. Classify the samples
into homogeneous groups such that the differences between sample means in the
same group are not significant and those in different groups are significant. Use the
Scheffé coefficient Sα for α = .05.

Exercise 4.32 The frequency distribution of cars by origin and number of cylinders
is given in the following table.

Num. cylinders USA Europe Asia Total

4 33 7 26 66

6 or more 25 7 11 43

Total 58 14 37 109
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Perform a chi-square test of the dependence of the number of cylinders and the
origin of car.

Exercise 4.33 Perform a chi-squared test of the association between turn diameter
and miles/gallon based on Table 4.17.

Exercise 4.34 In a customer satisfaction survey, several questions were asked
regarding specific services and products provided to customers. The answers were
on a 1–5 scale, where 5 means “very satisfied with the service or product” and 1
means “very dissatisfied.” Compute the mean squared contingency, Tschuprow’s
index, and Cramer’s index for both contingency tables.

Question 1

Question 3 1 2 3 4 5

1 0 0 0 1 0

2 1 0 2 0 0

3 1 2 6 5 1

4 2 1 10 23 13

5 0 1 1 15 100

Question 2

Question 3 1 2 3 4 5

1 1 0 0 3 1

2 2 0 1 0 0

3 0 4 2 3 0

4 1 1 10 7 5

5 0 0 1 30 134



Chapter 5
Sampling for Estimation of Finite
Population Quantities

Preview Techniques for sampling finite populations and estimating population
parameters are presented. Formulas are given for the expected value and variance
of the sample mean and sample variance of simple random samples with and
without replacement. Stratification is studied as a method to increase the precision
of estimators. Formulas for proportional and optimal allocation are provided and
demonstrated with case studies. The chapter is concluded with a section on
prediction models with known covariates.

5.1 Sampling and the Estimation Problem

5.1.1 Basic Definitions

In the present chapter, we consider the problem of estimating quantities (parameters)
of a finite population. The problem of testing hypotheses concerning such quantities,
in the context of sampling inspection of product quality, will be studied in
Chapter 11 (Industrial Statistics book). Estimation and testing of the parameters
of statistical models for infinite populations were discussed in Chap. 3.

Let P designate a finite population of N units. It is assumed that the population
size, N , is known. Also assume that a list (or a frame) of the population units LN =
{u1, · · · , uN } is available.

Let X be a variable of interest and xi = X(ui), i = 1, · · · , N the value ascribed
by X to the ith unit, ui , of P .

The population mean and population variance, for the variable X, i.e.,

μN = 1

N

N∑
i=1

xi
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and (5.1)

σ 2
N = 1

N

N∑
i=1

(xi − μN)2,

are called population quantities. In some books (Cochran 1977), these quantities
are called “population parameters.” We distinguish between population quantities
and parameters of distributions, which represent variables in infinite populations.
Parameters are not directly observable and can only be estimated, while finite
population quantities can be determined exactly if the whole population is observed.

The population quantity μN is the expected value of the distribution of X in the
population, whose c.d.f. is

F̂N (x) = 1

N

N∑
i=1

I (x; xi),

where (5.2)

I (x; xi) =

⎧⎪⎪⎨
⎪⎪⎩
1, if xi ≤ x

0, if xi > x.

σ 2
N is the variance of FN(x).
In this chapter we focus attention on estimating the population mean, μN , when

a sample of size n, n < N is observed. The problem of estimating the population
variance σ 2

N will be discussed in the context of estimating the standard errors of
estimators of μN .

Two types of sampling strategies will be considered. One type consists of random
samples (with or without replacement) from the whole population. Such samples
are called simple random samples. The other type of sampling strategy is that of
stratified random sampling. In stratified random sampling, the population is first
partitioned to strata (blocks), and then a simple random sample is drawn from each
stratum independently. If the strata are determined so that the variability within
strata is smaller relative to the general variability in the population, the precision
in estimating the population mean μN , using a stratified random sampling will
generally be higher than that in simple random sampling. This will be shown in
Sect. 5.3.

As an example of a case where stratification could be helpful, consider the
following. At the end of each production day, we draw a random sample from the
lot of products of that day to estimate the proportion of defective item. Suppose that
several machines operate in parallel, and manufacture the same item. Stratification
by machine will provide higher precision for the global estimate, as well as
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information on the level of quality of each machine. Similarly, if we can stratify
by shift, by vendor, or by other factors that may contribute to the variability, we
may increase the precision of our estimates.

5.1.2 Drawing a Random Sample from a Finite Population

Given a finite population consisting of N distinct elements, we first make a list of
all the elements of the population, which are all labeled for identification purposes.
Suppose we wish to draw a random sample of size n from this population, where
1 ≤ n ≤ N . We distinguish between two methods of random sampling: (a)
sampling with replacement and (b) sampling without replacement. A sample
drawn with replacement is obtained by returning the selected element, after each
choice, to the population before the next item is selected. In this method of sampling,
there are altogether Nn possible samples. A sample is called random sample
with replacement (RSWR) if it is drawn by a method which gives every possible
sample the same probability to be drawn. A sample is without replacement if
an element drawn is not replaced and hence cannot be drawn again. There are
N(N − 1) · · · (N − n + 1) such possible samples of size n from a population of
size N . If each of these has the same probability of being drawn, the sample is
called random sample without replacement (RSWOR). Bootstrapping discussed
in Chap. 3 is an application of RSWR.

Practically speaking, the choice of a particular random sample is accomplished
with the aid of random numbers. Random numbers can be generated by various
methods. For example, an integer has to be drawn at random from the set
0, 1, · · · , 99. If we had a ten-faced die, we could label its faces with the numbers
0, · · · , 9 and cast it twice. The results of these two drawings would yield a two-digit
integer, e.g., 13. Since in general we do not have such a die, we could, instead, use a
coin and, flipping it seven times, generate a random number between 0 and 99 in the
following way. Let Xj (j = 1, · · · , 7) be 0 or 1, corresponding to whether a head
or tail appeared on the j th flip of the coin. We then compute the integer I , which
can assume one of the values 0, 1, · · · , 127, according to the formula

I = X1 + 2X2 + 4X3 + 8X4 + 16X5 + 32X6 + 64X7.

If we obtain a value greater than 99, we disregard this number and flip the coin
again seven times. Adding 1 to the outcome produces random numbers between 1
and 100. In a similar manner, a roulette wheel could also be used in constructing
random numbers. A computer algorithm for generating pseudo-random numbers
was described in Example 2.5. In actual applications, we use ready-made tables of
random numbers or computer routines for generating random numbers.

Example 5.1 The following ten numbers were drawn by using a random number
generator on a computer: 76, 49, 95, 23, 31, 52, 65, 16, 61, and 24. These numbers
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form a random sample of size 10 from the set 1, · · · , 100. If by chance two or
more numbers are the same, the sample would be acceptable if the method is
RSWR. If the method is RSWOR, any number that was already selected would
be discarded. In Python to draw a RSWOR of 10 integers from the set {1, · · · , 100},
use random.sample.

random.sample(range(1, 101), k=10)

Note that we specify the range from 1 to 101 as the Python range(a,b)
command creates a sequence of numbers from a to b excluding b. �

5.1.3 Sample Estimates of Population Quantities and Their
Sampling Distribution

So far we have discussed the nature of variable phenomena and presented some
methods of exploring and presenting the results of experiments. More specifically,
the methods of analysis described in Chap. 1 explore the given data, but do not
provide an assessment of what might happen in future experiments.

If we draw from the same population several different random samples, of the
same size, we will find generally that statistics of interest assume different values at
the different samples.

This can be illustrated in Python; we draw samples, with or without replacement,
from a collection of numbers (population) which is stored in a vector. To show it,
let us store in X the integers 1,2,· · · ,100. To sample at random with replacement
(RSWR) a sample of size n = 20 from X, and put the random sample in a vector
XSample, we use random.choices.

# range is a generator and needs to be converted to a list
X = list(range(1, 101))
Xsample = random.choices(X, k=20)

This can be repeated four times and collected in a data frame. Finally, we
calculate the mean and standard deviation of each sample. Table 5.1 shows the result
of such a sampling process.

df = pd.DataFrame({f'sample {i}': random.choices(X, k=20)
for i in range(1, 5)})

df.agg(['mean', 'std'])

sample 1 sample 2 sample 3 sample 4
mean 45.300000 46.500000 53.400000 50.500000
std 27.482243 26.116137 27.058222 34.741906

Notice that the “population” mean is 50.5, and its standard deviation is 29.011.
The sample means and standard deviations are estimates of these population
parameters, and as seen above, they vary around the parameters. The distribution of
sample estimates of a parameter is called the sampling distribution of an estimate.
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Table 5.1 Four random
samples with replacement of
size 20, from {1, 2, · · · , 100}

Sample

1 2 3 4

26 54 4 15

56 59 81 52

63 73 87 46

46 62 85 98

1 57 5 44

4 2 52 1

31 33 6 27

79 54 47 9

21 97 68 28

5 6 50 52

94 62 89 39

52 70 18 34

79 40 4 30

33 70 53 58

6 45 70 18

33 74 7 14

67 29 68 14

33 40 49 32

21 21 70 10

8 43 15 52

Means

37.9 49.6 46.4 33.6

Stand. Dev.

28.0 23.7 31.3 22.6

Theoretically (hypothetically) the number of possible different random samples,
with replacement, is either infinite, if the population is infinite, or of magnitude
Nn, if the population is finite (n is the sample size and N is the population size).
This number is practically too large even if the population is finite (10020 in the
above example). We can, however, approximate this distribution by drawing a large
number, M , of such samples. In Fig. 5.1 we present the histogram of the sampling
distribution of X̄n, for M = 1, 000 random samples with replacement of size n =
20, from the population {1, 2, · · · , 100} of the previous example.

This can be effectively done in Python with the function compute_bootci
from the pingouin package. compute_bootci takes the population and a
function to calculate a statistic over a sample of size n. The method returns
confidence intervals for the statistics and optionally the all resampled values of th
statistics.
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Fig. 5.1 Histogram of 1,000 sample means

np.random.seed(1)

X = list(range(100))

# compute_bootci creates samples of the same size as the population
# as we are interested in a smaller sample of size 20, we ignore the
# remaining values when we calculate the mean
def stat_func(sample):

return np.mean(sample[:20])

B = pg.compute_bootci(X, func=stat_func, n_boot=1000,
return_dist=True, seed=1)

print('Mean values of first three mean values: ', B[1][:3])
pd.cut(B[1], bins=12).value_counts()

Mean values of first three mean values: [51.8 39.25 45.85]

(28.611, 31.921] 5
(31.921, 35.192] 9
(35.192, 38.462] 30
(38.462, 41.733] 79
(41.733, 45.004] 115
(45.004, 48.275] 191
(48.275, 51.546] 200
(51.546, 54.817] 162
(54.817, 58.088] 108
(58.088, 61.358] 71
(61.358, 64.629] 26
(64.629, 67.9] 4
dtype: int64

This frequency distribution is an approximation to the sampling distribution of

X̄20. It is interesting to notice that this distribution has mean ¯̄X = 50.42 and

standard deviation S̄ = 6.412. ¯̄X is quite close to the population mean 50.5, and
S̄ is approximately σ/

√
20, where σ is the population standard deviation. A proof

of this is given in the following section.
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Our computer sampling procedure provided a very close estimate of this standard
error. Very often we are interested in properties of statistics for which it is difficult
to derive formulae for their standard errors. Computer sampling techniques, like
bootstrapping discussed in Chap. 3, provide good approximations to the standard
errors of sample statistics.

5.2 Estimation with Simple Random Samples

In the present section, we investigate the properties of estimators of the population
quantities when sampling is simple random.

The probability structure for simple random samples with or without replace-
ments, RSWR and RSWOR, was studied in Sect. 2.1.4.

Let X1, · · · , Xn denote the values of the variable X(u) of the n elements in the
random samples. The marginal distributions of Xi (i = 1, · · · , n) if the sample
is random, with or without replacement, is the distribution F̂N (x). If the sample
is random with replacement, then X1, · · · , Xn are independent. If the sample is
random without replacement, then X1, · · · , Xn are correlated (dependent).

For an estimator of μN , we use the sample mean

X̄n = 1

n

n∑
j=1

Xj .

For an estimator of σ 2
N , we use the sample variance

S2
n = 1

n − 1

n∑
j=1

(Xj − X̄n)
2.

Both estimators are random variables, which may change their values from one
sample to another.

An estimator is called unbiased if its expected value is equal to the population
value of the quantity it estimates. The precision of an estimator is the inverse of its
sampling variance.

Example 5.2 We illustrate the above with the following numerical example. The
population is of size N = 100. For simplicity we take X(ui) = i (i = 1, · · · , 100).
For this simple population, μ100 = 50.5 and σ 2

100 = 833.25.
Draw from this population 100 independent samples, of size n = 10, with and

without replacement.
This can be done in Python as follows.
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Table 5.2 Statistics of
sampling distributions

RSWR RSWOR

Estimate Mean Std. Mean Std.

X̄10 51.6 10.6838 50.44 8.3876

S2
10 802.65 243.01 828.04 252.1

random.seed(2)
population = list(range(1, 101))

# create samples of size 20 and collect mean and standard deviation
rswr = {'mean': [], 'var': []}
rswor = {'mean': [], 'var': []}
for _ in range(100):

sample = np.array(random.choices(population, k=10))
rswr['mean'].append(sample.mean())
rswr['var'].append(sample.var(ddof=1))

sample = np.array(random.sample(population, k=10))
rswor['mean'].append(sample.mean())
rswor['var'].append(sample.var(ddof=1))

# calculate mean and standard deviation of sample estimates
from collections import namedtuple
SampleStats = namedtuple('SampleStats', 'X10,S2_10')
def calcStats(values):

return SampleStats(np.mean(values), np.std(values, ddof=1))
rswr['mean'] = calcStats(rswr['mean'])
rswr['var'] = calcStats(rswr['var'])
rswor['mean'] = calcStats(rswor['mean'])
rswor['var'] = calcStats(rswor['var'])

The means and standard deviations (Std.) of the 100 sample estimates are
summarized in Table 5.2.

As will be shown in the following section, the theoretical expected value of X̄10,
both in RSWR and RSWOR, is μ = 50.5. We see above that the means of the
sample estimates are close to the value of μ. The theoretical standard deviation of
X̄10 is 9.128 for RSWR and 8.703 for RSWOR. The empirical standard deviations
are also close to these values. The empirical means of S2

10 are somewhat lower than
their expected values of 833.25 and 841.67, for RSWR and RSWOR, respectively.
But, as will be shown later, they are not significantly smaller than σ 2. �

5.2.1 Properties of X̄n and S2
n Under RSWR

If the sampling is RSWR, the random variablesX1, · · · , Xn are independent, having
the same c.d.f. F̂N (x). The corresponding p.d.f. is

pN(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

N
, if x = xj , j = 1, · · · , N

0, otherwise.

(5.3)
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Accordingly,

E{Xj } = 1

N

N∑
j=1

xj = μN, all j = 1, · · · , N. (5.4)

It follows from the results of Sect. 2.8 that

E{X̄n} = 1

n

n∑
j=1

E{Xj }

= μN.

(5.5)

Thus, the sample mean is an unbiased estimator of the population mean.
The variance of Xj is the variance associated with FN(x), i.e.,

V {Xj } = 1

N

N∑
j=1

x2
j − μ2

N

= 1

N

N∑
j=1

(xj − μN)2

= σ 2
N.

Moreover, since X1, X2, · · · , Xn are i.i.d,

V {X̄n} = σ 2
N

n
. (5.6)

Thus, as explained in Sect. 2.8, the sample mean converges in probability to the
population mean, as n → ∞. An estimator having such a property is called
consistent.

We show now that S2
n is an unbiased estimator of σ 2

N .
Indeed, if we write

S2
n = 1

n − 1

n∑
j=1

(Xj − X̄n)
2

= 1

n − 1

⎛
⎝ n∑

j=1

X2
j − nX̄2

n

⎞
⎠ .

we obtain
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E{S2
n} = 1

n − 1

⎛
⎝ n∑

j=1

E{X2
j } − nE{X̄2

n}
⎞
⎠ .

Moreover, since X1, · · · , Xn are i.i.d.,

E{X2
j } = σ 2

N + μ2
n, j = 1, · · · , n

and

E{X̄2
n} = σ 2

N

n
+ μ2

N.

Substituting these in the expression for E{S2
n}, we obtain

E{S2
n} = 1

n − 1

(
n(σ 2

N + μ2
N) − n

(
σ 2

N

n
+ μ2

N

))

= σ 2
N.

(5.7)

An estimator of the standard error of X̄n is
Sn√
n
. This estimator is slightly biased.

In large samples, the distribution of X̄n is approximately normal, like

N

(
μN,

σ 2
N

n

)
, as implied by the CLT. Therefore, the interval

(
X̄n − z1−α/2

Sn√
n
, X̄n + z1−α/2

Sn√
n

)

has in large samples the property that

Pr

{
X̄n − z1−α/2

Sn√
n

< μN < X̄n + z1−α/2
Sn√
n

}
∼= 1 − α.

An interval having this property is called a confidence interval for μN , with
an approximate confidence level (1 − α). In the above formula, z1−α/2 =
−1

(
1 − α

2

)
.

It is considerably more complicated to derive the formula for V {S2
n}. An

approximation for large samples is

V {S2
n} ∼= μ4,N − (σ 2

N)2

n
+ 2(σN)2 − μ3,N

n2
+ μ4,N − 3(σ 2

N)2

n3
(5.8)

where
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μ3,N = 1

N

N∑
j=1

(xj − μN)3, (5.9)

and

μ4,N = 1

N

N∑
j=1

(xj − μN)4. (5.10)

Example 5.3 In file PLACE.csv we have data on x-, y-, and θ -deviations of N =
416 placements of components by automatic insertion in 26 PCBs.

Let us consider this record as a finite population. Suppose that we are interested
in the population quantities of the variable x-dev. Using Python we find that the
population mean, variance, and third and fourth central moments are

μN = 0.9124

σ 2
N = 2.91999

μ3,N = −0.98326

μ4,N = 14.655.

The unit of measurements of the x-dev is 10−3 [Inch].

place = mistat.load_data('PLACE')
xDev = place['xDev'] / 1e-3
N = len(xDev)
mu_N = xDev.mean()
sigma2_N = xDev.var(ddof=0)
mu_3N = np.sum((xDev - mu_N) ** 3) / N
mu_4N = np.sum((xDev - mu_N) ** 4) / N
print(mu_N.round(4))
print(sigma2_N.round(5))
print(mu_3N.round(5))
print(mu_4N.round(3))

0.9124
2.91992
-0.98326
14.655

Thus, if we draw a simple RSWR, of size n = 50, the variance of X̄n will be

V {X̄50} = σ 2
N

50
= 0.0584. The variance of S2

50 will be

V {S2
50} ∼= 14.655 − (2.9199)2

50
+ 2(2.9199)2 + 0.9833

2500
+ 14.655 − 3(2.9199)2

125000

= 0.1297.

�
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5.2.2 Properties of X̄n and S2
n Under RSWOR

We show first that X̄n is an unbiased estimator of μN , under RSWOR.
Let Ij be an indicator variable, which assumes the value 1 if uj belongs to the

selected sample, sn, and equal to zero otherwise. Then we can write

X̄n = 1

n

N∑
j=1

Ij xj . (5.11)

Accordingly

E{X̄n} = 1

n

N∑
j=1

xjE{Ij }

= 1

n

N∑
j=1

xjPr{Ij = 1}.

As shown in Sect. 2.1.4,

Pr{Ij = 1} = n

N
, all j = 1, · · · , N.

Substituting this above yields that

E{X̄n} = μN. (5.12)

It is shown below that

V {X̄n} = σ 2
N

n

(
1 − n − 1

N − 1

)
. (5.13)

To derive the formula for the variance of X̄n, under RSWOR, we use the result of
Sect. 2.8 on the variance of linear combinations of random variables. Write first,

V {X̄n} = V

{
1

n

N∑
i=1

xiIi

}

= 1

n2
V

{
N∑

i=1

xiIi

}
.

∑N
i=1 xiIi is a linear combination of the random variables I1, · · · , IN .
First we show that
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V {Ii} = n

N

(
1 − n

N

)
, i = 1, · · · , N.

Indeed, since I 2i = Ii ,

V {Ii} = E{I 2i } − (E{Ii})2
= E{Ii}(1 − E{Ii})
= n

N

(
1 − n

N

)
, i = 1, · · · , N.

Moreover, for i �= j ,

Cov(Ii, Ij ) = E{IiIj } − E{Ii}E{Ij }.

But,

E{IiIj } = Pr{Ii = 1, Ij = 1}

= n(n − 1)

N(N − 1)
.

Hence, for i �= j ,

Cov(Ii, Ij ) = − n

N2 · N − n

N − 1
.

Finally,

V

{
N∑

i=1

xiIi

}
=

N∑
i=1

x2
i V {Ii} +

∑∑
i �=j

xixj cov(Xi,Xj ).

Substituting these expressions in

V {X̄n} = 1

n2
V

{
N∑

i=1

xiIi

}
,

we obtain

V {X̄n} = 1

n2

⎧⎨
⎩ n

N

(
1 − n

N

) N∑
i=1

x2
i − n(N − n)

N2(N − 1)

∑∑
i �=j

xixj

⎫⎬
⎭ .

But,
∑∑
i �=j

xixj =
(∑N

i=1 xi

)2 − ∑N
i=1 x2

i . Hence,
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V {X̄n} = N − n

nN2

⎧⎨
⎩ N

N − 1

N∑
i=1

x2
i − 1

N − 1

(
N∑

i=1

xi

)2
⎫⎬
⎭

= N − n

n · (N − 1) · N

N∑
i=1

(xi − μN)2

= σ 2
N

n

(
1 − n − 1

N − 1

)
.

We see that the variance of X̄n is smaller under RSWOR than under RSWR, by

a factor of

(
1 − n − 1

N − 1

)
. This factor is called the finite population multiplier.

The formula we have in Sect. 2.3.2 for the variance of the hypergeometric
distribution can be obtained from the above formula. In the hypergeometric model,
we have a finite population of size N . M elements have a certain attribute. Let

xi =

⎧⎪⎪⎨
⎪⎪⎩
1, if wi has the attribute

0, if wi does not have it.

Since
∑N

i=1 xi = M and x2
i = xi ,

σ 2
N = M

N

(
1 − M

N

)
.

If Jn = ∑n
i=1 Xi , we have

V {Jn} = n2V {X̄n}

= n
M

N

(
1 − M

N

)(
1 − n − 1

N − 1

)
.

(5.14)

To estimate σ 2
N we can again use the sample variance S2

n . The sample variance
has, however, a slight positive bias. Indeed,

E{S2
n} = 1

n − 1
E

⎧⎨
⎩

n∑
j=1

X2
j − nX̄2

n

⎫⎬
⎭

= 1

n − 1

(
n(σ 2

N + μ2
N) − n

(
μ2

N + σ 2

n

(
1 − n − 1

N − 1

)))
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= σ 2
N

(
1 + 1

N − 1

)
.

This bias is negligible if σ 2
N/N is small. Thus, the standard error of X̄n can be

estimated by

S.E.{X̄n} = Sn√
n

(
1 − n − 1

N − 1

)1/2

. (5.15)

When sampling is RSWOR, the random variables X1, · · · , Xn are not indepen-
dent, and we cannot justify theoretically the usage of the normal approximation
to the sampling distribution of X̄n. However, if n/N is small, the normal

approximation is expected to yield good results. Thus, if
n

N
< 0.1, we can

approximate the confidence interval, of level (1 − α), for μN , by the interval with
limits

X̄n ± z1−α/2 · S.E.{X̄n}.

In order to estimate the coverage probability of this interval estimator, when n
N

=
0.3, we perform the following simulation example.

Example 5.4 We can use Python to select RSWOR of size n = 30 from the
population P = {1, 2, · · · , 100} of N = 100 units, whose values are xi = i.

For this purpose we initialize variable X with the integers 1, · · · , 100. Notice
that, when n = 30, N = 100, α = 0.05, z1−α/2 = 1.96, and

1.96√
n

(
1 − n − 1

N − 1

)1/2

= 0.301.

random.seed(1)
X = list(range(1, 101))

def confInt(x, p, N):
if p >= 0.5:

p = 1 - (1 - p) / 2
else:

p = 1 - p / 2

n = len(x)
z = stats.norm.ppf(p) * np.sqrt(1 - (n-1)/(N-1)) / np.sqrt(n)
m = np.mean(x)
s = np.std(x, ddof=1)
return (m - z * s, m + z * s)

sampled_confInt = []
for _ in range(1000):

sample = random.sample(X, k=30)
sampled_confInt.append(confInt(sample, p=0.95, N=100))

# show the first three results
print(sampled_confInt[:3])
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# calculate the ratio of cases where the actual mean of 50.5
# is inside the sample confidence intervals
proportion_coverage = sum(ci[0] < 50.5 < ci[1] for ci in sampled_confInt)
proportion_coverage = proportion_coverage / len(sampled_confInt)
print(proportion_coverage)

[(36.85179487364511, 55.14820512635489), (44.070802021276585,
60.795864645390076), (43.237002670283765, 59.56299732971623)]
0.943

The true population mean is μN = 50.5. The estimated coverage probability is
the proportion of cases for which k1 ≤ μN ≤ k2. In the present simulation, the
proportion of coverage is 0.943. The nominal confidence level is 1− α = 0.95. The
estimated coverage probability is 0.943. Thus, the present example shows that even
in cases where n/N > 0.1, the approximate confidence limits are quite effective. �

5.3 Estimating the Mean with Stratified RSWOR

We consider now the problem of estimating the population mean, μN , with
stratified RSWOR. Thus, suppose that the population P is partitioned into k strata
(subpopulations) P1, P2, · · · , Pk , k ≥ 2.

Let N1, N2, · · · , Nk denote the sizes; μN1 , · · · , μNk
the means; and

σ 2
N1

, · · · , σ 2
Nk

the variances of these strata, respectively. Notice that the population
mean is

μN = 1

N

k∑
i=1

NiμNi
, (5.16)

and according to the formula of total variance (see Eq. (2.92) in Sect. 2.5.3), the
population variance is

σ 2
N = 1

N

k∑
i=1

Niσ
2
Ni

+ 1

N

k∑
i=1

Ni(μNi
− μN)2. (5.17)

We see that if the means of the strata are not the same, the population variance is
greater than the weighted average of the within strata variances, σ 2

Ni
(i = 1, · · · , k).

A stratified RSWOR is a sampling procedure in which k-independent random
samples without replacement are drawn from the strata. Let ni , X̄ni

, and S2
ni

be the
size, mean, and variance of the RSWOR from the ith stratum, Pi (i = 1, · · · , k).

We have shown in the previous section that X̄ni
is an unbiased estimator of μNi

.
Thus, an unbiased estimator of μN is the weighted average

μ̂N =
k∑

i=1

WiX̄ni
, (5.18)
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where Wi = Ni

N
, i = 1, · · · , k. Indeed,

E{μ̂N } =
k∑

i=1

WiE{X̄ni
}

=
k∑

i=1

WiμNi

= μN.

(5.19)

Since X̄n1, X̄n2 , · · · , X̄nk
are independent random variables, the variance of μ̂N is

V {μ̂N } =
k∑

i=1

W 2
i V {X̄ni

}

=
k∑

i=1

W 2
i

σ 2
ni

ni

(
1 − ni − 1

Ni − 1

)

=
k∑

i=1

W 2
i

σ̃ 2
Ni

ni

(
1 − ni

Ni

)
,

(5.20)

where

σ̃ 2
Ni

= Ni

Ni − 1
σ 2

Ni
.

Example 5.5 Returning to the data of Example 5.3, on deviations in the x-direction
of automatically inserted components, the units are partitioned to k = 3 strata:
boards 1–10 in stratum 1, boards 11–13 in stratum 2, and boards 14–26 in stratum
3. The population characteristics of these strata are:

Stratum Size Mean Variance

1 160 −0.966 0.4189

2 48 0.714 1.0161

3 208 2.403 0.3483

The relative sizes of the strata are W1 = .385, W2 = .115, and W3 = 0.5. If we
select a stratified RSWOR of sizes n1 = 19, n2 = 6, and n3 = 25, the variance of
μ̂N will be
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V {μ̂N } = (0.385)2
0.4189

19

(
1 − 18

159

)
+ (0.115)2

1.0161

6

(
1 − 5

47

)

+ (0.5)2
0.3483

25

(
1 − 24

207

)

= 0.00798.

This variance is considerably smaller than the variance of X̄50 in a simple RSWOR,
which is

V {X̄50} = 2.9199

50

(
1 − 49

415

)

= 0.0515.

�

5.4 Proportional and Optimal Allocation

An important question in designing the stratified RSWOR is how to allocate the
total number of observations, n, to the different strata, i.e., the determination of
ni ≥ 0 (i = 1, · · · , k) so that

∑k
i=1 ni = n, for a given n. This is called the sample

allocation. One type of sample allocation is the so-called proportional allocation,
i.e.,

ni = nWi, i = 1, · · · , k. (5.21)

The variance of the estimator μ̂N under proportional allocation is

Vprop{μ̂N } = 1

n

k∑
i=1

Wiσ̃
2
Ni

(
1 − n

N

)

= σ̄ 2
N

n

(
1 − n

N

)
,

(5.22)

where

σ̄ 2
N =

k∑
i=1

Wiσ̃
2
Ni

,

is the weighted average of the within strata variances.
We have shown in the previous section that if we take a simple RSWOR, the

variance of X̄n is
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Vsimple{X̄n} = σ 2
N

n

(
1 − n − 1

N − 1

)

= σ̃ 2
N

n

(
1 − n

N

)
,

where

σ̃ 2
N = N

N − 1
σ 2

N.

In large-sized populations, σ 2
N and σ̃ 2

N are very close, and we can write

Vsimple{X̄n} ∼= σ 2
N

N

(
1 − n

N

)

= 1

n

(
1 − n

N

){ k∑
i=1

Wiσ
2
Ni

+
k∑

i=1

Wi(μNi
− μN)2

}

∼= Vprop{μ̂N } + 1

n

(
1 − n

N

) k∑
i=1

Wi(μNi
− μN)2.

This shows that Vsimple{X̄n} > Vprop{μ̂N }; i.e., the estimator of the population mean,
μN , under stratified RSWOR, with proportional allocation, generally has smaller
variance (more precise) than the estimator under a simple RSWOR. The difference
grows with the variance between the strata means,

∑k
i=1 Wi(μNi

− μN)2. Thus
effective stratification is one which partitions the population to strata which are
homogeneous within (small values of σ 2

Ni
) and heterogeneous between (large value

of
∑k

i=1 Wi(μNi
− μN)2). If sampling is stratified RSWR, then the variance μ̂N ,

under proportional allocation, is

Vprop{μ̂N } = 1

n

k∑
i=1

Wiσ
2
Ni

. (5.23)

This is strictly smaller than the variance of X̄n in a simple RSWR. Indeed

Vsimple{X̄n} = σ 2
N

n

= Vprop{μ̂N } + 1

n

k∑
i=1

Wi(μNi
− μN)2.
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Example 5.6 Defective circuit breakers are a serious hazard since their function
is to protect electronic systems from power surges or power drops. Variability in
power supply voltage levels can cause major damage to electronic systems. Circuit
breakers are used to shield electronic systems from such events. The proportion of
potentially defective circuit breakers is a key parameter in designing redundancy
levels of protection devices and preventive maintenance programs. A lot of N =
10, 000 circuit breakers was put together by purchasing the products from k = 3
different vendors. We want to estimate the proportion of defective breakers, by
sampling and testing n = 500 breakers. Stratifying the lot by vendor, we have three
strata of sizes N1 = 3, 000; N2 = 5, 000; and N3 = 2, 000. Before installing
the circuit breakers, we draw from the lot a stratified RSWOR, with proportional
allocation, i.e., n1 = 150, n2 = 250, and n3 = 100. After testing we find in the
first sample J1 = 3 defective circuit breakers, in the second sample J2 = 10, and in
the third sample J3 = 2 defectives. Testing is done with a special purpose device,
simulating intensive usage of the product.

In the present case, we set X = 1 if the item is defective and X = 0 otherwise.
Then μN is the proportion of defective items in the lot. μNi

(i = 1, 2, 3) is the
proportion defectives in the ith stratum.

The unbiased estimator of μN is

μ̂N = 0.3 × J1

150
+ 0.5 × J2

250
+ 0.2 × J3

100

= 0.03.

The variance within each stratum is σ 2
Ni

= PNi
(1 − PNi

), i = 1, 2, 3, where PNi
is

the proportion in the ith stratum. Thus, the variance of μ̂N is

Vprop{μ̂N } = 1

500
σ̄ 2

N

(
1 − 500

10, 000

)

where

σ̄ 2
N = 0.3σ̃ 2

N1
+ 0.5σ̃ 2

N2
+ 0.2σ̃ 2

N3
,

or

σ̄ 2
N = 0.3× 3000

2999
PN1(1−PN1)+ 0.5

5000

4999
PN2(1−PN2)+ 0.2

2000

1999
PN3(1−PN3).

Substituting
3

150
for an estimate of PN1 ,

10

250
for that of PN2 , and

2

100
for PN3 , we

obtain the estimate of σ̄ 2
N ,

σ̄ 2
N = 0.029008.
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Finally, an estimate of Vprop{μ̂N } is

V̂prop{μ̂N } = 0.029008

500

(
1 − 500

10, 000

)

= 0.00005511.

The standard error of the estimator is 0.00742.
Confidence limits for μN , at level 1 − α = .95, are given by

μ̂N ± 1.96 × S.E.{μ̂N } =

⎧⎪⎪⎨
⎪⎪⎩
0.0446

0.0154.

These limits can be used for spare parts policy. �
When the variances σ̃ 2

N within strata are known, we can further reduce the
variance of μN by an allocation, which is called optimal allocation.

We wish to minimize

k∑
i=1

W 2
i

σ̃ 2
Ni

ni

(
1 − ni

Ni

)

subject to the constraint:

n1 + n2 + · · · + nk = n.

This can be done by minimizing

L(n1, · · · , nk, λ) =
k∑

i=1

W 2
i

σ̃ 2
Ni

ni

− λ

(
n −

k∑
i=1

ni

)
,

with respect to n1, · · · , nk and λ. This function is called the Lagrangian, and λ is
called the Lagrange multiplier.

The result is

n0i = n
Wiσ̃Ni∑k
j=1 Wj σ̃j

, i = 1, · · · , k. (5.24)

We see that the proportional allocation is optimal when all σ̃ 2
Ni

are equal.
The variance of μ̂N , corresponding to the optimal allocation, is
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Vopt{μ̂N } = 1

N

(
k∑

i=1

Wiσ̃Ni

)2

− 1

N

k∑
i=1

Wiσ̃
2
Ni

. (5.25)

5.5 Prediction Models with Known Covariates

In some problems of estimating the mean μN of a variable Y in a finite population,
we may have information on variables X1, X2, · · · , Xk which are related to Y . The
variables X1, · · · , Xk are called covariates. The model relating Y to X1, · · · , Xk

is called a prediction model. If the values of Y are known only for the units in
the sample, while the values of the covariates are known for all the units of the
population, we can utilize the prediction model to improve the precision of the
estimator. The method can be useful, for example, when the measurements of Y

are destructive, while the covariates can be measured without destroying the units.
There are many such examples, like the case of measuring the compressive strength
of a concrete cube. The measurement is destructive. The compressive strength Y is
related to the ratio of cement to water in the mix, which is a covariate that can be
known for all units. We will develop the ideas with a simple prediction model.

Let {u1, u2, · · · , uN } be a finite population, P . The values of xi = X(ui), i =
1, · · · , N are known for all the units of P . Suppose that Y (ui) is related linearly to
X(ui) according to the prediction model

yi = βxi + ei, i = 1, · · · , N, (5.26)

where β is an unknown regression coefficient and e1, · · · , eN are i.i.d. random
variables such that

E{ei} = 0, i = 1, · · · , N

V {ei} = σ 2, i = 1, · · · , N.

The random variable ei in the prediction model is due to the fact that the linear
relationship between Y and X is not perfect, but subject to random deviations.

We are interested in the population quantity ȳN = 1

N

∑N
i=1 yi . We cannot

however measure all the Y values. Even if we know the regression coefficient β,

we can only predict ȳN by βx̄N , where x̄N = 1

N

∑N
j=1 xj . Indeed, according to the

prediction model, ȳN = βx̄N + ēN , and ēN is a random variable with

E{ēN } = 0, V {ēN } = σ 2

N
. (5.27)



5.5 Prediction Models with Known Covariates 321

Thus, since ȳN has a random component, and since E{ȳN } = βx̄N , we say that a
predictor of ȳN , say ŷN , is unbiased, if E{ŶN } = βx̄N . Generally, β is unknown.
Thus, we draw a sample of units from P and measure their Y values, in order to
estimate β. For estimating β we draw a simple RSWOR from P of size n, 1 < n <

N .
Let (X1, Y1), · · · , (Xn, Yn) be the values of X and Y in the random sample.

A predictor of ȳN is some function of the observed sample values. Notice that
after drawing a random sample we have two sources of variability. One due to
the random error components e1, · · · , en, associated with the sample values, and
the other one is due to the random sampling of the n units of P . Notice that the
error variables e1, · · · , en are independent of the X values and thus independent of
X1, X2, · · · , Xn, randomly chosen to the sample. In the following, expectation and
variances are taken with respect to the errors model and with respect to the sampling
procedure. We will examine now a few alternative predictors of ȳN :

(i) The sample mean, Ȳn.
Since

Ȳn = βX̄n + ēn,

we obtain that

E{Ȳn} = βE{X̄n} + E{ēn}

E{ēn} = 0 and since the sampling is RSWOR, E{X̄n} = x̄N . Thus E{Ȳn} =
βx̄N , and the predictor is unbiased. The variance of the predictor is, since ēn is
independent of X̄n,

V {Ȳn} = β2V {X̄n} + σ 2

n

= σ 2

n
+ β2σ 2

x

n

(
1 − n − 1

N − 1

)
.

(5.28)

where

σ 2
x = 1

N

N∑
j=1

(xj − x̄N )2.

(ii) The ratio predictor,

ŶR = x̄N

Ȳn

X̄n

. (5.29)
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The ratio predictor will be used when all xi > 0. In this case X̄n > 0 in every
possible sample. Substituting Ȳn = βX̄n + ēn, we obtain

E{ŶR} = βx̄N + x̄NE

{
ēn

X̄n

}
.

Again, since ēn and X̄n are independent, E

{
ēn

X̄n

}
= 0, and ŶR is an unbiased

predictor. The variance of ŶR is

V {ŶR} = (x̄N )2V

{
ēn

X̄n

}
.

Since ēn and X̄n are independent, and E{ēn} = 0, the law of the total variance
implies that

V {ŶR} = σ 2

n
x̄2
NE

{
1

X̄2
n

}

= σ 2

n
E

{(
1 + (X̄n − x̄N )

x̄N

)−2}

= σ 2

n
E

{
1 − 2

x̄N

(X̄n − x̄N ) + 3

x̄2
N

(X̄n − x̄N )2 + · · ·
}

∼= σ 2

n

(
1 + 3γ 2

x

n

(
1 − n − 1

N − 1

))

(5.30)

where γx = σx/x̄N is the coefficient of variation of X. The above approxima-
tion is effective in large samples.

Using the large sample approximation, we see that the ratio predictor ŶR has a
smaller variance than Ȳn if

3σ 2γ 2
x

n2

(
1 − n − 1

N − 1

)
<

β2σ 2
x

n

(
1 − n − 1

N − 1

)

or if

n >
3σ 2

(βx̄N )2
.

Other possible predictors for this model are
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ŶRA = x̄N · 1

N

n∑
i=1

Yi

Xi

(5.31)

and

ŶRG = x̄N ·
∑n

i=1 YiXi∑N
i=1 X2

i

. (5.32)

We leave it as an exercise to prove that both ŶRA and ŶRG are unbiased predictors
and to derive their variances.

What happens, under the above prediction model, if the sample drawn is not
random, but the units are chosen to the sample by some non-random fashion?

Suppose that a non-random sample (x1, y1), · · · , (xn, yn) is chosen. Then

E{ȳn} = βx̄n

and

V {ȳn} = σ 2

n
.

The predictor ȳn is biased, unless x̄n = x̄N . A sample which satisfies this property
is called a balanced sample with respect to X. Generally, themean squared error
(MSE) of ȳn, under non-random sampling, is

MSE{ȳn} = E{(ȳn − βx̄N)2}

= σ 2

n
+ β2(x̄n − x̄N )2.

(5.33)

Thus, if the sample is balanced with respect to X, then ȳn is a more precise predictor
than all the above, which are based on simple random samples.

Example 5.7 Electronic systems such as television sets, radios, or computers
contain printed circuit boards with electronic components positioned in patterns
determined by design engineers. After assembly (either by automatic insertion
machines or manually) the components are soldered to the board. In the relatively
new surface-mount technology, minute components are simultaneously positioned
and soldered to the boards. The occurrence of defective soldering points impacts the
assembly plant productivity and is therefore closely monitored. In file PRED.csv
we find 1,000 records on variable X and Y . X is the number of soldering points
on a board, and Y is the number of defective soldering points. The mean of Y is
ȳ1000 = 7.495 and that of X is x̄1000 = 148.58. Moreover, σ 2

x = 824.562 and
the coefficient of variation is γx = .19326. The relationship between X and Y is
yi = βxi + ei , where E{ei} = 0 and V {ei} = 7.5, β = 0.05. Thus, if we have to
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Fig. 5.2 Sampling distribution of Ȳ

predict ȳ1000 by a predictor based on a RSWR, of size n = 100, the variances of

Ȳ100 and ŶR = x̄1000
Ȳ100

X̄100
are

V {Ȳ100} = 7.5

100
+ 0.0025 × 824.562

100
= 0.0956.

On the other hand, the large sample approximation yields

V {ŶR} = 7.5

100

(
1 + 3 × 0.037351

100

)

= 0.07508.

We see that, if we have to predict ȳ1000 on the basis of an RSWR of size n = 100,
the ratio predictor, ŶR , is more precise. �

In Figures 5.2 and 5.3 we present the histograms of 500 predictors Ȳ100 and 500
ŶR based on RSWR of size 100 from this population.

5.6 Chapter Highlights

The main concepts and definitions introduced in this chapter include:

• Population quantiles
• Simple random samples
• Stratified random samples
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Fig. 5.3 Sampling distribution of ŶR

• Unbiased estimators
• Precision of an estimator
• Finite population multiplier
• Sample allocation
• Proportional allocation
• Optimal allocation
• Prediction models
• Covariates
• Ratio predictor
• Prediction unbiasedness
• Prediction MSE

5.7 Exercises

Exercise 5.1 Consider a finite population of size N , whose elements have values
x1, · · · , xN . Let F̂N (x) be the c.d.f., i.e.,

F̂N (x) = 1

N

N∑
i=1

I {xi ≤ x}.

Let X1, · · · , Xn be the values of a RSWR. Show that X1, · · · , Xn are independent
having a common distribution F̂N (x).
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Exercise 5.2 Show that if X̄n is the mean of a RSWR, then X̄n → μN as n → ∞
in probability (WLLN).

Exercise 5.3 What is the large sample approximation to Pr{√n | X̄n − μN | < δ}
in RSWR?

Exercise 5.4 Use Python to draw random samples with or without replacement
from data file PLACE.csv. Write a function which computes the sample correlation
between the x-dev and y-dev in the sample values. Execute this function 100 times,
and make a histogram of the sample correlations.

Exercise 5.5 Use file CAR.csv and Python. Construct samples of 50 records at
random, without replacement (RSWOR). For each sample, calculate the median of
the variables turn diameter, horsepower, and mpg. Repeat this 200 times, and present
the histograms of the sampling distributions of the medians.

Exercise 5.6 In continuation of Example 5.5, how large should the sample be from
the three strata, so that the SE {X̄i} (i = 1, . . . , 3) will be smaller than δ = 0.05?

Exercise 5.7 The proportion of defective chips in a lot of N = 10, 000 chips is
P = 5 × 10−4. How large should a RSWOR be so that the width of the confidence
interval for P , with coverage probability 1 − α = .95, will be 0.002?

Exercise 5.8 Use Python to perform stratified random samples from the three strata
of the data file PLACE.csv (see Example 5.5). Allocate 500 observations to the
three samples proportionally. Estimate the population mean (of x-dev). Repeat this
100 times, and estimate the standard error or your estimates. Compare the estimated
standard error to the exact one.

Exercise 5.9 Derive the formula for n0i (i = 1, · · · , k) in the optimal allocation,
by differentiating L(n1, · · · , nk, λ) and solving the equations.

Exercise 5.10 Consider the prediction model

yi = β + ei, i = 1, . . . , N

where E{ei} = 0, V {ei} = σ 2 and COV(ei, ej ) = 0 for i �= j . We wish to predict

the population mean μN = 1

N

∑N
i=1 yi . Show that the sample mean Ȳn is prediction

unbiased. What is the prediction MSE of Ȳn?

Exercise 5.11 Consider the prediction model

yi = β0 + β1xi + ei, i = 1, . . . , N,
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where e1, . . . , eN are independent r.v.s with E{ei} = 0, V {ei} = σ 2xi (i =
1, . . . , n). We wish to predict μN = 1

N

∑N
i=1 yi . What should be a good predictor

for μN?

Exercise 5.12 Prove that ŶRA and ŶRG are unbiased predictors and derive their
prediction variances.



Chapter 6
Time Series Analysis and Prediction

Preview In this chapter, we present essential parts of time series analysis, with
the objective of predicting or forecasting its future development. Predicting future
behavior is generally more successful for stationary series, which do not change
their stochastic characteristics as time proceeds. We develop and illustrate time
series which are of both types, namely, covariance stationary and non-stationary.

We started by fitting a smooth function, showing the trend to a complex time series
consisting of the Dow Jones Industrial Average index in the 302 trading days of
1941. We defined then the notions of covariance stationarity of the deviations from
the trend function and their lag-correlation and partial correlation. Starting with
the simple white noise, we studied the properties of moving averages of white
noise, which are covariance stationary. After this we introduced the auto-regressive
time series, in which the value of an observed variable at a given time is a linear
function of several past values in the series plus a white noise error. A criterion for
covariance stationarity of auto regressive series was given in terms of the roots of its
characteristic polynomial. We showed also how to express these stationary series as
an infinite linear combination of white noise variables. More complex covariance
stationary time series, which are combinations of auto-regressive and moving
averages, called ARMA series, and integrated ARMA series, called ARIMA, were
discussed too.

The second part of the chapter deals with prediction of future values. We started
with the optimal linear predictor of covariance stationary time series. These optimal
predictors are based on moving windows of the last n observations in the series. We
demonstrated that even for the DOW1941.csv series, if we apply the optimal linear
predictor on windows of size n = 20, of the deviations from the trend, and then
added the forecasts to the trend values, we obtain very good predictors for the next
day index.
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For cases where it cannot be assumed that the deviations are covariance
stationary, we developed a prediction algorithm which is based on the values of the
original series. Again, based on moving windows of size n, we fit by least squares
a quadratic polynomial to the last n values and extrapolate s time units forward.
As expected, this predictor is less accurate than the optimal linear for covariance
stationary series but can be useful for predicting one unit ahead, s = 1.

The third part of the chapter deals with dynamic linear models, which can
incorporate Bayesian analysis and vector-valued observations.

6.1 The Components of a Time Series

A time series {Xt, t = 1, 2, . . . } is a sequence of random variables ordered
according to the observation time. The analysis of the fluctuation of a time series
assists us in analyzing the current behavior and forecasting the future behavior of the
series. In the following sections, we introduce elementary concepts. There are three
important components of a time series: the trend, the correlation structure among the
observations, and the stochastic nature of the random deviations around the trend
(the noise). If these three components are known, a reasonably good prediction or
forecasting can be made. However, there are many types of time series in which
the future behavior of the series is not necessarily following the past behavior. In
the present chapter, we discuss these two types of forecasting situations. For more
details see Box et al. (2015), Zacks (2009), and Shumway and Stoffer (2010).

6.1.1 The Trend and Covariances

The function f (t) : t �→ E{Xt } is called the trend of the time series. A smooth trend
can often be fitted to the time series data. Such a trend could be locally described as
a polynomial of certain order plus a trigonometric Fourier sequence of orthogonal
periodic functions.

Example 6.1 In Fig. 6.1 we present the time series DOW1941.csv, with the Dow
Jones index in 302 working days of year 1941. The smooth curve traced among the
points is the fitted local trend given by the function

f (t) =123.34 + 27.73
t − 151

302
− 15.83

(
t − 151

302

)2

− 237.00

(
t − 151

302

)3

+ 0.1512 cos
4πt

302
+ 1.738 sin

4πt

302
+ 1.770 cos

8πt

302
− 0.208 sin

8πt

302

− 0.729 cos
12πt

302
+ 0.748 sin

12πt

302
.
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Fig. 6.1 Dow Jones values in
1941

dow1941 = mistat.load_data('DOW1941')
t = np.arange(1, len(dow1941) + 1)
x = (t - 151) / 302
omega = 4 * np.pi * t / 302
ft = (123.34 + 27.73 * x - 15.83* x ** 2 - 237.00 * x**3

+ 0.1512 * np.cos(omega) + 1.738 * np.sin(omega)
+ 1.770 * np.cos(2 * omega) - 0.208 * np.sin(2 * omega)
- 0.729 * np.cos(3 * omega) + 0.748 * np.sin(3 * omega))

fig, ax = plt.subplots(figsize=[4, 4])
ax.scatter(dow1941.index, dow1941, facecolors='none', edgecolors='grey')
ax.plot(t, ft, color='black')
ax.set_xlabel('Working day')
ax.set_ylabel('DOW1941')
plt.show()

To fit such a trend by the method of least squares, we use the multiple linear
regression technique, in which the dependent variable Y is the vector of the time
series, while the X vectors are the corresponding polynomial and trigonometric
variables ((t − 151)/302)j , j = 0, 1, 2, 3 and cos(j4πt/302), sin(j4πt/302),
j = 1, 2, 3. �

6.1.2 Analyzing Time Series with Python

In this subsection, we show how Python can be used to analyze time series using
functionality available in pandas and statsmodels.

As a first step, we load the DOW1941_DATE.csv dataset and convert it to a time
series.
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dow1941 = mistat.load_data('DOW1941_DATE')

# convert Date column to Python datetime
dates = pd.to_datetime(dow1941['Date'], format='%Y-%m-%d')
dow1941_ts = pd.Series(dow1941['Open'], name='Dow_Jones_Index')
dow1941_ts.index = pd.DatetimeIndex(dates)

dow1941_ts.head()

Date
1941-01-02 131.1
1941-01-03 130.6
1941-01-04 132.0
1941-01-06 132.4
1941-01-07 132.8
Name: Dow_Jones_Index, dtype: float64

We next fit a series of additive models. The initial one uses just a linear trend.
Instead of using the date as x, we create a data frame that contains a column with
a sequence of 1, 2, . . . for each time step. The statsmodels package has the
function tsatools.add_trend that add this trend column.

from statsmodels.tsa import tsatools
dow1941_df = tsatools.add_trend(dow1941_ts, trend='ct')
dow1941_df.head()

Dow_Jones_Index const trend
Date
1941-01-02 131.1 1.0 1.0
1941-01-03 130.6 1.0 2.0
1941-01-04 132.0 1.0 3.0
1941-01-06 132.4 1.0 4.0
1941-01-07 132.8 1.0 5.0

It is now straightforward to fit a linear regression model of Dow_Jones_Index.
Figure 6.2 shows the result we get using statsmodels.

from statsmodels.tsa import tsatools
dow1941_df = tsatools.add_trend(dow1941_ts, trend='ct')
model_1 = smf.ols(formula='Dow_Jones_Index ~ trend + 1', data=dow1941_df).fit()
print(model_1.params)
print(f'r2-adj: {model_1.rsquared_adj:.3f}')

ax = dow1941_ts.plot(color='grey')
ax.set_xlabel('Time')
ax.set_ylabel('Dow Jones index')
model_1.predict(dow1941_df).plot(ax=ax, color='black')
plt.show()

Intercept 125.929262
trend -0.026070
dtype: float64
r2-adj: 0.151

It is clear that a linear model doesn’t adequately describe the change over time.
We can extend the model by adding quadratic and cubic terms. The resulting
model is shown in Fig. 6.3 and is clearly an improvement. However be careful, a
polynomial fit will not be very reliable for extrapolating beyond the actual data
range.
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Fig. 6.2 Decomposition of the Dow1941 time series using an additive model with a linear trend

Fig. 6.3 Decomposition of the Dow1941 time series using an additive model with a linear,
quadratic, and cubic trend

dow1941_df = tsatools.add_trend(dow1941_ts, trend='ct')
formula = 'Dow_Jones_Index ~ I(trend**3) + I(trend**2) + trend + 1'
model_2 = smf.ols(formula=formula, data=dow1941_df).fit()
print(model_2.params)
print(f'r2-adj: {model_2.rsquared_adj:.3f}')

ax = dow1941_ts.plot(color='grey')
ax.set_xlabel('Time')
ax.set_ylabel('Dow Jones index')
model_2.predict(dow1941_df).plot(ax=ax, color='black')
plt.show()
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Fig. 6.4 The Dow1941 time series with a fit to a cubic model with monthly seasonal effects

Intercept 135.306337
np.power(trend, 3) -0.000009
np.power(trend, 2) 0.003788
trend -0.450896
dtype: float64
r2-adj: 0.809

We can see that there are still deviations from the actual data that are unexplained
by the model. These may be due to seasonality. Seasonality in this case means a
periodic factor. This could be hour of day, day of week, week of year, season, and
so on. Here we consider a monthly seasonality. Note that we are only considering a
year of data, so this is more like a monthly adjustment of the data.

We extend the data frame with a column that labels the month of the year and
include it in the regression. The resulting model is shown in Fig. 6.4.

dow1941_df = tsatools.add_trend(dow1941_ts, trend='ct')
dow1941_df['month'] = dow1941_df.index.month
formula = 'Dow_Jones_Index ~ C(month) + I(trend**3) + I(trend**2) + trend + 1'
model_3 = smf.ols(formula=poly_formula, data=dow1941_df).fit()
print(model_3.params)
print(f'r2-adj: {model_3.rsquared_adj:.3f}')

ax = dow1941_ts.plot(color='grey')
ax.set_xlabel('Time')
ax.set_ylabel('Dow Jones index')
model_3.predict(dow1941_df).plot(ax=ax, color='black')
plt.show()

Intercept 134.580338
C(month)[T.2] -3.247325
C(month)[T.3] 0.244691
C(month)[T.4] -2.046448
C(month)[T.5] -5.612228
C(month)[T.6] -2.137326
C(month)[T.7] 2.308240
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C(month)[T.8] 0.667104
C(month)[T.9] 1.662265
C(month)[T.10] -1.316258
C(month)[T.11] -1.758233
C(month)[T.12] -0.419919
np.power(trend, 3) -0.000007
np.power(trend, 2) 0.002990
trend -0.359448
dtype: float64
r2-adj: 0.909

The adjusted R square for this model is 90.9%. The jumps of the fitted curve in
Fig. 6.4 are due to the monthly effects. The model, with the coefficient estimates
and non-centered polynomial terms, is

134.58 − 0.35944Day + 0.002990Day2 − 0.000007Day3 + Match(Month)

We see that the effects of May and July, beyond the cubic trend in the data, are
substantial (−5.61 and +2.31, respectively).

fig, axes = plt.subplots(figsize=[4, 5], nrows=3)
def residual_plot(model, ax, title):

model.resid.plot(color='grey', ax=ax)
ax.set_xlabel('')
ax.set_ylabel(f'Residuals\n{title}')
ax.axhline(0, color='black')

residual_plot(model_1, axes[0], 'Model 1')
residual_plot(model_2, axes[1], 'Model 2')
residual_plot(model_3, axes[2], 'Model 3')
axes[2].set_xlabel('Time')
plt.tight_layout()
plt.show()

Figure 6.5 presents the residuals from the three models used to fit the data. The
residual plots of the first two models show that these models are not producing
white noise and, therefore, there is more structure in the data to account for. The
residuals from the third model look more like white noise, compared to the residuals
of the first and second model. A formal assessment using a normal probability plot
confirms this.

def plotLag(ts, lag, ax, limits):
ax.scatter(ts[:-lag], ts[lag:], facecolors='none', edgecolors='black')
ax.set_title(f'Lag {lag}')
ax.set_xlim(*limits)
ax.set_ylim(*limits)

fig, axes = plt.subplots(figsize=[6, 6], nrows=2, ncols=2)
limits = [dow1941_ts.min(), dow1941_ts.max()]
plotLag(dow1941_ts, 1, axes[0][0], limits)
plotLag(dow1941_ts, 5, axes[0][1], limits)
plotLag(dow1941_ts, 15, axes[1][0], limits)
plotLag(dow1941_ts, 60, axes[1][1], limits)

plt.tight_layout()
plt.show()
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Fig. 6.5 Residuals from the model used in Figs. 6.2, 6.3, and 6.4 to fit the Dow1941 data

A simple analysis used to identify the lag-correlation mentioned above is to draw
scatterplots of the data versus lagged data. Figure 6.6 shows such scatterplots for
lags of 60 days, 15 days, 5 days, and 1 day. We observe a high correlation between
the current and yesterday’s Dow index and barely no relationship with values from
2 months earlier.

This correlation structure is not accounted for by the least squares regres-
sion models used in Fig. 6.4 to model the DOW1941 time series. This lack of
independence between successive observations is affecting our ability to properly
predict future observations. In the next sections we show how to account for such
autocorrelations.

6.2 Covariance Stationary Time Series

Let Xt = f (t)+Ut . It is assumed that E{Ut } = 0 for all t = 1, 2, . . . . Furthermore,
the sequence of residuals {Ut, t = 1, 2, . . . } is called covariance stationary if
K(h) = cov(Ut , Ut+h) is independent of t for all h = 1, 2, . . . . Notice that
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Fig. 6.6 Scatter plots of Dow1941 time series with a lagged series of lag 60, 15, 5, and 1 day

in this case the variance of each Ut is K(0). The lag-correlation of order h is
ρ(h) = K(h)/K(0), h = 1, 2, . . . . The simplest covariance stationary time series
is {et , t = 0,±1,±2, . . . }, where E{et } = 0, the variance V {et } = σ 2 for all t , and
ρ(h) = 0, for all |h| > 0. Such a time series is called a white noise. We denote it
by WN(0, σ 2).

6.2.1 Moving Averages

A linear combination of WN random variables is called a moving average. A
moving average of order q, MA(q), is the linear combination of q WN variables,
i.e.,
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Xt =
q∑

j=0

βjet−j . (6.1)

where the coefficients βj are the same for all t . The covariance function of an
MA(q) is stationary and is given by

K(h) =
{

σ 2∑q−|h|
j=0 βjβj+|h| |h| = 0, . . . , q

0 |h| > q.
(6.2)

Notice that K(h) = K(−h), and a moving average of infinite order exists, if∑∞
j=−∞ |βj | < ∞.

Example 6.2 Consider an MA(3) in which X = 3et + 2.5et−1 − 1.5et−2 + et−3
and σ 2 = 1.

This covariance stationary time series has K(0) = 9+ 6.25+ 2.25+ 1 = 18.50,
K(1) = 7.5 − 3.75 − 1.5 = 2.25, K(2) = −4.5 + 2.5 = −2, and K(3) = 3.

The lag-correlations are ρ(0) = 1, ρ(1) = 0.1216, ρ(2) = −0.1081, and ρ(3) =
0.1622. All lag-correlations for |h| > 3 are zero. �

6.2.2 Auto-Regressive Time Series

Another important class of time series is the auto-regressive model. A time series
is called auto-regressive of order p, AR(p), if E{Xt } = μ, for all t , and Xt =∑p

j=1 γjXt−j + et , for all t , where et is a WN(0, σ 2). Equivalently, we can specify
an AR(p) time series as

Xt + a1Xt−1 + · · · + apXt−p = et . (6.3)

This time series can be converted to a moving average time series by applying
the Z-transform

Ap(z) = 1 + a1z
−1 + · · · + apz−p,

p is an integer, A0(z) = 1 and z−jXt = Xt−j . Accordingly, Ap(z)Xt = Xt +
a1Xt−1 + · · · + apXt−p = et . From this we obtain that

Xt = (Ap(z))−1et =
∞∑

j=0

βj et−j , (6.4)

where
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(Ap(z))−1 = 1/(1 + a1z
−1 + · · · + apz−p) =

∞∑
j=0

βj z
−j . (6.5)

This inverse transform can be computed by the algebra of power series. The inverse
power series always exists since β0 �= 0. We can obtain the coefficients βj as
illustrated in the following example. Notice that an infinite power series obtained
in this way might not converge. If it does not converge, the inversion is not useful.
The transform (Ap(z))−1 is called a transfer function.

The polynomial A∗
p(z) = zpAp(z) is called the characteristic polynomial of

the AR(p). The auto-regressive time series AR(p) is covariance stationary only if
all its characteristic roots belong to the interior of the unit circle, or the roots of
Ap(z) are all outside the unit circle.

The covariance function K(h) can be determined by the following equations,
called the Yule-Walker equations

K(0) + a1K(1) + · · · + apK(p) = σ 2,

K(h) + a1K(h − 1) + · · · + apK(h − p) = 0, for h > 0.
(6.6)

Example 6.3 Consider the AR(2)

Xt − Xt−1 + 0.89Xt−2 = et , t = 0,±1,±2, . . .

In this case, the characteristic polynomial is A∗
2(z) = 0.89 − z + z2. The two

characteristic roots are the complex numbers ζ1 = 0.5 + 0.8i and ζ2 = 0.5 −
0.8i. These two roots are inside the unit circle, and thus this AR(2) is covariance
stationary.

Using series expansion we obtain

1

1 − z−1 + 0.89z−2 = 1+z−1+0.11z−2−0.78z−3−0.8779z−4−0.1837z−5+ . . .

The corresponding MA(5) which is

X∗
t = et + et−1 + 0.11et−2 − 0.78et−3 − 0.8779et−4 − 0.1837et−5

is a finite approximation to the infinite order MA representing Xt . This approxima-
tion is not necessarily good. To obtain a good approximation to the variance and
covariances, we need a longer moving average.

As for the above AR(2), the K(h) for h = 0, 1, 2 are determined by solving the
Yule-Walker linear equations
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⎛
⎝ 1 a1 a2

a1 1 + a2 0
a2 a1 1.

⎞
⎠
⎛
⎝K(0)

K(1)
K(2)

⎞
⎠ =

⎛
⎝σ 2

0
0

⎞
⎠

We obtain for σ = 1, K(0) = 6.6801, K(1) = 3.5344, and K(2) = −2.4108.
Correspondingly, the lag-correlations are ρ(0) = 1, ρ(1) = 0.5291, and ρ(2) =
−0.3609. For h ≥ 3 we use the recursive equation

K(h) = −a1K(h − 1) − a2K(h − 2).

Accordingly, K(3) = 2.4108 − 0.89 ∗ 3.5344 = −0.7348 and so on. �
An important tool for determining the order p of an auto-regressive time series

is the partial lag-correlation, denoted as ρ∗(h). This index is based on the lag-
correlations in the following manner.

Let Rk denote a symmetric (k × k) matrix called the Toeplitz matrix which is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ(1) ρ(2) ρ(3) . . . ρ(k − 1)
ρ(1) 1 ρ(1) ρ(2) . . . ρ(k − 2)
ρ(2) ρ(1) 1 ρ(1) . . . ρ(k − 3)
ρ(3) ρ(2) ρ(1) 1 . . . ρ(k − 4)

...
...

...
...

. . .
...

ρ(k − 1) ρ(k − 2) ρ(k − 3) ρ(k − 4) . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The solution φ(k) of the normal equations

Rkφ
(k) = ρk (6.7)

yields least squares estimators of Xt and of Xt+k+1, based on the values of
Xt+1, . . . , Xt+k . These are

X̂t =
k∑

j=1

φ
(k)
j Xt+j (6.8)

and

X̂t+k+1 =
k∑

j=1

φ
(k)
j Xt+k+1−j . (6.9)

One obtains the following formula for the partial correlation of lag k + 1,
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Table 6.1 Lag-correlations
and partial lag-correlations
for the DOW1941 data

k ρ(k) ρ∗(k)

0 1.0000 1.0000

1 0.9805 0.9838

2 0.9521 −0.2949

3 0.9222 0.0220

4 0.8907 −0.0737

5 0.8592 0.0117

6 0.8290 0.0165

7 0.8009 0.0360

8 0.7738 −0.0203

9 0.7451 −0.0859

10 0.7162 0.0048

11 0.6885 0.0179

12 0.6607 −0.0346

13 0.6309 −0.0839

14 0.6008 0.0053

15 0.5708 −0.0349

ρ∗(k + 1) = ρ(k + 1) − ρ′
kR

−1
k ρ∗

k

1 − ρ′
kR

−1
k ρk

(6.10)

where ρk = (ρ(1), . . . , ρ(k))′ and ρ∗
k = (ρ(k), . . . , ρ(1))′.

In package mistat the function toeplitz forms the above matrix.

Example 6.4 We can use the statsmodels functions acf and pacf to calculate
lag-correlations and partial lag-correlations for the DOW1941 data set. The
package also has convenience functions to visualize the results. The calculated lag-
correlations are shown in Table 6.1 and visualized in Fig. 6.7.

from statsmodels.tsa.stattools import acf, pacf
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

dow_acf = acf(dow1941_ts, nlags=15, fft=True)
dow_pacf = pacf(dow1941_ts, nlags=15)

fig, axes = plt.subplots(ncols=2, figsize=[8, 3.2])
plot_acf(dow1941_ts, lags=15, ax=axes[0])
plot_pacf(dow1941_ts, lags=15, method='ywm', ax=axes[1])
plt.tight_layout()
plt.show()

The 15 lag-correlations in Table 6.1 are all significant since the DOW1941 series
is not stationary. Only the first two partial lag-correlations are significantly different
from zero. On the other hand, if we consider the residuals around the trend curve
f(t), we get the following the lag-correlations in Table 6.2 and Fig. 6.8. We see that
in this case the first four lag-correlations are significant.
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Fig. 6.7 Visualization of lag-correlations and partial lag-correlations for the DOW1941 data set

dow_acf = acf(model_3.resid, nlags=15, fft=True)
fig, axes = plt.subplots(ncols=2, figsize=[8, 3.2])
plot_acf(model_3.resid, lags=15, ax=axes[0])
plot_pacf(model_3.resid, lags=15, method='ywm', ax=axes[1])
plt.show()

�

Table 6.2 Lag-correlations
for the residuals of the cubic
model with monthly seasonal
effects of the DOW1941 data

k ρ(k)

0 1.0000

1 0.8172

2 0.6041

3 0.4213

4 0.2554

5 0.1142

6 0.0137

7 −0.0366

8 −0.0646

9 −0.0895

10 −0.0905

11 −0.0682

12 −0.0790

13 −0.1214

14 −0.1641

15 −0.2087
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Fig. 6.8 Visualization of lag-correlations and partial lag-correlations for the cubic model with
monthly seasonal effects of the DOW1941 data set

6.2.3 Auto-Regressive Moving Average Time Series

A time series of the form

Xt + a1Xt−1 + · · · + apXt−p = et + b1et−1 + · · · + bqet−q (6.11)

is called an ARMA(p, q) time series. If the characteristic roots of A∗
p(z) are within

the unit disk, then this time series is covariance stationary. We could write

Xt =
∞∑

j=0

βj z
−j (1 + b1z

−1 + · · · + bqz−q)et

=
∞∑

k=0

υkz
−ket .

(6.12)

Here υk = ∑k
l=0 βlbk−l , where bk−l = 0. When k − l > q, one can obtain this by

series expansion of Bq(x)/Ap(x).

Example 6.5 We consider here the ARMA(2,2), where, as in Example 6.2, A2(z) =
1 − z−1 + 0.89z−2 and B2(z) = 1 + z−1 − 1.5z−2. In this case

(1+x−1.5x2)/(1−x+0.89x2) = 1+2x−0.39x2−2.17x3−1.8229x4+0.1084x5+. . .

Thus, we can approximate the ARMA(2,2) by an MA(5), namely,

Xt = et + 2et−1 − 0.39et−2 − 2.17et−3 − 1.8229et−4 + 0.1084et−5.

�
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6.2.4 Integrated Auto-Regressive Moving Average Time Series

A first-order difference of a time series is �{Xt } = (1 − z−1){Xt } = {Xt − Xt−1}.
Similarly, a kth-order difference of {Xt } is �k{Xt } = (1 − z−1)k{Xt } =∑k
j=0(

k
j )(−1)j z−j {Xt }.

If �k{Xt } is an ARMA(p, q), we call the time series an integrated
ARMA(p, q) of order k or in short ARIMA(p, k, q). This time series has the
structure

Ap(z)(1 − z−1)kXt = Bq(z)et (6.13)

where et ∼ i.i.d.(0, σ 2).
Accordingly, we can express

[Ap(z)/Bq(z))](1 − z−1)kXt = et . (6.14)

Furthermore,

[Ap(z)/Bq(z)](1 − z−1)kXt =
∞∑

j=0

ϕjz
−jXt . (6.15)

It follows that

Xt =
∞∑

j=1

πjXt−j + et , (6.16)

where πj = −ϕj , for all j = 1, 2, . . . . This shows that the ARIMA(p, k, q) time
series can be approximated by a linear combination of its previous values. This can
be utilized, if the coefficients ofAp(z1) and those ofBq(z) are known, for prediction
of future values. We illustrate it in the following example.

Example 6.6 As in Example 6.5, consider the time series ARIMA(2, 2, 2), where
A2(z) = 1 − z−1 + 0.89z−2 and B2(z

1) = 1 + z−1 − 1.5z−2.
We have

1 − x + 0.89x2

1 + x − 1.5x2
= 1 − 2x + 4.39x2 − 7.39x3 + 13.975x4 − 25.060x5 . . . .

Multiplying by (1 − x)2 we obtain that

Xt = 4Xt−1 − 9.39Xt−2 + 18.17Xt−3 − 33.24Xt−4

+ 60.30Xt−5 − 73.625Xt−6 + 25.06Xt−7 − + · · · + et .
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The predictors of Xt+m are obtained recursively from the above, as follows:

X̂t+1 = 4Xt − 9.39Xt−1 + 18.17Xt−2 − 33.24Xt−3 + − . . .

X̂t+2 = 4X̂t+1 − 9.39Xt + 18.17Xt−1 − 33.24Xt−2 + − . . .

X̂t+3 = 4X̂t+2 − 9.39X̂t+1 + 18.17Xt − 33.24Xt−1 + − . . .

�

6.2.5 Applications with Python

To conclude this section, we revisit the Dow1941 data using an ARMA model
with statsmodels. This additional modeling effort aims at picking up the
autocorrelation in the data. We fit an ARMA model to the residuals from the cubic
and monthly effect model used in Fig. 6.4. Note that even though the method is
called ARIMA, we fit an ARMA model by setting differences in the order
argument to 0. The auto-regressive and moving average order systematically varies
between 0 and 4. The best fitting model is ARMA(2,2). The estimates of the model
parameters are shown in Fig. 6.9.

from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_predict

# Identify optimal ARMA options using the AIC score
bestModel = None
bestAIC = None
for ar in range(0, 5):

Fig. 6.9 Estimates of ARMA(2,2) model applied to residuals of DOW1941 shown in Fig. 6.4
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for ma in range(0, 5):
model = ARIMA(model_3.resid, order=(ar, 0, ma)).fit()
if bestAIC is None or bestAIC > model.aic:

bestAIC = model.aic
bestModel = (ar, 0, ma)

print(f'Best model: {bestModel}')

model = ARIMA(model_3.resid, order=bestModel).fit()

prediction = model.get_forecast(30).summary_frame()
prediction['date'] = [max(dow1941_ts.index) + datetime.timedelta(days=i)

for i in range(1, len(prediction) + 1)]

plot_predict(model)
ax = plt.gca()

ax.plot(prediction['date'], prediction['mean'])
ax.fill_between(prediction['date'],

prediction['mean_ci_lower'], prediction['mean_ci_upper'],
color='lightgrey')

plt.show()

Best model: (2, 0, 2)

The ARMA(2,2) model, with 95% confidence intervals, and 30 predictions are
shown in Fig. 6.9.

To generate predictions for January 1942 values of the DOW, we use the
prediction of residuals shown in Fig. 6.9 and add these to the cubic and month effect
model shown in Fig. 6.4.

6.3 Linear Predictors for Covariance Stationary Time Series

Let {Xt } be a covariance stationary time series, such that Xt = ∑∞
j=0 wjet−j and

et ∼ WN(0, σ 2). Notice that E{Xt } = 0 for all t . The covariance function is K(h).

6.3.1 Optimal Linear Predictors

A linear predictor ofXt+s based on the n data pointsX(n)
t = (Xt ,Xt−1, . . . , Xt−n+1)

′
is

X̂
(n)
t+s = (b(n)

s )′X(n)
t , (6.17)

where

b(n)
s = (b

(n)
0,s , b

(n)
1,s , . . . , b

(n)
n−1,s )

′.

The prediction mean squared error (PMSE) of this linear predictor is
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E{ ˆ(X(n)

t+s − Xt+s)
2} = V {(b(n)

s )′X(n)
t }

− 2COV (X̂t+s , (b
(n)
s )′X(n)

t ) + V {Xt+s}. (6.18)

The covariance matrix of X(n)
t is the Toeplitz matrix K(0)Rn, and the covariance of

Xt+s and X(n)
t is

γ (n)
s = K(0)

⎛
⎜⎜⎜⎜⎜⎝

ρ(s)

ρ(s + 1)
ρ(s + 2)

. . .

ρ(n + s − 1)

⎞
⎟⎟⎟⎟⎟⎠ = K(0)ρ(n)

s . (6.19)

Hence, we can write the prediction PMSE as

PMSE(X̂
(n)
t+s) = K(0)

(
(b(n)

s )′Rnb(n)
s − 2(b(n)

s )′ρ(n)
s + 1

)
. (6.20)

It follows that the best linear predictor based on X(n)
t is

BLP(Xt+s |X(n)
t ) = (ρ(n)

s )′R−1
n X(n)

t . (6.21)

The minimal PMSE of this BLP is

PMSE∗ = K(0)(1 − (ρ(n)
s )′R−1

n ρ(n)
s ). (6.22)

Notice that the minimal PMSE is an increasing function of s.

Example 6.7 Let

Xt = a−1et−1 + a0et + a1et+1, t = 0,±1, . . .

where et ∼ WN(0, σ 2). This series is a special kind of MA(2), called moving
smoother, with

K(0) = σ 2(a2−1 + a2o + a21) = B0σ
2,

K(1) = σ 2(a−1a0 + a0a1) = B1σ
2,

K(2) = σ 2a−1a1 = σ 2B2,

and K(h) = 0, for all |h| > 2. Moreover, γ
(s)
n = 0 if s > 2. This implies that

X̂
(n)
t+s = 0, for all s > 2. If s = 2, then
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γ
(n)
2 = σ 2(B2, 0

′
n−1)

and

b̂(n)
2 = σ 2R−1

n (B2, 0
′
n−1)

′.

In the special case of a−1 = 0.25, a0 = .5, a1 = 0.25, σ = 1, the Toeplitz matrix
is

R3 = 1

16

⎛
⎝6 4 1
4 6 4
1 4 6

⎞
⎠ .

Finally, the best linear predictors are

X̂
(3)
t+1 = 1.2Xt − 0.9Xt−1 + 0.4Xt−2,

X̂
(3)
t+2 = 0.4Xt − 0.4Xt−1 + 0.2Xt−2.

The PMSE are, correspondingly, 0.1492 and 0.3410. �

Example 6.8 In the previous example, we applied the optimal linear predictor to a
simple case of an MA(2) series. Now we examine the optimal linear predictor in a
more elaborate case, where the deviations around the trend are covariance stationary.
We use the DOW1941.csv time series stationary ARMA series.

predictedError = mistat.optimalLinearPredictor(model_2.resid,11,nlags=10)
predictedTrend = model_2.predict(dow1941_df)
correctedTrend = predictedTrend + predictedError

fig, ax = plt.subplots()
ax.scatter(dow1941_ts.index, dow1941_ts,

facecolors='none', edgecolors='grey')
predictedTrend.plot(ax=ax, color='grey')
correctedTrend.plot(ax=ax, color='black')
ax.set_xlabel('Time')
ax.set_ylabel('Dow Jones index')
plt.show()

print(f'PMSE(trend) = {np.mean((predictedTrend - dow1941_ts)**2):.4f}')
print(f'PMSE(corrected) = {np.mean((correctedTrend-dow1941_ts)**2):.4f}')

PMSE(trend) = 6.3315
PMSE(corrected) = 0.5580

In Fig. 6.10 we present the one-day ahead predictors for the DOW1941 data.
This was obtained by applying the function optimalLinearPredictor from
the mistat package to the series of the deviations around the trend function f(t)
for the DOW1941 data, with a window of size 10, and adding the results to the
predicted trend data. The corresponding total prediction risk is 0.558. �
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Fig. 6.10 One-step ahead predictors for the DOW1941 data using an optimal linear predictors
with window of size 10

6.4 Predictors for Non-stationary Time Series

The linear predictor discussed in the previous section was based on the covariance
stationarity of the deviations from the trend function. Such predictors are valid if we
can assume that the future behavior of the time series is similar to the observed part
of the past. This however is seldom the case. In the present section, we develop an
adaptive procedure, which extrapolates the observed trend in a small window of the
past. Such predictors would generally be good ones only for small values of time
units in the future.

6.4.1 Quadratic LSE Predictors

For a specified window size n, n > 5, we fit a polynomial of degree p = 2
(quadratic) to the last n observations. We then extrapolate to estimate f (t + s),
s ≥ 1. This approach is based on the assumption that in a close neighborhood of t ,
say (t − n, t + n), f (t) can be approximated by a quadratic whose parameters may
change with t , i.e.,

f2(t) = β0(t) + β1(t)t + β2(t)t
2. (6.23)

The quadratic moving LSE algorithm applies the method of ordinary least
squares to estimate βj (t), j = 0, 1, 2, based on the data in the moving window
{Xt−n+1, . . . Xt }. With these estimates it predicts Xt+s with f2(t + s).
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We provide here some technical details. In order to avoid the problem of
unbalanced matrices when t is large, we shift in each cycle of the algorithm the
origin to t . Thus, let X(n)

t = (Xt ,Xt−1, . . . Xt−n+1)
′ be a vector consisting of the

values in the window. Define the matrix

A(n) =

⎛
⎜⎜⎜⎝
1 0 0
1 −1 1
...

...
...

1 −(n − 1) (n − 1)2

⎞
⎟⎟⎟⎠ .

Then the LSE of βj (t), j = 0, 1, 2 is given in the vector

β̂
(n)

(t) = (A′
(n)A(n))

−1A′
(n)X

(n)
t . (6.24)

With these LSEs the predictor of Xt+s is

X̂
(n)
t+s(t) = β̂

(n)
0 (t) + β̂

(n)
1 (t)s + β̂

(n)
2 (t)s2. (6.25)

Example 6.9 In the present example, we illustrate the quadratic predictor on a
non-stationary time series. We use the quadraticPredictor function in the
mistat package. With this function, we can predict the outcomes of an auto-
regressive series, step by step, after the first n observations. In Fig. 6.11 we see
the one-step ahead prediction, s = 1, with a window of size n = 20 for the data of
DOW1941.

Fig. 6.11 One-step ahead prediction, s = 1, for the DOW1941 data using quadratic LSE
predictors with window of size 20
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quadPrediction = mistat.quadraticPredictor(dow1941_ts, 20, 1)

fig, ax = plt.subplots()
ax.scatter(dow1941_ts.index, dow1941_ts,

facecolors='none', edgecolors='grey')
ax.plot(dow1941_ts.index, quadPrediction, color='black')
ax.set_xlabel('Time')
ax.set_ylabel('Dow Jones index')
plt.show()

print(f'PMSE(quadratic) = {np.mean((quadPrediction-dow1941_ts)**2):.4f}')

PMSE(quadratic) = 1.9483

We see in this figure that the quadratic LSE predictor is quite satisfactory. The
results depend strongly on the size of the window, n. In the present case, the PMSE
is 1.9483. �

6.4.2 Moving Average Smoothing Predictors

A moving average smoother, MAS(m), is a sequence which replaces Xt by the a
fitted polynomial based on the window of size n = 2m+1, around Xt . The simplest
smoother is the linear one. That is, we fit by LSE a linear function to a given window.

Let S(m) = (A(m))
′(A(m)). In the linear case,

S(m) =
(
2m + 1 0

0 m(m + 1)(2m + 1)/3

)
. (6.26)

Then, the vector of coefficients is

β̂
(m)

(t) = S(m)(A(m))
′X(m)

t . (6.27)

The components of this vector are

β
(m)
0 (t) = 1

2m + 1

m∑
j=−m

Xt+j

β
(m)
1 (t) = 3

m(m + 1)(2m + 1)

m∑
j=1

j (Xt+j − Xt−j ).

(6.28)

Example 6.10 In Fig. 6.12 we present this linear smoother predictor for the
DOW1941 data, with m = 3 and s = 1. The calculation uses the function
masPrediction from the mistat package. The observed PMSE is 1.4917.
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Fig. 6.12 Linear smoother predictor for the DOW1941, with m = 3 and s = 1

masPrediction = mistat.masPredictor(dow1941_ts, 3, 1)

fig, ax = plt.subplots()
ax.scatter(dow1941_ts.index, dow1941_ts,

facecolors='none', edgecolors='grey')
ax.plot(dow1941_ts.index, masPrediction, color='black')
ax.set_xlabel('Time')
ax.set_ylabel('Dow Jones index')
plt.show()

print(f'PMSE(MAS) = {np.mean((masPrediction - dow1941_ts)**2):.4f}')

PMSE(MAS) = 1.4917

�

6.5 Dynamic Linear Models

The dynamic linear model (DLM) relates recursively the current observation,
possibly vector of several dimensions, to a linear function of parameters, possibly
random. Formally, we consider the random linear model

Xt = Atθ t + εt, (6.29)

where

θ t = Gtθ t−1 + ηt. (6.30)
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In this model, Xt and εt are q-dimensional vectors. θ t and ηt are p-dimensional
vectors. A is a q × p matrix of known constants, and G is a p × p matrix of known
constants. {εt} and {ηt} are mutually independent vectors. Furthermore, for each t ,
εt ∼ N(0,Vt ) and ηt ∼ N(0,Wt ).

6.5.1 Some Special Cases

Different kinds of time series can be formulated as dynamic linear models. For
example, a time series with a polynomial trend can be expressed as Eq. (6.29) with
q = 1, At = (1, t, t2, . . . , tp−1), and θ t is the random vector of the coefficients of
the polynomial trend, which might change with t .

6.5.1.1 The Normal Random Walk

The case of p = 1, q = 1, A = 1 × 1, and G = 1 × 1 is called a Normal Random
Walk. For this model, V0 = v and W0 = w are prior variances, and the prior
distribution of θ is N(m, c). The posterior distribution of θ given Xt is N(mt , ct ),
where

ct = (ct−1 + w)v/(ct−1 + v + w), (6.31)

and

mt = (1 − ct−1/v)mt−1 + (ct−1 /v)Xt . (6.32)

Example 6.11 Figure 6.13 represents a Normal Random Walk with a Bayesian
prediction. The prediction line in Fig. 6.13 is the posterior expectation mt . This
figure was computed using the function normRandomWalk in the mistat
package. Each application of this function yields another random graph.

res = mistat.normRandomWalk(100, 3, 1, 1, seed=2)

fig, ax = plt.subplots()
ax.scatter(res.t, res.X, facecolors='none', edgecolors='grey')
ax.plot(res.t, res.predicted, color='black')
ax.set_xlabel('Time')
ax.set_ylabel('TS')

plt.show()

�
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Fig. 6.13 Normal Random Walk (open circle) with a Bayesian prediction (black line)

6.5.1.2 Dynamic Linear Model With Linear Growth

Another application is the dynamic linear model with linear growth. In this case,
Xt = θ0 + θ1t + εt, with random coefficient θ . As a special case, consider the
following coefficients, At = (1, t)′ and Gt = I2. Here mt and Ct are the posterior
mean and covariance matrix, given recursively by m

mt = mt−1 + (1/rt )(Xt − A′
tmt−1)(Ct−1 + W)At , (6.33)

rt = v + A′
t(Ct−1 + W)At (6.34)

and

Ct = Ct−1 + W − (1/rt )(Ct−1 + W)ata′
t(Ct−1 + W). (6.35)

The predictor of Xt+1 at time t is X̂t+1(t) = A′
t+1mt.

Example 6.12 In Fig. 6.14, we present the one-day ahead prediction (s = 1)
for the DOW1941 data. We applied the function dlmLinearGrowth from the
mistat package with parameters X, C0, v, W , and M0. For M0 and C0 we
used the LSE of a regression line fitted to the first 50 data points. These are
M0 = (134.234,−0.3115)′, with covariance matrix

C0 =
(

0.22325 −0.00668
−0.00668 0.00032

)
,
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Fig. 6.14 One-step ahead prediction (s = 1) for the DOW1941 data using a dynamic linear model
with linear growth

and the random vector η has the covariance matrix

W =
(

0.3191 −0.0095
−0.0095 0.0004

)
.

The value for v is set to 1. As seen in Fig. 6.14, the prediction using this method is
very good.

C0 = np.array([[0.22325, -0.00668], [-0.00668, 0.00032]])
M0 = np.array([134.234, -0.3115])
W = np.array([[0.3191, -0.0095], [-0.0095, 0.0004]])
v = 1

dow1941 = mistat.load_data('DOW1941.csv')
predicted = mistat.dlmLinearGrowth(dow1941, C0, v, W, M0)

fig, ax = plt.subplots()
ax.scatter(dow1941.index, dow1941, facecolors='none', edgecolors='grey')
ax.plot(dow1941.index, predicted, color='black')
ax.set_xlabel('Time')
ax.set_ylabel('Dow Jones index')
plt.show()

�

6.5.1.3 Dynamic Linear Model for ARMA(p,q)

In this model, for a time series stationary around a mean zero, we can write
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Xt =
p∑

j=1

ajXt−j +
q∑

j=0

bj εt−j , (6.36)

where b0 = 1, ap �= 0, bq �= 0. Let n = max(1 + q, p). If p < n, we insert the
extra coefficients ap+1 = · · · = an = 0, and if q < n − 1, we insert bq+1 = · · · =
bn−1 = 0. We let A = (1, 0, . . . , 0), and

G =

⎛
⎜⎜⎜⎜⎝

a1 a2 . . . an

1 0 . . . 0
... 1 . . . 0
...

... 1 0

⎞
⎟⎟⎟⎟⎠ .

Furthermore, let h′ = (1, b1, . . . , bn−1), θ ′
t = (Xt , . . . , Xt−n+1), and η′

t =
(h′εt , 0, . . . , 0). Then, we can write the ARMA(p, q) time series as {Yt }, where

Yt = Aθ t , (6.37)

θ t = Gθ t−1 + ηt , (6.38)

with V = 0 and W = (Wi,j : i, j = 1, . . . , n), in which Wi,j = I {i = j =
1}σ 2(1 + ∑n−1

j=1 b2j ). The recursive formulas for mt and Ct are

mt = (

n∑
i=1

aimt−1,i , mt−1,1, . . . , mt−1,n−1)
′

+ (1/rt )(Yt −
n∑

i=1

aimt−1,i )(GCt−1G′ + W)(1, 0′)′, (6.39)

where

rt = W11 + a′Ct−1a, and a′ = (a1, . . . , an). (6.40)

We start the recursion withm′
0 = (Xp, . . . , X1) and

C0 = KX(0)Toeplitz(1, ρX(1), . . . , ρX(n − 1)).

The predictor of Xt+1 at time t is

X̂t+1 = AGmt = a′Xt . (6.41)
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We illustrate this method in the following example.

Example 6.13 Consider the stationary ARMA(3,2) given by

Xt = 0.5Xt−1 + 0.3Xt−2 + 0.1Xt−3 + εt + 0.3εt−1 + 0.5εt−2,

in which {εt } is an i.i.d. sequence of N(0,1) random variables. The initial random
variables are X1 ∼ N(0, 1),X2 ∼ X1 + (0, 1) and X3 ∼ X1 + X2 + N(0, 1). Here
a = (0.5, 0.3, 0.1), and b1 = 0.3, b2 = 0.5. The matrix G is

G =
⎛
⎝0.5 0.3 0.1

1 0 0
0 1 0

⎞
⎠ ,

V = 0, and

W =
⎛
⎝1.34 0 0

0 0 0
0 0 0

⎞
⎠ .

We start with m0 = (X3, X2, X1). All the characteristic roots are in the unit circle.
Thus this time series is covariance stationary. The Yule-Walker equations yield the
covariances: KX(0) = 7.69,KX(1) = 7.1495,KX(2) = 7.0967, andKX(3) =
6.4622. Thus we start the recursion with

C0 =
⎛
⎝7.6900 7.1495 7.0967
7.1495 7.6900 7.1495
7.0967 7.1495 7.6900

⎞
⎠ .

In Fig. 6.15 we see a random realization of this ARMA(3,2) and the corre-
sponding prediction line for s = 1. The time series was generated by the function
simulateARMA. Its random realization is given by the dots in the figure. The one-
day ahead prediction was computed by the function predictARMA and is given by
the solid line. Both functions are from the mistat package. The empirical PMSE
is 0.9411.

a = [0.5, 0.3, 0.1]
b = [0.3, 0.5]
ts = pd.Series(mistat.simulateARMA(100, a, b, seed=1))
predicted = mistat.predictARMA(ts, a)

fig, ax = plt.subplots()
ax.scatter(ts.index, ts, facecolors='none', edgecolors='grey')
ax.plot(ts.index, predicted, color='black')
ax.set_xlabel('Time')
ax.set_ylabel('TS')
plt.show()

print(f'PMSE(ARMA) = {np.mean((predicted - ts)**2):.4f}')
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Fig. 6.15 Random realization of ARMA(3,2) and the corresponding prediction line for s = 1

PMSE(ARMA) = 0.8505

�

6.6 Chapter Highlights

The main concepts and definitions introduced in this chapter include:

• Trend function
• Covariance stationary
• White noise
• Lag-correlation
• Partial lag-correlation
• Moving averages
• Auto-regressive
• z-Transform
• Characteristic polynomials
• Yule-Walker equations
• Toeplitz matrix
• MA model
• ARMA model
• ARIMA model
• Linear predictors
• Polynomial predictors
• Moving average smoother
• Dynamic linear models
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6.7 Exercises

Exercise 6.1 Evaluate trends and peaks in the data on COVID-19-related mortality
available in https://www.euromomo.eu/graphs-and-maps/. Evaluate the impact of
the time window on the line chart pattern. Identify periods with changes in mortality
and periods with stability in mortality.

Exercise 6.2 The data set “SeasCom” provides the monthly demand for a seasonal
commodity during 102 months:

(i) Plot the data to see the general growth of the demand.
(ii) Fit to the data the trend function:

f (t) = β1 + β2((t − 51)/102) + β3 cos(πt/6) + β4 sin(πt/6).

(iii) Plot the deviations of the data from the fitted trend, i.e., Ût = Xt − f̂ (t).
(iv) Compute the correlations between (Ût , Ût+1) and (Ût , Ût+2).

(v) What can you infer from these results?

Exercise 6.3 Write the formula for the lag-correlation ρ(h) for the case of station-
ary MA(q).

Exercise 6.4 For a stationaryMA(5), with coefficients β ′ = (1, 1.05, .76,−.35, .45, .55),
make a table of the covariances K(h) and lag-correlations ρ(h).

Exercise 6.5 Consider the infinite moving average Xt = ∑∞
j=0 qj et−j where et ∼

WN(0, σ 2), where 0 < q < 1. Compute

(i) E{Xt }
(ii) V {Xt }

Exercise 6.6 Consider the AR(1) given by Xt = 0.75Xt−1 + et , where et ∼
WN(0, σ 2), and σ 2 = 5. Answer the following:

(i) Is this sequence covariance stationary?
(ii) Find E{Xt },
(iii) Determine K(0) and K(1).

Exercise 6.7 Consider the auto-regressive series AR(2), namely,

Xt = 0.5Xt−1 − 0.3Xt−2 + et ,

where et ∼ WN(0, σ 2).

(i) Is this series covariance stationary?
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(ii) Express this AR(2) in the form (1 − φ1z
−1)(1 − φ2z

−1)Xt = et , and find the
values of φ1 and φ2.

(iii) Write this AR(2) as an MA(∞). (Hint: Write (1− φz−1)−1 = ∑∞
j=0 φjz−j .)

Exercise 6.8 Consider the AR(3) given byXt −0.5Xt−1+0.3Xt−2−0.2Xt−3 = et ,
where et ∼ WN(0, 1). Use the Yule-Walker equations to determine K(h), |h| =
0, 1, 2, 3.

Exercise 6.9 Write the Toeplitz matrix R4 corresponding to the series in Exer-
cise 6.7.

Exercise 6.10 Consider the series Xt −Xt−1 + 0.25Xt−2 = et + .4et−1 − .45et−2:

(i) Is this an ARMA(2,2) series?
(ii) Write the process as an MA(∞) series.

Exercise 6.11 Consider the second-order difference, �2Xt , of the DOW1941
series:

(i) Plot the acf and the pacf of these differences.
(ii) Can we infer that the DOW1941 series is an integrated ARIMA(1,2,2)?

Exercise 6.12 Consider again the data set SeasCom and the trend function f (t),
which was determined in Exercise 6.2. Apply the function optimalLinearPredictor
to the deviations of the data from its trend function. Add the results to the trend
function to obtain a one-day ahead prediction of the demand.



Chapter 7
Modern Analytic Methods: Part I

Preview This chapter is a door opener to computer age statistics. It covers a range
of supervised and unsupervised learning methods and demonstrates their use in
various applications.

7.1 Introduction to Computer Age Statistics

Big data and data science applications have been facilitated by hardware devel-
opments in computer science. As data storage began to increase, more advanced
software was required to process it. This led to the development of cloud computing
and distributed computing. Parallel machine processing was enhanced by the
development of Hadoop, based on off-the-shelf Google File System (GFS) and
Google MapReduce, for performing distributed computing.

New analytic methods were developed to handle very large data sets that
are being processed through distributed computing. These methods are typically
referred to as machine learning, statistical learning, data mining, big data analytics,
data science, or AI (artificial intelligence). Breiman (2001b) noted that models
used in big data analytics are developed with a different purpose than traditional
statistical models. Computer age models do not assume a probability-based structure
for the data, such as y = Xβ + ε, where ε ∼ NID(0, σ 2). In general, they make
no assumptions as to a “true” model producing the data. The advantage of these
computer age methods is that no assumptions are being made about model form or
error, so that standard goodness of fit assessment is not necessary. However, there are
still assumptions being made, and overfitting is assessed with holdout sets and cross-
validation. Moreover, conditions of non-stationarity and strong data stratification of
the data pose complex challenges in assessing predictive capabilities of such models
(Efron and Hastie 2016).

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-07566-7_7.
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Without making any assumptions about the “true” form of the relationship
between the x and the y, there is no need to estimate population parameters.
Rather, the emphasis of predictive analytics, and its ultimate measure of success,
is prediction accuracy. This is computed by first fitting a training set and then
calculating measures such as root-mean-square error or mean absolute deviation.
The next step is moving on to such computations on holdout data sets, on
out-of-sample data, or with cross-validation. Ultimately, the prediction error is
assessed on new data collected under new circumstances. In contrast to classical
statistical methods, this approach leads to a totally different mindset in developing
models. Traditional statistical research is focused on understanding the process that
generated the observed data and modeling the process using methods such as least
squares or maximum likelihood. Computer age statistics is modeling the data per se
and focuses on the algorithmic properties of the proposed methods. This chapter is
about such algorithms.

7.2 Data Preparation

Following problem elicitation and data collection, a data preparation step is needed.
This involves assessing missing data, duplicated records, missing values, outliers,
typos, and many other issues that weaken the quality of the data and hinder advanced
analysis.

Lawrence (2017) proposed a classification of the status of data into quality bands
labeled C, B, A, AA, and AAA. These represent the level of usability of data sets.

Band C (conceive) refers to the stage that the data is still being ingested. If there
is information about the data set, it comes from the data collection phase and how
the data was collected. The data has not yet been introduced to a programming
environment or tool in a way that allows operations to be performed on the data set.
The possible analyses to be performed on the data set in order to gain value from
the data possibly haven’t been conceived yet, as this can often only be determined
after inspecting the data itself.

Band B (believe) refers to the stage in which the data is loaded into an
environment that allows cleaning operations. However, the correctness of the data is
not fully assessed yet, and there may be errors or deficiencies that invalidate further
analysis. Therefore, analyses performed on data at this level are often more cursory
and exploratory with visualization methods to ascertain the correctness of the data.

In band A (analyze), the data is ready for deeper analysis. However, even if there
are no more factual errors in the data, the quality of an analysis or machine learning
model is greatly influenced by how the data is represented. For instance, operations
such as feature selection and normalization can greatly increase the accuracy of
machine learning models. Hence, these operations need to be performed before
arriving at accurate and adequate machine learning models or analyses.

In band AA (allow analysis), we consider the context in which the data set is
allowed to be used. Operations in this band detect, quantify, and potentially address
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any legal, moral, or social issues with the data set, since the consequences of using
illegal, immoral, or biased data sets can be enormous. Hence, this band is about
verifying whether analysis can be applied without (legal) penalties or negative
social impact. One may argue that legal and moral implications are not part of
data cleaning, but rather distinct parts of the data process. However, we argue that
readiness is about learning the ins and outs of your data set and detecting and solving
any potential problems that may occur when analyzing and using a data set.

Band AAA is reached when you determine that the data set is clean. The data
is self-contained, and no further input is needed from the people that collected or
created the data.

In Chap. 8 in the Industrial Statistics book, in a section on analytic pipelines, we
introduce a Python application providing scores to data sets based on these bands.
The application is available in https://github.com/pywash/pywash. Instructions on
how to use the pywash application on our GitHub site are available at https://
gedeck.github.io/mistat-code-solutions.

7.3 The Information Quality Framework

Breiman (2001b) depicts two cultures in the use of statistical modeling to reach
conclusions from data, data modeling, and algorithmic analysis. The information
quality framework (InfoQ) presented in this subsection addresses outputs from
both approaches, in the context of business, academic, services, and industrial data
analysis applications.

The InfoQ framework provides a structured approach for evaluating analytic
work. InfoQ is defined as the utility, U , derived by conducting a certain analysis,
f , on a given data set X, with respect to a given goal g. For the mathematically
inclined

InfoQ(U, f,X, g) = U(f (X|g)).

As an example, consider a cellular operator that wants to reduce churn by
launching a customer retention campaign. His goal, g, is to identify customers with
high potential for churn—the logical target of the campaign. The data, X, consists
of customer usage, lists of customers who changed operators, traffic patterns, and
problems reported to the call center. The data scientist plans to use a decision tree,
f , which will help define business rules that identify groups of customers with high
churn probabilities. The utility, U , is increased profits by targeting this campaign
only on customers with a high churn potential.

InfoQ is determined by eight dimensions that are assessed individually in the
context of the specific problem and goal. These dimensions are:

1. Data resolution: Is the measurement scale, measurement uncertainty, and level of
data aggregation appropriate relative to the goal?
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2. Data structure: Are the available data sources (including both structured and
unstructured data) comprehensive with respect to goal?

3. Data integration: Are the possibly disparate data sources properly integrated
together? Note: This step may involve resolving poor and confusing data
definitions, different units of measure, and varying time stamps.

4. Temporal relevance: Is the time-frame in which the data were collected relevant
to the goal?

5. Generalizability: Are results relevant in a wider context? In particular, is the
inference from the sample population to target population appropriate (statisti-
cally generalizable, Chap. 3)? Can other considerations be used to generalize the
findings?

6. Chronology of data and goal: Are the analyses and needs of the decision-maker
synched up in time?

7. Operationalization: Are results presented in terms that can drive action?
8. Communication: Are results presented to decision-makers at the right time and

in the right way?

Importantly, InfoQ helps structure discussions about trade-offs, strengths, and
weaknesses in data analysis projects (Kenett and Redman 2019). Consider the
cellular operator noted above, and consider a second potential data set X∗. X∗
includes everything X has, plus data on credit card churn, but that additional data
won’t be available for 2 months. With such data, resolution (the first dimension)
goes up, while temporal resolution (the fourth) goes down. In another scenario,
suppose a new machine learning analysis, f ∗, has been conducted in parallel, but
results from f and f ∗ don’t quite line up. “What to do?” These are the examples
of discussions between decision-makers, data scientists, and CAOs. Further, the
InfoQ framework can be used in a variety of settings, not just helping decision-
makers become more sophisticated. It can be used to assist in the design of a data
science project, as a mid-project assessment and as a post mortem to sort out lessons
learned. See Kenett and Shmueli (2016) for a comprehensive discussion of InfoQ
and its applications in risk management, healthcare, customer surveys, education,
and official statistics.

7.4 Determining Model Performance

The performance of a model can be measured in various ways. The Python package
scikit-learn contains a wide variety of different metrics. A few of them are
listed in Table 7.1.

In order to avoid overfitting, one needs to compare results derived from fitting
the model with a training set to results with a validation set not involved in fitting
the model. There are basically two approaches to achieve this.

A first approach is applicable with large data sets. In this context one can
randomly select a subset, through uniform or stratified sampling. This results in
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Table 7.1 Model performance metrics

Classification

Accuracy Accuracy is defined as the number of correct predictions made by the model on a
data set

Balanced
accuracy

Modification of accuracy suitable for imbalanced data sets

ROC

Regression

R2 Coefficient of determination (see Sect. 4.3.2.1)

R2
adj Adjusted coefficient of determination (see Sect. 4.3.2.1)

MSE Mean squared error is defined as the mean squared difference between actual and
predicted y

MAE Mean absolute error is defined as the mean absolute difference between actual and
predicted y

AIC Akaike information criterion

BIC Bayesian information criterion

Fig. 7.1 Splitting data set into training and validation set for model validation

two distinct data sets. One is used for fitting a model, the training set, and the
other for evaluating its performance, the validation set (see Fig. 7.1). A variation
on this approach is to split the data into three parts, a training set, a tuning set,
and a validation set. The tuning set is being used in fine-tuning the model, such as
determining the number of optimal splits in a decision tree introduced in Sect. 7.5
and the actual splits being determined by the training set. In most applications only
one has a training set and a validation set.
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a) b) c)

Fig. 7.2 (a) k-Fold cross-validation, (b) leave-one-out cross-validation, and (c) bootstrapping

When the number of records is not large, data partitioning might not be
advisable as each partition will contain too few records for model building and
performance evaluation. An alternative to data partitioning is cross-validation,
which is especially useful with small samples. Cross-validation is a procedure that
starts with partitioning the data into “folds,” or non-overlapping subsamples. Often,
we choose k = 5 folds, meaning that the data are randomly partitioned into five
equal parts, where each fold has 20% of the observations (see Fig. 7.2a). A model
is then fit k times. Each time, one of the folds is used as the validation set, and the
remaining k − 1 folds serve as the training set. The result is that each fold is used
once as the validation set, thereby producing predictions for every observation in the
data set. We can then combine the model’s predictions on each of the k validation
sets in order to evaluate the overall performance of the model. If the number of folds
is equal to the number of data points, this variant of k-fold cross-validation is also
known as leave-one-out cross-validation (see Fig. 7.2b).

Cross-validation is often used for choosing the algorithm’s parameters, i.e.,
tuning the model. An example is the number of splits in a decision tree. Cross-
validation estimates out-of-sample prediction error and enables the comparison
of statistical models. It is applied in supervised settings, such as regression and
decision trees, but does not easily extend to unsupervised methods, such as
dimensionality reduction methods or clustering. By fitting the model on the training
data set and then evaluating it on the testing set, the over-optimism of using data
twice is avoided. Craven and Wahba (1978) and Seeger (2008) use cross-validated
objective functions for statistical inference by integrating out-of-sample prediction
error estimation and model selection, into one step.

Consider a data set A where rows of A correspond to m observations of n

independent/predictor variables and the m × 1 vector b corresponding to one
dependent variables. A multiple linear regression model, where A is an m × n data
matrix, x is vector with n parameters, and b is a vector containing m responses.

Cross-validation can also be performed by randomly picking l observations (in
Fig. 7.2c, l = 4) and fitting a model using m − l data points. The predictions on the
l singled-out observations are then compared to their actual values and the results
of repeated sampling aggregated to assess the predictive performance.
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Fig. 7.3 Artificial data set for Example 7.1. The black points represent the data set which is
sampled from an underlying distribution shown by the grey crosses

If the data is collected with an underlying structure such as scores from football
games, players, or time windows, the cross-validation can account for the structure
by singling out specific players, games, or game periods. In these situations, all
observations for the selected unit of observation are excluded from the training set.

For such structured multilevel data, the use of cross-validation for estimating
out-of-sample prediction error and model selection deserves close attention. Specif-
ically, in order to test a model accounting for such a structure, the holdout set cannot
be a simple random sample of the data, but, as mentioned above, it needs to have
some multilevel structure where groups as well as individual observations are held
out. An example in the context of the analysis of a survey is provided in Price et al.
(1996). In general, there are no specific guidelines for conducting cross-validation
in multilevel structured data (Wang and Gelman 2015).

Example 7.1 We use an artificial data set to demonstrate the importance of stratified
sampling. The data set (see Fig. 7.3) has five sets of five data points. Such a data
set is typical for DOE results (design of experiments; see Chap. 5 in the Industrial
Statistics book). As the underlying distribution shows, the error is small on the left
and increases to the right.

In the following Python code, we first create 100 stratified samples by RSWR
of four data points from each set of five, create a quadratic model, and record the
model performance using r2. In the second block, we create a non-stratified sample
by RSWR of 20 data points from the full set of 25.

formula = 'y ~ 1 + x + np.power(x, 2)'
def sample80(df):

""" Sample 80% of the dataset using RSWR """
return df.sample(int(0.8 * len(df)), replace=True)

stratR2 = []
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Fig. 7.4 Distribution of r2 for model using stratified (solid line) and fully random (dashed line)
RSWR sampling

for _ in range(100):
stratSample = df.groupby('group').apply(lambda x: sample80(x))
model = smf.ols(formula=formula, data=stratSample).fit()
stratR2.append(model.rsquared)

sampleR2 = []
for _ in range(100):

sample = sample80(df)
model = smf.ols(formula=formula, data=sample).fit()
sampleR2.append(model.rsquared)

Figure 7.4 shows the distribution of the r2 values from the two sampling
approaches. The distribution for stratified sampling is tighter. An assessment of
model performance based on stratified sampling results will therefore be more
reliable.

�

7.5 Decision Trees

Partition models, also called decision trees, are non-parametric tools used in
supervised learning in the context of classification and regression. In supervised
learning you observe multiple covariate and one or more target variables. The goal
is to predict or classify the target using the values of covariates. Decision trees are
based on splits in covariates or predictors that create separate but homogeneous
groups. Splits are not sensitive to outliers but are based on a “greedy” one -step
look ahead, without accounting for overall performance. Breiman et al. (1984)
implement a decision tree procedure called CART (Classification And Regression
Trees). Other procedures are C4.5 and CHAID (Chi-square Automatic Interaction



7.5 Decision Trees 369

Detector). Trees can handle missing data without the need to perform imputation.
Moreover they produce rules on the predators that can be effectively communicated
and implemented. Single trees, sometimes called exploratory decision trees, are
however poor predictors. This can be improved with random forests, bootstrap
forests, and boosted trees that we discuss later.

To evaluate the performance of a decision tree, it is important to understand the
notion of class confusion and the confusion matrix. A confusion matrix for a target
variable we want to predict involving n classes is an n × n matrix with the columns
labeled with predicted classes and the rows labeled with actual classes.1 Each data
point in a training or validation set has an actual class label as well as the class
predicted by the decision tree (the predicted class). This combination determines
the confusion matrix.

For example, consider a two-class problem with a target response being “Pass” or
“Fail.” This will produce a 2×2 confusion matrix, with actual Pass predicted as Pass
and actual Fail predicted as Fail, these are on the diagonal. The lower left and top
right values are actual Pass predicted as Fail and actual Fail predicted as Pass. These
off-diagonal values correspond to misclassifications. When one class is rare, for
example, in large data sets with most data points being “Pass” and a relatively small
number of “Fail,” the confusion matrix can be misleading. Because the “Fail” class
is rare among the general population, the distribution of the target variable is highly
unbalanced. As the target distribution becomes more skewed, evaluation based on
misclassification (off diagonal in the confusion matrix) breaks down. For example,
consider a domain where the unusual class appears in 0.01% of the cases. A simple
rule that would work is to always choose the most prevalent class; this gives 99.9%
accuracy but is useless. In quality control it would never detect a Fail item, or, in
fraud detection, it would never detect rare cases of fraud, and misclassification can
be greatly misleading. With this background, let us see a decision tree in action.

Example 7.2 Data set SENSORS.csv consists of 174 measurements from 63
sensors tracking performance of a system under test. Each test generates values
for these 63 sensors and a status determined by the automatic test equipment. The
distribution of the test results is presented in Fig. 7.5. Our goal is to predict the
outcome recorded by the testing equipment, using sensor data. The test results are
coded as Pass (corresponding to “Good,” 47% of the observations) and Fail (all other
categories, marked in grey). The column Status is therefore a dichotomized version
of the column Test result.

sensors = mistat.load_data('SENSORS.csv')
dist = sensors['testResult'].value_counts()
dist = dist.sort_index()
ax = dist.plot.bar(color='lightgrey')
ax.patches[dist.index.get_loc('Good')].set_facecolor('black')
plt.show()

1 Note that this is the convention we use in this book. Some texts label the rows with predicted
classes and columns with actual classes.
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Fig. 7.5 Distribution of test results. The test result “Good” coded as Pass is highlighted in dark
grey

The goal is to predict the outcome recorded by the testing equipment, using sen-
sor data. We can use scikit-learn for this. It has decision tree implementations
for classification and regression. Here, we create a classification model for Pass-Fail
using the 67 sensors.

from sklearn.tree import DecisionTreeClassifier, plot_tree, export_text

predictors = [c for c in sensors.columns if c.startswith('sensor')]
outcome = 'status'
X = sensors[predictors]
y = sensors[outcome]

# Train the model
clf = DecisionTreeClassifier(ccp_alpha=0.012, random_state=0)
clf.fit(X, y)

# Visualization of tree
plot_tree(clf, feature_names=list(X.columns))
plt.show()

Scikit-learn provides two convenience functions to create text and graph
representations (see Fig. 7.6) of the resulting tree (plot_tree, export_text).

# Text representation of tree
print(export_text(clf, feature_names=list(X.columns)))



7.5 Decision Trees 371

Fig. 7.6 Decision tree of sensor data with three splits

|--- sensor18 <= 1.33
| |--- sensor07 <= 93.28
| | |--- sensor21 <= 1159.25
| | | |--- class: Pass
| | |--- sensor21 > 1159.25
| | | |--- class: Fail
| |--- sensor07 > 93.28
| | |--- class: Fail
|--- sensor18 > 1.33
| |--- class: Fail

Figure 7.7 shows an alternative representation using the dtreeviz package
with additional information for each of the nodes. A similar view is available for a
regression tree.

The first split is on sensor 18 with cutoff point 1.33. Eighty-seven of the 89
observations with sensor 18 > 1.33 are classified as Fail. Most observations with
sensor 18 ≤ 1.33 are classified as Pass (80 out of 85). By splitting this subset on
sensor 7 > 93.276, we find three Fails. The remaining 82 observations are split a
third time on sensor 21 ≤ 1159.25 giving a subset of 79 Pass and a second subset
with two Fail and one Pass. As we controlled the complexity of the tree using the
argument ccp_alpha, no further splits are found.

The decision tree provides us an effective way to classify tests as Pass-Fail with
just three sensors (out of 67). These splits are based on vertical splits by determining
cutoff values for the predictor variables, the 67 sensors. We present next how such
splits are determined in the SENSORS.csv data and how the performance of a
decision tree is evaluated. �

The node splitting in the scikit-learn implementation of the decision
tree can be based on two different criteria for classification, Gini impurity, and
entropy. These criteria measure the classification outcome of a given node. We first
determine the probability of finding each class k in the node m, pmk = Nmk/Nm.
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≤ >

Fig. 7.7 Decision tree visualization of classification tree

Using these probabilities we get

Gini impurity H(pm) =
∑

i∈classes
pmk(1 − pmk) (7.1)

Entropy H(pm) = −
∑

i∈classes
pmk log2(pmk). (7.2)

The quality of a split is now defined as a weighted sum of the criteria of the two
child nodes:

Gm = N left
m

Nm

H(pleftm ) + N
right
m

Nm

H(prightm ). (7.3)

The split that minimizes this sum is used in the decision tree. Figure 7.8 shows the
change of the Gm measure with changing sensor 18 value. We see that the Gini
criterion gives a split at 1.333. The split value for entropy is slightly higher at 1.425.
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Fig. 7.8 Determination of initial optimal split of sensor 18 using the Gini (solid) and entropy
(dotted) criteria

For continuous responses, scikit-learn implements the following criteria:

MSE H(ym) = 1

Nm

∑
y∈ym

(y − ȳm)2 (7.4)

MAE H(ym) = 1

Nm

∑
y∈ym

|y − median(ȳm)| (7.5)

Poisson H(ym) = 1

Nm

∑
y∈ym

(
y − log

y

ȳm

− y + ȳm

)
. (7.6)

Mean squared error (MSE) and mean absolute error (MAE) are the usual metrics
for regression. The Poisson criterion can be used if the outcome is a count or a
frequency.

Assessing the performance of a decision tree is based on an evaluation of its
predictive ability. The observations in each leaf are classified, as a group, according
to the leaf probability and a cut of threshold. The default cutoff is typically 50%
implying that all types of misclassification carry the same cost. The terminal node
that is reached by the path through the decision tree that always goes left classifies
all samples as Pass (see Fig. 7.6). In all other terminal nodes, the majority of samples
are classified as Fail (87 out of 89, 3 out of 3, and 2 out of 3). The ratio of classified to
total is used in scikit-learn to determine a prediction probability for a sample.
If, for example, a sample ends up in the node where two out of three training samples
are “Fail,” predict_proba will return a probability of 0.66 for Fail and 0.33 for
Pass.
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Fig. 7.9 Confusion matrix for the decision tree in Fig. 7.6

Based on these probabilities, a classification of the observations in the leaves is
conducted using the recorded values and the predicted values. In the case of the
Pass-Fail data of sensor data, with four slits, this generates a 2× 2 confusion matrix
displayed in Fig. 7.9. Only three observations are misclassified. They correspond to
observations which were a Pass in the test equipment and were classified as Fail by
the decision tree. The default cutoff for assigning the prediction is 50%. If we lower
the probability for Pass to 30%, we can reduce the number of false positives by 1 and
however increase the number of false negatives at the same time by 2. This might
improve the number of working products we falsely discard; however it would also
increase the risk of sending out defective products.

# missclassification probabilities
print('Probabilities of missclassified data points')
print(clf.predict_proba(X.loc[clf.predict(X) != y,:]))

# actual in rows / predicted in columns
print('Confusion matrix')
cm = confusion_matrix(y, clf.predict(X))
print(cm)

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)
disp.plot(cmap=plt.cm.Blues)
plt.show()

Probabilities of missclassified data points
[[0.97752809 0.02247191]
[0.97752809 0.02247191]
[0.66666667 0.33333333]]

Confusion matrix
[[92 0]
[ 3 79]]
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The decision tree analysis can be conducted on the original data set with a
target consisting of nine values. When the target is a continuous variable, the same
approach produces a regression tree where leaves are characterized not by counts
but by average and standard deviation values. We do not expand here on such cases.

Two main properties of decision trees are:

1. Decision trees use decision boundaries that are perpendicular to the data set space
axes. This is a direct consequence of the fact that trees select a single attribute at
a time.

2. Decision trees are “piecewise” classifiers that segment the data set space
recursively using a divide-and-conquer approach. In principle, a classification
tree can cut up the data set space arbitrarily finely into very small regions.

It is difficult to determine, in advance, if these properties are a good match to a
given data set. A decision tree is understandable to someone without a statistics or
mathematics background. If the data set does not have two instances with exactly
the same covariates, but different target values, and we continue to split the data, we
are left with a single observation at each leaf node. This essentially corresponds
to a lookup table. The accuracy of this tree is perfect, predicting correctly the
class for every training instance. However, such a tree does not generalize and will
not work as well on a validation set or new data. When providing a lookup table,
unseen instances do not get classified. On the other hand, a decision tree will give a
nontrivial classification even for data not seen before.

Tree-structured models are very flexible in what they can represent and, if
allowed to grow without bound, can fit up to an arbitrary precision. But the trees
may need to include a large number of splits in order to do so. The complexity of
the tree lies in the number of splits. Using a training set and a validation set, we can
balance accuracy and complexity.

Some strategies for obtaining a proper balance are (i) to stop growing the
tree before it gets too complex and (ii) to grow the tree until it is too large
and then “prune” it back, reducing its size (and thereby its complexity). There
are various methods for accomplishing both. The simplest method to limit tree
size is to specify a minimum number of observations that must be present in a
leaf (argument min_samples_leafint, default 1!). Cost-complexity pruning
combines the misclassification rate R(T ) of the tree T with the number of terminal
nodes |Nterminal|:

Rα(T ) = R(T ) + α|Nterminal|. (7.7)

This expression can be used to define an effective αeff for each node. By comparing
this effective αeff with a given α, we can successively remove nodes and prune the
tree. Figure 7.10 shows the effect of increasing cpp_alpha on tree size for the
SENSORS.csv data set. A suitable value can be derived using cross-validation.

The data at the leaf is used to derive statistical estimates of the value of the target
variable for future cases that would fall to that leaf. If we make predictions of the
target based on a very small subset of data, they can be inaccurate. A further option
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Fig. 7.10 Controlling tree depth using cost-complexity pruning. The value ccp_alphawas used
to get the tree in Fig. 7.6

is to derive a training set, a validation set, and a testing set. The training set is used
to build a tree, the validation set is used to prune the tree to get a balance between
accuracy and complexity, and the testing set is used to evaluate the performance of
the tree with fresh data.

7.6 Ensemble Models

Following this overview of decision trees, we move on to present a variation
based on computer-intensive methods that enhances the stability of the decision
tree predictions. A well-known approach to reduce variability in predictions is to
generate several predictions and compute a prediction based on majority votes
or averages. This “ensemble” method will work best if the combined estimates
are independent. In this case, the ensemble-based estimate will have a smaller
variability by a factor of square root of n, the number of combined estimates.

Bootstrap forests and boosted trees are ensembles derived from several decision
trees fit to versions of the original data set. Both are available as alternatives to
the decision tree method in Python. Popular implementations can be found in the
packages scikit-learn and xgboost. In these algorithms we fit a number of
trees, say 100 trees, to the data and use “majority vote” among the 100 trees to
classify a new observation (Breiman 2001a). For prediction, we average the 100
trees. An ensemble of 100 trees makes up a “forest.” However, fitting 100 trees
to the same data produces redundantly the same tree, 100 times. To address this
redundancy, we randomly pick subsets of the data. Technically we use bootstrapping



7.6 Ensemble Models 377

to create a new data set for each of the 100 trees by sampling the original data,
with replacement (see Sect. 3.10). This creates new data sets that are based on the
original data but are not identical to it. These 100 alternative data sets produce 100
different trees. The integration of multiple models, created through bootstrapping, is
known as “bootstrapped aggregation” or “bagging.” This is the approach in random
forests. In bootstrap forests, besides picking the data at random, also the set of
predictors used in the tree is picked at random. When determining the variable upon
which to split, bootstrap forests consider a randomly selected subset of the original
independent variables. Typically, the subset is of size around the square root of the
number of predictors. This gets the algorithm to consider variables not considered
in a standard decision tree. Looking at the ensemble of 100 trees produces more
robust and unbiased predictions. Reporting the number of bootstrap forest splits, on
each predictor variable, provides useful information on the relative importance of
the predictor variables.

Creating a random forest model in Python is straightforward with scikit-learn.

predictors = [c for c in sensors.columns if c.startswith('sensor')]
outcome = 'status'
X = sensors[predictors]
y = sensors[outcome]

# Train the model
clf = RandomForestClassifier(ccp_alpha=0.012, random_state=0)
clf.fit(X, y)

# actual in rows / predicted in columns
print('Confusion matrix')
print(confusion_matrix(y, clf.predict(X)))

Confusion matrix
[[92 0]
[ 0 82]]

We see that random forest classifier classifies all data correctly.
Another highly popular implementation of ensemble models is xgboost. It

provides classes that can be used in the same way as scikit-learn classifiers
and regressors.

from xgboost import XGBClassifier

predictors = [c for c in sensors.columns if c.startswith('sensor')]
outcome = 'status'
X = sensors[predictors]
# Encode outcome as 0 (Fail) and 1 (Pass)
y = np.array([1 if s == 'Pass' else 0 for s in sensors[outcome]])

# Train the model
xgb = XGBClassifier(objective='binary:logistic', subsample=.63,

eval_metric='logloss', use_label_encoder=False)
xgb.fit(X, y)

# actual in rows / predicted in columns
print('Confusion matrix')
print(confusion_matrix(y, xgb.predict(X)))
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Confusion matrix
[[92 0]
[ 0 82]]

The next section is about a competing method to decision trees, the Naïve Bayes
classifier.

7.7 Naïve Bayes Classifier

The basic idea of the Naïve Bayes classifier is a simple algorithm. For a given new
record to be classified, x1, x2, . . . , xn, find other records like it (i.e., y with same
values for the predictors x1, x2, . . . , xn). Following that, identify the prevalent class
among those records (the ys), and assign that class to the new record. This is applied
to categorical variables, and continuous variables must be discretized, binned, and
converted to categorical variables. The approach can be used efficiently with very
large data sets and relies on finding other records that share same predictor values
as the record to be classified. We want to find the “probability of y belonging to
class A, given specified values of predictors, x1, x2, . . . , xn.” However, even with
large data sets, it may be hard to find other records that exactly match the record to
be classified, in terms of predictor values. The Naïve Bayes classifier algorithm
assumes independence of predictor variables (within each class), and using the
multiplication rule computes the probability that the record to be classified belongs
to class A, given predictor values x1, x2, . . . xn, without limiting calculation only to
records that exactly share these same values. From Bayes’ theorem (Chap. 2), we
know that

P(y|x1, . . . , xn) = P(y)P (x1, . . . , xn|y)

P (x1, . . . , xn)
(7.8)

where y is the value to be classified and x1, . . . , xn are the predictors.
In the Naïve Bayes classifier, we move from conditioning the predictors

x1, x2, . . . , xn on the target y to conditioning the target y on the predictors
x1, x2, . . . , xn.

To calculate the expression on the right, we rely on the marginal distribution of
the predictors and assume their independence, hence (7.9)

P(y|x1, . . . , xn) = P(y)
∏

P(xi |y)

P (x1, . . . , xn)
. (7.9)

This is the basis of the Naïve Bayes classifier. It classifies a new observation
by estimating the probability that the observation belongs to each class and reports
the class with the highest probability. The Naïve Bayes classifier is very efficient
in terms of storage space and computation time. Training consists only of storing
counts of classes and feature occurrences, as each observation is recorded. However,
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in spite of its simplicity and the independence assumption, the Naïve Bayes classifier
performs surprisingly well. This is because the violation of the independence
assumption tends not to hurt classification performance. Consider the following
intuitive reasoning. Assume that two observations are strongly dependent so that
when one sees one we are also likely to see the other. If we treat them as
independent, observing one enhances the evidence for the observed class, and seeing
the other also enhances the evidence for its class. To some extent, this double-counts
the evidence. As long as the evidence is pointing in the right direction, classification
with this double-counting will not be harmful. In fact, the probability estimates
are expanded in the correct direction. The class probabilities will be therefore
overestimated for the correct class and underestimated for the incorrect classes.
Since for classification we pick the class with the highest estimated probability,
making these probabilities more extreme in the correct direction is not a problem.
It can however become a problem if we use the probability estimates themselves.
Naïve Bayes is therefore safely used for ranking where only the relative values in
the different classes are relevant. Another advantage of the Naïve Bayes classifier
is an “incremental learner.” An incremental learner is an induction technique that
updates its model, one observation at a time, and does not require to reprocess all
past training data when new training data becomes available. Incremental learning
is especially advantageous in applications where training labels are revealed in the
course of the application, and the classifier needs to reflect this new information as
quickly as possible. The Naïve Bayes classifier is included in nearly every machine
learning toolkit and serves as a common baseline classifier against which more
sophisticated methods are compared.

Example 7.3 To demonstrate the application of a Naïve Bayes classifier, we invoke
the results of a customer satisfaction survey, ABC.csv. The data consists of 266
responses to a questionnaire with a question on overall satisfaction (q1) and
responses to 125 other questions. Figure 7.11 shows the distribution of q1 and five
other questions.

abc = mistat.load_data('ABC.csv')
all_questions = [c for c in abc.columns if c.startswith('q')]
abc[all_questions] = abc[all_questions].astype('category')

questions = ['q1', 'q4', 'q5', 'q6', 'q7']
q1_5 = (abc['q1'] == 5)

fig, axes = plt.subplots(ncols=len(questions))
for ax, question in zip(axes, questions):

response = abc[question]
df = pd.DataFrame([

{satisfaction: counts for satisfaction, counts
in response.value_counts().iteritems()},

{satisfaction: counts for satisfaction, counts
in response[q1_5].value_counts().iteritems()},

])
df = df.transpose() # flip columns and rows
# add rows of 0 for missing satisfaction
for s in range(6):

if s not in df.index:
df.loc[s] = [0, 0]

df = df.fillna(0) # change missing values to 0
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Fig. 7.11 Distribution of q1 and five other questions with response “5” in q1 highlighted

df = df.sort_index() # the index contains the satisfaction
df.columns = ['counts', 'counts_q1_5'] # rename the columns
df['counts'].plot.barh(y='index', ax=ax, color='lightgrey')
df['counts_q1_5'].plot.barh(y='index', ax=ax, color='black')
ax.set_ylim(-0.5, 5.5)
ax.set_title(question)

plt.tight_layout()
plt.show()

We can see that the response “5” in q1 corresponds to top-level responses in q4,
q5, q6, and q7. Based on such responses in q4–q7, we can therefore confidently
predict a response “5” to q1.

The scikit-learn package provides two implementations of Naïve Bayes,
MultinomialNB for count data and BernoulliNB for binary data. However,
both implementations have the limitation that they are not suitable to handle missing
data. In order to derive a model for the survey data, we need to deal with this
problem by removing some of the questions and responses. There are various ways
of “imputing” missing values. Here we replace the missing values for a question
with the most frequent response for this question using the SimpleImputer
method.

predictors = list(all_questions)
predictors.remove('q1')
target = 'q1'
# q1 has missing values - remove rows from dataset
q1_missing = abc[target].isna()
X = abc.loc[~q1_missing, predictors]
y = abc.loc[~q1_missing, target]

imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
X = imp.fit_transform(X)
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Fig. 7.12 Comparison of performance of the Naïve Bayes, decision tree, and random forest
classifier with q1 as target and remaining questions as predictors

The Naïve Bayes classifier can be applied to all 125 responses to the question-
naire. The outputs from this analysis are presented in Fig. 7.12. We observe 119
misclassifications, mostly to respondents who answered “4” to q1.

nb_model = MultinomialNB()
nb_model.fit(X, y)
print(confusion_matrix(y, nb_model.predict(X)))
print(accuracy_score(y, nb_model.predict(X)))

[[ 7 2 2 0 0]
[ 3 14 4 4 0]
[ 8 6 35 16 5]
[ 9 1 12 66 30]
[ 3 0 2 12 21]]

0.5458015267175572

The Naïve Bayes classifier’s misclassification rate of 45% was obtained with an
easy-to-compute and incremental learning algorithm. A decision tree with 27 splits
(ccp_alpha=0.014) has a misclassification rate of 24%. The bootstrap forest
was much better with a 15% misclassification rate (see Fig. 7.12).

�

7.8 Neural Networks

A neural network is composed of a set of computational units, called neurons,
connected together through weighted connections. Neurons are organized in layers
so that every neuron in a layer is exclusively connected to the neurons of the
preceding layer and the subsequent layer. Every neuron, also called a node, rep-
resents an autonomous computational unit and receives inputs as a series of signals
that dictate its activation. Following activation, every neuron produces an output
signal. All the input signals reach the neuron simultaneously, so the neuron receives
more than one input signal, but it produces only one output signal. Every input
signal is associated with a connection weight. The weight determines the relative
importance the input signal can have in producing the final impulse transmitted by
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the neuron. The connections can be exciting, inhibiting, or null according to whether
the corresponding weights are, respectively, positive, negative, or null. The weights
are adaptive coefficients that, in analogy with the biological model, are modified in
response to the various signals that travel on the network according to a suitable
learning algorithm. A threshold value θ , called bias, is usually introduced. Bias is
similar to an intercept in a regression model.

In formal terms, a neuron j , with a threshold θj , receives n input signals x =
[x1, x2, . . . , xn] from the units to which it is connected in the previous layer. Each
signal is attached with an importance weight wj = [w1j , w2j , . . . , wnj ].

The input signals, their importance weights, and the threshold value determine
a combination function. The combination function produces a potential or net
input. An activation function transforms the potential into an output signal. The
combination function is usually linear, so that the potential is a weighted sum of the
input values multiplied by the weights of the respective connections. This sum is
compared to the threshold. The potential of neuron j , Pj is defined as

Pj =
n∑

i=1

wijxi − θj .

The bias term in the potential can be simplified by setting x0 = 1 and w0j = −θj :

Pj =
n∑

i=0

wijxi .

The output of the j th neuron, yj , is derived from applying the activation function
to potential Pj :

yj = f (x,wj ) = f 〈(
n∑

i=0

wijxi〉).

Neural network are organized in layers: input, output, or hidden. The input
layer receives information only from the external environment where each neuron
usually corresponds to an explanatory variable. The input layer does not perform any
calculation; it transmits information to the next level. The output layer produces the
final results, which are sent by the network to the outside of the system. Each of its
neurons corresponds to a response variable. In a neural network, there are generally
two or more response variables. Between the output layer and the input layer, there
can be one or more intermediate layers, called hidden layers, because they are not
directly in contact with the external environment. These layers are exclusively for
analysis; their function is to take the relationship between the input variables and
the output variables and adapt it more closely to the data.

The hidden layers are characterized by the used activation function. Commonly
used functions are:
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Linear The identity function. The linear combination of the n input variables
is not transformed:

f (x) = x.

The linear activation function can be used in conjunction with one of
the nonlinear activation functions. In this case, the linear activation
function is placed in the second layer, and the nonlinear activation
functions are placed in the first layer. This is useful if you want to
first reduce the dimensionality of the n input variables to m and then
have a nonlinear model for the m variables.
If only linear activation functions are used, the model for a continuous
output variable y reduces to a linear combination of theX variables and
therefore corresponds to linear regression. For a nominal or ordinal y

output variable, the model reduces to a logit, logistic, or multinomial
logistic regression.

ReLU The rectified linear activation function. The ReLU function is zero for
negative values and linear for positive values:

f (x) = max(x, 0).

The ReLU activation function as a replacement of the sigmoid activa-
tion function is one of the key changes that made deep learning neural
networks possible.

TanH The hyperbolic tangent or sigmoid function. TanH transforms values
to be between −1 and 1 and is the centered and scaled version of the
logistic function. The hyperbolic tangent function is

f (x) = e2x − 1

e2x + 1
.

Gaussian The Gaussian function. This option is used for radial basis function
behavior or when the response surface is Gaussian (normal) in shape.
The Gaussian function is

f (x) = e−x2 .

The “architecture” of a neural network refers to the network’s organization: the
number of layers, the number of units (neurons) belonging to each layer, and the
manner in which the units are connected. Four main characteristics are used to
classify network topology:

• Degree of differentiation of the input and output layer
• Number of layers
• Direction of flow for the computation
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• Type of connections

The variables used in a neural network can be classified by type (qualitative or
quantitative) and by their role in the network (input or output). Input and output in
neural networks correspond to explanatory and response in statistical methods. In a
neural network, quantitative variables are represented by one neuron. The qualitative
variables, both explanatory and responses, are represented in a binary way using
several neurons for every variable; the number of neurons equals the number of
levels of the variable. The number of neurons to represent a variable need not be
equal to the number of its levels. Since the value of that neuron will be completely
determined by the others, one often eliminates one level or one neuron. Once the
variables are coded, a preliminary descriptive analysis may indicate the need of
a data transformation or to standardize the input variables. If a network has been
trained with transformed input or output, when it is used for prediction, the outputs
must be mapped on to the original scale.

The objective of training a neural network with data, to determine its weights
on the basis of the available data set, is not to find an exact representation of the
training data but to build a model that can be generalized or that allows us to obtain
valid classifications and predictions when fed with new data. Similar to tree models,
the performance of a supervised neural network can be evaluated with reference to
a training data set or validation data set. If the network is very complex and the
training is carried out for a large number of iterations, the network can perfectly
classify or predict the data in the training set. This could be desirable when the
training sample represents a “perfect” image of the population from which it has
been drawn, but it is counterproductive in real applications since it implies reduced
predictive capacities on a new data set. This phenomenon is known as overfitting.
To illustrate the problem, consider only two observations for an input variable and
an output variable. A straight line adapts perfectly to the data but poorly predicts
a third observation, especially if it is radically different from the previous two.
A simpler model, the arithmetic average of the two output observations, will fit
the two points worse but may be a reasonable predictor of a third point. To limit
the overfitting problem, it is important to control the degree of complexity of
the model. A model with few parameters will involve a modest generalization. A
model that is too complex may even adapt to noise in the data set, perhaps caused
by measurement errors or anomalous observations; this will lead to inaccurate
generalizations. Regularization is used to control a neural network’s complexity.
It consists of the addition of a penalty term to the error function. Some typical
penalty functions are summarized in Table 7.2. Regularization is not only important
for neural networks. It also forms the basis of many other approaches, e.g., ridge
regression or Lasso regression.

To find weights that yield the best predictions, one applies a process that is
repeated for all records. At each record, one compares prediction to actual. The
difference is the error for the output node. The error is propagated back and
distributed to all the hidden nodes and used to update their weights. Weights are
updated after each record is run through the network. Completion of all records
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Table 7.2 Regularization methods

Method Penalty function Description

Squared (L2)
∑

β2
i Use this method if you think that most of your X variables

are contributing to the predictive ability of the model

Absolute (L1)
∑ |βi | Use either of these methods if you have a large number of

X variables and you think that a few of them contribute
more than others to the predictive ability of the model

Weight decay
∑ β2

i

1+β2
i

No penalty – Does not use a penalty. You can use this option if you have
a large amount of data and you want the fitting process to
go quickly. However, this option can lead to models with
lower predictive performance than models that use a
penalty

through the network is one epoch (also called sweep or iteration). After one epoch
is completed, one returns to the first record and repeats the process.

The updating stops: (1) when weights change very little from one iteration to the
next, (2) when the misclassification rate reaches a required threshold, or (3) when a
limit on runs is reached.

Neural networks are used for classification and prediction. They can capture
complicated relationship between the outcome and a set of predictors. The network
“learns” and updates its model iteratively as more data are fed into it. A major
danger in neural networks is overfitting. It requires large amounts of data and has
good predictive performance but is “black box” in nature.

Example 7.4 With the emergence of deep learning, TensorFlow, Keras, or PyTorch
are the go-to options for implementing neural networks. It would go beyond
the scope of this book to cover these packages in detail. In addition, the rapid
development in this field would make examples quickly outdated. Instead we will
demonstrate neural networks using the scikit-learn implementation.

After loading, we preprocess the data and impute missing data as described in
Example 7.3. Following this, the data need to be range normalized onto the interval
0 to 1. This helps the training process.

# scale predictor variables to interval (0, 1)
X = MinMaxScaler().fit_transform(X)

clf = MLPClassifier(hidden_layer_sizes=(4, ), activation='logistic',
solver='lbfgs', max_iter=1000,
random_state=1)

clf.fit(X, y)
# clf.predict(X)
fig, ax = plt.subplots()
ConfusionMatrixDisplay.from_estimator(clf, X, y, ax=ax,

cmap=plt.cm.Greys, colorbar=False)

ax.set_title(f'Neural network {accuracy_score(y, clf.predict(X)):.2f}')
plt.tight_layout()
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Fig. 7.13 Confusion matrix
of neural network classifier
for predicting q1 from the
remaining responses

The resulting model has an accuracy of 96% (see Fig. 7.13). However, care must
be taken that this performance is not due to overfitting. This will require monitoring
the training process using validation data. �

7.9 Clustering Methods

Clustering methods are unsupervised methods where the data has no variable labeled
as a target. Our goal is to group similar items together, in clusters. In the previous
sections, we discussed supervised methods where one of the variables is labeled
as a target response and the other variables as predictors that are used to predict
the target. In clustering methods all variables have an equal role. We differentiate
between hierarchical and non-hierarchical clustering methods.

7.9.1 Hierarchical Clustering

Hierarchical clustering is generated by starting with each observation as its own
cluster. Then, clusters are merged iteratively until only a single cluster remains.
The clusters are merged in function of a distance function. The closest clusters are
merged into a new cluster. The end result of an hierarchical clustering method is a
dendrogram, where the j -cluster set is obtained by merging clusters from the (j +1)
cluster set.

Example 7.5 To demonstrate clustering methods, we use the ALMPIN.csv
data set that consists of six measurements on 70 aluminum pins introduced in
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Fig. 7.14 Dendrogram of the six variables in the ALMPIN data with 70 observations

Chap. 4 as Example 4.3. To conduct this analysis in Python, we can cluster the
data using implementations in scipy or scikit-learn. Here, we use the
AgglomerativeClustering method from scikit-learn. The default
settings use the Ward algorithm with the Euclidean distance. We also first
standardize the data. The dendrogram in Fig. 7.14 is produced by scipy. However,
as the preparation of the input data for scipy’s dendrogram method is not
straightforward, we provide a function for this with the mistat package. The
dendrogram starts at the bottom with 70 clusters of individual observations and
ends up on the top as one cluster.

from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from mistat import plot_dendrogram

almpin = mistat.load_data('ALMPIN.csv')

scaler = StandardScaler()
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)

X = scaler.fit_transform(almpin)
model = model.fit(X)

fig, ax = plt.subplots()
plot_dendrogram(model, ax=ax)
ax.set_title('Dendrogram')
plt.show()

�
The diagram in Fig. 7.14 can be cut across at any level to give any desired number

of clusters. Moreover, once two clusters are joined, they remain joined in all higher
levels of the hierarchy. The merging of clusters is based on computation of a distance
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between clusters with a merge on the closest one. There are several possible distance
measures described next.

Ward’s minimum variance method minimizes the total within-cluster variance.
With this method, the distance between two clusters is the ANOVA sum of squares
between the two clusters summed over all the variables. At each clustering step, the
within-cluster sum of squares is minimized over all partitions obtainable by merging
two clusters from the previous generation. Ward’s method tends to join clusters with
a small number of observations and is strongly biased toward producing clusters
with approximately the same number of observations. It is also sensitive to outliers.
The distance for Ward’s method is

DKL =
∥∥xK − xL

∥∥2
1

NK
+ 1

NL

(7.10)

where:

CK is the Kth cluster, subset of 1, 2, ..., n.
NK is the number of observations in CK .
xK is the mean vector for cluster CK .∥∥x∥∥ is the square root of the sum of the squares of the elements of x (the

Euclidean length of the vector x).

Other methods include single linkage, complete linkage, and average linkage.

Single Linkage
The distance for the single-linkage cluster method is

DKL = min
i∈CK

min
j∈CL

d(xi, xj ) (7.11)

with d(xi, xj ) = ∥∥xi − xj

∥∥2 where xi is the ith observation.
Complete Linkage

The distance for the complete-linkage cluster method is

DKL = max
i∈CK

max
j∈CL

d(xi, xj ). (7.12)

Average Linkage
For average linkage, the distance between two clusters is found by computing the
average dissimilarity of each item in the first cluster to each item in the second
cluster. The distance for the average linkage cluster method is

DKL =
∑
i∈CK

∑
j∈CL

d(xi, xj )

NKNL

. (7.13)
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These distances perform differently on different clustering problems. The den-
drograms from single-linkage and complete-linkage methods are invariant under
monotone transformations of the pairwise distances. This does not hold for the
average-linkage method. Single linkage often leads to long “chains” of clusters,
joined by individual points located near each other. Complete linkage tends to
produce many small, compact clusters. Average linkage is dependent upon the size
of the clusters. Single linkage and complete linkage depend only on the smallest or
largest distance, respectively, and not on the size of the clusters.

7.9.2 K-Means Clustering

Another clustering methods is K-means. The K-means clustering is formed by an
iterative fitting process. The K-means algorithm first selects a set of K points, called
cluster seeds, as an initial setup for the means of the clusters. Each observation is
assigned to the nearest cluster seed, to form a set of temporary clusters. The seeds
are then replaced by the actual cluster means, and the points are reassigned. The
process continues until no further changes occur in the clusters.

TheK-means algorithm is a special case of the EM algorithm, where E stands for
expectation and M stands for maximization. In the case of the K-means algorithm,
the calculation of temporary cluster means represents the expectation step, and
the assignment of points to the closest clusters represents the maximization step.
K-Means clustering supports only numeric columns. K-Means clustering ignores
nominal and ordinal data characteristics and treats all variables as continuous.

In K-means you must specify in advance the number of clusters, K . However,
you can compare the results of different values of K in order to select an optimal
number of clusters for your data. For background on K-means clustering, see Hastie
et al. (2009).

Figure 7.15 is a graphical representation of a K-means analysis of the
ALMPIN data. To derive this analysis in Python, use the KMeans method
from scikit-learn. The data set needs to be standardized prior to clustering
(StandardScaler). Use the predict method to predict cluster membership.
The transform method returns the distances to the K cluster centers.

from sklearn.cluster import KMeans

almpin = mistat.load_data('ALMPIN.csv')

scaler = StandardScaler()
X = scaler.fit_transform(almpin)
model = KMeans(n_clusters=9, random_state=1).fit(X)
print('Cluster membership (first two data points)')
print(model.predict(X)[:2])
print()
print('Distance to cluster center (first two data points)')
model.transform(X)[:2,:]
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Fig. 7.15 K-Means clustering of the six variables in the ALMPIN data with 70 observations

Cluster membership (first two data points)
[1 8]

Distance to cluster center (first two data points)

array([[3.33269867, 1.04495283, 9.69783046, 2.48008435, 5.57643458,
3.98844284, 3.77738831, 2.52221759, 2.4300689 ],

[5.66992727, 2.7429881 , 7.9467812 , 4.78497545, 7.75144534,
4.68141833, 5.77196141, 4.89153706, 0.4705252 ]])

In Fig. 7.15, the data set is split into nine clusters. Cluster 2 has one observation,
and clusters 4, 5, and 8 have two observations each. These clusters include unusual
observations that can be characterized by further investigations.

7.9.3 Cluster Number Selection

For practical applications, it is necessary to set the number of clusters. This applies
to both hierarchical clustering and K-means clustering. While this is often a
subjective decision, a large number of methods aim to derive an optimal cluster
number.

One of these is the elbow method. We determine the overall average within-
cluster sum of squares (WSS) as a function of the cluster number. Figure 7.16
demonstrates this for the ALMPIN data set. WSS decreases with the increasing
number of clusters. However we can see that the change in WSS gets smaller and
smaller. By selecting a cluster number near the elbow of the curve, at 3, we find a
compromise between complexity and improvement.

Scikit-learn provides the following cluster performance metrics: silhouette
coefficient, Calinski-Harabasz index, and Davies-Bouldin index. Figure 7.17 shows
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Fig. 7.16 Elbow method for cluster number determination

Fig. 7.17 Davies-Bouldin index for cluster number determination

the variation of the Davies-Bouldin index as a function of cluster number. The index
combines the average distance of each cluster member to the cluster center and the
distance between cluster centers. The optimal cluster number is selected based on
the minimum of this curve. In this case, we select three clusters.

7.9 Clustering Methods
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7.10 Chapter Highlights

This chapter introduced a variety of supervised and unsupervised learning methods.
This chapter can only provide a glimpse into modern analytic methods. More in-
depth study of these methods will require access to specialized books listed as
references.

The topics covered in the chapter include:

• Validation data
• Confusion matrix
• Decision trees
• Boosted tree
• Bootstrap forest
• Random forest
• Bayes’ theorem
• Naïve Bayes classifier
• Cluster analysis
• K-Means clusters

7.11 Exercises

Exercise 7.1 Make up a list of supervised and unsupervised applications mentioned
in COVID19-related applications.

Exercise 7.2 Create a pruned decision tree model for the testResult column
in the SENSORS.csv data set using scikit-learn. Compare the results to the
status model from Example 7.2.

Exercise 7.3 Fit a gradient boosting model to the sensor data to predict status as
the outcome. Use the property feature_importances_ to identify important
predictors and compare to the results from the decision tree model in Sect. 7.5.

Exercise 7.4 Fit a random forest model to the sensor data to predict status as
the outcome. Use the property feature_importances_ to identify important
predictors and compare to the results from the decision tree model in Sect. 7.5.

Exercise 7.5 Build decision tree, gradient boosting, and random forest models for
the sensor data using status as a target variable.

Use LabelEncoder from the scikit-learn package to convert the out-
come variable into numerical values prior to model building. Split the data set into
a 60% training and 40% validation set using sklearn.model_selection.
train_test_split.
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Exercise 7.6 One way of assessing overfitting in models is to assess model
performance by repeated randomization of the outcome variable. Build a decision
tree model for the sensor data using status as a target variable. Repeat the model
training 100 times with randomized outcome.

Exercise 7.7 The data set DISTILLATION-TOWER.csv contains a number of
sensor data from a distillation tower measured at regular intervals. Use the temper-
ature data measured at different locations in the tower (TEMP#) to create a decision
tree regressor to predict the resulting vapor pressure (VapourPressure):

(i) Split the data set into training and validation set using a 80:20 ratio.
(ii) For each ccp_alpha value of the decision tree regressor model, use the test

set to estimate the MSE (mean_squared_error) of the resulting model.
Select a value of ccp_alpha to build the final model. The ccp_alpha val-
ues are returned using the cost_complexity_pruning_path method.

(iii) Visualize the final model using any of the available methods.

Exercise 7.8 Create a Naïve Bayes classifier for the sensor data using status as a
target. Compare the confusion matrix to the decision tree model (see Fig. 7.9).

Hint: Use the scikit-learn method KBinsDiscretizer to bin the
sensor data, and encode them as ordinal data. Try a different number of bins
and binning strategies.

Exercise 7.9 Nutritional data from 961 different food items is given in the file
FOOD.csv. For each food item, there are seven variables: fat (grams), food energy
(calories), carbohydrates (grams), protein (grams), cholesterol (milligrams), weight
(grams), and saturated fat (grams). Use Ward’s distance to construct ten clusters of
food items with similarity in the seven recorded variables using cluster analysis of
variables.

Exercise 7.10 Repeat Exercise 7.9 with different linkage methods, and compare
the results.

Exercise 7.11 Apply the K-means cluster feature to the sensor variables in SEN-
SORS.cvs, and interpret the clusters using the test result and status label.

Exercise 7.12 Develop a procedure based on K-means for quality control using the
SENSORS.cvs data. Derive its confusion matrix.



Chapter 8
Modern Analytic Methods: Part II

Preview Chapter 8 includes the tip of the iceberg examples with what we thought
were interesting insights, not always available in standard texts. The chapter covers
functional data analysis, text analytics, reinforcement learning, Bayesian networks,
and causality models.

8.1 Functional Data Analysis

When you collect data from tests or measurements over time or other dimensions,
we might want to focus on the functional structure of the data. Examples can be
chromatograms from high-performance liquid chromatography (HPLC) systems,
dissolution profiles of drug tablets over time, distribution of particle sizes, or
measurement of sensors. Functional data is different using individual measurements
recorded at different sets of time points. It views functional observations as
continuously defined so that an observation is the entire function. With functional
data consisting of a set of curves representing repeated measurements, we char-
acterize the main features of the data, for example, with a functional version of
principal component analysis (FPCA). The regular version of principal component
analysis (PCA) is presented in detail in Chap. 4 (Industrial Statistics book) on
Multivariate Statistical Process Control. With this background, let us see an example
of functional data analysis (FDA).

Example 8.1 Data set DISSOLUTION.csv consists of 12 test and reference tablets
measured under dissolution conditions at 5, 10, 15, 20, 30, and 45 s. The level
of dissolution recorded at these time instances is the basis for the dissolution
functions we will analyze. The test tablets behavior is compared to the reference
tablets paths. Ideally the tested generic product is identical to the brand reference.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-07566-7_8.
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Fig. 8.1 Dissolution paths of reference and tested paths. T5R is highlighted

Figure 8.1 shows the dissolution. We can see the curves varying considerably across
the different experiments.

dissolution = mistat.load_data('DISSOLUTION.csv')

fig, axes = plt.subplots(ncols=2, figsize=(5, 3))
for label, group in dissolution.groupby('Label'):

ax = axes[0] if label.endswith('R') else axes[1]
color = 'black' if label == 'T5R' else 'grey'
lw = 2 if label == 'T5R' else 1
group.plot(x='Time', y='Data', color=color, ax=ax,

marker='o', markersize=3, lw=lw)
for ax in axes:

ax.get_legend().remove()
ax.set_ylim(0, 105)

axes[0].set_title('Reference')
axes[1].set_title('Test')
plt.tight_layout()
plt.show()

To analyze these data using functional data analysis, we use the Python package
scikit-fda. It offers a comprehensive set of tools for FDA. The first step is
to describe the data using functions. Here, we approximate the function using
quadratic splines without smoothing. Periodic functions will be better described
using a Fourier basis.

from skfda import FDataGrid
from skfda.representation.interpolation import SplineInterpolation

# convert the data to FDataGrid
data = []
labels = []
names = []
for label, group in dissolution.groupby('Label'):

data.append(group['Data'].values)
labels.append('Reference' if label.endswith('R') else 'Test')
names.append(label)

labels = np.array(labels)
grid_points = np.array(sorted(dissolution['Time'].unique()))
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fd = FDataGrid(np.array(data), grid_points,
dataset_name='Dissolution',
argument_names=['Time'],
coordinate_names=['Dissolution'],
interpolation=SplineInterpolation(2))

The functional representation of the data set is stored in fd using the specialized
class FDataGrid. We can use this to calculate the average dissolution curve for
the two groups.

from skfda.exploratory import stats

mean_ref = stats.mean(fd[labels=='Reference'])
mean_test = stats.mean(fd[labels=='Test'])
means = mean_ref.concatenate(mean_test)

Figure 8.2 visualizes the functional representation and the average dissolution
curves using the following Python code.

group_colors = {'Reference': 'grey', 'Test': 'black'}

fig, axes = plt.subplots(ncols=2)

fd.plot(axes=[axes[0]], group=labels, group_colors=group_colors)
for label, group in dissolution.groupby('Label'):

color = 'grey' if label.endswith('R') else 'black'
group.plot.scatter(x='Time', y='Data', c=color, ax=axes[0], alpha=0.2)

means.plot(axes=[axes[1]], group=['Reference', 'Test'],
group_colors=group_colors)

fig.suptitle('')
axes[0].set_title('Functional representation')
axes[1].set_title('Average dissolution')
for ax in axes:

Fig. 8.2 Representation of the data using quadratic splines. The graph on the right shows the
average dissolution curve for reference (grey) and test (black)
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ax.set_ylim(0, 105)
ax.set_ylabel('Dissolution')

plt.tight_layout()
plt.show()

We see in Fig. 8.2 that the individual curves are shifted to the left and right
of the mean curves, most likely due to differences in timing while running the
individual dissolution experiments. FDA provides methods to align the individual
observations. These approaches are known as registration in FDA. The method we
use in our example is shift registration.

from skfda.preprocessing.registration import ShiftRegistration
shift_registration = ShiftRegistration()
fd_registered = shift_registration.fit_transform(fd)

Figure 8.3 shows the effect of shift registration on our data set. The spread is
now much tighter, and we can see clearly that the shape of the individual curves is
similar. As some curves are shifted considerably, we can see on the right that a few
curves indicate decreasing dissolution. This is obviously an artifact of the chosen
functional representation. If we use linear splines, the edges are better represented.
From here on, we will use the linear spline representation.

Functional data analysis extends the capabilities of traditional statistical tech-
niques in a number of ways. For example, even though an observation is no longer a
data point, the concept of outliers still exists. Visual inspection of Fig. 8.1 clearly
shows that T5R is an outlier. The IQROutlierDetector in scikit-fda
implements a generalization of outlier concepts in boxplots and confirms our
assumption. It is possible that the dissolution at 30 seconds was misreported too
low. A double check of the record should help clarify this.

Fig. 8.3 Functional representation after shift registration. Left: result for representing the data
using quadratic splines. Right: result for representing the data using linear splines
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Fig. 8.4 FDA implementation of boxplot. The grey area corresponds to the Q1–Q3 range usual
boxplots; the dashed lines are the curves of individual curves that are considered outliers

from skfda.exploratory.outliers import IQROutlierDetector

out_detector = IQROutlierDetector()
outliers = out_detector.fit_predict(fd)
print('Outlier:')
for name, outlier in zip(names, outliers):

if outlier == 1:
continue

print(' ', name)

Outlier:
T5R

Figure 8.4 shows the boxplot representation of the functional data set. A similar
representation of the shift-registered data set shows a much tighter grey region in
the middle.

from skfda.exploratory.visualization import Boxplot
from matplotlib.colors import LinearSegmentedColormap

def addBoxplot(fd, ax):
cm = LinearSegmentedColormap.from_list('fda', ['grey', 'lightgrey'])
boxplot = Boxplot(fd)
boxplot.barcol = 'black'
boxplot.outliercol = 'black'
boxplot.colormap = cm
boxplot.plot(axes=[ax])

fig, axes = plt.subplots(ncols=2)
addBoxplot(fd[labels=='Reference'], axes[0])
addBoxplot(fd[labels=='Test'], axes[1])
fig.suptitle('')
axes[0].set_title('Reference')
axes[1].set_title('Test')
for ax in axes:
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ax.set_ylim(0, 105)
ax.set_ylabel('Dissolution')

plt.tight_layout()
plt.show()

Functional data analysis methods are considering change over time (or space
or some other dimension). Because we are observing curves rather than individual
values, the vector-valued observations X1, . . . , Xn are replaced by the univariate
functions X1(t), . . . , Xn(t), where t is a continuous index varying within a closed
interval [0, T]. In functional PCA, each sample curve is considered to be an
independent realization of a univariate stochastic process X(t) with smooth mean
function EX(t) = μ(t) and covariance function cov{X(s),X(t)} = σ(s, t).

from skfda.preprocessing.dim_reduction.projection import FPCA
fpca = FPCA(n_components=2)
fpca.fit(fd)

df = pd.DataFrame(fpca.transform(fd), columns=['FPCA 1', 'FPCA 2'])
df['labels'] = labels
df['names'] = names

lim1 = (min(df['FPCA 1'])-5, max(df['FPCA 1'])+5)
lim2 = (min(df['FPCA 2'])-5, max(df['FPCA 2'])+5)
fig, axes = plt.subplots(ncols=2, figsize=(5, 3))
for ax, label in zip(axes, ['Reference', 'Test']):

subset = df[df.labels == label]
subset.plot.scatter(x='FPCA 1', y='FPCA 2', ax=ax, color='lightgrey')
ax.set_title(label)
ax.set_xlim(*lim1)
ax.set_ylim(*lim2)

outlier = df[df.names == 'T5R']
outlier.plot.scatter(x='FPCA 1', y='FPCA 2', color='black',

marker='s', ax=axes[0])

plt.tight_layout()
plt.show()

Figure 8.5 shows the results of the PCA analysis for the DISSOLV data set
with the outlier T5R highlighted. In functional PCA we assume that the smooth
curves are the completely observed curves. This gives a set of eigenvalues {λj } and
(smooth) eigenfunctions {Vj (t)} extracted from the sample covariance matrix of the
smoothed data. The first and second estimated eigenfunctions are then examined to
exhibit location of individual curve variation. Other approaches to functional PCA
have been proposed, including the use of roughness penalties and regularization,
which optimize the selection of smoothing parameter and choice of the number of
principal components simultaneously rather than separately in two stages.

�
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Fig. 8.5 Scatterplot of top two functional principal components; the outlier T5R is highlighted
by a square marker

8.2 Text Analytics

In this section we discuss methods for analyzing text data, sometimes called
unstructured data. Other types of unstructured data include voice recordings and
images. The approach we describe is based on a collection of documents or
text items that can consist of individual sentences, paragraphs, or a collection of
paragraphs. As an example, consider Amazon reviews. You can consider each
sentence in the review as a document or the whole review as a single document.
A collection of document is called a corpus. We will look at the words, also
called tokens, that are included in a document. The analysis we perform is based
on a list of terms consisting of tokens included in each document. This approach
to text analytics is called “bag of words” where every item has just a collection
of individual words. It ignores grammar, word order, sentence structure, and
punctuation. Although apparently simplistic, it performs surprisingly well. Before
conducting the bag of words analysis, some text preparation is required. This
involves tokenizing, phrasing, and terming. The tokenizing stage converts text to
lowercase, applies tokenizing method to group characters into tokens, and recodes
tokens based on specified recode definitions. For example, to identify dates or other
standard formats, we use regular expressions (Regex). Noninformative terms are
labeled as stop words and omitted. The phrasing stage collects phrases that occur
in the corpus and enables you to specify that individual phrases be treated as terms.
The terming stage creates the term list from the tokens and phrases that result from
the previous tokenizing and phrasing. For each token, the terming stage checks
that minimum and maximum length requirements are met. Tokens that contain only
numbers are excluded from this operation. It also checks that a token is qualified and
contains at least one alphabetical character. Stemming removes differences such as
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singular or plural endings. For each phrase added, the terming stage adds the phrase
to the term list.

Term frequency shows how frequent a term is in a single document. We also
look at how common the term is in the entire corpus. Text processing imposes a
small lower limit on the number of items in which a term must occur so that rare
terms are ignored. However, terms should also not be too common. A term occurring
in every document carries no information. Overly common terms are therefore also
eliminated with an upper limit on the number of documents in which a word appears.

In addition to imposing upper and lower limits on term frequency, many systems
take into account the distribution of the term over items in a corpus. The fewer
documents in which a term occurs, the more significant it is in the documents where
it does occur. This sparseness of a term t is measured commonly by an equation
called inverse document frequency (IDF ). For a given document, d, and term, t ,
the term frequency is the number of times term t appears in document d: T F(d; t)

= # times term t appears in document d. To account for terms that appear frequently
in the domain of interest, we compute the inverse document frequency of term t ,
calculated over the entire corpus and defined as

IDF(t) = 1 + log
total number of documents

# documents containing term t
. (8.1)

The addition of 1 ensures that terms that occur in all document are not ignored.
There are variations of calculating T F and IDF described in the literature.

Example 8.2 To demonstrate the data preparation phase of text documents, we use
text describing aircraft accidents listed in the National Transportation Board data
base: https://www.ntsb.gov/_layouts/ntsb.aviation/Index.aspx.

The AIRCRAFTINCIDENTS.csv data was downloaded from http://app.ntsb.
gov/aviationquery/Download.ashx?type=csv and is available in the mistat pack-
age.

incidents = mistat.load_data('AIRCRAFTINCIDENTS.csv')
print(incidents.shape)

(1906, 27)

The data set consists of 1906 incidents in the USA. We will analyze the “Final
Narrative” text.

The first step is converting the text into what is known as a bag of words. The
following code identifies all words in the text excluding special characters and
removes all numbers. The reports also contain a common phrase at the start that
we strip here. We also remove “stop words,” this means words like “the” or “he”
that occur frequently in the English language.

import re
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

def preprocessor(text):


 536 33438 a 536 33438
a
 
https://www.ntsb.gov/_layouts/ntsb.aviation/Index.aspx

 28236 34771 a 28236 34771 a
 
http://app.ntsb.gov/aviationquery/Download.ashx?type=csv
http://app.ntsb.gov/aviationquery/Download.ashx?type=csv
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text = text.lower()
text = re.sub(r'\d[\d,]*', '', text)
text = '\n'.join(line for line in text.split('\n')

if not line.startswith('ntsb'))
return text

vectorizer = CountVectorizer(preprocessor=preprocessor,
stop_words='english')

counts = vectorizer.fit_transform(incidents['Final Narrative'])
print('shape of DTM', counts.shape)
print('total number of terms', np.sum(counts))

shape of DTM (1906, 8430)
total number of terms 163883

The data preparation resulted in 8430 distinct terms, a total of 163,883 terms, an
average of 86.0 terms per document. This is translated to a document-term matrix
(DTM) with 1906 rows, one for each document, and 8430 columns, one for each
term. This matrix contains the number of occurrences of the term in each document
but could also be binary, with entries of 1 or 0, depending on the occurrence of a
term in a document.

The ten most frequent terms in the data set are listed in Table 8.1. Unsurprisingly,
numbers, pilot, airplane, and engine are the most prevalent terms. This is expected
for reports that deal with aircraft incidents, and as such, they don’t carry much
information. Here is where TF-IDF rescoring becomes relevant. We convert the
counts into the TF-IDF score to give differential weight of terms depending on their
prevalence in the corpus.

tfidfTransformer = TfidfTransformer(smooth_idf=False, norm=None)
tfidf = tfidfTransformer.fit_transform(counts)

Table 8.2 shows the ten largest TF-IDF scores for the first document. Despite
being found 5037 times in the text, “airplane” is not very relevant for this document
when considering the TF-IDF score. Words with high TF-IDF scores like Lincoln,
Logan, or Illinois capture the information of the document more.

This huge DTMmatrix is very sparse. To conduct its analysis, we employ a basic
dimension reduction procedure called partial singular value decomposition (SVD).

Table 8.1 Ten most
frequently occurring words

Term Frequency

Pilot 5227

Airplane 5037

Engine 2359

Flight 2194

Landing 2161

Runway 2112

Left 1754

Feet 1609

Fuel 1589

Right 1555
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Table 8.2 Terms in the first document that are highly relevant due to TF-IDF rescoring following
data preparation (by sentence)

Terms Counts TF-IDF Weight

Lincoln 2 14.908 7.454

Logan 1 8.553 8.553

Said 3 8.234 2.745

Illinois 1 7.166 7.166

Upside 1 6.356 6.356

Came 2 5.671 2.836

Plowed 1 5.557 5.557

Runway 3 5.487 1.829

County 1 5.462 5.462

Feet 3 5.408 1.803

Document = “The pilot said he performed a normal landing to runway 03 (4000 feet by 75 feet,
dry asphalt), at the Lincoln-Logan County Airport, Lincoln, Illinois. He said the airplane settled
on the runway approximately 1000 feet down from the runway threshold. The pilot raised the flaps
and applied full power. The airplane lifted, came back down, and veered to the right. The pilot said
the airplane plowed into the snow, nosed over, and came to rest upside down. An examination of
the airplane revealed no anomalis”

Partial singular value decomposition approximates the DTM using three matri-
ces: U , S, and V ′. The relationship between these matrices is defined as follows:

DT M ≈ U ∗ S ∗ V (8.2)

If k is the number of documents (rows) in the DTM, l is the number of terms
(columns) in the DTM and n as a specified number of singular vectors. To achieve
data reduction, n must be less than or equal to min(k, l). It follows that U is an k×n

matrix that contains the left singular vectors of the DTM. S is a diagonal matrix of
dimension n. The diagonal entries in S are the singular values of the DTM, and V ′
is an n by l matrix. The rows in V ′ (or columns in V ) are the right singular vectors.

The right singular vectors capture connections among different terms with similar
meanings or topic areas. If three terms tend to appear in the same documents, the
SVD is likely to produce a singular vector in V ′ with large values for those three
terms. The U singular vectors represent the documents projected into this new term
space.

Principal components, mentioned in Sect. 8.1, are orthogonal linear combinations
of variables, and a subset of them can replace the original variables. An analogous
dimension reduction method applied to text data is called latent semantic indexing
or latent semantic analysis (LSA). LSA is applying partial singular value decompo-
sition (SVD) of the document-term matrix (DTM). This decomposition reduces the
text data into a manageable number of dimensions for analysis. For example, we can
now perform a topics analysis. The rotated SVD option performs a rotation on the
partial singular value decomposition (SVD) of the document-term matrix (DTM).
In scikit-learn we use the TruncatedSVD method for this.
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from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import Normalizer
svd = TruncatedSVD(10)
tfidf = Normalizer().fit_transform(tfidf)
lsa_tfidf = svd.fit_transform(tfidf)
print(lsa_tfidf.shape)

(1906, 10)

You must specify the number of rotated singular vectors, which corresponds to
the number of topics that you want to retain from the DTM. As we specified 10 here,
the final matrix has 1906 rows and 10 columns.

We can further analyze the terms that contribute most to each of the components.
This is called topic analysis. Topic analysis is equivalent to a rotated principal
component analysis (PCA). The rotation takes a set of singular vectors and rotates
them to make them point more directly in the coordinate directions. This rotation
makes the vectors help explain the text as each rotated vector orients toward a set
of terms. Negative values indicate a repulsion force. The terms with negative values
occur in a topic less frequently compared to the terms with positive values.

Looking at Table 8.3, we identify in Topics 5, 9, and 10 incidents related to
weather conditions. Topics 7 and 8 are about incidents involving students and
instructors. Topics 1 and 2 are mentioning fuel and engine issues. Topic 3 and 4
involve helicopters, etc.

If we now link the documents to supplementary data such as incident impact, one
can link label reports by topic and derive a predictive model that can drive accident
prevention initiatives.

�

8.3 Bayesian Networks

Bayesian networks (BNs) were introduced in Sect. 2.1.6. They implement a graph-
ical model structure known as a directed acyclic graph (DAG) that is popular
in statistics, machine learning, and artificial intelligence. BNs enable an effective
representation and computation of the joint probability distribution over a set of
random variables (Pearl 1985). The structure of a DAG is defined by two sets:
the set of nodes and the set of directed arcs; arcs are often also called edges.
The nodes represent random variables and are drawn as circles labeled by the
variable names. The arcs represent links among the variables and are represented
by arrows between nodes. In particular, an arc from node Xi to node Xj represents
a relation between the corresponding variables. Thus, an arrow indicates that a value
taken by variable Xj depends on the value taken by variable Xi . This property is
used to reduce the number of parameters that are required to characterize the joint
probability distribution (JPD) of the variables. This reduction provides an efficient
way to compute the posterior probabilities given the evidence present in the data
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(Nielsen and Jensen 2007; Pourret et al. 2008; Ben Gal 2008; Pearl 2009; Koski
and Noble 2009; Kenett 2016, 2017). In addition to the DAG structure, which is
often considered as the “qualitative” part of the model, a BN includes “quantitative”
parameters. These parameters are described by applying theMarkov property, where
the conditional probability distribution (CPD) at each node depends only on its
parents. For discrete random variables, this conditional probability is represented
by a table, listing the local probability that a child node takes on each of the feasible
values—for each combination of values of its parents. The joint distribution of a
collection of variables is determined uniquely by these local conditional probability
tables (CPT). In learning the network structure, one can include white lists of forced
causality links imposed by expert opinion and black lists of links that are not to be
included in the network.

To fully specify a BN, and thus represent the joint probability distributions, it is
necessary to specify for each node X the probability distribution for X conditional
upon X’s parents. The distribution of X, conditional upon its parents, may have any
form with or without constraints.

These conditional distributions include parameters which are often unknown
and must be estimated from data, for example, using maximum likelihood. Direct
maximization of the likelihood (or of the posterior probability) is usually based
on the expectation-maximization (E-M) algorithm which alternates computing
expected values of the unobserved variables conditional on observed data, with
maximizing the complete likelihood assuming that previously computed expected
values are correct. Under mild regularity conditions, this process converges to
maximum likelihood (or maximum posterior) values of parameters (Heckerman
1995).

A Bayesian approach treats parameters as additional unobserved variables and
computes a full posterior distribution over all nodes conditional upon observed data
and then integrates out the parameters. This, however, can be expensive and leads to
large dimension models, and in practice classical parameter-setting approaches are
more common.

Bayesian networks (BNs) can be specified by expert knowledge (using white
lists and black lists) or learned from data or in combinations of both (Kenett 2016).
The parameters of the local distributions are learned from data, priors elicited from
experts, or both. Learning the graph structure of a BN requires a scoring function
and a search strategy. Common scoring functions include the posterior probability
of the structure given the training data, the Bayesian information criterion (BIC),
or Akaike information criterion (AIC). When fitting models, adding parameters
increases the likelihood, which may result in overfitting. Both BIC and AIC
resolve this problem by introducing a penalty term for the number of parameters
in the model with the penalty term being larger in BIC than in AIC. The time
requirement of an exhaustive search, returning back a structure that maximizes
the score, is super-exponential in the number of variables. A local search strategy
makes incremental changes aimed at improving the score of the structure. A global
search algorithm like Markov chain Monte Carlo (MCMC) can avoid getting
trapped in local minima. A partial list of structure learning algorithms includes hill-
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climbing with score functions BIC and AIC grow-shrink, incremental association,
fast incremental association, interleaved incremental association, hybrid algorithms,
and phase-restricted maximization.

Example 8.3 The data set ABC2.csv contains data from an electronic product
company’s annual customer satisfaction survey collected from 266 companies
(customers) (Kenett and Salini 2009). The data set contains for each company its
location (country) and feedback summarized responses on:

• Equipment
• SalesSup (sales support)
• TechnicalSup (technical support)
• Suppliers
• AdministrativeSup (administrative support)
• TermsCondPrices (terms, conditions, and prices)

Additional information:

• Satisfaction: overall satisfaction
• Recommendation: recommending the product to others
• Repurchase: intent to repurchase

The response data are ordinal data ranging from 1 (very low satisfaction, very
unlikely) to 5 (very high satisfaction, very likely).

The HillClimbSearch method from the pgmpy is used to derive a structure
of the Bayesian network from the data. The Bayesian network is shown in Fig. 8.7.

from pgmpy.estimators import HillClimbSearch

abc = mistat.load_data('ABC2.csv')
abc = abc.drop(columns=['ID'])

est = HillClimbSearch(data=abc)
model = est.estimate(max_indegree=4, max_iter=int(1e4), show_progress=False,

scoring_method='k2score')

import pydotplus

def layoutGraph(dot_data, pdfFile):
graph = pydotplus.graph_from_dot_data(dot_data)
with open(pdfFile, 'wb') as f:

f.write(graph.create_pdf())

def createGraph(G, pdfFile):
sortedNodes = list(nx.topological_sort(G))
commonSettings = """
edge [ fontsize=11, color=gray55 ];
# size="10,10"
graph [ranksep="0.2", dpi=300];
"""
def makeNode(label):

return f'{label} [ label="{label}", fontsize=11, color=white ];'
def makeEdge(edge):

fromNode, toNode = edge
return f'{fromNode} -> {toNode};'

allNodes = '\n'.join(makeNode(node) for node in sortedNodes)
allEdges = '\n'.join(makeEdge(edge) for edge in G.edges)
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Fig. 8.6 Inferred conditional probability of repurchasing decision on quality of technical support

s = f"""
digraph ethane {{
{ commonSettings }
{ allNodes }
{ allEdges }
}}
"""

return layoutGraph(s, pdfFile)

createGraph(model, 'compiled/figures/Chap008_abcBNmodel.pdf')

Using the derived network structure, we can now fit the data to the Bayesian
network to deduce the CPD:

from pgmpy.models import BayesianNetwork
from pgmpy.estimators import MaximumLikelihoodEstimator
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Fig. 8.7 Bayesian network estimated from ABC data set

# convert to BayesianNetwork and fit data
model = BayesianNetwork(model.edges())
model.fit(data=abc, estimator=MaximumLikelihoodEstimator)

As an example, here is the CPD for the arc Equipment-AdministrativeSup:

for cpd in model.get_cpds():
df = pd.DataFrame(cpd.values)
v0 = cpd.variables[0]
df.index = pd.MultiIndex.from_tuples([(v0, state) for state in cpd.state_names[v0]])
if len(cpd.variables) > 1:

v1 = cpd.variables[1]
df.columns = pd.MultiIndex.from_tuples([(v1, state) for state in cpd.state_names[v1]])

print(df.round(3))
break

Equipment
1.0 2.0 3.0 4.0 5.0

Satisfaction 1.0 0.8 0.167 0.033 0.008 0.000
2.0 0.0 0.444 0.100 0.042 0.154
3.0 0.0 0.278 0.533 0.158 0.077
4.0 0.2 0.111 0.283 0.583 0.385
5.0 0.0 0.000 0.050 0.208 0.385

We can also infer probabilities between nodes that are not directly connected.
The Python code for inferring the influence of technical support experience on
repurchasing decision is shown below and the result visualized in Fig. 8.6.

from pgmpy.inference import VariableElimination, BeliefPropagation
infer = BeliefPropagation(model)
results = {i: infer.query(variables=['Repurchase'],

evidence={'TechnicalSup': i}).values
for i in range(1, 6)}

The Bayesian network model indicates a strong positive correlation between
quality of technical support and repurchasing decision. Sales support on the other
hand has only little influence (see Fig. 8.6).
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We can further query the BN model using belief propagation. The estimated
probability distribution for all variables is shown in Fig. 8.8. Belief propagation also
allows to study the effect of additional evidence on these probability distributions. In
Fig. 8.9 Recommendation is set to very high. The largest changes are unsurprisingly
seen for Satisfaction and Repurchase.

Above we’ve seen that good technical support experience has a positive influence
on repurchasing. We can use the BN to identify countries where we should improve
technical support. Figure 8.10 shows the estimated distribution of technical support
scores by country. The data tell us that technical support should be improved in the
Benelux countries.

�

8.4 Causality Models

Causality analysis has been studied from two main different points of view, the
“probabilistic” view and the “mechanistic” view. Under the probabilistic view, the
causal effect of an intervention is judged by comparing the evolution of the system
when the intervention is and when it is not present. The mechanistic point of view
focuses on understanding the mechanisms determining how specific effects come
about. The interventionist and mechanistic viewpoints are not mutually exclusive.
For example, when studying biological systems, scientists carry out experiments
where they intervene on the system by adding a substance or by knocking out genes.
However, the effect of a drug product on the human body cannot be decided only

Fig. 8.8 Estimated probability distribution derived using belief propagation
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Fig. 8.9 Estimated probability distribution if recommendation is very high

Fig. 8.10 Distribution of estimated technical support score conditioned by country. Countries are
sorted by increasing expected technical score

in the laboratory. A mechanistic understanding based on pharmacometrics models
is a preliminary condition for determining if a certain medicinal treatment should
be studied in order to elucidate biological mechanisms used to intervene and either
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prevent or cure a disease. The concept of potential outcomes is present in the work
on randomized experiments by Fisher and Neyman in the 1920s (Fisher 1935;
Neyman and Pearson 1967) and was extended by Rubin in the 1970s (Dempster
et al. 1977) to non-randomized studies and different modes of inference (Mealli
et al. 2012). In their work, causal effects are viewed as comparisons of potential
outcomes, each corresponding to a level of the treatment, and each observable had
the treatment taken on the corresponding level with at most one outcome actually
observed, the one corresponding to the treatment level realized. In addition, the
assignment mechanism needs to be explicitly defined as a probability model for how
units receive the different treatment levels. With this perspective, a causal inference
problem is viewed as a problem of missing data, where the assignment mechanism
is explicitly modeled as a process for revealing the observed data. The assumptions
on the assignment mechanism are crucial for identifying and deriving methods to
estimate causal effects (Frosini 2006).

Imai et al. (2013) study how to design randomized experiments to identify causal
mechanisms. They study designs that are useful in situations where researchers can
directly manipulate the intermediate variable that lies on the causal path from the
treatment to the outcome. Such a variable is often referred to as a “mediator.” Under
the parallel design, each subject is randomly assigned to one of two experiments.
In one experiment only the treatment variable is randomized, whereas in the other,
both the treatment and the mediator are randomized. Under the crossover design,
each experimental unit is sequentially assigned to two experiments where the first
assignment is conducted randomly and the subsequent assignment is determined
without randomization on the basis of the treatment and mediator values in the
previous experiment. They propose designs that permit the use of indirect and subtle
manipulation. Under the parallel encouragement design, experimental subjects who
are assigned to the second experiment are randomly encouraged to take (rather than
assigned to) certain values of the mediator after the treatment has been randomized.
Similarly, the crossover encouragement design employs randomized encouragement
rather than the direct manipulation in the second experiment. These two designs
generalize the classical parallel and crossover designs in clinical trials, allowing
for imperfect manipulation, thus providing informative inferences about causal
mechanisms by focusing on a subset of the population.

Causal Bayesian networks are BNs where the effect of any intervention can
be defined by a “do” operator that separates intervention from conditioning. The
basic idea is that intervention breaks the influence of a confounder so that one can
make a true causal assessment. The established counterfactual definitions of direct
and indirect effects depend on an ability to manipulate mediators. A BN graphical
representations, based on local independence graphs and dynamic path analysis,
can be used to provide an overview of dynamic relations (Aalen et al. 2012). As
an alternative approach, the econometric approach develops explicit models of out-
comes, where the causes of effects are investigated and the mechanisms governing
the choice of treatment are analyzed. In such investigations, counterfactuals are
studied (counterfactuals are possible outcomes in different hypothetical states of
the world). The study of causality in studies of economic policies involves:
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Fig. 8.11 Average treatment effect (ATE) for different interventions on Satisfaction

(a) Defining counterfactuals
(b) Identifying causal models from idealized data of population distributions
(c) Identifying causal models from actual data, where sampling variability is an

issue (Heckman 2008)

Pearl developed BNs as the method of choice for reasoning in artificial intelli-
gence and expert systems, replacing earlier ad hoc rule-based systems. His extensive
work covers topics such as causal calculus, counterfactuals, do-calculus, transporta-
bility, missingness graphs, causal mediation, graph mutilation, and external validity
(Pearl 1988).

Example 8.4 Continuing with the previous example, we can determine the average
treatment effect (ATE) of changes on Satisfaction. The results are shown in
Fig. 8.11. The ATE is defined as

ATE = E(Y1) − E(Y0)

where Y defines the outcome variable (here Satisfaction). E(Y1) is the average
outcome for the case of the treatment and E(Y0) for the case of not having the
treatment. We can see that changes to the Equipment, Suppliers, and TechnicalSup
have the largest ATE. �

Granger (1969) developed an approach to test whether one time series is
forecasting another. With this approach that leverages the temporal dimension,
causality is tested by measuring the ability to predict future values of a time series
using prior values of another time series. For two time series Xt and Yt , the Granger
causality test is comparing two auto-regression models:
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Yt = a0 +
p∑

j=1

ajYt−j + et

Yt = a0 +
p∑

j=1

ajYt−j +
p∑

j=1

bjXt−j + et .

In the second model, the contributed lagged terms bj of Xt−j are tested for
significance. If some of the bj are significant and the addition of the Xt−j adds
explanatory power, Xt Granger causes Yt . The assumptions here are that:

1. The cause happens prior to its effect.
2. The cause has unique information about the future values of its effect.

Any lagged value of one of the variables is retained in the regression if it is
significant according to a t-test, and it and the other lagged values of the variable
jointly add explanatory power to the model according to an F -test. The null
hypothesis of no Granger causality is not rejected if and only if no lagged values
of an explanatory variable are retained in the regression. For more on time series,
see Chap. 6.

This basic idea was further extended to multivariate problems using regulariza-
tion (Lozano et al. 2009). Tank et al. (2021) extended the Granger causality test to
allow nonlinear relationships in the time series regression.

Example 8.5 The data set DISTILLATION-TOWER.csv contains snapshot mea-
surements for 27 variables from a distillation tower. Using the Granger causality test
available in statsmodels, we can test if the temperature columns have a causal
effect on vapor pressure.

distTower = mistat.load_data('DISTILLATION-TOWER.csv')
distTower = distTower.set_index('Date')
subset = ['VapourPressure', 'Temp1', 'Temp2', 'Temp3', 'Temp4', 'Temp5',

'Temp6', 'Temp7', 'Temp8', 'Temp9', 'Temp10','Temp11','Temp12']
distTower = distTower[subset]
results = []
for c in subset[1:]:

# use pct_change to make time series stationary
data = distTower[["VapourPressure", c]].pct_change().dropna()
gc_res = grangercausalitytests(data, 10, verbose=False)
results.append({f'lag {i}': gc[0]['ssr_ftest'][1]

for i, gc in gc_res.items()})
df = pd.DataFrame(results, index=subset[1:])
df['id'] = df.index

The resulting p-values for the various measurements and lag times are shown
in Fig. 8.12. The Granger causality test for Temp2 shows a causal relationship
between this measurements and vapor pressure. While the process location of the
temperature measurements is not known for this data set, it is highly likely that
Temp2 is measured at the top of the distillation tower. �
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Fig. 8.12 Granger causality test for the causal effect of temperature measurements on the vapor
pressure

8.5 Chapter Highlights

This last chapter extends modern analytic methods covered in Chap. 7. It is designed
as an introductory chapter with examples of Python applications and real-life case
studies. The companion text on Industrial Statistics builds on the methods presented
in this book.

The topics covered in the chapter include:

• Functional data analysis
• Functional principal components
• Text analytics
• Bag of words
• Topic analysis
• Bayesian networks
• Causality
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8.6 Exercises

Exercise 8.1 Use functional data analysis to analyze the dissolution data of refer-
ence and test tablets. Use shift registration with split interpolation of order 1, 2, and
3 to align the curves. Determine the mean dissolution curves for the reference and
test tablets, and compare the result for the different interpolation methods. Compare
the curves and discuss the differences.

Exercise 8.2 The Pinch data set contains measurements of pinch force for 20
replications from the start of measurement. The pinch force is measured every 2ms
over a 300ms of interval:

(i) Load the data. The data are available in the fda R-package as data sets
pinchraw and pinchtime. Load the two data sets using the command
fetch_cran command and combine in a FDataGrid.
(skfda.datasets.fetch_cran(name, package_name))

(ii) Plot the data set and discuss the graph.
(iii) Use smoothing to focus on the shape of the curve. You can use

skfda.preprocessing.smoothing.kernel_smoothers.NadarayaWatson

Smoother.
Explore various values for the smoothing_parameter, and discuss its
effect. Select a suitable smoothing_parameter to create a smoothed
version of the data set for further processing.

(iv) Use landmark registration to align the smoothed measurements by their
maximum value. As a first step, identify the times at which each measurement
had it maximum (use fd.data_matrix.argmax(axis=1) to identify
the index of the measurement and use pinchtime to get the time to get the
landmark values). Next use skfda.preprocessing.registration.
landmark_shift to register the smoothed curves.

(v) Plot the registered curves and discuss the graph.

Exercise 8.3 The Moisture data set contains near-infrared reflectance spectra of
100 wheat samples together with the samples’ moisture content. Convert the
moisture values into two classes, and develop a classification model to predict the
moisture content of the sample:

(i) Load the data. The data are available in the fds R-package as data sets
Moisturespectrum and Moisturevalues. Load the two data sets
using the skfda.datasets.fetch_cran(name, package_name)
command.

(ii) Determine a threshold value to split the moisture values in high and low
moisture content.

(iii) Convert the spectrum information into the FDataGrid representation of the
scikit-fda package, and plot the spectra. What do you observe?
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(iv) Normalize the sample spectra so that the differences in intensities are less
influential. This is in general achieved using the standard normal variate (SVN)
method. For each spectrum, subtract the mean of the intensities and divide by
their standard deviation. As before plot the spectra and discuss the observed
difference.

(v) Create k-nearest neighbor classification models to predict the moisture content
class from the raw and normalized spectra.
(use skfda.ml.classification.KNeighborsClassifier)

Exercise 8.4 Repeat the previous Exercise 8.3 creating K-nearest neighbor regres-
sion models to predict the moisture content of the samples:

(i) Load and preprocess the Moisture data as described in Exercise 8.3.
(ii) Create k-nearest neighbor regression models to predict the moisture con-

tent from the raw and normalized spectra (use skfda.ml.regression.
KNeighborsRegressor). Discuss the results.

(iii) Using one of the regression models based on the normalized spectra, plot
predicted versus actual moisture content. Discuss the result. Does a regression
model add additional information compared to a classification model?

Exercise 8.5 In this exercise, we look at the result of a functional PCA using the
Moisture data set from Exercise 8.3:

(i) Load and preprocess the Moisture data as described in Exercise 8.3.
(ii) Carry out a functional principal component analysis of the raw and normal-

ized spectra with two components. Plot the projection of the spectra onto
the two components and color by moisture class. Discuss the results (use
skfda.preprocessing.dim_reduction.projection.FPCA).

Exercise 8.6 Pick articles on global warming from two journals on the web. Use
the same procedure for identifying stop words, phrases, and other data preparation
steps. Compare the topics in these two articles using five topics. Repeat the analysis
using ten topics. Report on the differences:

(i) Convert the two documents into a list of paragraphs and labels.
(ii) Treating each paragraph as an individual document, create a a document-term

matrix (DTM). Ignore numerical values as terms. Which terms occur most
frequently in the two articles?

(iii) Use TF-IDF to convert the DTM.
(iv) Use latent semantic analysis (LSA) to find five topics.

Exercise 8.7 Pick three articles on COVID-19 economic impact from the same
author. Use the same procedure for identifying stop words, phrases, and other data
preparation steps. Compare the topics in these three articles using ten topics.
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Exercise 8.8 Use the LAPTOP_REVIEWS.csv data set to analyze reviews, and
build a model to predict positive and negative reviews:

(i) Load the LAPTOP_REVIEWS data using the mistat package. Preprocess
the data set by combining the values of the columns Review title and
Review content into a new column Review, and remove missing rows
with missing values in these two columns.

(ii) Convert the Reviews into a document-term matrix (DTM) using a count
vectorizer. Split the reviews into words and remove English stop words. Use a
custom preprocessor to remove numbers from each word.

(iii) Convert the counts in the DTM into TF-IDF scores.
(iv) Normalize the TF-IDF scores, and apply partial singular value decomposition

(SVD) to convert the sparse document representation into a dense representa-
tion. Keep 20 components from the SVD.

(v) Build a logistic regression model to predict positive and negative reviews.
A review is positive if the User rating is 5. Determine the predictive
accuracy of the model by splitting the data set into 60% training and 40%
test sets.



Appendix A
Introduction to Python

There are many excellent books and online resources that can introduce you to
Python. Python itself comes with an excellent tutorial that you can find at https://
docs.python.org/3/tutorial/. Instead of duplicating here what has been improved over
many years, we suggest the reader to follow the Python tutorial. In particular, we
recommend reading the following chapters in the tutorial:

• An informal introduction to python
• More control flow tools
• Data structures

In the following, we will point out a selection of more specialized topics that we
use in the code examples throughout the book.

A.1 List, Set, and Dictionary Comprehensions

Many data handling tasks require the creation of lists or dictionaries. We can use a
for loop in this case:

the_list = []
for i in range(10):

the_list.append(2 * i)
the_list

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Instead of using the for loop, Python has a more concise way of achieving the
same outcome using what is called a list comprehension:

the_list = [2 * i for i in range(10)]
the_list
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[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

List comprehensions can also be used if the addition to the list is conditional. In
the following example, we create a list of numbers divisible by 3.

the_list = []
for i in range(20):

if i % 3 == 0:
the_list.append(i)

the_list = [i for i in range(20) if i % 3 == 0]
the_list

[0, 3, 6, 9, 12, 15, 18]

The list comprehension is easier to read.
A similar construct can also be used to create sets:

letters = ['a', 'y', 'x', 'a', 'y', 'z']
unique_letters = {c for c in letters}
unique_letters

{'a', 'x', 'y', 'z'}

The set comprehension uses curly brackets instead of the square brackets in list
comprehensions.

Dictionary comprehensions create dictionaries. The following example creates a
dictionary that maps a number to its square. We show first the implementation using
a for loop and then the dictionary comprehension:

squares = {}
for i in range(10):

squares[i] = i * i

squares = {i: i * i for i in range(10)}
squares

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

A.2 Pandas Data Frames

Most of the data sets used in this book are either in list form or tabular. The pandas
package (https://pandas.pydata.org/) implements these data structures. The mistat
package returns the data either as pandas DataFrame or Series objects:

import mistat

almpin = mistat.load_data('ALMPIN')
print('ALMPIN', type(almpin))

steelrod = mistat.load_data('STEELROD')
print('STEELROD', type(steelrod))
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ALMPIN <class 'pandas.core.frame.DataFrame'>
STEELROD <class 'pandas.core.series.Series'>

The DataFrame and Series objects offer additional functionality to use these them
in an efficient and fast manner. As an example, here is the calculation of the column
means:

almpin.mean()

diam1 9.992857
diam2 9.987286
diam3 9.983571
capDiam 14.984571
lenNocp 49.907857
lenWcp 60.027857
dtype: float64

The describemethod returns basic statistics for each column in a DataFrame:

almpin.describe().round(3)

diam1 diam2 diam3 capDiam lenNocp lenWcp
count 70.000 70.000 70.000 70.000 70.000 70.000
mean 9.993 9.987 9.984 14.985 49.908 60.028
std 0.016 0.018 0.017 0.019 0.044 0.048
min 9.900 9.890 9.910 14.880 49.810 59.910
25% 9.990 9.982 9.980 14.980 49.890 60.000
50% 10.000 9.990 9.990 14.990 49.910 60.020
75% 10.000 10.000 9.990 14.990 49.928 60.050
max 10.010 10.010 10.010 15.010 50.070 60.150

As the pandas package is used frequently in many machine learning packages,
we recommend that you make yourself familiar by reading the documentation.

A.3 Data Visualization Using Pandas and Matplotlib

Packages like pandas or seaborn support a variety of visualizations that are
often sufficient for exploratory data analysis. However there may be cases where
you want to customize the graph further to highlight aspects of your analysis.
As these packages often use the matplotlib package (https://matplotlib.org/)
as their foundation, we can achieve this customization using basic matplotlib
commands.

This is demonstrated in Fig. A.1. Here, we use the matplotlib axis object that
is returned from the pandas plot function to add additional lines to the graph.

There are many more examples that can be found in the accompanying source
code repository at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/.
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import matplotlib.pyplot as plt

steelrod = mistat.load_data('STEELROD')
steelrod.plot(style='.', color='black',

xlabel='Index', ylabel='Steel rod Length')
plt.show()

(b)

(a)

ax = steelrod.plot(style='.', color='black',
xlabel='Index', ylabel='Steel rod Length')

ax.hlines(y=steelrod[:26].mean(), xmin=0, xmax=26)
ax.hlines(y=steelrod[26:].mean(), xmin=26, xmax=len(steelrod))
plt.show()

Fig. A.1 Data visualization using pandas and customization. (a) Default graph created using
pandas. (b) Customization of (b) using matplotlib commands
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List of Python Packages

bootstrapped:
Implementations of the percentile based bootstrap
https://pypi.org/project/bootstrapped/
https://github.com/facebookincubator/bootstrapped

dtreeviz:
A Python 3 library for scikit-learn, XGBoost, LightGBM, and Spark decision tree
visualization
https://pypi.org/project/dtreeviz/
https://github.com/parrt/dtreeviz

KDEpy:
Kernel Density Estimation in Python. https://pypi.org/project/KDEpy/
https://github.com/tommyod/KDEpy

matplotlib:
Python plotting package
https://pypi.org/project/matplotlib/
https://matplotlib.org/

mistat:
Modern Statistics/Industrial Statistics: A Computer Based Approach with Python
https://pypi.org/project/mistat/

mpl_toolkits:
Package distributed with matplotlib
https://matplotlib.org/api/toolkits/index.html

networkx:
Python package for creating and manipulating graphs and networks
https://pypi.org/project/networkx/
https://networkx.org/

numpy:
NumPy is the fundamental package for array computing with Python
https://pypi.org/project/numpy/
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https://numpy.org/
pandas:

Powerful data structures for data analysis, time series, and statistics
https://pypi.org/project/pandas/
https://pandas.pydata.org/

pgmpy:
A library for Probabilistic Graphical Models
https://pypi.org/project/pgmpy/
https://github.com/pgmpy/pgmpy

pingouin
Pingouin: statistical package for Python
https://pypi.org/project/pingouin/
https://pingouin-stats.org/

scipy:
SciPy: Scientific Library for Python
https://pypi.org/project/scipy/
https://www.scipy.org/

seaborn:
seaborn: statistical data visualization
https://pypi.org/project/seaborn/
https://seaborn.pydata.org/

scikit-fda (skfda):
Functional Data Analysis Python package
https://pypi.org/project/scikit-fda/
https://fda.readthedocs.io/

scikit-learn (sklearn):
A set of python modules for machine learning and data mining
https://pypi.org/project/scikit-learn/
https://scikit-learn.org/

statsmodels:
Statistical computations and models for Python
https://pypi.org/project/statsmodels/
https://www.statsmodels.org/

xgboost:
XGBoost is an optimized distributed gradient boosting library designed to be
highly efficient, flexible and portable
https://pypi.org/project/xgboost/
https://github.com/dmlc/xgboost
https://xgboost.readthedocs.io/en/latest/
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Appendix C
Code Repository and Solution Manual

The source code used in this book both shown as code examples and used to create
the figures in this book is available from the GitHub repository https://gedeck.
github.io/mistat-code-solutions/ModernStatistics/.

The repository also contains the solutions for the exercises in the book.
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Symbols
3D-scatterplots, 228, 290

A
Acceptance, 9, 149, 160, 214
Acceptance region, 149, 160, 214
Acceptance sampling, 9
Accuracy, 6–7, 34, 35, 362, 365, 369, 375, 376,

386
Activation function, 382
Adjusted coefficient of determination, 365
Akaike information criterion (AIC), 365
Alternative hypothesis, 149, 158
Analysis of variance (ANOVA), 201, 214, 246,

271, 290
ANOVA Table, 272, 275
Arcsin transformation, 289, 291
ARIMA model, 358
ARMA model, 345, 358
Attained significance level, 152
Auto regressive, 358
Average linkage, 388
Average treatment effect (ATE), 414

B
Bag of words, 401, 402, 416
Balanced accuracy, 365
Balanced sample, 323
Bar diagram, 10
Batches, 39, 205, 230
Bayes decision function, 182
Bayes estimator, 184
Bayesian decisions, 176, 215

Bayesian information criterion (BIC), 365, 407
Bayesian network (BN), 53, 405, 407, 408,

410, 413, 416
Bayes risk, 182, 184
Bayes’ theorem, 51, 53, 125, 179, 378, 392
Bernoulli trials, 66, 164, 204
Beta distribution, 92, 93, 178, 180
Beta function, 92
Binomial distribution, 63, 67, 69, 72, 75–78,

119, 148, 158, 159, 164, 178, 186, 204,
209, 216, 217, 288

Binomial experiments, 288
Bivariate frequency distribution, 233
Bivariate normal distribution, 105, 107
Boosted tree, 369, 376, 392
Bootstrap, 9, 144, 191, 192, 208, 214, 301,

305, 366, 377
Bootstrap ANOVA, 215, 271
Bootstrap confidence intervals, 190, 198, 215
Bootstrap confidence limits, 189, 190, 198
Bootstrap distribution, 189, 192
Bootstrap estimate, 189
Bootstrap forest, 369, 376, 392
Bootstrap method, 175, 189, 190, 192, 196,

201, 206, 215
Bootstrap sampling, 189, 191, 193
Bootstrap testing, 192
Bootstrap tolerance interval, 204, 205, 210,

215
Box and whiskers plot, 25, 28, 34, 233

C
Categorical data analysis, 288, 291
Cauchy distribution, 60
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Causal Bayesian networks, 413
Causality, 53, 407, 411, 413, 414, 416
c.d.f., see Cumulative distribution function

(c.d.f.)
Central limit theorem (CLT), 117, 126, 193
Central moments, 59, 63, 85, 125, 309
Characteristic polynomials, 339, 358
Chebyshev’s inequality, 24
Chi-square automatic interaction detector

(CHAID), 369
Chi-squared statistic, 285
Chi-squared test, 175, 215, 291
Chi-squared test for contingency tables, 291
Classification and regression trees (CART),

368
Class intervals, 14, 30
CLT, see Central limit theorem (CLT)
Cluster analysis, 392
Clustering, 227, 366, 386, 388, 390
Cluster number selection, 390
Code variables, 229, 230, 290
Coding, 7
Coefficient of determination, 242, 290, 365
Coefficient of variation, 23, 322, 323
Complementary event, 43, 50
Complete linkage, 388, 389
Computerized numerically controlled (CNC),

231
Conditional distribution, 93, 99–101, 103, 105,

106, 125, 234, 407
Conditional expectation, 99, 100
Conditional frequency distribution, 284, 290
Conditional independence, 53, 125
Conditional probabilities, 49, 51, 52, 125
Conditional variance, 100, 101
Confidence intervals, 160–165, 170, 171,

192–193, 196–199, 204, 205, 214,
275–279, 303, 346

Confidence level, 25, 160, 162, 163, 167, 190,
205–208, 275, 308, 314

Confusion matrix, 369, 374, 386, 392
Consistent estimator, 141, 214, 269
Contingency tables, 279–281, 283, 286–289,

291
Contingency tables analysis, 286, 291
Continuous random variable, 13, 34, 54, 93,

105, 125
Continuous variable, 9, 205, 378
Contrasts, 20, 25, 266, 275, 278, 291, 362
Convergence in probability, 112, 126
Cook distance, 267, 268, 290
Correlation, 96–99, 170–172, 236–245, 247,

253, 262–264, 283, 284, 288, 292, 329,
330, 410

Covariance, 96–99, 236–237, 246, 248,
330–331, 338, 346, 357, 400

Covariance matrix, 347, 354
Covariance stationary, 336, 338, 339, 343, 346,

357, 358
Covariates, 320, 325, 368, 375
Cramer’s index, 287
Credibility intervals, 185
Critical region, 149–152, 154, 156, 158, 159
Cross-validation, 26, 189, 361, 366, 375
Cumulative distribution function (c.d.f.), 55,

125
Cycle time, 2, 19, 54, 174, 176, 206, 209

D
Decision trees, 363, 365, 366, 368–370,

372–374, 376, 378, 381, 392
Deep learning, 383, 385
Degrees of freedom, 121, 122, 124, 162, 164,

174, 175, 258, 259, 272, 285
De Morgan rule, 42
Descriptive analysis, 9, 384
Design of experiments (DoE), 2, 367
Deterministic component, 237
Directed acyclic graph (DAG), 53, 405
Discrete random variables, 9, 53, 54, 93, 98,

125, 146, 178
Discrete variable, 9, 56
Disjoint events, 44, 51, 125
Distribution free tolerance limits, 206
Distribution median, 212
Document-term matrix (DTM), 403, 404
Dynamic linear model (DLM), 352–355, 358

E
Elementary events, 40, 125
Empirical bootstrap distribution (EBD), 189
Ensemble models, 376, 377
Entropy, 371
Estimator, 139–145, 160, 161, 163, 184, 185,

191, 192, 205, 214, 255, 269, 270, 300,
305

Event, 39, 40, 42, 43, 45, 47–49, 52, 54, 55, 66,
72, 74, 76, 87, 100, 110, 125, 284, 318

Expected frequency, 173, 175, 284
Expected loss, 176, 184
Expected value, 60, 62, 67, 70, 75, 77, 78, 83,

96, 97, 99, 101, 109, 111, 117, 121,
145, 191, 300, 305, 306, 407

Experiment, 2, 3, 14, 39, 40, 43, 46, 48, 49,
52, 54, 55, 60, 199, 204, 229, 240, 268,
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269, 271, 274, 288, 302, 367, 396, 398,
411, 413

Explainable, 240, 247, 257, 261
Exponential distribution, 85, 87, 89

F
Factor levels, 199
Failure rate, 281
Failures per million (FPM), 279
FDA, see Functional data analysis (FDA)
Finite population, 8, 46, 54, 190, 299, 301,

309, 312, 320, 325
Finite population multiplier, 312, 325
FPM, see Failures per million (FPM)
Frequency distribution, 9–16, 18, 34, 140, 173,

187–189, 227, 230–235, 284, 290, 304
Functional data analysis (FDA), 395, 396, 398,

400, 416
Functional principal components, 401, 416

G
Gage repeatability and reproducibility (GRR),

7
Gamma distribution, 88, 116, 119, 185
Gaussian distribution, 24, 79
Generators, 43, 301
Geometric distribution, 75, 76
Geometric mean, 23
Gini impurity, 371
GRR, see Gage repeatability and

reproducibility (GRR)

H
Hierarchical clustering, 386, 390
Histograms, 14, 16, 20, 25, 26, 30, 31, 140,

141, 172, 190, 197, 202, 203, 228, 236,
303, 304, 324

Homogeneous groups, 277, 368
Hypergeometric distribution, 69, 104, 312

I
Inclusion relationship, 40
Incomplete beta function ratio, 92
Independent events, 50, 51, 125
Independent random variables, 98, 115, 116
Independent trials, 66, 75, 102, 125, 163, 288
Indices of association, 282, 284
Information quality (InfoQ), 363
Inspection, 67, 299, 398
Interactions, 369

Interquartile range, 23, 28, 33
Intersection of events, 41, 51
Inverse document frequency (IDF), 402

J
Joint distribution, 53, 96, 105, 125, 407
Joint frequency distribution, 231, 232

K
Kolmogorov-Smirnov test (KS), 175
Kurtosis, 21, 24, 34, 62, 64, 65, 80, 87, 125

L
Lag-correlation, 336–338, 340, 341, 358
Lagrangian, 319
Laplace transform, 66
Latent semantic analysis (LSA), 404
Law of iterated expectation, 125
Law of large numbers (LLN), 117, 126, 142,

184
Law of total variance, 101, 125
Least squares, 144, 145, 214, 239, 240, 242,

246, 249, 251, 331, 362
Least squares estimator, 144, 145, 214, 246
Level of significance, 149, 161, 162, 200, 202,

209, 273, 289
Life length, 274
Likelihood function, 146–148, 214
Likelihood statistic, 147
Linear combination, 111, 145, 310, 337, 344,

383, 404
Linearity, 7
Linear model, 239, 245, 246, 265, 332,

351–355, 358
Linear predictors, 346–349, 358
Log-normal distribution, 171
Loss function, 177, 181, 184
Lot, 8, 9, 67, 72, 105, 119, 230, 273, 300, 318
Lower tolerance limit, 167, 168

M
MAE, see Mean absolute error (MAE)
MA model, 358
Marginal distribution, 93, 100, 101, 103, 105,

106, 125, 234, 305, 378
Marginal frequencies, 231, 232, 235
Matrix scatterplot, 290
Maximum likelihood estimator (MLE), 147
Mean absolute error (MAE), 365, 373
Mean squared contingency, 285
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Mean squared error (MSE), 323, 346, 365, 373
Mean vector, 388
Measurements, 1, 3, 4, 6–8, 11, 19, 20, 23, 24,

29, 39–41, 230, 231, 237, 238, 247,
363, 369, 384, 386, 395, 416

m.g.f., see Moment generating function
(m.g.f.)

Mixing, 39
Mode, 413
Model, 1, 39–138, 173, 206, 209, 225–297,

321, 322, 332–336, 353, 355, 361–368,
370, 376–386, 405, 407, 410, 412–414

Moment equation estimator, 142, 214
Moment generating function (m.g.f.), 65, 125
Moments, 59, 63, 65, 66, 79, 80, 85, 92, 125,

142, 143, 214, 309
Moving averages, 337–339, 343, 344, 351, 358
Moving average smoother, 351, 358
MSE, seeMean squared error (MSE)
Multi-hypergeometric distribution, 104
Multinomial distribution, 102
Multiple boxplot, 229
Multiple comparisons, 275, 291
Multiple regression, 240, 245–246, 251, 257,

258, 261, 263, 264, 266, 271, 290
Multiple squared correlation, 290
Mutual independence, 50, 125

N
Negative-binomial distribution, 77
Neural network, 381–386
Non-parametric test, 208, 215
Normal approximation, 119, 120, 165, 193,

313
Normal distribution, 21, 24, 25, 33, 79–84,

119, 122, 142, 152–158, 161, 163,
166–173, 176, 178, 183, 206

Normal equations, 254, 340
Normal probability plot, 172, 173, 215, 335
Normal scores, 215
Null event, 40
Null hypothesis, 149, 150, 152, 158, 163, 175,

192, 208, 209, 213, 275, 288, 290

O
Objectives, 1, 186, 205, 266, 366, 384
Observed frequency, 173, 175
OC curve, 151, 214
OC function, 150, 153–156, 159, 214
Operating characteristic (OC), 150, 153–156,

158, 159, 214
Optimal allocation, 316, 319, 325

Order statistics, 16, 23, 24, 93, 108, 112, 126,
175, 205, 206, 208

Outliers, 23, 28, 29, 31, 33, 237, 362, 368, 388,
398–400

P
Parameters, 9, 25, 26, 43, 54, 67, 72, 77, 80,

81, 88, 92, 103, 119, 120, 130, 139,
141, 142, 149, 152, 160, 161, 176–178,
184–186, 189, 212, 214, 217, 220, 268,
299, 300, 303, 318, 345, 349, 352, 354,
362, 366, 384, 400, 405, 407

Parameter space, 142, 143, 147, 161, 178, 181,
214

Parametric family, 141, 146
Partial correlation, 251, 252, 262, 264, 290,

340
Partial lag-correlation, 341, 358
Partial regression, 251, 290
p.d.f., see Probability density function (p.d.f.)
Piston, 1, 2, 19, 174, 176, 206, 209
Point estimator, 142, 214
Poisson distribution, 72, 73, 87, 88, 115, 119,

120, 143, 157, 178, 185
Polynomial predictors, 358
Population, 8, 17, 24, 34, 40, 46–48, 54, 69,

117, 123, 139–142, 149, 160, 163, 166,
167, 169, 187, 188, 190–192, 195, 198,
199, 201, 204–208, 214, 215, 234, 271,
273, 299–327, 362, 364, 369, 384, 413,
414

Population mean, 117, 167, 195, 204, 214, 271,
299, 300, 304, 307, 314

Population quantiles, 324
Population quantities, 300, 302, 305, 309
Posterior distribution, 177, 184, 185, 353, 407
Posterior expectation, 184, 353
Posterior probability, 52, 53, 125, 183, 405,

407
Posterior risk, 183, 184
Power function, 152, 155, 157, 160, 214
Precision, 6, 34, 141, 300, 305, 320, 325, 375
Precision of an estimator, 325
Predicted values, 243, 247, 257, 266, 268, 290,

374
Prediction errors, 366, 367
Prediction intervals, 23, 25, 34, 204, 244
Prediction model, 320, 323, 325
Prediction MSE, 325
Predictors, 145, 240, 245, 247, 256, 262, 263,

266, 269, 321, 322, 324, 325, 327, 329,
330, 345–352, 354, 358, 366, 368, 369,
371, 377, 378, 380, 381, 384–386
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Principal component analysis (PCA), 395, 405
Principal components, 395, 401, 404, 405, 416
Principle of least squares, 246
Prior distribution, 353
Prior probability, 125, 178, 181, 184
Prior risk, 182
Probability density function, 57, 178
Probability distribution function (p.d.f), 55, 72,

125, 146
Probability function, 44, 46, 54, 75, 102
Probability of events, 125
Process control, 2
Proportional allocation, 316–319, 325
Protocol, 40
P-value, 215

Q
Quadratic model, 367
Quantile plot, 25, 29, 34
Quantiles, 19, 34, 62–65, 68, 121, 130, 142,

153, 158, 162, 164, 166, 167, 170, 177,
187–189, 198, 200, 202, 205, 207–209,
261

R
Random component, 5, 6, 34, 237, 246, 321
Random forest, 369, 377, 381, 392
Randomization, 192, 208, 210, 214, 413
Randomization test, 208, 210, 214
Random measurements, 39
Randomness, 40, 234
Random numbers, 3, 42, 46, 171, 172, 301
Random sample, 8, 46, 67, 105, 111, 117, 139,

140, 142, 152, 163, 167, 185–187, 189,
192, 195, 198, 204, 208, 209, 212, 271,
299–303, 305–314, 367

Random sample without replacement
(RSWOR), 9, 301

Random sample with replacement (RSWR), 9,
301

Random variable, 3, 9, 13, 17, 34, 54–67, 69,
75, 77, 78, 81, 83, 88, 96, 98, 99, 101,
111–119, 121, 122, 139, 141–142, 145,
149, 156, 177, 178, 191, 206, 207, 268,
271, 294, 305, 306, 310, 315, 330, 337,
357, 405, 407

Ratio predictor, 321, 322, 324, 325
Reference distribution, 186–188, 192, 193,

210, 213–215
Regression coefficients, 145, 242, 246, 248,

251, 254–256, 267–269, 320
Regression diagnostics, 265, 290

Regularization, 384, 385
Rejection region, 149, 151, 214
Reliable, 273, 332, 368
Repeatability, 6, 7
Reproducibility, 7
Residuals around the regression, 243, 247, 262,

290
Resolution, 364
Response surface, 383
Response variable, 382
Robust statistics, 25, 31, 33, 34
Runs, 76, 259, 286, 384

S
Sample, 8–25, 35, 40, 46–49, 54, 55, 67, 72,

105, 117–125, 139–145, 149–163, 167,
169–176, 187–196, 198–209, 211–213,
231, 234, 240, 265, 271, 273, 274, 284,
286, 288, 300–314, 318, 321, 322, 324,
366, 367, 373, 384, 400

Sample allocation, 316, 325
Sample correlation, 236–238, 247, 283, 290
Sample covariance, 236, 237, 400
Sample kurtosis, 21
Sample maximum, 17, 108
Sample mean, 19, 20, 22, 24, 25, 28, 31, 34,

111, 117, 120, 140, 141, 145, 152, 156,
161, 162, 167, 187, 188, 191, 195, 201,
225, 236, 239, 277, 302, 304, 305, 307,
321

Sample median, 17–19, 209
Sample minimum, 17, 23
Sample percentile, 19
Sample quantiles, 19, 29
Sample quartiles, 17
Sample range, 17
Sample skewness, 21, 24
Sample space, 40, 42, 43, 46–49, 52, 54, 55,

125
Sample standard deviation, 20, 31, 34, 122,

156, 157, 163, 198
Sample variance, 20, 34, 111, 121, 141, 162,

191, 198, 200, 236, 240, 247, 255, 305
Sampling distribution, 117, 140, 141, 160, 187,

189, 214, 215, 289, 302, 303, 306, 313
Sampling distribution of an estimate, 215
Sampling with replacement, 34, 125, 301
Scatterplots, 226, 227, 229, 236, 238, 244, 249,

250, 252, 257, 290, 336
Schwarz inequality, 236
SE, see Standard error (SE)
Sequential SS, 260
Shift, 4, 176, 301, 350, 398
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Significance level, 150, 151, 153, 156, 160,
214

Sign test, 208, 209, 211, 214
Simple linear regression, 145, 214, 239, 240,

251, 252, 260, 266, 290
Simple random sample, 140, 300, 305, 324
Simulation, 2, 43, 160, 170, 187, 214, 313, 314
Simultaneous confidence interval, 275, 291
Single linkage, 388
Singular value decomposition (SVD), 403, 404
Skewness, 21, 24, 28, 30, 34, 62, 69, 85, 87,

125
Slope coefficient, 239, 251
SST, see Total sum of squares (SST)
Stability, 7, 376
Standard deviation (STD), 23–25, 31, 33, 34,

62–65, 81, 83, 96, 97, 130, 141, 155,
162, 163, 166, 167, 176, 189, 196, 234,
267, 302, 304, 306, 375

Standard error (SE), 141, 214, 290, 305, 308,
319

Standard error of predicted value, 290
Standardized residual, 267, 290
Statistical hypotheses, 149, 170, 214
Statistical inference, 25, 93, 120, 189, 190,

214, 215, 366
Statistical model, 141, 271, 299, 361, 366
Statistical process control (SPC), 2
Statistic of central tendency, 17
Statistics, 1–38, 112, 120–125, 176, 189, 198,

199, 202, 206, 208, 212, 236, 261, 271,
302, 303, 305, 306, 361–362, 364, 375,
405, 423

Stem and leaf diagram, 34
Step-wise regression, 263, 290
Stratified random sample, 324
Stratified sampling, 364, 367, 368
Studentized test for the mean, 193
Studentized test statistic, 193
Sufficient statistic, 147
Sum of squares of deviations (SSD), 272
Sure event, 40
Symmetric matrix, 255

T
Term frequency (TF), 402
Testing hypotheses, 158, 181, 192
Testing statistical hypotheses, 170, 214
Text analytics, 401, 416

Time till failure (TTF), 109, 110, 120
Toeplitz matrix, 340, 348, 358
Tolerance interval, 25, 166, 167, 204, 206–209,

214, 215
Topic analysis, 404, 416
Total sum of squares (SST), 257, 272
Treatment combinations, 271, 288, 290
Treatments, 1, 271, 272, 275–277, 288, 290,

412
Trend function, 348, 358
Trial, 3, 39, 47, 66, 75, 102, 110, 125, 158,

163, 164, 186, 204, 279, 288, 413
Two-sided test, 154
Type I error, 150, 152, 214
Type II error, 150, 152, 214

U
Unbiased estimator, 141, 143, 163, 191, 214,

249, 255, 307, 310, 314, 318, 325
Unbiased predictor, 322, 323
Uniform distribution, 30, 78, 95, 100, 110,

112, 140, 174, 175, 206
Upper tolerance limit, 167

V
Validation data, 384, 386, 392
Validity, 414
Variance, 60, 67, 70, 75, 77, 78, 81, 83, 96,

100, 101, 111, 112, 117, 121, 123, 130,
139, 140, 145, 149, 156, 163, 183, 191,
192, 198–204, 208, 213, 214, 236, 237,
239, 240, 242, 248, 249, 255, 256, 260,
270, 288, 289, 299, 300, 307, 310, 314,
315, 318, 319, 321, 322, 324, 337, 388

W
Weibull distribution, 88, 90
White noise, 335, 358
Wilcoxon signed rank test, 211

Y
Yule-Walker equations, 339, 358

Z
Z-transform, 338, 358
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