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Preface

Thermal and statistical physics concepts and relationships are of funda-
mental importance in the description of systems that consist of macro-
scopically large numbers of particles. This book provides an introduction
to the subject at the advanced undergraduate level for students inter-
ested in careers in basic or applied physics. The subject can be developed
in different ways that take either macroscopic classical thermodynam-
ics or microscopic statistical physics as topics for initial detailed study.
Considerable insight into the fundamental concepts, in particular tem-
perature and entropy, can be gained in a combined approach in which the
macroscopic and microscopic descriptions are developed in tandem. This
is the approach adopted here.

The book consists of two major parts, within each of which there are
several sections, as detailed below. A flow chart that shows the chapter
sequence and the interconnection of major topics covered is given at the
end of this introduction. Part I is divided into three sections, each made up
of three chapters. The basics of equilibrium thermodynamics and the first
and second laws are covered in Section IA. These three chapters introduce
the reader to the concepts of temperature, internal energy, and entropy.
Two systems, ideal gases and ideal noninteracting localized spins, are used
extensively as models in developing the subject. Use of ideal equations of
state for gases and for paramagnetic systems allows illustrative applica-
tions of the thermodynamic method. Magnetic systems and magnetic
work are dealt with in some detail. The operation of a Carnot refrigerator
with an ideal paramagnet as working substance is presented along with
the traditional ideal gas case. The chemical potential is introduced from
a thermodynamic viewpoint in Chapter 3 and is discussed in subsequent
chapters in terms of the microscopic statistical approach.

Chapters 4, 5, and 6 in Section IB provide a complementary micro-
scopic statistical approach to the macroscopic approach of Section IA.
Considerable insight into both the entropy and temperature concepts is
gained, and the general expression for the entropy is given in terms of

xxi
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the number of accessible microstates in the fixed energy, microcanoni-
cal ensemble approach. This relationship is of central importance in the
development of the subject. Explicit expressions for the entropy of both a
monatomic ideal gas and an ideal spin system are obtained. The entropy
expressions lead to results for the other macroscopic properties for both the
ideal gas and the ideal spin system. It is made clear that for ideal gases in the
high-temperature, low-density limit, quantum effects may be neglected.
The need to allow for the indistinguishable nature of identical particles in
nonlocalized systems is emphasized. The expressions for the entropy and
the chemical potential of an ideal gas are given in terms of the ratio of the
quantum volume, which is introduced with use of the Heisenberg uncer-
tainty principle, and the atomic volume or volume per particle. These forms
for the entropy and chemical potential are easily remembered and provide
a check on the validity of the classical approximation. In Chapter 6, the
third law of thermodynamics is discussed with the use of expressions for
the entropy and the temperature parameter obtained in Chapter 5.

After completing Section IB, the reader can proceed directly to the
second half of the book. However, some reference to Chapter 7 is helpful to
gain familiarity with the Helmholtz and Gibbs thermodynamic potentials
that are used in later sections. The thermodynamic potentials are intro-
duced briefly in Chapter 3, with the aid of the Legendre transform, which
is discussed in Appendix D.

The final section in the first half of the book, Section IC, emphasizes the
power of thermodynamics in the description of processes for both gases
in Chapter 7 and condensed matter in Chapter 8. The Maxwell relations
are obtained and used in a number of situations that involve adiabatic and
isothermal processes. Chapter 9 concludes this section with a discussion
of phase transitions and critical phenomena.

Chapter 10 in Section IIA gives a brief introduction to probability the-
ory, mean values, and three statistical ensembles that are used in statis-
tical physics. The partition function is defined as a sum over states, and
the ideal localized spin system is used to illustrate the canonical ensemble
approach. The grand canonical ensemble and the grand sum are discussed
in Chapter 11. It is shown that for systems of large numbers of particles, for
which fluctuations in energy and particle number are extremely small, the
different ensembles are equivalent. Section IIB is concerned with quan-
tum statistics. Chapter 12 reviews the quantum mechanical description
of systems of identical particles and distinguishes fermions and bosons.
Chapters 13 and 14 deal with the ideal Fermi gas and the ideal Bose gas,
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respectively. Expressions for the heat capacity and magnetic susceptibility
are obtained for the Fermi gas, whereas the Bose-Einstein condensation
at low temperatures is discussed for the Bose gas. These chapters are illus-
trated with applications to a variety of systems. For example, Fermi-Dirac
statistics is used to treat white dwarf stars and neutron stars. The radiation
laws and the heat capacity of solids are discussed in Chapter 15, which
deals with photons and phonons. The cosmic microwave background
radiation is considered as an illustration of the Planck distribution.

In Section IIC, Chapter 16 returns to the ideal gas treated in the classical
limit of the quantum distributions, which automatically allows for the indis-
tinguishable nature of identical nonlocalized particles. The internal energy
of molecules is included in the partition function for the classical gas. The
equipartition of energy theorem for classical systems is discussed in some
detail. Nonideal systems are dealt with in Chapter 17 in terms of the clus-
ter model for gases and the mean field approximation for spins. The Ising
model for interacting spins is introduced and the one-dimensional solution
of the Ising model is given for the zero applied field case. An introduction
to Fermi liquid theory is followed by a discussion of the properties of liquid
helium-3 at low temperatures. The chapter concludes with a phenomeno-
logical treatment of Bose liquids and the properties of liquid helium-4.

Section IID deals with special topics that include the density matrix,
chemical reactions, and an introduction to irreversible thermodynamics.
Chapter 18 introduces the density matrix formulation with applications to
spin systems and makes a connection to the classical phase space approach.
Topics covered in Chapter 19 are the law of mass action, adsorption on sur-
faces, and carrier concentrations in semiconductors. Chapter 20 deals with
irreversible processes in systems not far from equilibrium, such as thermo-
osmosis and thermoelectric effects.

For a one-semester course, the important sections that should be cov-
ered are Sections IA, IB, IIA, and IIB. If students have had prior expo-
sure to elementary thermodynamics, much of Section IA may be treated
as a self-study topic. Problems given at the end of each chapter provide
opportunities for students to test and develop their knowledge of the sub-
ject. Depending on the nature of the course and student interest, materials
from Sections IC, IIC, and IID can be added.

A diagram that illustrates the structure and the interrelationships of
the first 16 chapters of the book is given in the following figure.
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Statistical and Thermal Physics Topics Covered in Chapters 1 to 16

Thermodynamics Statistical Physics

Ch. 1 Introduction: Basic
Concepts

Ch. 2 Energy: The First Law

Ch. 3 Entropy: The Second Law

- Ch. 4 Microstates for Large
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Ch. 5 Entropy and Temperature:
Microscopic Statistical Interpretation
Ch. 6 Zero Kelvin and the Third
v Law
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SECTION TA

Introduction to Classical Thermal
Physics Concepts: The First and
Second Laws of Thermodynamics






CHAPTER 1

Introduction:
Basic Concepts

1.1 STATISTICAL AND THERMAL PHYSICS

The subject of statistical and thermal physics is concerned with the descrip-
tion of macroscopic systems made up of large numbers of particles of the
order of Avogadro’s number N, = 6.02 x 10** mol™!. The particles may be
atoms or molecules in gases, liquids, and solids or systems of subatomic par-
ticles such as electrons in metals and neutrons in neutron stars. A rich vari-
ety of phenomena are exhibited by many-particle systems of this sort. The
concepts and relationships that are established in thermal physics provide
the basis for discussion of the properties of these systems and the processes
in which they are involved. Applications cover a wide range of situations,
from basic science, in many important fields that include condensed matter
physics, astrophysics, and physical chemistry to practical devices in energy
technology.

The origins of modern thermal physics may be traced to the analysis of
heat engines in the nineteenth century. Following this early work a num-
ber of researchers contributed to the development of the subject of ther-
modynamics with its famous laws. By the end of the nineteenth century,
thermodynamics, classical mechanics, and electrodynamics provided the
foundation for all of classical physics. Today thermodynamics is a well-
developed subject, with modern research focused on special topics such as
nonequilibrium thermodynamics. Application of the methods of thermo-
dynamics to complex systems far from equilibrium, which include living
organisms, presents a major challenge.
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The microscopic classical statistical description of systems of large
numbers of particles began its development in the late nineteenth cen-
tury, particularly through the work of Ludwig Boltzmann. This approach
was transformed by the development of quantum mechanics in the 1920s,
which then led to quantum statistics that is of fundamental importance
in a great deal of modern research on bulk matter. Statistical techniques
are used to obtain average values for properties exhibited by macroscopic
systems. The microscopic approach on the basis of classical or quantum
mechanics together with statistical results has given rise to the subject
known as statistical mechanics or statistical physics. Bridge relationships
between statistical physics and thermodynamics have been established
and provide a unified subject.

Under conditions of high temperature and low density, we shall find
that it does not matter whether classical or quantum mechanical descrip-
tions are used for a system of particles. At high densities and low tempera-
tures this is no longer true, because of the overlap of the particles’ wave
functions and quantum mechanics must be used, giving rise to quantum
statistics. Under high-density, low-temperature conditions, the prop-
erties of a system depend in a crucial way on whether the particles that
make up the system are fermions or bosons. Many fascinating phenom-
ena occur in condensed matter as the temperature is lowered. Examples
are ferromagnetism, superconductivity, and superfluidity. These impor-
tant new properties appear fairly abruptly at phase transitions. Progress
in the microscopic understanding and description of the behavior of
these systems involves quantum mechanics and statistical physics ideas.
Applications of quantum statistics are not confined to terrestrial systems
and include astrophysical phenomena such as the microwave background
radiation from the Big Bang and the mass-radius relationships for white
dwarf stars and neutron stars. An important concept in thermal physics
is that of entropy, which, as we shall see, increases with time as systems
become more disordered. The increase of the entropy of the universe with
the passage of time provides what is termed time’s arrow. An interesting
and unanswered question arises as to why the entropy of the universe was
so low at the beginning of time.

There are a number of ways in which the subject of thermal physics
may be approached. In this book, the elements of classical thermody-
namics are presented in the first three chapters that comprise Section IA.
The microscopic statistical approach is introduced in the three chapters
of Section IB, which complement the thermodynamics in Section IA and
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provide additional insight into fundamental concepts, specifically entropy
and temperature. Both classical and quantum mechanical descriptions
are introduced in discussing the microstates of large systems, with the
quantum state description preferred in the development of the subject that
is presented in this book. This approach involves the application of the
microcanonical ensemble methods to two model systems, the ideal gas
system and the ideal spin system for both of which the quantum states
are readily specified with use of elementary quantum mechanics. The
laws of thermodynamics are stated in compact form, and their signifi-
cance is heightened by the interweaving of macroscopic and microscopic
approaches. Expressions for the entropy and chemical potential of the
ideal gas are expressed in terms of the ratio of the quantum volume V, to
the atomic volume V,. V,, is taken to be the cube of the thermal de Broglie
wavelength, whereas V, is the mean volume per particle in the gas. In the
final three chapters in the first half of the book (Section IC), the thermo-
dynamic approach is applied to the description of the properties of gases,
and condensed matter.

In the second half of the book, emphasis is placed, initially, on statis-
tical physics results and the canonical and grand canonical distributions
presented in Section ITA. Following the introduction of quantum statistics
ideas in Section IIB, the Fermi-Dirac and Bose-Einstein quantum distri-
bution functions are derived. These functions are used in the discussion
of the properties of ideal Fermi and Bose gases. Photon and phonon sys-
tems are then treated in terms of the Planck distribution. In Section IIC,
canonical ensemble results are applied, first, to the ideal gas in the classical
limit of the quantum distributions and then to the nonideal gases and
spin systems. The final section (Section IID) of the book contains more
advanced topics and includes an introduction to the density matrix and
nonequilibrium thermodynamics.

The material in this book is concerned primarily with the description
of systems at or close to equilibrium. This implies that, apart from fluc-
tuations, which for macroscopic systems are generally small, the proper-
ties do not change with time or change only slightly with small changes
in external conditions. Processes will often be considered to consist
of a large number of infinitesimal changes, with the system of interest
always close to equilibrium. As mentioned above, two special systems
are used in the development of the subject: the ideal gas system and the
ideal spin system. Ideal in this context implies that interactions between
the particles are negligibly small and may be ignored. These two systems
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provide sufficient insight to permit generalization of the methods that
are developed to many other systems. The ideal gas system will be viewed
as consisting of N nonlocalized particles in a box or container of vol-
ume V. Because of their thermal motion, the particles exert a pressure, or
force per unit area P, on the walls of the container. The ideal spin system
consists of N localized spins, each with associated magnetic moment p
located in a magnetic field B.

In the development of the subject, use is made of concepts such as
volume, pressure, work, and energy, which are familiar from classical
mechanics. A further concept of fundamental importance is that of tem-
perature, and this is discussed in the next section. Useful relations that
involve temperature, such as equations of state and the equipartition of
energy theorem, are given in later sections in this chapter. SI units are
used throughout the book unless otherwise indicated.

1.2 TEMPERATURE

The concept of temperature has evolved from man’s experience of hot and
cold conditions with temperature scales devised on the basis of changes
in the physical properties of substances that depend on temperature.
Practical examples of thermometers for temperature measurement include

the following:

» Constant volume gas thermometers, which make use of the pres-
sure of a fixed quantity of gas maintained at constant volume as an
indicator

« Liquid in glass thermometers, which use the volume of a liquid, such
as mercury or alcohol, contained in a reservoir attached to a capil-
lary tube with a calibrated scale

o Flectrical resistance thermometers, which use the variation of the
resistance of a metal, such as platinum, or of a doped semiconductor,
such as GaAs, to obtain temperature

 Vapor pressure and paramagnet thermometers for special purposes
particularly at low temperatures

Most of the thermometers listed above are secondary thermometers that
are calibrated against agreed standards. The constant volume gas therm-
ometer has a more fundamental significance as explained in Section 1.3.
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Vapor

Thermometer

—— Water

Ice

FIGURE 1.1  Schematic depiction of a triple point cell in which water, ice, and
water vapor coexist. The cell is used to fix 0°C on the Celsius scale.

For everyday purposes, various empirical scales have been established.
Commonly used scales are the Fahrenheit and Celsius scales. For reasons
that become clear below, we consider the Celsius scale, which chooses two
fixed reference temperatures. The lower reference point is at 0°C, which
corresponds to the triple point of water, the point at which water, ice, and
water vapor coexist, and the higher reference point at 100°C, which cor-
responds to the steam point, where water and steam coexist at a pressure
of 1 atm. Degrees Celsius are obtained by dividing the range between the
triple point and the steam point into 100°. Figure 1.1 shows a schematic
drawing of a triple point cell.

Thermodynamics shows that it is possible to establish an absolute tem-
perature scale called the kelvin scale in honor of Lord Kelvin, who intro-
duced it and first appreciated its significance. The absolute scale does not
depend on the properties of a particular substance. Absolute zero on the
kelvin scale, designated 0 K, corresponds to -273.16°C. For convenience,
1 K is chosen to correspond to 1°C. This gives T(K) = #(°C) + 273.16. We
can gain insight into why the absolute zero of temperature is of fundamen-
tal importance by considering the equation of state for an ideal gas.

1.3 IDEAL GAS EQUATION OF STATE

An equation of state establishes a relationship among thermodynamic
variables. For an ideal gas, the variables chosen are the pressure P, the vol-
ume V, and the absolute temperature T. Experiments carried out on real
gases, such as helium, under conditions of low density have shown that the
following equation describes the behavior of many gases:

PV =nRT, 1.1



10 m Statistical and Thermal Physics: An Introduction

where 7 is the number of moles of gas and R is a constant called the gas
constant with value 8.314 ] mol™' K. As mentioned above, the constant
volume gas thermometer involves the measurement of the pressure of a
constant volume of gas as a function of temperature. Figure 1.2 gives a
sketch of a constant volume gas thermometer with a representative P ver-
sus T plot shown in Figure 1.3.

<€—— Dressure gauge

|€«—— Heat bath

Gas

FIGURE 1.2 Sketch of a constant volume gas thermometer in which the pressure
of a fixed volume of gas, held at various fixed temperature by use of heat baths, is
measured on a pressure gauge.
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FIGURE 1.3 Calculated pressure variation with temperature for a constant mass
of an ideal gas (10! mol) kept at constant volume (10~3 m?). The low-temperature
portion of the graph, where gases in general liquefy as a result of intermolecular
forces, is in practice obtained by extrapolation from higher temperatures.
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From Equation 1.1, it follows that the temperature T = 0 K corresponds
to a pressure P = 0 Pa. Zero pressure implies that the particles of the gas
have zero kinetic energy at 0 K and do not exchange momentum with the
walls of the container. We can therefore view the absolute zero of tempera-
ture as the temperature at which the energy of particles in the system is
effectively zero. This is of fundamental significance.

As the temperature is lowered, gases normally liquefy, and most solid-
ify at temperatures much higher than 0 K. This is because real gases have
interactions between particles, which lead to departures from ideal gas
behavior. Extrapolation from the high-temperature, low-density region,
where gases obey the ideal gas equation of state, shows what would hap-
pen at much lower temperatures if the gas were to remain ideal. The ideal
gas equation of state, expressed in Equation 1.1, is extremely useful in
considering processes in which gases are involved. P, V; and T are called
state variables, and because they are related by the equation of state, the
specification of any two of the variables immediately fixes the value of the
third variable. Examples of applications of the ideal gas law, as it is also
called, are given in later chapters. The ideal gas equation provides a fairly
good description of the behavior of many gases over a range of conditions.
Under conditions of high density, however, the description may not be
adequate, and empirical equations of state that work better under these
conditions have been developed. Two of these equations are briefly dis-
cussed in the next section.

1.4 EQUATIONS OF STATE FOR REAL GASES

An important empirical equation of state that provides a fairly good
description of the properties of real gases at high densities is the van der
Waals equation,

(P+ “\(Vb)=n
\P+V2/(V b)=nRT. (1.2)

Equation 1.2 is similar to the ideal gas equation in Equation 1.1 but with
a pressure correction term a/V?, which increases in importance with a
decrease in volume, and a volume correction term b. The van der Waals
constants a and b are determined experimentally for a given gas. The pres-
sure correction term allows for interparticle interactions, and the volume
correction term allows for the finite volume occupied by the particles
themselves.
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Another widely used empirical equation of state is the virial equation,
2
PV=nRT[1+(§) B(T) + (%) C(T)+~-}, (1.3)

B(T) and C(T) are called the second and third virial coeflicients, respec-
tively, and are generally temperature dependent. The correction terms
become important as the volume decreases and the particle density N/V
increases. Virial coefficients have been measured for a large number of
gases and are available in tables. Further discussion of these two empirical
real gas equations of state is given in later chapters.

1.5 EQUATION OF STATE FOR A PARAMAGNET

An ideal paramagnet consists of N particles, each of which possesses a

spin and an associated magnetic moment g proportional to the spin,
with negligible interactions between spins. Real paramagnetic systems
approximate ideal systems only under certain conditions, such as high
temperature, and in magnetic fields that are not too large. A more detailed
discussion of these conditions is given later in this book.

For an ideal paramagnet, experiment and theory show that the mag-
netic moment per unit volume, or magnetization M, is given by

M= Cﬂ’ (1.4)
T

with H an external applied magnetic field and Ca constant called the Curie
constant. In the SI system of units applied to ideal paramagnetic systems,
we shall often, to a good approximation, take the field that the spins see
as H = B/u,, with u,= 47 x 107 Hm™! the permeability of free space and B
the magnetic induction in tesla. M, H, and T are state variables analogous
to P, V,and T. Any two fix the value of the third variable. Like the ideal gas
equation of state, the ideal paramagnet equation, called Curie’s law, is very
useful in calculations related to processes that involve changes in the state
variables. Note that for T— 0 K, Equation 1.4 predicts that M will diverge.
This unphysical prediction shows that the equation breaks down at low
temperatures, where the magnetization saturates after it reaches a maxi-
mum value with all spins aligned parallel to H. In many magnetic systems,
the spins interact to some extent and order below a temperature called the
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Curie point. Examples are metals such as iron and nickel. The Curie-Weiss
equation takes interactions into account and has the form

CH
M=T—T ’ (1.5)

T. is called the Weiss constant and has the dimensions of temperature.
Equation 1.5 provides a satisfactory description of the magnetic proper-
ties of magnetic materials for T > T.. For a given system at a particular
temperature T =~ T_, spontaneous order among spins sets in and the system
undergoes a phase transition. Values of T, have been measured for many
magnetic systems. Phase transitions and critical phenomena associated
with these transitions are discussed in Chapter 9.

1.6 KINETIC THEORY OF GASES AND THE
EQUIPARTITION OF ENERGY THEOREM

In Chapter 2, we deal with work and energy for thermodynamic systems,
and this will lead to the first law of thermodynamics. It is helpful to have
expressions for the total energy of a system in terms of thermodynamic
variables. For ideal gases, kinetic theory provides an important result
known as the equipartition of energy theorem, which we now consider
along with other kinetic theory results. The kinetic theory of gases, which
makes use of classical mechanics, is related to certain topics in statistical
physics but is less general in scope and approach.

Although thermodynamics concerns itself with the macroscopic
description of systems of large numbers of particles, kinetic theory con-
siders the microscopic nature of fluid systems. In particular, for our pur-
poses, kinetic theory provides a classical microscopic description of the
properties of ideal gases in terms of the kinetic energy of the particles
in the system. Particles in a gaseous system are in constant motion and
undergo collisions with each other and with the walls of the container. For
a gas at a particular density and temperature, the collision processes may
be characterized by a collision time 7z, which is the mean time between
collisions. As we shall see later in this section, 7 is typically very short com-
pared with the time scale on which measurements of any properties of the
system are made. The rapid exchange of energy and momentum that the
particles undergo makes it meaningful to consider average properties of
the particles, such as the mean energy (e) defined below. If there are N
particles in the gas, the total energy is simply E = N (¢).
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Classically, the mean kinetic energy may be written in terms of the
mean square speed (v2) of the particles and each particle’s mass m as
(€) = 1m(v*), where the mean square speed is given by

(v*) =J::o v P(v) dv. (1.6)

Expressions for mean values are given in Chapter 10. We assume that
the potential energy is negligibly small and the total energy is simply
the kinetic energy. The speed distribution P(v)dv in Equation 1.6 has the
Maxwellian form,

3/2

P(v)dv =4p ( 2prlzl T) yre ™ PkT gy (1.7)
B

The Maxwellian speed distribution is derived in Chapter 16. In
Equation 1.7, ky is Boltzmann’s constant, related to the gas constant R by
means of Avogadro’s number N, and given by k= R/N, =1.381 x 10~ J KL,
Elegant experiments using molecular beams have verified the speed dis-
tribution. Figure 1.4 shows the form of the Maxwellian distribution for
helium gas at three temperatures. The distribution is not symmetrical

100 K Helium-4
0.0004
© 300 K
a9
0.0002 500 K
0.0000 . . : : . . .
0 1000 2000 3000 4000
v (ms™1)

FIGURE 1.4 The Maxwell speed distribution for helium gas at three tem-
peratures. The most probable speed and the RMS speed increase steadily with
temperature.
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about the value of the most probable speed at a particular temperature,
which shows that some atoms or molecules in a given system have speeds
much higher than the average value. For symmetry reasons, the average
velocity is zero as discussed in Chapter 16.

Using Equation 1.7 in Equation 1.6 gives

3/2

<v2>=4p(2 IZT) f yhe-mI2ksT gy, (1.8)
PKp 0

The integral in Equation 1.8 is of the form

I=f e x* dx = %Jﬁa N 1.9)
0

Discussion of definite integrals of this type is given in Appendix A. The
use of Equation 1.9 to evaluate Equation 1.8 results in (v*) = 3kyT/m, which
may be rewritten as

%m(vz) = %kBT or (€)= %kBT. (1.10)

This is an important and useful result for ideal gases. The mean square
speed may be expressed in terms of Cartesian velocity components,
(v*) = (vi)+(v3)+(v}). Because the choice of axes is arbitrary, symmetry
requires (vi) = (v})=(v?), and it follows that

%m(vﬁ)=%m(vi)=%m(v§>=%kBT. (1.11)

In dealing with systems of large numbers of particles, it is useful to intro-
duce the terminology degrees of freedom. Classical mechanics identifies
the number of degrees of freedom of a system with the number of inde-
pendent generalized coordinates that are used to describe the system. This
topic is dealt with in some detail in Chapters 15 and 16. For N particles
in a gas such as helium, which is monatomic, there are 3N degrees of
freedom, which correspond to translational motion along three orthogo-
nal directions for each of the N particles. The result in Equation 1.11 is
an example of the equipartition of energy theorem, which is stated as
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follows: For a classical system of particles in equilibrium at a temperature
T, each quadratic degree of freedom has mean energy 1 k,7T.

The term quadratic degree of freedom means that a given term in the
energy may be written in the form e = 1 kq’, where g represents a general-
ized coordinate, such as a particle’s velocity component or the displace-
ment of an atom from its equilibrium position in a molecule. The number
of degrees of freedom for a molecule in a gas will be designated f. For a
monatomic gas, we find f = 3 because there are three velocity components.
Diatomic molecules have additional rotational and vibrational degrees of
freedom. It turns out that, for diatomic molecules, the vibrational motions
cannot be described by classical mechanics at normal laboratory tempera-
tures of around 295 K, and these degrees of freedom only contribute sig-
nificantly to the mean energy at much higher temperatures. Figure 1.5
shows the two rotational degrees of freedom that are important in our
discussion of diatomic molecules.

Note that ], is very small, and motions about the y axis are not described
classically at any temperatures of interest. For a diatomic gas, we therefore
take f = 5, giving for the total energy of the gas

E- gNkBT. (1.12)

This discussion may be extended to triatomics and still larger mole-
cules. In general,

(e)=f<%kBT) and E=Nf(%kBT). (1.13)
i %Ime
NV,
CM Y
x ZLo?

FIGURE 1.5 The figure depicts rotational motions that contribute to the energy
of a diatomic molecule. The moment of inertia of the molecule is much smaller
about the y axis than about the x and the z axes. Quantum mechanics shows that
we can ignore rotational motion about the y axis.
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Equations 1.12 and 1.13 show that the internal energy of a fixed quantity
of ideal gas with negligible interactions between the N particles is simply
a function of the absolute temperature or E = E(T). It follows that for pro-
cesses in which the temperature does not change, called isothermal pro-
cesses, the internal energy of an ideal gas system remains constant. This is
an important result that we make use of in Chapters 2 and 3 in the devel-
opment of thermodynamics concepts and laws.

The equipartition of energy theorem may be justified with the aid of
the ideal gas equation of state. Consider the mean pressure exerted on
a surface by gas particles in a container. The force may be obtained as
the rate of change of momentum of particles in collisions with a surface.
Figure 1.6 represents a collision process in a container. As an idealiza-
tion, assume that all collisions are elastic; the change in the momentum
component p, for a particle i in striking the smooth wall, as shown, is
Api, =2mv;,.

From Figure 1.6, the number of molecules n that strike area A in a
time ¢ is given by the ratio of the sum, for all particles i, of the volumes
of cylinders of length vt and cross-sectional area A to the total volume
orn=1(A/V)IL, v,t. The factor 1 is introduced because on average half
the molecules in each small volume considered will have a velocity com-
ponent in the +x direction whereas the other half will have a component
in the Mx direction. Using Newton’s second law, the rate of change of
momentum divided by A gives the force per unit area, or the pressure,

FIGURE 1.6 A representative particle in a container of volume V is shown mak-
ing an elastic collisions with a smooth wall. The distances traversed correspond
to a unit time interval. The rate of change of momentum for all particles that
strike the end wall gives the net force on the wall.
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P = (1/At)(mAt/V) 3;vi. Taking ® vi = N(v2), with (v2)=1{v*) for
symmetry treasons, we obtain PV =2N(im(v’)). Comparison of
this result with the ideal gas equation of state PV = NkzT permits the
identification

(&)= émm - %kBT. (1.14)

This is the equipartition of energy theorem result for a monatomic gas.
The root mean square (RMS) speed is

172

3kBT) (1.15)

(%

Table 1.1 gives calculated values of the RMS speed for molecules in a
number of gases.

Although the RMS speeds are high, the molecules undergo frequent col-
lisions with each other and this limits how far they travel in a given dir-
ection in a particular time interval. The collision time 7 for the molecules
may be estimated as follows: We let the effective diameter of a molecule be a
and consider two particles to have undergone a collision if their centers are
within a distance a of each other. Consider a representative molecule that
travels with mean speed (v); attach a disk of diameter 2a to this molecule
and shrink all the other molecules to points. In a time ¢, the representative
molecule sweeps out a volume 7a?(v)t. The mean number of collisions per
unit time v, is simply the volume swept out in that time multiplied by the
number of molecules per unit volume or v, = (za?{v))N/V. The mean time
between collisions is 7 = 1/v, = V(Nza?(v})). If allowance is made for the

TABLE 1.1 Values of the RMS speed at 295 K for a
number of gases

Molecular VRMS = 27134 (ms™)
Gas Mass m (u) \/;
Helium 4.003 1357
Oxygen 15.999 678
Neon 20.179 604

Note: 1u=1.66x 102 kg.
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motion of the other molecules, a correction term % is introduced. With

V/N = k;T/P, from the ideal gas equation we obtain

kgT

S in— 1.16
£~ appa’ ) (116

To a good approximation, we take (v) = vy For helium gas at 1 atm
and 295 K, with a ~ 1071 m, Equation 1.16 predicts 7 ~ 0.67 ns. This col-
lision time corresponds to a collision rate of 1.5 x 10° s™\. The numeri-
cal estimate confirms the statement made earlier in this section that 7 is
much shorter than typical measurement times.

Kinetic theory is used to obtain expressions for the transport coeffi-
cients of gases, such as the viscosity coefficient # and the thermal con-
ductivity coefficient k. For completeness, expressions for these coefficients
are given here without derivation. Details may be found in kinetic theory
texts.

1 2
Viscosity coefficient: h= 3 rt(v’). (117)

1
Thermal conductivity coefficient: k = 3 ()t (1.18)

The collision time 7 appears in both expressions as does p, the density
of the gas. The specific heat ¢ is discussed in Chapter 2.

1.7 THERMAL ENERGY TRANSFER PROCESSES: HEAT ENERGY

To describe many thermodynamic processes, it is necessary to introduce
the concept of thermal energy transfer or heat flow. When two systems,
such as two containers of an ideal gas at different temperatures, are brought
into thermal contact, heat flow occurs. This corresponds to the transfer of
energy at the microscopic level through numerous collision processes of

particles with a partition separating the two systems. Figure 1.7 depicts a
heat flow process of this kind.

As a consequence of energy transfer, the kinetic energy of molecules in
Container 2 increases whereas that of molecules in Container 1 decreases
until equilibrium is reached with T, = T,. The amount of heat is usually
denoted AQ and is measured in energy units, for example, joules in the SI
system. (Historically, the calorie, with 1 calorie = 4.18 J, was used as the
heat unit but this terminology is now less commonly used in physics.)
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——1—>»AQ T,>T,

FIGURE 1.7 When two systems at different temperatures, with T, > T,, are
placed in thermal contact as shown, thermal energy, or heat, AQ is transferred
from System 1 to System 2 at the microscopic level through collision processes.

In the development of thermodynamics, the concepts of temperature,
energy, and entropy play key roles. In Chapter 2, the first law of thermody-
namics, which is based on the law of energy conservation, is introduced,
and its use is illustrated in the processes for two model systems: the ideal
gas and the ideal spin system. Chapter 3 deals with the second law of ther-
modynamics. The entropy concept is introduced following an analysis of
heat engines and their efficiency in converting heat into work. The fun-
damental relation on the basis of the first and second laws of thermody-
namics is given toward the end of Chapter 3. This relation encapsulates
the important connections between internal energy, entropy, and work
done in any given process and is a high point in the development of the
subject.

PROBLEMS CHAPTER 1

1.1 A monatomic nonideal gas is well described by the van der
Waals equation of state. The molar internal energy is given
by E=3RT —a/V, where a is a positive constant. The gas
is thermally isolated and is allowed to expand from an ini-
tial volume V; to a final volume V, by opening a valve into
an evacuated space. Obtain an expression for the final tem-
perature in terms of the given quantities and show that the
final temperature is lower than the initial temperature. Give
a physical explanation for the temperature decrease. (This is
known as the Joule experiment in honor of the scientist who
first attempted to measure the small temperature change in
a process of this kind.) For a particular gas, a = 0.1 Jm?. Find
the temperature change for one mole of the thermally iso-
lated gas when the volume is doubled, starting at a pressure
of 1 atm and a temperature of 300 K.
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1.5

1.6
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A mass of 14 g of diatomic carbon monoxide gas is contained
in a vessel at 290 K. Use the equipartition of energy theo-
rem to obtain the sum of the translational and rotational
energy contributions to the total energy of the gas assuming
ideal gas behavior. Explain why the vibrational energy need
not be considered. Compare the total energy with that of an
equal mass of helium gas at the same temperature.

The virial equation of state for n moles of a real gas has the
form P = (n/V)RT[1 + B(T)(n/V) + ---], where the higher-
order correction terms have been omitted. One mole of a
real gas for which the second virial coefficient B(T) = -1.2 x
107t L mol™ is initially at 300 K. If the gas is caused to
expand at constant pressure from an initial volume of 0.8 L
to a final volume of 1.2 L, by raising the temperature 7T, find
the increase in T'in this process assuming that B(T) remains
constant. Comment on this assumption for the process con-
sidered. Compare the temperature change with that which
would occur for an ideal gas.

A paramagnetic crystal is to be used as a magnetic thermom-
eter at temperatures less than 1 K. Magnetic susceptibility
measurements show that the material has a Curie-Weiss
temperature of 2 mK. What is the useful range of the ther-
mometer if errors in temperature are not to exceed 2%?
Argon gas in a container is at a temperature of 300 K. What
is the RMS speed of the gas molecules at this temperature?
If the gas pressure is 1 atm, estimate the mean time between
collisions of the molecules and the average distance traveled
between collisions.

Use the Maxwell speed distribution to obtain an expression
for the most probable speed v,,, of a molecule in a gas. Give
your result in terms of the absolute temperature. Find a rela-
tionship between v,,, and the RMS speed vyys.






CHAPTER 2

Energy: The First Law

2.1 THE FIRST LAW OF THERMODYNAMICS

One of the fundamental laws of physics is the law of energy conservation.

In classical mechanics, this leads to the work-energy theorem that may
be written in the following form when frictional forces are absent and all
forces are conservative:

W =AE=AK +AU. (2.1)

W is the work done on the system, and AE is the change in energy that is
generally made up of a change in kinetic energy AK and a change in poten-
tial energy AU. When friction is present, an allowance must be made for
the work done against friction. Equation 2.1 provides a powerful means
for solving many problems in mechanics.

The law of energy conservation is the basis of the first law of thermody-
namics. Consider an ideal gas system on which work AW is done and to
which heat AQ is added, as shown schematically in Figure 2.1.

According to Equation 2.1, we may expect the kinetic energy of the par-
ticles in the gas to increase as a result of the two processes. No change
in potential energy occurs because the gas is ideal, with negligible inter-
actions between the particles. Gravitational potential energy changes are
zero because the center of mass of the container remains fixed. These con-
siderations lead to the following relationship for the system:

AE = AW +AQ = AK. 2.2)
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AQ

AW ———» System

FIGURE 2.1  An ideal gas system to which heat AQ is added and on which work
AW is done.

AE is the total change in energy of the gas, which is equal to the total
change in kinetic energy of the particles making up the gas. If each par-
ticle has mass m, this gives

2
AK = E Api 2.3)

2m

[p;’ is the change in the momentum squared for the ith particle, and the
sum is over all N particles in the system. If we put (Ap*) = 1/N 3, Ap;?,
where (Ap?) is the arithmetic mean change in momentum squared per
particle, we get

AK = N22) _ Nace), (2.4)
2m

where (g) is the mean change in kinetic energy per particle. Using the
equipartition theorem from Chapter 1, we can relate (&) to the change in
absolute temperature of the gas. Returning to Equation 2.2, the relation
AE = AW + AQ or infinitesimally,

dE=dw +dQ, (2.5)

is the mathematical statement of the first law of thermodynamics and
expresses the fact that the change in internal energy of the system is equal
to the sum of the work done on the system and the heat added to the sys-
tem. In SI units, all quantities in Equation 2.2 are measured in joules.
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Although the first law has been written down for an ideal gas system, it
is a general law for any thermodynamic system. The energy change AE
is usually made up of both potential energy and kinetic energy contri-
butions. Note that the sign convention adopted in Equation 2.5 counts as
positive for both work done on the system and heat added to the system
because these processes lead to an increase in internal energy. Our choice
of sign convention is arbitrary but once it has been made must be used
consistently.

2.2 APPLICATION OF THE FIRST LAW TO A FLUID SYSTEM

Consider a fluid, such as a gas, in a piston-cylinder container as shown in
Figure 2.2.

If the pressure in the fluid is P, then a force F = PA must be exerted on
the piston to keep it fixed in position. If F is increased very slightly, the
piston is caused to move inwards by an infinitesimal distance dx and the
infinitesimal work done on the system is

dW =-Fdx=-PAdx=-PdV. (2.6)

A decrease in volume of the system corresponds to work being done on
the system or dW > 0 for dV < 0. This is consistent with the chosen sign
convention for work done. The first law for fluids becomes

dE=dQ-PdV. 2.7)

In this form, the law can be applied to a variety of situations. It is often
useful in considering thermal processes to introduce the idea of a large
heat bath at a given temperature. The heat bath is sufficiently large that
it can take in heat or give up heat to a system, with which it is in thermal

Piston area A

1

Displacement dx

FIGURE 2.2 A piston-cylinder container for a fluid system is shown. This
arrangement permits work to be done on the system when the piston, of cross-
sectional area A, is pushed into the cylinder.
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contact, with negligible change in its temperature. Consider the following
simple application as an exercise.

Exercise 2.1: An ideal gas contained in a piston-cylinder arrangement is at tem-
perature T. If the piston is pushed in slowly so that the volume changes from V,
to V;, how much heat must be rejected by the system to a heat bath in order for
the temperature to remain constant?

We assume that the piston is pushed in sufficiently slowly that the system is
always close to equilibrium. The ideal gas equation of state may be applied at
all stages of the process. Figure 2.3 depicts the situation.

The first law (Equation 2.7) is given by dE = dQ — P dV. Because the gas is
ideal, the internal energy does not change in an isothermal process, as can
be seen with the aid of Equation 1.12. Because T remains fixed, the average
energy of the molecules does not change. With d£ = 0, we have dQ = P dV,
and integration leads to AQ = f P dV. The ideal gas equation gives P = nRT/V,
and we obtain

dV
AQ = nRT v nRTIn (\//) (2.8)

If V, <V, it follows that AQ < 0, and this shows that heat is rejected by the
system in the compression process. The above result will be useful in our dis-
cussion of heat engines in Chapter 3.

Exercise 2.2: Consider an isothermal compression process for a gas that obeys
the van der Waals equation of state. Obtain an expression for the heat rejected
by the system. Assume as an approximation that for a fairly small isothermal
compression the internal energy of the gas remains almost constant. This cor-
responds to the kinetic energy staying constant, according to the equipartition

Ideal gas
system

v

AQ Heat bath T

FIGURE 2.3 Isothermal compression of an ideal gas: heat AQ is rejected to the
large thermal reservoir, or heat bath, which is maintained at a fixed tempera-
ture T.
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theorem, and a negligible change in the potential energy. (We discuss the inter-
molecular potential for a van der Waals gas in Chapter 7.)

With the assumption that AE = 0, we have AQ = I‘é P dV. For a van der Waals
gas, with n =1 mol, P = RT/AV - b) — a/V>.

This gives

Vi Vi dV Vi dV Vi-b 1 1
PdV =RT —af &L -rTI — )
/. VAl W2 ”(v,-—b)”(vf v,-) 29)

In this case, it is necessary to know the van der Waals constants a and b to
obtain AQ. For V; <V, the first term will be negative and the second positive.
This reflects the fact that in the pressure term, which involves the constant a,
a decrease in volume increases the importance of the interparticle attractive
interaction, whereas in the volume term, the constant b simply reduces the
effective volume available to the particles. If the internal energy change is not
small, a more elaborate calculation is required. Expansion processes for a van
der Waals gas are considered in Chapter 7.

2.3 TERMINOLOGY
The terminology used in the description of various processes that are car-
ried out on systems is summarized in Table 2.1.

Other useful terminology is given below.

State variable—specifies the state of a system (e.g., P, V; and T).

Extensive variable—value depends on the size of the system (e.g., V, N,
or n).

Intensive variable—value does not depend on the size of the system
(e.g., Tand P).

State function—a thermodynamic function of the state variables.

TABLE 2.1  Terminology used in describing thermodynamic

processes
Process Condition

Isothermal T constant—no change in temperature
Isobaric P constant—no change in pressure
Isochoric V constant—no change in volume
Adiabatic AQ = 0—no heat energy transferred
Quasi-static reversible Process carried out slowly; system is

always very close to equilibrium
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An example of a state function is the internal energy of a system. For
an ideal gas, we see from Equation 1.13 that E = 1 fNRT, and in this case,
E is simply a function of T, that is, E=E(T). For a process in which a tem-
perature change takes place, it does not matter how a particular final state
is reached. The internal energy of the final state is specified completely by
the final absolute temperature. In general, E will be a function of two state
variables for systems that are not ideal so that we have E = E(V, T). Note
that because there is an equation of state that connects the state variables
(P, V, and T for a gas), only two state variables are needed to specify the
state of the system and hence the internal energy completely.

Although the first law relates dE, dQ, and dW, it is important to realize
that although E is a state function, Q and W are not state functions. dE is
an exact differential, which may be written in terms of partial derivatives

of E=E(V,T) as
dE=(aE) dT +
aT/},,

dQ and dW, on the other hand, are inexact differentials and cannot be
written in a form similar to Equation 2.10. An infinitesimal change in
internal energy may occur in various ways. This means that dQ and dW
each depend on the path followed, but the sum gives the same value dE
for specified initial and final states. Macroscopically, we find that different
combinations of AQ and AW can lead to the same change AE. For future
use, we note that for state variables such as P = P(V, T), which are func-
tions of other state variables, total differentials may be written in terms of
partial derivatives as follows:

(jﬁ) ) dv. (2.10)

aP opP

dp=(av)TdV+(aT)vdT. 2.11)

2.4 P-V DIAGRAMS

It is convenient to represent processes involving a fluid system on a
pressure-volume or P-V diagram, and Figure 2.4 shows how this is done.

It is easy to see that the work done in a process, such as that shown in
Figure 2.4, is given by the area under the curve that depicts the process
on a P-V diagram, that is, AW =- “,jf P dV. In an expansion process,
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Isothermal
constant 7'

FIGURE 2.4 P-V diagram for a gas that shows an isothermal expansion process
from an initial volume V; to a final volume V.

AW is negative, from our sign convention, because work is done by the
gas. Isochoric and isobaric processes are represented on P—V diagrams
by straight lines parallel to the vertical and horizontal axes, respectively.
If P-V diagrams are drawn to scale, the area under a curve may be cal-
culated directly using geometric results, and this gives the magnitude
of the work done in the corresponding process. The sign is obtained by
determining whether the process is an expansion (negative) or compres-
sion (positive).

2.5 QUASI-STATIC ADIABATIC PROCESSES

FOR AN IDEAL GAS
An adiabatic process has been defined as one in which AQ = 0, with the
system thermally isolated so that no heat flow can take place. Experiment
shows that in a quasi-static adiabatic process, the pressure and the volume
of an ideal gas are related by the expression PV = constant or

PV = PV9, (2.12)

where y is a constant for a given system and has the value 5/3 = 1.66 for a
monatomic gas. We derive Equation 2.12 later in this chapter. Because the
ideal gas equation of state always holds in any such process, Equation 2.12
may be rewritten as

TiVig_l = vafg—l. (2.13)
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The temperature of a gas will change in an adiabatic expansion or com-
pression as follows: T; = T; (V; /V;)?"". Adiabatic expansion processes are
used to cool gases such as nitrogen in liquefier plants.

2.6 MAGNETIC SYSTEMS

In application of the first law to magnetic systems, it is necessary to con-
sider the magnetic work done on a system when an applied magnetic field
H is changed from some initial value to a final value. For a magnetic mate-
rial, the magnetic induction in the system may be written as

B=m(H+M), (2.14)

with my = 4x107Hm™" the permeability of free space. M is the magneti-
zation or magnetic moment per unit volume of the material and has units
ampere per meter. H is produced by an external electric current in a cir-
cuit and also has units ampere per meter. The magnetic susceptibility X is
defined by the relationship M =X H. Choosing the units of M as ampere
per meter makes the magnetic induction B the force vector for a magnetic
dipole rather than H. The systems dealt with in this book are paramagnetic
and not ferromagnetic. As a simplification and as a good approximation for
paramagnets, we assume that M < H and that the relative permeability u,
of any material of interest is close to unity with B = u H.

Consider along solenoid of N turns, cross-section A, and volume V, car-
rying a current i and filled with magnetic material, as shown in Figure 2.5.
The applied magnetic field produced by the current is given by H = ni.

The demagnetizing factor is assumed small for the chosen geometry.
When the current through the solenoid changes with time, an emf ¢ is
induced, according to Faraday’s law of induction:

e= —NA(C;?). (2.15)

FIGURE 2.5 A rod of magnetic material is contained in a long solenoid through
which a current i is passed.
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The infinitesimal work done on the system of solenoid plus magnetic
material by the external energy source in transferring a charge i dt through
the solenoid is

dW = e dt, (2.16)

with & the applied potential difference across the solenoid. Bearing in mind
our sign convention that work done on a system is positive, combination
of Equations 2.15 and 2.16 gives dW = NAi dB and with H = Ni/L, where
L is the solenoid length, we obtain

dW =VHdB =m\V(HdH + HdM). (2.17)

The first term in Equation 2.17 corresponds to the work done in the estab-
lishment of the increased magnetic field in vacuum and the second term to
that associated with the increase in magnetization of the magnetic material.
If the system is taken to consist of the solenoid plus magnetic material (with
u,= 1), the first law may be written to a good approximation as

dE = dQ+ VBdH + VB dM. (2.18)

It is convenient to rewrite Equation 2.18 in the form

dE* = d(E— %mOVHz)= dQ +VBAM, (2.19)

where E* = (E—-1VmH?) contains the vacuum field energy as a shift in
the arbitrarily chosen zero of energy. This corresponds to exclusion of the
vacuum field as part of the system of interest and retention of just the
energy term associated with the magnetic material in the applied field.
An alternative but equivalent expression to Equation 2.19 is obtained if we
make use of the differential d(MB) = M dB + B dM, or

BdM = d(MB)- M dB. (2.20)

Inserting Equation 2.20 in Equation 2.19 gives dE*=dQ+ V d(MB) —
VM dB, and this equation is written as

dE* = d(E*-VMB)=dQ-VM dB. (2.21)
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In Equation 2.21, E* = (E*-VMB) is the self-energy of the material
alone, with the vacuum field energy and the mutual field energy of the
sample field and the applied field subtracted from the total energy E. Both
dE* and dE* are exact differentials of state functions and correspond to
different viewpoints of the system of interest.

The expressions for the infinitesimal work done in the two cases that
are usually considered are

(i) Magnetic material plus mutual field
dW =VBdM (2.22)
(i) Magnetic material only

dW =-VM dB (2.23)

Depending on the situation which is being considered, either of these
two expressions may be used. It is important to note that the signs are
different in the two expressions for dW. Examples of the use of these
expressions are given later. In the above discussion, it has been implied
that any changes in volume V of the sample are small and may be
ignored, but if V changes sufficiently, an additional term —PdV should
be included in Equations 2.22 and 2.23 to allow for mechanical work
done in the expansion. In most cases of interest, this additional term
may be omitted because it is much smaller than the magnetic work
term.

Additional insight into the various contributions to the magnetic energy
is obtained by considering the energy density of the magnetic field which
is given by

E 1B
— =, (2.24)
V 2m
With Equation 2.14, we obtain
1
E=5VmO(H2+2H-M+M2). (2.25)

The three terms in Equation 2.25 are the vacuum field energy, the
mutual field energy, and the self energy, respectively. The quantities
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E* and E*, defined above, are readily identified by rearrangement of
Equation 2.25.

For many calculations, it will be convenient to exclude the vacuum field
energy and the mutual field energy and to use E*, the self- energy or sam-
ple energy of the magnetic system. In this chapter, and for many sections
of the book, we shall limit the discussion to ideal linear magnetic systems,
specifically paramagnetic systems that obey Curie’s law. Ferromagnets
and antiferromagnets that undergo transitions to spin ordered phases
below their transition temperatures are excluded here but are considered
in Chapter 17, which deals with nonideal systems.

2.7 PARAMAGNETIC SYSTEMS

Having distinguished the self-energy from the other energy contributions,
we now write down the form for this energy that is widely used in thermal

physics applications. Consider a fixed moment g in a field of magnetic
induction B = u,H. The potential energy of the moment is given by the
scalar product of # and B, that is,

E=-uB. (2.26)

This follows from a consideration of the work done in a process in which
an orientation change of the moment in the applied field is made. (We
allow the moment to be macroscopic and ignore quantization effects for
the present.) For a macroscopic system, such as a paramagnet, the expres-
sion for the potential energy is given by

E=-VM'B=-M-B, (2.27)

with M as the total magnetic moment of the specimen and B as the mag-
netic induction. To simplify the notation, the superscript dagger has been
omitted from E. This simplified notation will, in general, be used to denote
the self-energy unless otherwise indicated. For a paramagnet, the mag-
netization is given by Curie’s law (Equation 1.4). Further discussion of
Equations 2.26 and 2.27 is given in Chapter 4.

Exercise 2.3: A paramagnetic material that obeys Curie’s law is situated in a
magnetic field whose strength is increased from H, to H; in an isothermal pro-
cess. Obtain an expression for the work done on the material in this process.
How much heat energy is rejected by the system?
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We have from Equation 2.23 dW =-mVM dH. Curie’s law (Equation 1.4)
is M = CH/T, and substitution for M in Equation 2.23 followed by integration
gives

_ M (mCVY e
AW = 2( - )(Hf H?). (2.28)

From Equation 2.27, the change in internal energy of the magnetic material
is simply

AE = - mVIM:H; — MiH;],
which for an isothermal process gives

AE = —("'OTCV) [H? - H?, (2.29)

where use has again been made of Curie’s law. From the first law and using
Equations 2.28 and 2.29, it follows that

AQ = - —m‘;\/ [H - H/1. (2.30)

This is the heat energy rejected in the isothermal magnetization process.
This result is qualitatively similar to the result obtained for the heat rejected in
the isothermal compression of a gas where work is done on the system. Note
that we have expressed our results in terms of the applied field H rather than in
terms of the magnetic induction B. This is because the form chosen for Curie’s
law involves the external field H applied to a paramagnetic material.

M-H diagrams: By analogy with gaseous systems, where processes are
represented on P-V diagrams, magnetic processes may be represented on
M-H diagrams. In the magnetic case, M is the magnetization or magnetic
moment per unit volume. If we multiply M by V, we obtain M, the total
magnetic moment, which is an extensive quantity. Figure 2.6 shows
the isothermal and adiabatic demagnetization processes on an M—-H
diagram for a paramagnetic system.

Note that in the adiabatic demagnetization process, M remains constant
as shown below. Demagnetization in this context means reduction of the
applied field H produced by the external magnetic circuit. From Equation
2.23, the work done on the material in any process is proportional to the
area under the M-H curve. We again exclude the vacuum field energy
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and mutual field energy. The paramagnetic material is assumed to obey
Curie’s law, and it follows that isothermals are represented by straight
lines of slope C/T, which extrapolate to the origin. Adiabatic processes
are represented by horizontal paths such as 1 — 2, in which the magnetic
field strength changes from H, to H,. The statement that M is constant
in an adiabatic process is based on the first law (Equation 2.21), which
for dQ =0 gives dE =dW = -mVM dH. Together with the expression
for the energy in Equation 2.27, this leads to the following relationship
AE = -m)V[M,H, - M|H,]= AW = —mOVfgf M dH. Replacement of M
by CH/T shows that this relationship is satisfied only if M remains con-
stant, proving that M, =M, in an adiabatic process. It follows from Curie’s
law that

Hi _H,
L T

(2.31)

Equation 2.31 is a useful relationship that expresses the initial and final
temperatures of an ideal paramagnet in terms of the initial and final
applied fields in an adiabatic process.

The work done in an adiabatic process is the area under the curve
on an M-H diagram, with due regard to sign: AW,, = -mVM (H, - H,).
Similarly, the work done in an isothermal process is readily obtained.
Magnetic cooling, which is discussed in the next section, is an example of
the practical importance of the processes shown in Figure 2.6.

Adiabatic
2 demagnetization

M | Heating
process

Isothermal
magnetization

H,

FIGURE 2.6 M-H diagram for a paramagnetic material that obeys Curie’s law.
The diagram shows a cycle that is made up of an isothermal magnetization pro-
cess, an adiabatic demagnetization process, and a heating process at constant H.
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2.8 MAGNETIC COOLING

Figure 2.7 depicts schematically an arrangement used in achieving cool-
ing of a paramagnetic system by means of adiabatic demagnetization.
With the heat switch closed, the paramagnetic material is isothermally
magnetized by an increase in the applied magnetic field, and this corresponds
to path 0 — 1 in Figure 2.6. When equilibrium has been reached at T} in the
high field H}, the paramagnetic material is thermally isolated by opening the
heat switch. In practice, this may be done using a magnetic field operated
switch made of superconducting material, with high thermal conductivity in
its normal state and low thermal conductivity in the superconducting state,
or by using an exchange gas that can be pumped away to break thermal con-
tact. Cooling of the paramagnetic material is achieved by adiabatic reduction
of the applied magnetic field strength from H, to H, along path 1 — 2 in
Figure 2.6. From Equation 2.31, the final temperature reached is given by

H,
T, = (H) T. (2.32)

1

This is easily understood from Curie’s law because the magnetization
reached in a large magnetic field H, at temperature T; is retained, at the
completion of the adiabatic process, in the much lower field H,. It might
be thought that absolute zero temperature can be reached when H, is

Heat bath
T,

K ]—[e.at
| switch

Paramagnetic
material

Solenoid
magnet

FIGURE 2.7 A schematic depiction of the arrangement used for magnetic cool-
ing of a paramagnetic material by means of an adiabatic demagnetization pro-
cess. The material is situated in a field supplied by a magnet. Thermal contact
between the paramagnet and the heat bath at a fixed temperature T, is controlled
by means of a heat switch. With the heat switch open, the applied field is gradu-
ally reduced and the temperature of the paramagnet decreases.
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decreased to zero. This is not so because, for any real paramagnetic sys-
tem, there are always some interactions between the spins that lead to a
breakdown of Curie’s law at very low temperatures. This point is discussed
in greater detail in Chapter 6.

In addition to the breakdown of Curie’s law, a complete treatment
must consider interactions between the system of spins in the paramag-
netic material and the host lattice in which they are located. The lattice is
cooled by the spins through spin-lattice relaxation processes. At very low
temperatures, spin-lattice relaxation times can become very long, and this
prevents equilibrium being reached for the entire system of spins plus lat-
tice. These details are not pursued further here.

2.9 GENERAL EXPRESSION FOR WORK DONE

For a fluid system, the infinitesimal work done is given by Equation 2.6
dW = -P dV. In the case of a magnetic system, we have two expressions

that depend on what the system is taken to be. For the magnetic material
plus field case, we have from Equation 2.22 dW = mVH dM = myH dM,
whereas for the case of magnetic material alone, Equation 2.23 is
dW = -myVM dH = —myM dH. Two other processes that are often consid-
ered are stretch of a wire and increase in the surface area of a liquid. For
a stretched wire,

dw = Fd¢, (2.33)

where F is the applied force and d7 is the increase in length of the wire. For
the liquid surface,

dW =S dA, (2.34)

where S is the surface tension and dA the increase in area of the surface.
Other examples include the work done by an electric cell, with emf £, in
the transfer of charge dQ through a circuit dW = - £dQ.

Equations for the work done on a system are of the general form

dWw =Y dX,

where Y is a generalized force, which is an intensive variable, and X is a
generalized displacement, which is an extensive variable. For a particular
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FIGURE 2.8 The Y-X diagram for a representative work process on some system.
The generalized force (intensive variable) Y is plotted versus the generalized dis-
placement (extensive variable) X for the process. X, is the value of the variable X
for Y=0.

system, care must be exercised in choosing the sign in expressions for dW
to comply with the convention we have adopted. The various processes may
be represented graphically on a Y versus X diagram, as shown in Figure
2.8. The generalized force, which is an intensive quantity, is usually plotted
along the vertical axis, whereas the generalized displacement, which is an
extensive quantity, is plotted along the horizontal axis.

The work done in a change of the extensive variable X from X; to X;is
given by

Xf
W= Y dX. (2.35)

Xi

This is the area under the curve between the limit values X; and X;. For
reasons discussed in Section 2.6, care must be exercised in specifying the
system in magnetic situations. Caution must similarly be exercised in
expressions for work done on polarizable media in electric fields.

2.10 HEAT CAPACITY

Consider a situation in which heat AQ is added to a system resulting in an
increase in temperature AT. We define the heat capacity of the system as

o) = tim (AQ) _4Q

ar—o\ AT} dT" (2.36)
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The SI unit of C is joules per kelvin. Note that C may be a function of T. It
is convenient to introduce the specific heat of a substance defined as the
heat capacity either per unit mass

0-3(%9)
or per mol
«(T) = (‘;?) (2.38)

Note the use of lower case ¢ for the specific heat. The unit is ] kg™ K™'
or Jmol™ K. For water at room temperature, ¢ = 4.18 x10° J kg™ K™\
Specific heats for other substances are available in tables.

From the equipartition of energy theorem, it is a straightforward mat-
ter to obtain an expression for the heat capacity of an ideal gas. The inter-
nal energy of a monatomic ideal gas is from Equation 1.13 E = N(3kT) =
3nRT, and an infinitesimal change in E with temperature is dE = 3nR dT.
This expression with the first law gives 3nRdT = dQ-P dV, and with
rearrangement, we obtain

dQ = gnR dT+Pdv. (2.39)

To proceed, it is important to recognize that the heat capacity of a gas
or, more generally, a fluid can be measured with two different constraints:
either the volume or the pressure may be held constant. The correspond-
ing heat capacities are denoted C,, and C,, respectively. From Equation
2.39, it follows that

_(dQy _3
Cy = (dT)V - R (2.40)
and
_(dQ\ _3 v
Cp-(dT) 5 nR + P(aT)P' (2.41)

The ideal gas equation of states gives (0V/dT), = nR/F, which, with
Equation 2.41), leads to

C, = gnR. (2.42)
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The molar-specific heats are obtained immediately on division by n.
From Equations 2.41 and 2.42, we see that

Cp—Cy = R. (243)

The physical reason for ¢, being greater than ¢, is that work is done
in the constant P case, which is not done at constant V. Some of the heat
is converted into mechanical work when P is constant and V increases.
Additional heat energy is therefore required to produce a given rise in
temperature for constant P compared to constant V.

More generally, for an ideal gas made up of particles with f degrees of
freedom to which the equipartition of energy theorem applies, the heat
capacity expressions are C, = 1 fuR and Cp = (3 f + )nR. The infinitesi-
mal change in internal energy is from the first law and our definition of
Cy given by dE = dQ = Cy, dT. The first law may conveniently be written
in the form

Cy dT =dQ-PdV. (2.44)

Equation 2.44 is useful in calculations that involve ideal gas processes,
as illustrated in the following example.

Exercise 2.4: A monatomic ideal gas undergoes an adiabatic expansion from
volume V; to V;. Obtain an expression for the ratio of the initial to the final tem-
perature of the gas.

For dQ = 0 and with C, = 3nR, Equation 2.44 reduces to 3nR dT = -P dV
With use of the ideal gas law, this equation may be integrated to give
3In(T/T;) = In(V;/ Vi, from which we obtain (T./T;) = (V;/V;)**. More generally,
for a gas that is not monatomic, it is easy to see that

76
) " lv) (2.45)

which is an alternative form of Equation 2.13. Figure 2.9 shows, schematically,
the form of the specific heat behavior with temperature for monatomic and
diatomic gases. At low temperatures, gases liquefy and low temperatures are
therefore excluded from the plot. The specific heats of liquids and solids are
discussed in Chapter 8. For diatomic gases, the vibrational degrees of freedom
contribute to the specific heat at sufficiently high temperatures, typically well
above room temperature. More detailed consideration of the various contribu-
tions to the specific heats of polyatomic gases is given in Chapter 16.
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FIGURE 2.9 Schematic representation of the specific heats of monatomic and
diatomic gases as a function of temperature. At sufficiently low T, gases liquefy
and/or solidify. At very high temperatures, vibrational motions contribute to the
specific heat for diatomic molecules.

The heat capacity of an ideal paramagnetic solid may be considered in
a similar way to that just given for an ideal gas. Heat capacities may be
defined as follows: Cy = (dQ/dT)y and Cy; = (dQ/dT)y. A discussion of
these heat capacities is deferred until later in this book when an expression
for the internal energy of a paramagnetic system has been derived using a
microscopic approach.

2.11 QUASI-STATIC ADIABATIC PROCESS

FOR AN IDEAL GAS REVISITED
In Section 2.5, we introduced the relationship PV? = constant for adia-
batic processes. It is now possible to relate the quantity y to the specific
heats introduced in Section 2.10. From Equation 2.44, the first law for n =
1 mol of an ideal gas is

dQ=cy dT+PdV. (2.46)

The ideal gas equation of state is PV = RT. Forming the differential of
PV, we have

d(PV)=PdV+V dP=RdT. (2.47)

On substitution for P dV from Equation 2.46 into Equation 2.47, we
obtain dQ = (cy + R)dT -V dP, and with (c, —¢y) = R this gives

dQ=cp, dT -V dP. (2.48)
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For an infinitesimal adiabatic process, dQ = 0, and from Equation 2.48
we get

V dP =c¢p dT. (2.49)

With Equation 2.47, it follows that

PdV = —¢y dT. (2.50)

We divide Equation 2.49 by Equation 2.50 and rearrange the result to
obtain the first-order differential equation dP/P = —(cp/cy)dV/V. For a
quasi-static process, integration leads to InP = —(cp/cy)InV +In(con-
stant), or with antilogs

PV"v = constant. (2.51)

Comparison of Equation 2.51 with Equation 2.12 shows that g = cp/cy.
Not only is the form of Equation 2.12 obtained, but an explicit expres-
sion for ¥ in terms of the specific heats is found. Note that the ratio
cp/ ¢y =5/3 =1.6€ for a monatomic ideal gas.

2.12 THERMAL EXPANSION COEFFICIENT AND
ISOTHERMAL COMPRESSIBILITY

For condensed matter, it is convenient to introduce two coefficients that

characterize a particular system. These are the isobaric thermal expansion

coeflicient,

b= 1(3\/) (2.52)
v\t /,
and the isothermal compressibility,

e o5

Measured values of these coefficients have been tabulated for many
solids and liquids. The relationship between the specific heats for such
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systems takes the form

_Vrp

Cp—Cy = P (2.54)

A derivation of this relationship is given later in the book.

Exercise 2.5: Show that the relationships that connect the specific heats at
constant volume and constant pressure as given in Equations 2.43 and 2.54 are
consistent for an ideal gas.

The ideal gas equation of state PV = RT (for n = 1 mol), g = 1/V ©@V/dT),
= R/PV = 1/T, and k =-1/V(3V/9dP); =RT/P*V =1/P. Substituting for f
and « in Equation 2.54, we obtain ¢, —c¢, = PV/T =R, which is the result in
Equation 2.43.

We now have the first law and other relationships required to analyze
a wide variety of thermodynamic processes. In the next chapter, we deal
with heat engines and refrigerators and from the results obtained are led
to introduce the entropy concept, which is of fundamental importance in
thermal physics.

PROBLEMS CHAPTER 2

2.1 One mole of an ideal monatomic gas initially at a pressure
of 1 atm and temperature 0°C is isothermally and quasi-
statically compressed until the pressure has increased to
2 atm. How much work is done on the system in the com-
pression process? How much heat is transferred from the
gas to a heat bath in the process?

2.2 A monatomic ideal gas at 280 K is at an initial pressure of
30 atm and occupies a volume of 1.5 L. If the gas is allowed
to expand (a) isothermally and (b) adiabatically to a final
volume of 3 L, what is the final temperature and pressure
in each case? How much work is done by the gas in the two
processes?

2.3 Obtain expressions for the slopes of curves on a P-V dia-
gram representing isothermal and adiabatic expansion pro-
cesses for an ideal gas. Show that for any value of V the slope
of the adiabatic curve is greater than that of the isother-
mal curve by the factor y that occurs in the adiabatic P-V
relationship.
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2.5

2.6

2.7

2.8

In an adiabatic quasi-static process, the initial and final
pressures and volumes are related by the expression P,V¥ =
P,V,’, where y is a constant for a particular gas. Show that
the work done on an ideal gas in a process of this kind is
given by W=[1/ (y - D][P,V, - P,V}].

Argon gas in a piston-cylinder container has initial vol-
ume V, of 5 L and pressure P, of 1 atm at a temperature
T, of 300 K. The gas is heated so that volume and pressure
both increase in such a way that the path is represented
by a straight line on a P-V diagram. The final pressure P,
is 1.1 atm, and the final volume V, is 10 L. Sketch the P-V
diagram for this process and obtain an expression for the
work done by the gas in the expansion. How much heat is
required for the process?

A monatomic ideal gas, initially at 3 atm ina volume of 5L, is
taken through a cycle involving the following processes: the
volume is doubled under isothermal conditions at 300 K, the
gas is then heated isochorically until the pressure is equal to
the initial pressure, and finally the gas is cooled isobarically
back to its initial condition. Sketch the P-V diagram for this
cycle and obtain the work done and the heat transferred in
each segment. By how much does the temperature of the gas
change in the isochoric process?

Consider a cyclic quasi-static process for 0.1 mol of mon-
atomic gas that has the form of a circle on a P-V diagram.
Sketch the form of the cycle such that the diameters parallel
to the P and V axes are from 1 to 3 atm and from 1 to 3 L,
respectively. Obtain the net work done on the system per
cycle. What is the internal energy change in the system in
traversing a half cycle starting at a point where the pressure
is 2.0 atm and the volume is 1.0 L on the horizontal diameter
(i.e., between two points joined by a diameter drawn parallel
to the V- axis)? How much heat is absorbed in this process?

A paramagnetic sample that obeys Curie’slaw has mass 0.4 g
and density 4 g cm~. The material is in good thermal con-
tact with a heat bath at 2 K, permitting isothermal magnet-
ization processes to be carried out. If an applied magnetic
field is increased quasi-statically from zero to 10 T, find the
work done on the sample. The Curie constant for the sample
material is C = 0.5 K m=. If after magnetization the para-
magnetic sample is thermally isolated from the heat bath
and the applied field is quasi-statically reduced from 10 to
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0.1 T, find the change in temperature of the sample material.
How much work is done on the system in the demagnet-
ization process? Compare your result with the work done
in the isothermal magnetization procedure. Sketch the iso-
thermal and adiabatic process on an M-H plot.

2.9 An object of mass m, is heated to a temperature t, °C and is
then dropped into a well-lagged vessel containing a mass m,,
of water at t_ °C. If the final equilibrium temperature is . °C,
obtain an expression for the specific heat of the object in
terms of the initial and final temperatures and the specific
heat of water.

2.10 The molar heat capacity of diamond has the following form
at sufficiently low temperatures ¢y =3R(4p/5)(T/ an)’,
where R is the gas constant and gp= 2200 K is a parame-
ter called the Debye temperature for diamond. How much
heat is required to heat a 1-carat diamond from 4 to 300 K?
(1 carat = 200 mg)?

2.11 A piece of copper of mass 200 g is isothermally compressed
at 290 K by increasing the external pressure from 1 to 1000
atm. Find the volume change and the work done in the com-
pression process. The isothermal compressibility of copper
is k = 7.3 x 10> atm™' and the density is 8.9 g cm=. Express
the work done as an integral over the pressure change using
the average volume in the compression process. Justify the
use of the average volume in your calculation.






CHAPTER 3

Entropy:
The Second Law

3.1 INTRODUCTION

The concept of entropy is of central importance in thermal physics.

Historically, it was through the study of heat engine processes that the
need for this new concept was first appreciated. We shall see that entropy;,
which is traditionally represented by the symbol S, is an extensive quantity
and a state function like the internal energy E of a system. The second law
of thermodynamics is related to the concept of reversibility in processes
and expresses the reversible or irreversible nature of the evolution of the
state of a system with time. The law is stated most compactly in terms of
entropy, although alternative statements exist. In Chapters 4 and 5, we
introduce a microscopic description for large assemblies of particles and
find that entropy is related to the number of microstates available to a
system. The microscopic approach provides deep insight into the nature
of entropy, and through its connection with microstates, we establish a
bridge between the microscopic and the macroscopic descriptions. In this
chapter we focus on entropy in thermodynamics.

3.2 HEAT ENGINES—THE CARNOT CYCLE

Heat engines operate by conversion of heat into useful work. It is found

that only part of the heat taken in by an engine can be converted into work,
and the remainder is rejected to a heat bath at a temperature lower than
that of the bath from which heat is derived. As mentioned in Chapter 2,

47
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the term heat bath is used to describe a thermal reservoir, with a very large
heat capacity, at a temperature T that remains essentially constant regard-
less of the heat transferred to or from the bath. The operation of a heat
engine is illustrated schematically in Figure 3.1.

Heat engines operate in a cyclic way by taking in heat Q, from a high-
temperature reservoir, converting part of this energy into work output W
and rejecting the remainder Q, to a low-temperature reservoir. Figure 3.1
shows the heat transferred and the work done in one complete cycle of a
heat engine. The efficiency 5 of a heat engine is defined as

Wou W

W 3.1)
Qin Ql

h=

A natural question that arises concerns the maximum possible efficiency
of a heat engine. This question was addressed in the nineteenth century by
Sadi Carnot, who considered a reversible cyclic engine with an ideal gas as
the work substance. In honor of Carnot, the ideal engine is called a Carnot
engine. Figure 3.2 is a P-V diagram that depicts the cyclic operation of an
ideal gas Carnot engine. The gas is contained in a cylinder fitted with a fric-
tionless piston that can be moved very slowly and reversibly to change the
volume. The Carnot cycle consists of two reversible quasi-static isothermal
processes that involve the gas system in contact with heat baths at tempera-
tures T} and T, respectively, and two reversible adiabatic processes in which
the gas and the container are thermally isolated from the surroundings.

The efficiency of the Carnot engine may be obtained using the first law
and the expressions derived in Chapter 2 for isothermal and adiabatic

1

Q,

T,

FIGURE 3.1 The figure gives a schematic representation of the operation of a heat
engine. In each complete cycle, heat Q, is absorbed from the high-temperature
bath at T, and heat Q, is rejected to the low-temperature bath at T,. An amount of
work W is produced by the engine in each cycle.
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"’g‘Isothermal

""" ..Adiabatic

Adiabatic

FIGURE 3.2 P-V diagram for a reversible Carnot ideal gas engine that operates
between heat baths at temperatures 7, and T,. The cycle is made up of two iso-
thermal processes and two adiabatic processes.

ideal gas processes. Application of the first law (Equation 2.2) to a com-
plete cycle gives the internal energy change of the ideal gas as

AE=Q+Q,-W. (3.2)

Q, is the heat input along isothermal ab, and Q, is the heat output along
isothermal cd. Note that the signs of Q, and Q, must be explicitly evalu-
ated while W has been chosen as negative to represent work output. In a
complete cycle, AE is zero because the system is returned to its initial state
at temperature T,. Equation 3.2 may therefore be rewritten for a cycle as

W=Q +Q (3.3)
and the efficiency (Equation 3.1) is given by

_ Q+Q, )
Q

h (3.4)

To proceed, it is necessary to obtain expressions for Q, and Q..
From Equation 2.8, we have for the ideal gas Q; = nRT,In(V,/V,) with
Q, =nRT, In(V,/V,). Substitution in Equation 3.4 gives

h - 1+g[ln(gj)Hmm‘f 65)
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For the four paths that make up the complete cycle, four P-V relations
hold:

Isothermal a— b P V,=PBRV,; Adiabatic b — ¢ BV,°=PV.7;
Isothermal c¢—d P.V.=P,V,; Adiabatic d—a PV7 = PV}

Equation 2.12 has been used for the adiabatic processes. The four equa-
tions may be combined to show that (V,/V,)?™" = (V,./V,;)?", and this result
with Equation 3.5 leads to the required result for the efficiency

he 1oLk (3.6)

1

W is obtained on substitution of the expressions for Q, and Q, in Equation
3.3 and use of In(V,,/V,) = —In(V;/ V.. This procedure gives

W = uR[T, —Tz]ln(“f'). (3.7)

a

The efliciency in Equation 3.6 has a maximum value of unity, and this is
achieved only at T, =0 K, provided we disregard T, = oo as a practical tem-
perature. The work output depends on T, and T, together with the volume
ratio V;,/V,. The larger the temperature difference between the heat baths and/
or the larger V,/V,, which is the compression ratio for the engine, the greater
the work output. Real engines have lower efficiencies than the ideal Carnot
engine. An example of an approximation to a real engine cycles, the Otto
cycle, is given in the problem set at the end of this chapter.

3.3 CARNOT REFRIGERATOR

Because all the processes that make up the cycle are reversible, a Carnot
heat engine can be made to run backward as a refrigerator. This device
takes in heat at a low temperature and rejects heat at a high temperature,
provided work is supplied. For a refrigerator, the coeflicient of perfor-
mance is defined as follows: k = Q, /W, where W is now the work input per
cycle and Q, the heat extracted from the low-temperature bath per cycle.
Adapting the first law result (Equation 3.2) by making a change in sign to
allow for work input gives k = —Q,/(Q, + Q,). For an ideal gas refrigerator,
we substitute for Q, and Q, from Equation 2.8 and, with the volume ratios
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as determined above, obtain for the coefficient of performance

T,

k= .
T, (3.8)

From Equation 3.8, it is clear that x can be much larger than unity if
the temperature difference (T} — T,) is small. This implies that more heat
energy is extracted from the cold thermal reservoir than the work input in
each cycle. The smaller the temperature difference between hot and cold
reservoirs, the larger k becomes. A refrigerator or an air-conditioner unit
typically operates between reservoirs that are not very different in tem-
perature on the kelvin scale so that T, > (T; - T,)and k > 1.

Exercise 3.1: A Carnot engine that uses 0.2 mol of an ideal gas as working sub-
stance operates between heat baths at 200°C and 60°C. If the expansion ratio
along the high-temperature isothermal is 10, find the efficiency of the engine
and the work output per cycle.

The efficiency is obtained with use of Equation 3.6 after converting the
temperatures to kelvins. This gives h=1-T,/T, = 0.

From Equation 3.7, the work output per cycle is

W=nR[T, - T,] |n(%

a

) =(0.2x8.314x140)In10 =536 J.

Exercise 3.2: Obtain the coefficient of performance for a Carnot refrigerator
using an ideal paramagnet as working substance.

We make use of the results obtained in Chapter 2, with the first law in the
form df = dQ - VM dH (Equation 2.21) together with Curie’s law, M = CH/T.
On an M—H diagram, a paramagnetic Carnot refrigerator has the cycle shown
in Figure 3.3.

The coefficient of performance is k = -Q,/(Q;+Q,). From Equation
2.30, we obtain Q; = AQ,, = ~[(H,CV)/2QT)IIH,” -H,’] and Q, = AQq, =
~(HoCV / 2Ty)[H.> = Hy*1. These expressions give

-1

\

T,(H,2 = H,?
_( 2( b ) +1) . (39)

k=
\ 72 AP

Along the adiabatic paths cb and ad, H,/T, = HJ/T, and H,/T, = H,/T,,
where use has been made of Equation 2.31. It follows that H/H, = T,/T, and
H,/H, = H./H,. Substitution in Equation 3.9 results in

n

k = . (3.10)
h-T,
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d " Adiabatic _-/

FIGURE 3.3 M-H diagram for a Carnot refrigerator with an ideal paramagnet
as the work substance. Note that T, > T, with the slopes of the isothermals given
by C/T. The adiabatic processes correspond to constant M. For the isothermal
processes, the small arrows depict the heat flow direction.

Heat bath T

[

Solenoid

Ideal paramagnet magnet

(

|
Cold bath T,

cocoococoo
coccoccoco

FIGURE 3.4 A diagram of a paramagnet-based Carnot refrigerator system that
can provide cooling of specimens at low temperatures through magnetic work
processes. Control of thermal contact between the paramagnet and the two heat
baths is achieved with use of heat switches. Heat is pumped from T, to T;.

This is the same result that we obtained for an ideal gas Carnot refriger-
ator. Figure 3.4 gives a schematic representation of a paramagnet-based Carnot
refrigerator.

3.4 ENTROPY

Equation 3.4 gives the efficiency of a Carnot engine in terms of heat trans-
ferred in a complete cycle, whereas Equation 3.6 gives 7 in terms of the
temperatures of the heat baths used. When these two expressions are com-
bined, we obtain h=1+(Q,/Q,) =1-T,/T,, which, on rearrangement,
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gives Q /T, + Q, /T, = 0 or expressed as a summation

E ? =0. (3.11)

1=1,2

The result ,Q; /T; = 0 can be generalized to any reversible cycle, which
may be regarded as made up of a large number of elementary Carnot
cycles, as shown schematically in Figure 3.5.

To replicate the arbitrary reversible cycle, a large number of heat baths
at carefully chosen temperatures T;(i = 1,2,3,...) are needed. Note that the
adiabatic path contributions will cancel in pairs except for the first and
last adiabatics. The elementary isothermal processes are chosen to match
the path of the arbitrary cycle as closely as possible. In considering an arbi-
trary reversible cycle in which large numbers of elementary heat transfer
processes occur at various temperatures, it is natural to replace the sum-
mation in Equation 3.11 by an integral around the cycle (denoted by ¢),
and this gives

Q _, (3.12)
T

Equation 3.12 is an extremely important result for reversible cyclic pro-
cesses. For the complete cycle, it is clear that the total heat transferred
$#dQ # 0 because some heat energy is converted to work. In Chapter 2, it
was pointed out that the heat energy transferred in a process from some

> Vv

FIGURE 3.5 An arbitrary reversible cycle can be replaced by a large number of
elementary Carnot cycles that together approximate the original cycle. The steep
adiabatic paths cancel in pairs except for the two end cycles. A large number of
heat baths are necessary for the reversible isothermals.



54 m Statistical and Thermal Physics: An Introduction

initial state to a final state depends on the path followed or, stated in an
alternative way, dQ is not an exact differential. Equation 3.12 suggests that
1/T is the integration factor for dQ and leads to an exact differential, which
is represented by dS, that is, dS = dQ/T. For a reversible cyclic process, we
then have

gSRds =j;dTQ = 0. (3.13)

This is Clausius’s theorem, named in honor of the nineteenth century
physicist who first grasped its significance. S is called the entropy, and dS
is the infinitesimal change in entropy associated with heat dQ transferred
at temperature T. Equation 3.13 shows that the entropy is of fundamen-
tal importance and warrants a closer examination of its properties. The
entropy change in a finite reversible process, where i and f represent the
initial and final states, respectively, is

AS = f dTQ. (3.14)

This relationship is of central importance in thermal physics.

3.5 ENTROPY CHANGES FOR REVERSIBLE
CYCLIC PROCESSES

In our discussion of the ideal gas Carnot cycle depicted in Figure 3.2,
expressions for Q, and Q, were obtained with forms Q, = nRT, In(V, /V,)
and Q, =nRT,In(V,/V,). It is instructive to consider the entropy chan-
ges in the two reversible isothermal processes. From Equation 3.14, the
two entropy changes are AS,, = 1/Ti, b dQ =#nRIn(V,/V,) and AS, =
1/T, [ dQ = nRIn(V; /V,). As shown in Section 3.2, (V; /V,) = (V, /), and
it follows that AS,, = —AS,,. The entropy changes for the ideal gas along the
two reversible isothermal paths in the cycle are equal but opposite in sign,
whereas the entropy changes along the reversible adiabatic paths are zero
because no heat is transferred, that is, AS,. = AS,, =0. For the complete
reversible cycle, it follows that

gjds = AS,, +AS,, +AS; +AS,, =0 (3.15)
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The result in Equation 3.15 may be generalized to any reversible cycle
using arguments similar to those in Section 3.4. The temperatures T, and
T, and the volume changes involved in the cyclic process are arbitrary.
The fact that the entropy change for the ideal gas in an arbitrary reversible
cycle is zero leads us to conjecture that the entropy change in any pro-
cess from some initial state i to a given final state f is independent of the
path followed, provided it is reversible. This is demonstrated with the help
of Figure 3.6 that shows states i and f on a P-V diagram, with arbitrary
reversible paths 1 and 2 that connect i and fin a cyclic way.

The above results lead to the relation AS; + AS, =0 or AS, = —AS, for
the closed cycle. It follows that the entropy change in a process from i to f
along any reversible path is the same and depends only on the initial and
final states. This implies that entropy is a state function determined by
the state variables. It follows that for an ideal gas we have S = S(P,V,T..
In fact, only two variables are needed to specify S completely because the
equation of state connects P, V, and T.

In the above discussion, attention has been focused on a Carnot engine
system that involves an ideal gas in a piston-cylinder arrangement. The
entropy changes of the associated heat baths have not been considered,
but these are readily obtained. For the high-temperature bath at fixed
temperature T,, AS{ = -Q,/T, and the use of the expression for Q, from
Section 3.2 gives AS! = -nRIn(V,/V,). This is equal in magnitude and
opposite in sign to the entropy change of the gas given above. Similarly, for
the low-temperature reservoir, we have AS!) = -nRIn(V,/V,. = nRIn(V,/V,).
Comparison shows that AS? = — AS? or AS + AS? = 0. This is an import-
ant result. Not only is the entropy change of the working substance in the

Path 1

Path 2

v

%4

FIGURE 3.6 P-V diagram for an arbitrary closed reversible cycle made up of
paths 1 and 2 between states i and f for a particular system. Because entropy is
a state function, the entropy change along path 1 is equal and opposite to that
along path 2.
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Carnot engine zero in a complete cycle, but the sum of the entropy changes
of the two heat baths is also zero. This may be summarized as follows: For
reversible cyclic processes, the entropy change [1S, of the local universe is
zero. Local universe in this case means the system plus the heat baths. No
other parts of the universe are involved in the operation of the heat engine.
For any part of the cyclic process, it is easy to show that []S, = 0. Along
the isothermal paths, as the entropy of the gas is increased, the entropy of
the associated heat bath is decreased, whereas in the reversible adiabatic
paths, where no heat is transferred, the entropy remains constant so that
[IS. = 0 again for these processes. These conclusions may be extended to
any reversible paths.

3.6 ENTROPY CHANGES IN IRREVERSIBLE PROCESSES

The expansion of an ideal gas, as used in the operation of an engine, may
be carried out suddenly and irreversibly instead of reversibly. With the

cylinder and gas system thermally isolated, we imagine that the piston is
quickly pulled outward, as shown in Figure 3.7.

In this situation, “suddenly” implies that the expansion process occurs
in a time much shorter than the time taken for the gas to reach equilib-
rium. As an order of magnitude, the time should be shorter than the time
it takes for a particle traveling at the average speed in the gas to traverse a
distance comparable with the interparticle separation. In Chapter 1, this
is seen to be of the order of nanoseconds for a gas such as He at ambient
conditions. There is no heat bath involved, and the expansion is adiabatic.
Because the expansion is sudden, no work is done on the system. Therefore,
no change in temperature of the gas occurs, according to the equiparti-
tion of energy theorem, because the internal energy of the gas remains
constant. Because entropy is a state function, the entropy change of the
gas depends only on the initial and final states. In the calculation of the

Vi Vi

FIGURE 3.7 Irreversible sudden expansion of an ideal gas from initial volume V,
to final volume V. In the above representation, we imagine that the piston is with-
drawn in a time much less than the mean collision time of particles in the gas.
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entropy change, we replace the irreversible process by a reversible isother-
mal process to carry out the integration. This change in entropy has already
been obtained above in our discussion of the Carnot cycle given in Section
3.5. With initial state i and final state f, we obtain AQ = nRT In(V,/V;) and
hence AS = nRIn (V;/V;). In this irreversible process, there is no change in
entropy of the heat bath. This means that the entropy of the universe has
increased as a result of the process, or

AS, > 0. (3.16)

The increase in entropy cannot be removed once it has occurred. The
system can, of course, be restored to its initial state i, with entropy S, either
reversibly or irreversibly, but the entropy increase of the universe, which
occurred in the original irreversible process, remains for all time. When
the system is restored to its initial state, the entropy increase that accom-
panied the irreversible process is passed on to another system, such as a
heat bath, and is never cancelled out. All irreversible processes are accom-
panied by an increase in entropy of the universe. As a further illustration
of this result, consider an irreversible transfer of heat energy between two
finite heat reservoirs, with heat capacities C, and C,, respectively, as shown
in Figure 3.8.

At some instant, the reservoirs a and b are brought into thermal contact
when the heat switch is closed. No work is done, and the first law applied to
the combined system gives AE =0 = AQ, + AQ,, where AQ, = C,(T; -Ty)
and AQ, = G,(T, - Ty). C,and C, are the heat capacities of the two baths.
For simplicity, let C, =C, =C so that T; =(T; + T,)/2. The change in
entropy of the combined system is given by the sum of the entropy changes

a T, Heat capacity C,

L Heat switch

b T, Heat capacity C, b

FIGURE 3.8 The two finite heat reservoirs a and b, initially at temperatures T;
and T,, are brought into thermal contact by closing the heat switch. The final
equilibrium temperature is Ty
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for each reservoir, AS = AS, + AS, = fTTf dQ./T, + fof dQ,/T,. Because
dQ = CdT, the integrations are readily carried out, and we obtain

(el om0 )
’Tl T2 2’1—'1 2T2

It is straightforward to show that the quantity in square brackets is
larger than unity. (The condition is simply (T; - T;)* > 0.) It follows that
AS> 0.

The increase in entropy of the universe that occurs in irreversible pro-

(L +T)
AT, |

AS=C =Cln

= n

cesses corresponds to a loss of opportunity to obtain useful work from a
system. For example, in the case of the two heat reservoirs just consid-
ered, before the closure of the heat switch a heat engine could be oper-
ated between the reservoirs to provide work for a time until the reservoirs
reach a common temperature. However, when the reservoirs exchange
heat energy irreversibly after the heat switch is closed, the opportunity
for operation of a heat engine between them is lost. Similar analyses may
be carried out for all irreversible processes. Consider, for example, a large
mass at the top of a high building. The mass can be lowered slowly using
a system of low-friction pulleys that are arranged to provide useful work
output. Alternatively, the mass can be allowed to fall freely with the initial
potential energy converted into kinetic energy and then finally largely into
heat, when the mass strikes the ground, without useful work being done.
The entropy of the universe is increased much more in the second irrevers-
ible process than in the first approximately reversible process.

3.7 THE SECOND LAW OF THERMODYNAMICS

The discussion of reversible and irreversible processes and the associated

entropy changes given above can be summarized in a compact statement,

AS, =0. (3.17)

This is known as the second law of thermodynamics, which is written as
follows: In any process, the entropy change of the local universe, considered
to consist of a system and adjacent bodies, is either zero or greater than zero.
The equality holds, provided all processes are carried out reversibly. The
inequality holds when irreversible processes are involved.

Although it appears to be very simple, the second law has profound
implications, which will be dealt with in later chapters. As with any physi-
callaw, itis based on alarge body of experimental observations. Alternative
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statements of the second law may be given. These are of historical impor-
tance but can be shown to be equivalent to the statement given in Equation
3.17. A brief discussion of these alternative statements is given later in this
chapter. Most processes that occur in nature are irreversible. It follows
that the entropy of the universe must steadily increase. The direction of
time is linked to entropy increase and the second law provides what has
been called time’s arrow. The forward flow of time is accompanied by an
increase in entropy of the universe.

3.8 THE FUNDAMENTAL RELATION

If we combine the first and second laws, we obtain what is called the funda-
mental relation of thermodynamics. The first law in terms of infinitesimal
quantities is dE = dQ + dW. For fluids, this is written as dE =dQ—-P dV
(Equation 2.7). We now have dQ =T dS, for an infinitesimal heat trans-
fer process, as introduced above, and this leads to dE =TdS-PdV, or
equivalently,

TdS=dE+PdV. (3.18)

This is the fundamental relation, and as its name implies, it is of great
importance in thermodynamics. Inspection of Equation 3.18 shows that it
involves the state variables P, V, and T and the state functions E and S. The
inexact differentials dQ and dW have been replaced by exact differentials.
Many applications of Equation 3.18 are given later. Because it involves state
functions that depend only on the initial and final state, Equation 3.18 is
valid for any process and not only for reversible processes.

3.9 ENTROPY CHANGES AND T-S DIAGRAMS

For many purposes, it is sufficient to calculate changes in entropy, and it is
not necessary to determine absolute values of the entropy. In entropy cal-
culations, use is made of Equation 3.14, AS = fif dQ/T. The integral must be
carried out along a reversible path, but we can choose any reversible path
we like because entropy is a state function. The SI entropy unit is joules per
kelvin. It is convenient to represent processes in a T-S diagram, as shown
in Figure 3.9. Following convention, we plot T (intensive) as the ordinate
and S (extensive) as the abscissa. This is different to the convention used
in PV and MH diagrams introduced in Chapter 2 in which the extensive
variable is plotted as the ordinate. In those cases, the work done is given
by the area under the curve.




60 m Statistical and Thermal Physics: An Introduction

i T S

FIGURE 3.9 A temperature entropy or T-S diagram that represents a process
from an initial state i to a final state f.

A
S
¢ Adiabatic b
Sy
Isothermal Isothermal
5 d:  Adiabatic a
T, T,

FIGURE 3.10 T-S diagram representation of a Carnot cycle that shows two iso-
thermal processes at temperatures T, and T, respectively, and two adiabatic pro-
cesses. The cycle represents either an engine or a refrigerator depending on the
direction of operation.

The area AQ = fif T dS, which can be obtained from a T-S diagram,
gives the total amount of heat transferred in a reversible process. Adiabatic
processes, which correspond to constant S, are represented by horizontal
isentropic lines on the T-S diagram, whereas isothermals are represented
by vertical lines. The Carnot cycle has the simple rectangular form shown
in the T-S diagram in Figure 3.10.

The heat energy absorbed at T, along isothermal ab is Q, = T;(S, - S)).
Similarly, along path cd, Q,=T, (S, -S,) = -1, (S, - S,). From Equation 3.4,
the efficiency is 7 = (Q, + Q,)/Q,, and substitution for Q, and Q, gives, as
before, # = (T, X T,)/T;. The coefficient of performance of a refrigerator
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may be obtained just as easily using this graphical 7-S representation with
paths reversed.

3.10 THE KELVIN TEMPERATURE SCALE

For an ideal gas Carnot cycle, Equation 3.11 relates 7, and T, as follows: Q,/
T, + Q,/T, = 0 or T/T, = —Q,/Q,. This shows that it is possible to compare
the temperatures of two heat baths from measurements of the amounts of
heat transferred to or from the heat baths when a Carnot engine is operated
between them. Although Equation 3.11 has been derived for an ideal gas
heat engine, other Carnot cycles, for example, an ideal paramagnet engine,
can be used. It follows that temperatures on the basis of Carnot cycle heat
measurements are not dependent on the properties of any particular sub-
stance. The scale obtained is called the absolute or kelvin temperature scale.
Absolute temperatures are specified in kelvin. It is, of course, necessary to

fix a particular temperature as a reference temperature. The triple point of
water is chosen to have a temperature of 273.16 K, as described in Chapter 1.
Because Equation 3.11 was derived using the ideal gas equation of state, it
follows that the ideal gas scale must be the same as the kelvin scale.

3.11 ALTERNATIVE STATEMENTS OF THE SECOND LAW

As noted previously in Section 3.8, the second law may be stated in the
compact form AS, =0 (Equation 3.17). This statement means that, in
any process, the entropy of the local universe either remains constant or

increases. Local universe in this context again means all systems and res-
ervoirs involved in the process are considered. Although the entropy of
a particular component system may decrease, the entropy of the entire
assembly will either remain unchanged or increase.

Earlier statements that are equivalent to Equation 3.17 are known as
the Clausius statement and the Kelvin-Planck statement. Both are con-
cerned with heat transfer and, like other physical laws, are laws of experi-
ence. The classical statements involve processes that experience shows to
be impossible.

The Clausius Statement

It is impossible to construct a device that allows the transfer of heat
from a reservoir at a low temperature to a reservoir at a higher tem-
perature with no other effect.

The impossible Clausius process is depicted in Figure 3.11.
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T,

FIGURE 3.11 The Clausius statement of the second law of thermodynamics
asserts that the process shown in the diagram, in which heat Q is transferred from
a cold reservoir at T, to a hot reservoir at T}, with no work input, is impossible.

T

FIGURE 3.12 The Kelvin-Planck statement of the second law asserts that the
process shown in the diagram, in which heat Q is converted entirely into work
W, is impossible.

Exercise 3.3: From a consideration of the net entropy change in a complete
cycle of the refrigerator shown in Figure 3.11, prove that the process violates
the second law as stated in Equation 3.17.

In a complete cycle, the entropy change of the local universe (the two heat
baths) is given by AS, =Q/T,-Q/T, = Q(T, - T,)/ TiT, < 0, which violates the
second law.

The Kelvin—Planck Statement

It is impossible to construct a device that allows the absorption of
heat energy from a reservoir and the production of an equivalent
amount of work and no other effect.

The impossible Kelvin-Planck process is shown in Figure 3.12.

Exercise 3.4: Show that the Clausius and Kelvin—Planck statements are equiva-
lent, as is to be expected.

The equivalence can be shown by considering the arrangement in
Figure 3.13, which involves two coupled cyclic devices.

The refrigerator A in Figure 3.13 violates the Clausius statement of the second
law. The refrigerator A plus Carnot engine B together violate the Kelvin—Planck
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Q Q
O
Q, Q,
T2

FIGURE 3.13 A refrigerator A and a Carnot engine B operate in a coupled cycle
between heat baths at temperatures T; and T,, with T; > T5. It is impossible for the
combined refrigerator-engine system to produce work output with zero net heat
input from the high-temperature bath. The coupled system illustrates the equiva-
lence of the Clausius and the Kelvin-Planck statements of the second law.

statement because zero heat energy is transferred to the low-temperature res-
ervoir while work is produced. It is therefore apparent that the two second law
statements can be linked, and violation of one statement implies violation of
the other.

An axiomatic basis for thermodynamics, and in particular the second
law, was developed by Carathéodory in the early part of the twentieth
century. In a general approach, he considered systems with three or more
independent thermodynamic variables. An example of a system with five
state variables is a paramagnetic gas for which the variables are P, V, T, H,
and M. In the case of five variables, there are two equations of state linking
the variables and any three specify the state of the system completely.

By considering reversible adiabatic processes starting from a particular
initial state, Carathéodory generated surfaces in the three variable space.
He then argued that such surfaces could not intersect and that it was
impossible to move from one surface to another by means of a reversible
adiabatic process. This became the axiomatic foundation of the second
law. In fact, the Carathéodory axiomatic approach, although mathemati-
cally elegant, is equivalent to the Kelvin-Planck and Clausius statements
of the second law. We do not discuss these historical formulations of the
second law in greater detail here. Instead, a detailed microscopic discus-
sion of entropy is given in Chapter 4. The microscopic approach provides a
general procedure for the calculation of the entropy of a system and leads
to great physical insight into reversible and irreversible processes. The for-
mulation of the second law given in Equation 3.17 is readily understood in
terms of the microscopic approach.
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3.12 GENERAL FORMULATION

Thermodynamics is traditionally developed using the laws of ther-
modynamics as the starting point. The fundamental relation given in
Equation 3.18, dE = TdS - PdV or, equivalently, TdS = dE + PdV, effect-
ively combines the first and second laws. The third law, which is discussed
in Chapter 6, concerns the way in which the entropy behaves at low tem-
peratures and is expressed in terms of the unattainability of absolute zero
temperature. The three laws of thermodynamics are laws of experience on
the basis of experimental observation.

An alternative fundamental approach uses three basic and reasonable
postulates as a point of departure. The success of the theory constructed in
this way is determined by comparison of the predictions with experiment.
The approach is briefly presented below. Again, only systems at, or very close
to, equilibrium are considered. The first postulate is concerned with speci-
fication of equilibrium states, whereas the second and third postulates are
concerned with the entropy function. To be as general as possible, multi-
component systems are considered. This has the benefit of introducing an
important new quantity, called the chemical potential, into our discussion.

Postulate 1

A complete specification of the equilibrium state of a system may be given
in terms of extensive variables, specifically the internal energy E, the volume V,
and the numbers N; of the different constituent particles or molecules.

The second postulate introduces the entropy, which plays a key role in
the subject.

Postulate 2

A function called the entropy S exists and is specified completely, for all
equilibrium states, in terms of the extensive variables E, V; and N..

S=S(E,V,Ny,...,Nj,...,Ny). (3.19)

The entropy function is continuous and differentiable.
To allow for systems that are made up of various subsystems, a third
postulate is stated.

Postulate 3

The entropy S of a composite system is the sum of the entropies S, of the
constituent subsystems.
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S= E Sa- (3.20)

A corollary to this postulate is that S is a homogeneous first-order func-
tion of the extensive variables, that is,

S(1E,1V,1N;)= 1S(E,V,N;). (3.21)

The proof of this corollary is obvious. In many cases of interest, the
entropy S is a monotonically increasing function of the energy E, but
this is not universally true. Systems with an upper energy bound, such
as spin systems, show a maximum in S for some value of E. S is found to
decrease at higher E, and this feature is discussed in detail in Chapters
5 and 6. An important consequence of the extremum in the entropy is
the need to allow for negative temperatures at high energies in systems
with an upper energy bound. Again, this topic is briefly discussed in
Chapter 6.

The relationship, S = S(E,V,Nj,...,N,), is an alternative statement of the
fundamental relation, which we can understand through consideration of
the total differential of S, given by

dS=(as) dE+( 68) dV+E(aS) dN;.  (3.22)
0E V.Ni IV /en, ” ON; EV,Nj=N;

The coefficients may be formally defined as variables. To make contact
with our earlier discussion, we compare Equation 3.22 with the funda-
mental relation for fluids Equation 3.18, and identity:

a8y  _1
IE )y, T’ (3.23)

(35) _P
oV BN, T (324)

For a single component system with only one type of particle, the
third term on the right-hand side of Equation 3.22 is zero. This gives
dS =(1/T)dE + (P/T) dV or TdS = dE + PdV, which is the fundamental
relation given in Equation 3.18.
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The partial derivative of S with respect to the N, given by (9S/ N, )g.v.n;«n;»
introduces a new quantity into the subject, related to the particle
concentration, and we define

(65) __m (3.25)
ON; E,V,Nj=N; T '

where, for historical reasons, y; is called the chemical potential of species i.
Note that in the partial derivative, the variables E, V, and all the Njare kept
fixed while only N; is allowed to change. The partial derivatives of S with
respect to the extensive variables give 1/T, P/T, and —u;/T, as shown above.
These intensive quantities are functions of the extensive variables E, V,
and N,. For example, we have T = T (E, V, N;), which may be regarded as
an equation of state for the system. Other equations of state exist for each
of the intensive variables. Knowledge of all the equations of state is equiva-
lent to knowledge of the fundamental relation for a system.

The general fundamental relation, which is based on Equation 3.22,
may now be written, with use of the identifications made in Equations
3.23, 3.24, and 3.25, as

TdS=dE+PdV—Em dN,. (3.26)

This general form is used for processes in multicomponent systems.
For single component systems, the final term that involves the chemical
potential can be omitted when N is fixed.

In considering multicomponent systems, we have introduced the chem-
ical potential ¢ into our thermodynamic formalism. This important new
quantity determines, for example, how particles in a single component
or multicomponent gas in which there is a nonequilibrium concentration
gradient reaches equilibrium through particle diffusion. Further discus-
sion of the chemical potential is given in Chapters 5 and 7. In Chapter 5, an
explicit expression for the chemical potential of a single component ideal
gas is obtained on the basis of the microscopic definition of the entropy
that is given there. The chemical potential is very important in the dis-
cussion of phase transitions and chemical equilibrium and in the devel-
opment of quantum statistics later in the book. As a specific illustration
of the role of the chemical potential in establishing the final equilibrium
state of a system, consider a cylindrical container of a gas that is separated
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into parts 1 and 2 by movable piston that is thermally conducting and has
small channels through which the particles can diffuse. If at some instant
it is arranged, through various devices, that the temperatures, pressures,
and particle concentrations on the two sides of the piston are all unequal
and the system is then allowed to reach equilibrium, so that the entropy of
the two part system is a maximum, we shall later show (Section 11.1) that
in equilibrium P, = P,, T, = T,, and y, = u,. When particle diftusion plays
arole in a process, the chemical potential gradient drives the diffusion.
The general formulation outlined above is given in what is called the
entropy representation. An alternative formulation may be given in the
energy representation. The continuity, differentiability, and normally mono-
tonic properties of the entropy function imply that it can be inverted to give
E=E (S, V, N,). By forming the total differential of E, various partial deriva-
tives are obtained, which may be defined as thermodynamic variables, using
an approach equivalent to that used in the entropy formulation. We leave
this development as an exercise. The entropy formulation is similar to the
microscopic statistical formulation developed in Chapters 4 and 5.

3.13 THE THERMODYNAMIC POTENTIALS

In the development of thermodynamics, it is found useful to introduce
new quantities that involve both state functions and state variables in
combinations that are termed thermodynamic potentials. In Chapters 7
and 8, the potentials are used, for example, in considering processes in
gases and condensed matter. In Chapter 9, the potentials are of central
importance in the thermodynamic description of phase transitions and
critical phenomena. In addition, in Chapters 10 and 11, we shall use cer-
tain of the potentials to establish extremely important bridge relationships
that connect the microscopic statistical and macroscopic thermodynamic
descriptions of large systems. In view of their importance, we give a short
introduction to the thermodynamic potentials here.

The three potentials that we shall be most concerned with are the enthalpy
represented by H, the Helmholtz potential F, and the Gibbs potential G. The
names of the last two of these quantities are chosen to honor scientists who
made major contributions to the development of the subject.

The three potentials are defined as follows:

Enthalpy H=E+PV;
Helmbholtz potential F=E-TS;
Gibbs potential G=E-TS+PV.
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All three involve the internal energy E together with products of inten-
sive and extensive variables that result in quantities with energy dimensions.
Insight into the seemingly arbitrary definitions can be gained with use of the
Legendre transform, details of which are given in Appendix D. The under-
lying idea of the Legendre transform can be grasped by considering alter-
native ways of representing a function F(x) of a single variable x. In addition
to giving values of the function for various x, the function may be specified
by a complete set of tangents to the function, in a graphical representation,
together with corresponding intercepts. The tangents form the envelope of
the curve. Following the notation used in Appendix D, the Legendre trans-
form function L(s) of the function F(x) is given by L(s) = F (x(s)) — s(x) x(s) or
more simply L = F — sx, where s(x) = dF(x)/ dx is the slope of the function
at some point x and F(x(s)) is the value of the function at that point. The
transform L(s) is related to the intercept of the tangent line in the geomet-
rical representation. The Legendre transform can be defined for functions of
more than one variable as discussed in Appendix D.

In the energy representation introduced in Section 3.13, we
have for a homogeneous system with a fixed number of particles
E = E(S,V). The partial Legendre transform with S held constant is
L=E-(0E/0V)sV = E+ PV = H, where use has been made of the funda-
mental relation given in Equation 3.18 and the definition of the enthalpy
H given above. The partial Legendre transform of E(S,V) with V held con-
stant gives the Helmholtz potential F and the full transform, allowing
both S and V to vary, leads to the Gibbs potential G. Details are given in
Appendix D. As pointed out there in connection with the enthalpy, the
Legendre transform of E(S,V) replaces S, which is an extensive quantity
that is not readily controlled, with the intensive variable P that can be
controlled as an independent variable. This is the important change that
the Legendre transform facilitates.

The fundamental relation given in Equation 3.18 is TdS =dE + PdV,
and combining this relation with the differential of F, it is readily shown
that S= —(0F/dT)y and P = —(0F/dV ). Similarly from the differential
of G, it follows that S = —(9G/0T)and V = (G/ dP);. These useful results
are presented in greater detail in Chapter 7 in the discussion of the ther-
modynamics of gaseous systems.
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PROBLEMS CHAPTER 3

3.1 A Carnot engine operates between a hot reservoir at 250°C
and a cold reservoir at 30°C. If the engine absorbs 500 J of
heat from the hot reservoir, how much work does it deliver
per cycle? If the same engine were run in reverse as a heat
pump, how much heat would be removed from the cooler
reservoir per cycle if the work input is 200 J? If the engine
were operated as a heat pump between an outside tempera-
ture of 0°C and an inside temperature of 22°C, how much
heat would be delivered per cycle assuming the same work
input as before?

3.2 A system consisting of 1 mol of an ideal monatomic gas
is initially at pressure P and volume V. The gas is allowed
to expand isothermally until its volume has doubled and
is then compressed isochorically to a pressure 2P. Sketch
the process on a P-V diagram. Obtain expressions for the
change in internal energy and entropy of the gas for the
complete process.

3.3 Ina cyclic process, n moles of a monatomic ideal gas are iso-
thermally expanded at high-temperature T, from volume
V, to V, followed by an isochoric lowering of pressure at V,
then an isothermal compression process at low-temperature
T, from volume V, to V; and finally an isochoric compression
back to the starting point. Construct a P-V diagram for the
cycle. Indicate in which processes work is done and obtain
expressions for W in each of these processes. Determine for
which processes heat is transferred and obtain expressions for
Q in each of these processes. If the isochoric processes are car-
ried out reversibly, briefly describe how this is done. Obtain
an expression for the efficiency of the cycle. For the gas, C, =
3/2 nR and C, = 5/2 nR, and the ideal gas equation holds.

3.4 'The Otto cycle provides an approximate description of the
operation of a gasoline-powered engine. An ideal gas is used
as working substance, and all processes are carried out qua-
si-statically. The combustion of gasoline is replaced by an
isochoric process in which heat Q, is added using a series of
heat baths at steadily increasing temperatures. Heat rejec-
tion Q, is again accomplished using a series of heat baths.
Sketch a P-V diagram for the Otto cycle involving the fol-
lowing four processes. (The initial gas intake and final
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3.5

3.6

3.7

3.8

exhaust processes that occur at atmospheric pressure may
be ignored.)
(@) Adiabatic compression from P, V; to P,, V,;
(b) Isochoric (V,) increase in pressure from P, to P, cor-
responding to intake of heat Q;;
(c) Adiabatic expansion from P, V, to P,, V;; and
(d) Isochoric (V}) drop in pressure from P, to P, corre-
sponding to heat rejection Q,.
Give an expression for the efficiency of the Otto cycle in
terms of Q, and Q,. Express Q, and Q, in terms of the tem-
perature changes in the two isochoric processes and relate
these temperature changes to the volumes V, and V,. Show
that the efficiency of the Otto cycle depends on the compres-
sion ratio Cy = V,/V,. Find the efficiency of an Otto cycle
with a compression ratio of nine and using a monatomic
ideal gas as working substance.
A clamped frictionless conducting piston separates two
unequal quantities of ideal gas into equal volumes in a ther-
mally insulated cylindrical container so that the pressures
on the two sides of the piston are in the ratio 2:1. If the piston
is unclamped, obtain expressions for the final equilibrium
temperature of the combined system and the net entropy
change in reaching equilibrium.
A Carnot engine is operated between two heat reservoirs,
of equal heat capacity C, initially at temperatures T, and T,,
respectively. What is the net entropy change for the pro-
cess in which the engine produces work before the two
heat reservoirs reach a common final equilibrium tempera-
ture T;? Obtain an expression for T;in terms of T, and T5.
Show that the engine will deliver an amount of work
W =C(T, + T, - 2T;) before the two heat reservoirs reach
final equilibrium at 7.
If in Question 3.6 the two heat baths were simply placed
in contact without the heat engine, what would the final
equilibrium temperature be? Obtain an expression for the
entropy change of the combined system in this case and
show that this change is positive. Contrast your result for
the entropy change with that of Question 3.6.
Two thermally insulated reservoirs each contain 2 kg of water
at temperatures of 80°C and 20°C respectively. The two quan-
tities of water are mixed in one of the containers without
heat transfer to the surroundings and are allowed to reach
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equilibrium. Determine the final equilibrium temperature
and find the change in entropy of the local universe in the
mixing process. The specific heat of water is 4.18 J g1 K.

3.9 A paramagnetic salt that obeys Curie’s law is situated in a
magnetic field H at temperature T. Show that the heat cap-
acity of a volume V of the material at constant H is given by
Cy; = oy CVH?/T?, where C is the Curie constant. Obtain an
expression for the entropy change in a constant H cooling
process.

3.10 A paramagnetic solid of volume V that obeys Curie’s law,
M = CH/T, is subjected to an isothermal magnetization pro-
cess in which an applied field is increased from H, to H,.
Sketch an M-H diagram for the process. How much mag-
netic work is done? What is the change in internal energy of
the system? Obtain expressions for the heat transfer and the
entropy change in the process.

3.11 The susceptibility of a magnetic solid follows the Curie-
Weiss law. Obtain an expression for the entropy change of
the solid in an isothermal process that involves a quasi-static
increase in an applied magnetic field from H, to H,.

3.12 Consider the 1-carat diamond described in Question 2.10 for
which the molar specific heat is givenas cy = 3R(4p /5)(T /qp )
with gp = 2200 K. What is the entropy increase of the dia-
mond in heating from 4 to 300 K? Give a schematic plot of
the entropy of the diamond for the temperature range con-
sidered in a T-S diagram. Describe the behavior you expect
for the entropy as T tends toward very high temperatures
and the specific heat tends to a constant value of 3R as given
by the law of Dulong and Petit.

3.13 The boiling point of a monatomic liquid is at T,. What is the
entropy change of 1 mol of the substance in transforming
from the liquid to the vapor phase at T,? The latent heat of
vaporization is L ] mol™. Give a sketch plot of the vaporiza-
tion process ona T-§ diagram showing regions on both sides
of the transition. Assume that the specific heat of the liquid
is approximately constant just below the transition and that
the vapor phase may be treated as an ideal gas at constant
pressure. Include expressions for the entropy changes with
T below and above T,

3.14 A system consisting of 2 kg of ice is heated from an initial
temperature of -10°C through the melting point at 0°C
to a final temperature of 20°C. The specific heat of ice ¢, is
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2.1 x 10%J kgt K%, that of water ¢, is 2 ¢;, and the latent heat
of melting L is 3.3 x 10° ] kg!. Calculate the heat absorbed
by the system in this melting process. What is the entropy
change of the system? Sketch the 7-S diagram for the
process.
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CHAPTER 4

Microstates for
Large Systems

4.1 INTRODUCTION

In the nineteenth century, Boltzmann explored the connection between
entropy and statistical probability. This linkage leads to methods for calcu-
lating the entropy of a system and provides a great deal of insight into the
entropy concept. In the development of the statistical approach, we use a
microscopic description on the basis of quantum mechanics and enumer-
ate the states of systems of interest, specifically for the ideal gas and ideal
spin systems. A classical phase space description of fluids, which is com-
plementary to the quantum mechanical description, is also discussed.

To grasp the essential connection between entropy and the probability
of finding a system in a particular state, consider the irreversible adiabatic
expansion of a gas from an initial volume V; to a final volume V| + V,
when a valve between two containers is opened, as shown in Figure 4.1.

vy

bl

Gas at some pressure Initially evacuated

FIGURE 4.1 An irreversible expansion process for an ideal gas occurs when the
tap that joins the containers is opened. The gas expands freely from an initial vol-
ume V, to a final volume (V, + V,).

75
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Initially, container 1 is filled with gas at some pressure P and container 2 is
evacuated. The process is similar to the sudden expansion of a gas shown
in Figure 3.7, but in this case no piston is involved.

As shown in Section 3.5, the entropy increase in an irreversible expan-
sion of this kind is

(4.1)

AS =nRln [VH_VZ}

1

We obtained this result by replacing the irreversible path with a revers-
ible isothermal path joining the initial and the final states of the system
to carry out the necessary integration. Because (V; + V,) > V,, it follows
from Equation 4.1 that XS > 0, as expected from the second law for an
irreversible process. When the tap is opened, it is more probable that the
gas will occupy all of the space available to it rather than part of the space.
Experience shows that the probability of finding the system back in its
initial state is essentially zero, and the system will never return to that
state once the expansion has occurred. The entropy increase is linked to a
probability increase, and it is therefore natural to seek a formal connection
between entropy and statistical probability.

Itis necessary to place the above ideas on a firm quantitative basis in order
that a microscopic statistical theory can be developed. The way in which this
is done is based on knowledge of the number of microstates in which the
system may be found. We shall see that very large numbers of microstates
are associated with a given macrostate specified by E, V; and N.

4.2 MICROSTATES—CLASSICAL PHASE SPACE APPROACH

In statistical calculations, it is necessary to specify the various states that

are available for the particular system considered. For example, we specify
the outcome when a single die is thrown by the number on the face that is
uppermost after the throw. The die has six states in which it can be found.
Similarly, for a coin there are two possible states heads or tails. For collec-
tions of dice, a composite state may be specified in terms of the numbers
of dice in particular states. Statistical methods and probabilities are dis-
cussed in some detail in Chapter 10. To specify the various microstates of
a system, it is convenient to use quantum mechanics. Historically, a clas-
sical approach was used before the development of quantum mechanics.
For completeness, the classical approach is briefly discussed first in this
section.



Microstates for Large Systems m 77

Consider N particles of mass m in a container of volume V. The classical

Hamiltonian is
H=K+U=E( )+Eu(n,»), 4.2)

=
with p; the momentum of the ith particle and u(r;) the potential energy
due to the interaction of particles i and j separated by r;. For an ideal gas,
we have u(r;) = 0. At a particular instant, the position q; and momen-
tum p, coordinates for all N particles may be specified as the set (q;,...,qy;
Pi>---» Py)- (The limitations on how precisely we can specify the position

P’
2m

and momentum coordinates as a result of the quantum mechanical uncer-
tainty principle are introduced below.) The vectors q; and p, will each have
three components, which in Cartesian coordinates are written g,,, g, q;.»
and p;,, p;)» p;,- Altogether, 6N coordinates are needed to specify the posi-
tions and momenta of N particles in three-dimensional space. Over time,
the position and momentum coordinates of particles will change, subject
to the constraints on energy, Z,, (p,,*/2m) = E and volume, 0 < g,, < L,
(v=1x, y, 2), where E is the total energy, which is fixed within limits +J E,
and L, is the edge length of the container in direction v. Each different set
of position and momentum coordinates for all N particles corresponds to
a different microstate.

The position and momentum coordinates for each particle cannot
be given as precisely as we choose because of the Heisenberg uncer-
tainty principle in quantum mechanics. For the i’th particle’s position
and momentum in direction x, for example, we have 6q,.6p,, = h with
h Planck’s constant divided by 2z. The uncertainty principle should be
borne in mind in the discussion that follows. For N particles, a geometri-
cal representation of all the position and momentum coordinates involves
a 6N-dimensional hyperspace, which is called phase space. Although it is
not possible to draw a 6N-dimensional space (with N ~10%%), it is never-
theless a useful construct in formulating a microscopic description of a
large system. In the 6N-dimensional space, a single point represents all the
position and momentum coordinates for the particles in a system, and this
special point, which is called the representative point, specifies the micro-
state of the system, at a given instant, in terms of the set (q,,, 4, 91>---»
Qo Ay, NS Pro Piy Proo-+ > P Py Pre)-

As time passes, the representative point will traverse the 6N-dimen-
sional hyperspace subject to the constraints given above. To illustrate these
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ideas, consider a single particle in a one-dimensional container for which
the phase space, or g—p, representation is shown in Figure 4.2.

The representative point traverses the accessible regions of phase space
that consist of the two shaded bands shown in Figure 4.2. The momentum
is given by p = +</2me, where ¢ is the kinetic energy of the particle. To
specify or label microstates for this one-dimensional system, it is useful
to subdivide the two-dimensional phase space into cells of size dpdq = h,
with hy > 7, so that a given microstate may be specified by giving the par-
ticular cell in phase space in which the representative point for the system
is located. These ideas may be extended in an obvious way to our 6N--
dimensional hyperspace. It is clear that the number of cells involved will
become extremely large, but over time the representative point will trav-
erse all the accessible regions of phase space. This is known as the ergodic
hypothesis or, more strictly, the quasi-ergodic hypothesis. The hypothesis
is of fundamental importance in establishing the foundations of statistical
mechanics. We introduce a related hypothesis in considering accessible
quantum states in Chapter 5.

The phase space representation may be extended to a large set or ensem-
ble of similar systems, all of which are subject to the same constraints. The
set of representative points for the whole ensemble will constitute a type
of fluid moving through phase space with time. By considering this new
kind of fluid, it is possible to obtain what is called Liouville’s equation for
the rate of change of the density of representative points in a given region
of phase space. These ideas are pursued further in Chapter 18. We now
consider an alternative specification of microstates using simple quantum
mechanical ideas.

el T ) 0

T e P %,

FIGURE 4.2 Phase space representation of the position and momentum coor-
dinates for a single particle in a one-dimensional container. The particle has
momentum in the range p to p + dp and can be anywhere in the one-dimensional
available space from -L/2 to L/2.
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4.3 QUANTUM MECHANICAL DESCRIPTION OF
AN IDEAL GAS

Schrodinger’s equation for a nonrelativistic system of particles is

hZ
—%sz (tyesty) + V (Fisesty )y = Ey (iyeesty) (4.3)

where y(r,,..., ry) is the wave function for the entire system of particles
and V(r,,..., ry) is the potential energy operator. For an ideal gas, the
potential energy is zero and the potential energy term may be dropped.
The energy eigenvalues are, in this case, those for N noninteracting par-
ticles in a box. For a single particle in a box with sides L,, L, and L, the
energy eigenvalues obtained from the solution of the Schrodinger equa-
tion given in Appendix C are

p’r*(ny m n2)

m\27 2T E)

e = (4.4)

where the quantum numbers n,, n, and n, take integer values, that is, n,,
n,n,=1,2,3,.... For a cubical container of edge length L and volume
V= L3, the eigenvalues are simply

212
n
- ( 251 T ) (12 +12% + 1), (4.5)

A microstate of the single particle system is designated by the set of
quantum numbers (n,, 1, n,) and it follows that for N particles, the state
of the entire system is specified by the set of 3N quantum numbers (n,,,
My M3 Mo My M55 My, My, M), Figure 4.3 shows the single particle
energy eigenvalues for increasing values of the quantum number # for a
one-dimensional box.

When there are N particles in the box of volume V, they occupy single
particle states that are identical for all particles. If the particles are fermi-
ons, they obey the Pauli exclusion principle, which states that no two fer-
mions may have the same set of quantum numbers, and if spin quantum
numbers are ignored for the moment, this prevents two fermions from
being in the same particle-in-a-box state. For bosons, no such restriction
applies. These cases are dealt with in detail in the quantum statistics sec-
tion of the book, particularly in Chapters 12, 13, and 14.
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£(n)

0O+—+—-

FIGURE 4.3 Energy states specified by the quantum number 7 for a single par-
ticle in a one-dimensional box.

In the high-temperature and low-particle-density limit, the parti-
cle statistics become unimportant. This is because the energy levels are
sparsely populated and the probability that two particles will be in the
same state becomes extremely small. Although the number of particles
N may be very large (~10%), the number of accessible quantum states is
very much larger than this. It follows that at any instant most states are
likely to be unoccupied, with some states occupied by just one particle
and, if the statistics allows this, a few states occupied by more than one
particle. This situation corresponds to the classical limit. In Chapter 12,
it is shown that these assumptions about occupancy of states are justified
in the high-temperature, low-density limit of the quantum distribution
functions.

To determine whether quantum effects are important or if the clas-
sical limit applies, it is helpful to use wave packet ideas. The average de
Broglie wavelength of particles with mean momentum (p) is (A) = h/Ap). If
(1) is much less than the average interparticle spacing d, it is permissible
to neglect quantum effects because there is little overlap of the particle
wave functions. The mean spacing may be estimated using the relation
d ~ (VIN)" In the classical limit, we assert () << d. The equipartition of
energy theorem for a monatomic gas, such as helium, gives for the mean
particle momentum {p) = m(v) =~ (3mkyT)"”* and, with the de Broglie rela-
tion, given above, we obtain (A;) = h/(3mk,T)"?, where T is the absolute
temperature. (The subscript indicates that (A;) is the thermal de Broglie
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wavelength.) As an estimate of the particle separation, in an ideal gas we
use d = (VIN)'? = (kg T/P)"">.

Exercise 4.1: Show that the condition (A) < d is well satisfied for helium gas at
T=100 K and P=1 atm = 1.01 x 10° Pa.

The mass of a helium atom is 4.003 x 1.66 x 10 kg. Making use of the
expressions given above, we obtain () = 0.10 nm and d = 2.4 nm. The condi-
tion (A) < d is well satisfied for helium gas for the given conditions of T and P.

We introduce the quantum volume as V,, = (h/{p))’. For future refer-
ence, it is convenient to write the quantum volume as V,, = (h?/2m(e))*?
= (h*/3mk,T)*?. The mean volume per particle is V, = V/N and the condi-
tion for negligible overlap of particle wave functions is V, <« V,. We show
later that, in the classical limit, many important results can be expressed
in terms of the ratio (V,/V,). When (V,,/V,) approaches unity for a gas,
the classical approximation breaks down.

For an ideal gas system, there are no interactions between the particles,
and no collisions that involve an exchange of energy between particles can
occur. Furthermore, we assume that collisions with the container walls are
elastic. In this limit, the quantum numbers do not change with time and
the system is in a stationary state. If weak interactions between particles are
switched on, collisions will occur and the set of quantum numbers will grad-
ually be shuffled. Over a sufficiently long time, much longer than the mean
time 7 between collisions discussed in Chapter 1, the system will explore
all of the accessible states subject to the constraints of fixed E, V; and N. We
have now established a procedure for designating microstates of an ideal gas
in terms of the corresponding set of 3N quantum numbers. The procedure
permits us to enumerate microstates for the two model systems, the ideal
gas and the ideal spin system. We first consider the ideal spin system.

4.4 QUANTUM STATES FOR AN IDEAL
LOCALIZED SPIN SYSTEM

Consider a solid paramagnetic system of N particles, each with spin angu-

lar momentum /S and associated magnetic dipole moment m = —gmgS,
given in terms of the g factor and the Bohr magneton my = efi/2m. This
expression applies to electron spins, and a similar relation may be written
for nuclear spins. For electrons in our ideal spin system, we take g = 2. The
minus sign in the expression that relates y to S shows that the magnetic
dipole vector is antiparallel to the spin angular momentum vector for neg-
atively charged electrons.
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We assume that the spins are located on fixed lattice sites in a solid,
and there are negligible interactions between the localized moments.
Localization of the spins is important, as we shall see. For a single spin
in applied magnetic field of induction B along the z-direction, the
Hamiltonian operator is

H=-m-B, (4.6)

where B is the local field seen by the spin. This is the operator form of
Equation 2.27. For a paramagnetic system, the local field is very nearly the
same as the applied field B = myH along z, and we have

H=-m,B=gmyBS,. 4.7)

The energy eigenvalues of this Hamiltonian are simply multiples of the
eigenvalues of S, with

Ems = gmBBmS’ (4.8)

where mg = §,§-1,...,=S. For S=1, there are two eigenstates, |+3) and
— 1), with energies

E.=+3gmB=%¥mB. 4.9)

These states are depicted in Figure 4.4 for g = 2. The energy gap XE
increases linearly with B.

For nuclei, it is usual to represent the spin operator by I, and the nuclear
magnetic dipole moment is given by m = giil where y, the magnetogyric
ratio for the nucleus of interest, can be positive or negative. For the present
discussion, the form Equation 4.7 for the Hamiltonian and Equation 4.9
for the eigenvalues will be adopted.

For N noninteracting dipoles, the total energy is the sum of the individ-
ual energies. The state of the system may be specified by giving the set of
quantum numbers, (m,, m,,..., m,) or in Dirac notation |m,, my,...,m,).
The subscript S has been dropped to simplify the notation. If the energy of
the system E is fixed corresponding to fixed B and N, only certain combi-
nations of quantum numbers are allowed subject to the constraint

E=-n,m,B+n_m,B, (4.10)
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E+: iuzB A |%>
AE =2uB
0
1
E=-uB— =)

FIGURE 4.4 Energy levels for a single electron spin % in a magnetic field B. The
energy gap between the two levels is 2, B.

where n, denotes the number of spins in the lower energy | - 1) state and
n_ the number in the higher energy | + 3) state. (It is convenient from now
on in our general discussion to denote the number of spins in the lower
energy state, with their dipole moment p oriented along B, as n,.) For
weak interactions between the spins, the individual quantum numbers
can change with time through mutual spin energy exchange. However,
the total numbers in each state n, and n_ will stay constant because of the
fixed total energy constraint.

4.5 THE NUMBER OF ACCESSIBLE QUANTUM STATES

The labeled quantum states for our two model systems permit us to count
states in a particular energy range. The number of accessible states is
denoted by Q(E), and this is interpreted as the number of states in the
energy range E to E + SE, where §E is a small interval that allows for
some uncertainty in the fixed total energy E of the system. In terms of the
energy density of states p(E), the number of accessible states is

Q(E) = r(E)dE. (4.11)

In the calculation of p(E), allowance must be made for any degeneracy
of states with the same total energy.

(@) The Density of States for a Single Particle in a Box. In Section 4.3,
the quantum states for N particles in a box of volume V are con-
sidered. The single particle states are from Equation 4.5 given by
e, = (p*h* 12mV*">) (n? +nf, +n?), with ny,ny,n, =1,2,3,... It is conven-
ient to introduce a geometrical representation of the states in a space
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spanned by the values of the quantum numbers n,, n,, and n,, and this
representation is shown in Figure 4.5.

The number of states N(¢) in the range 0 to ¢ is easily obtained. Each
state corresponds to a cell of volume unity in the quantum number repre-
sentation. The total number of states is therefore given by the volume of the
octant of a sphere as shown in Figure 4.5, with radius R = (n3 +n, +n2)"2,
where the selected set of quantum numbers (n,, n,, and n,) generates the
spherical surface corresponding to energy . This enumeration procedure

gives the total number of states as

174
N(e)=§ ?p(n§+nj+n§)3/2 . (4.12)

From Equation 4.5, we obtain (1} +n}, +n)in terms of ¢ and other quanti-
ties, and substitution in Equation 4.12 gives

N(e) = ( 4 \‘(Zme)m, (4.13)

p2h3}

|~

The density of states follows directly by differentiation of N(e) with
respect to &

_ dN(e) _ Vv 32 1n
r(e)= o _(4p2h3)(2m) e”’. (4.14)

FIGURE 4.5 Representation of particle in a box states in quantum number space
specified by n,, n, n, = 1,2, 3,.... The octant of the sphere shown encloses states
with particular values of n? + nj + nZ.
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This is an important result which shows that r(e) « &' for three-
dimensional single particle states. The number of states in a shell of thick-
ness 5¢ at € is

_ =/L\ 3 _p
Q(e) = r(e)de \4p2h3/(2m) e” de. (4.15)

In Chapter 5, we make use of this expression for the number of accessible
states.

Exercise 4.2: Estimate the number of single particle states N(e), with energies in
the range 0 to e =3 kgT, for helium atoms in a box of volume 1 L at a tempera-
ture of 300 K. Compare the number of states N(e) with Avogadro’s number n,.

We have shown in Equation 4.13 that the number of single particle states
in the range 0 to ¢ is given by the expression N(e) = L (V/p’1’)2me)*’* = é4p/3)
(V/Vq). (Note that the number N(e) increases as V increases, for constant
quantum volume V(,.) The upper energy limit is, for conservative estimate
purposes, based on the equipartition of energy theorem. For helium, the
atomic mass is m =4.002 x 1.660 x 107"kg. For these values for ¢ and

m, we get N(e)=6x10%. This is much larger than Avogadro’s number
N, = 6.02x10% mol™. The large ratio N(€)/ N, supports the claim made in
Section 4.2 that the single particle states are sparsely populated in the classical
high-temperature, low-density limit.

(b) The Density of States for N Noninteracting Particles in a Box. In the deter-
mination of r(E) for N particles, with total energy E, confined in a box of
volume V, great care must be exercised. The particles are indistinguishable,
and it is therefore physically impossible to count states as distinct that sim-
ply involve particle interchange or, in simple terms, it is not possible to label
particles. A further complication is that the particles may be either fermi-
ons or bosons. Fermions obey the Pauli exclusion principle whereas bosons
do not. However, in the classical limit of low densities and high tempera-
tures, where the states are sparsely populated, it is legitimate to ignore the
quantum statistics features, as we show in detail in Chapter 12.

For N particles, the total number of states with energy in the range
0 to E, if we ignore indistinguishability for the moment, is estimated as
N(E)=[N(e)]" where e= E/N. This estimate combines all states for par-
ticle 1 with all the states for particle 2 and so on. Because of the indistin-
guishability of particles, the estimate is not correct and overcounts states
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by a large factor. To a good approximation, the indistinguishability prob-
lem can be overcome by multiplying by 1/N! to allow for those permuta-
tions of particles that give rise to indistinguishable states of the system.
Our revised estimate of the number of states is N(E) = (1/ N!)[N (e)]" This
correction factor is introduced in a natural way in the classical limit of the
quantum distribution functions, as discussed in Chapter 12.

With N(e) from Equation 4.13, we get

N(E)=(VN) [( = (2”")3/2 } e, (4.16)

and using de/dE = 1/N, we obtain the density of states from Equation
4.16 as

() = W(E) =(dN (E)) de

dE de )dE

or

N

1= (1) ()T ) 4

ST

The number of states in the range E to E + dE follows immediately as

3N/2

(T () e

For future reference, it is convenient to obtain InQ(E) with use

Q(E)-3(VN)

T2l N

of an extremely useful approximation known as Stirling’s formula:
InN!=NInN-N as given in Appendix A. With use of this result,
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we obtain

3/2
E
InQ(E) = N—NlnN+N1nV+N1n(E> +Nln

4p ( ZmE)
3 \ NK?

As a good approximation, the term In 3 dE is ignored in comparison with

3/2

len(K>+Nln +N.
N

the other retained terms that involve N ~10* and are therefore very large.

A number of observations may be made concerning Q(E). First, Q(E)
corresponds to a very large number of states. InQ(E) is of the order of N,
and if for our estimate purposes we choose N of order Avogadro’s number,
this implies that Q(E) ~ ¢'°", an extremely large number. Second, Q(E) is a
very rapidly increasing function of E because Q(E) « E*V'% These two fea-
tures play an important role in the development of the statistical theory.
The expression for In Q(E) obtained above involves a number of approxi-
mations. However, a reliable expression on the basis of results obtained
in Chapter 16 for a classical ideal gas leads to the very similar result

3/2

InQ(E) = Nln( )+N1 (25) (i’f;’f) +2
n B nK(‘meE\m 5 n(VA\+5+ (2P
QB =Nl U ) P2V =N ) T2 s )|
(4.19)

In Equation 4.19, V) = V/N is the volume per particle and V, is the
quantum volume introduced in Section 4.3. We take (€) = E/N in intro-
ducing the quantum volume. In the classical limit, we have V,, > V4 and
In Q(E) is clearly very large, of the order of the number of particles N, as
expected. The expression for In (E) will prove useful in a later discussion
of the entropy of an ideal gas in Chapter 5.

(c) Accessible States for a System of N Noninteracting Spins.  In Section 4.4,
it is shown that a spin 4 particle (electron or nucleus) with magnetic
moment u in a magnetic field B has two energy levels with separation
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2u,B. (To simplify the notation, we drop the subscript on u in the follow-
ing discussion.) For N spins, the possible energies are shown in Figure 4.6,
where the convention for specifying the numbers of spins in a state as
given in Section 4.4 has been adopted.

The lowest energy state corresponds to all moments being aligned
parallel to the field (or up) with n, = N and the highest energy state, in
turn, to all moments being aligned antiparallel to the field (or down) so
that n_ = N. The density of states is constant for the N spin system and
is given by

r(E)=——, (4.20)

which corresponds to just one state in the energy range 2uB. For local-
ized moments in a rigid lattice, the spins are, in principle, distinguishable.
Using clever imaging techniques involving particle beams, for example,
it is feasible that we can determine the orientation of any given spin.
Although this might be extremely difficult in practice, the fact that it is
possible in a gedanken experiment means that the localized spins must be
considered in a different way to the delocalized particles in a gas. The fac-
tor 1/N! introduced to overcome overcounting of states in the case of the
gas is not needed for localized, distinguishable spins.

n,=0
E=NUB ————————————  |+++++....)
n_=N
] n,=N/2
E=0 — L
n_=N/2
n,=N
E=-NuB | = |—— )
n_=20

FIGURE 4.6 Energy levels for N electron spins 3 in a magnetic field B. The energy
states are specified by the spin quantum number sets as shown. The number of up
moments aligned parallel to B is denoted n,, with n_ = N - n,. Successive energy
levels correspond to turning over a single spin with a change in #,, and conse-
quently n_, by plus or minus 1, respectively.
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The number of states in the range E to E+dE is Q(E) = g¢(N) r(E)dE,
with g(N) a degeneracy factor that allows for the permutation of up and
down spins without altering #, or n_. Note that

E=-mB+(N-n)mB = (N -2n)mB. (4.21)

The factor g(N) is easily obtained and is simply the number of ways
of arranging N objects, where n are of one kind with moment up
(or spin down) and (N - n) are of another kind with moment down. The
result is

g(N)= =(n), (4.22)

where (Iy\l] ) denotes the binomial coefficient. The binomial distribution, which
involves the binomial coefficient, is discussed in Chapter 10 and Appendix B.
Using Equation 4.22 for g(N) and Equation 4.20 for p(E) gives

Q(E) - (f} (sz) . 4.23)

For future reference, it is useful to obtain an expression for In Q(X), that
is, INQ(E)=InN!-In(N -n)!-Inn!-In(dE/2mB), and using Stirling’s
formula, we get to a good approximation

InQ(E)=NInN -(N -n)In(N -n)-nlnn. (4.24)

The term In(dE/2mB) has been omitted because (dE/2mB) is of order
unity and the logarithm of this quantity will be negligible compared with
the other terms, which are of order N. The right-hand side of Equation
4.24 does not contain E explicitly. From Equation 4.21, it is readily seen
thatn= L[N —(E/mB)]and (N -n)= 1[N +(E/mB)].

Substituting for n and (N-n) in Equation 4.24 leads to

an(E)=NlnN—(N—E)ln(N— E )—(N+E) ln(N+E )
2 2mB 2 2mB 2 2mB 2 2mB

(4.25)
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Exercise 4.3: By differentiating the expression for In€Q(E), given in Equation
4.25, with respect to £ and equating the result to zero show that an extremum
(maximum) occurs at £ = 0.

From Equation 4.25, dInQ(E)/dE =In[(N/2-E/2uB)/(N/2 + E/2uB)] = 0,
and solving for E gives E/2uB = 0. The extremum occurs at £ = 0 as predicted.
By differentiating again, it is readily found that the extremum at £ = 0 is a
maximum.

A plot of In Q(E) as a function of E is given in Figure 4.7.
For E = 0, the function In ©(E) has a maximum value of N In 2, as may
be seen from Equation 4.25 or Equation 4.24 with n = N/2. Q(E) increases,

NIn2

InQ(E)

-NuB 0 NuB
u - U

FIGURE 4.7 Plot of In[](E) versus E for a system of N spins 3.

Q(E)

-NuB
u 0 E NuB

FIGURE 4.8 Plot of []J(E) versus E for a spin system. The rapid increase near
E = 0 is due to the explosive increase in the degeneracy factor g(n) given in
Equation 4.22.
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from a value of 1 (In Q(E) = 0) when n = N to a value of 2" for n=N/2 and
then decreases to 1 at the upper energy bound, NuB, which corresponds
to n = 0 with all moments down (spins up). For N ~ N,, the maximum
value for Q(E) is very large. It is clear that Q(E) increases extremely rapidly
with E for E < 0 and decreases again extremely rapidly for E > 0. This is an
important characteristic that is used in establishing a connection between
the entropy S and In Q(E). Figure 4.8 gives a schematic representation of
the variation of (E) with E.

The curve, shown in Figure 4.8 for N = 100, tends to Gaussian form
and peaks more and more sharply at E = 0 as N is increased. The sharply
peaked feature of the distribution is of central importance in the discus-
sion of accessible states given in Chapter 5.

PROBLEMS CHAPTER 4

4.1 Two containers of equal volume are connected by a valve
that is initially closed. One container contains 100 mol-
ecules whereas the other is empty. Describe what happens
when the valve is opened and give the situation that you
expect when equilibrium has been reached. Find the entropy
increase for the system in this irreversible process. What is
the probability of finding a particular molecule in one of the
two containers after equilibrium has been reached? Use the
binomial distribution to calculate the probability of finding
the molecules back in the initial state with all molecules in
one container.

4.2 Consider a system consisting of 0.1 mol of argon gas in a con-
tainer of volume 1 L at 300 K. Compare the thermal average

value of the de Broglie wavelength {Ir) of the atoms with
the average interparticle spacing. Find the ratio of the atomic
volume V, = V/N to the quantum volume V,, given by the
cube of the de Broglie wavelength. Is argon a classical gas
under these conditions? Argon molar mass = 39.95 g/mol.

4.3 Argon gas is in a container of volume 2 L at a temperature
of 290 K and at a pressure of 1 atm. Estimate the total num-
ber of available single particle states N(e) with energies in
the range 0 to e= 3 kgT for the system and compare with
the number of argon atoms. How would the ratio change if
the volume of the gas were reduced by two orders of mag-
nitude? Comment on the physical significance of your
results.
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4.4

4.5

4.6

4.7

4.8

A paramagnetic salt contains unpaired electron spins with
g = 2. Give the Hamiltonian for this spin system when
situated in a magnetic field B. Assuming that interactions
between the spins are negligible, calculate the energy eigen-
values for the electron spins in a magnetic field of 1 T. Obtain
the frequency of electromagnetic radiation that would be
needed to induce transitions between the states. The Bohr
magneton is 9.27 x 104 ] T-L.

A system of noninteracting nuclear spins with I = 1 is situ-
ated in a field B. Give the Hamiltonian and the energy eigen-
values for each spin. Sketch the energy levels for a single spin.
Calculate the energy difference between levels for B = 1 T,
taking the nuclear moment to be two nuclear magnetons,
that is, gy = 2. Compare the energy splitting with that for
the electrons in Question 4.4. The nuclear magneton is
5.05 x 10> J T-..

Obtain an expression for the density of states for the nuclear
spin I = 1 system in Question 4.5. Compare your result
with the density of states for a spin I = 1/2 system in the
same magnetic field. Give a numerical value for the dens-
ity of states for the spin 1 case using the numbers given in
Question 4.5.

Noninteracting nuclear spins with I = 3/2 are situated in a
field B. Write down the spin Hamiltonian and give a sketch
of the energy eigenvalues for each spin. Obtain the energy
difference between levels for B = 10 T, taking the nuclear
moment to be two nuclear magnetons, that is, gy = 2. If
the spin system is at a temperature of 50 mK, how does the
energy gap between the levels compare with the thermal
energy k17

Two containers with a volume ratio 4:1 are connected by
a valve that is closed. The larger volume contains N, mol-
ecules of type A, whereas the smaller volume contains Ny
molecules of type B. The pressures in the two containers
are the same. If the valve is then opened, what are the aver-
age numbers of each type of molecule in the two containers
when the system has reached equilibrium? Assume that the
molecules interact very weakly. Obtain an expression for the
probability of finding the molecules in the original configur-
ation before the valve was opened. Evaluate the logarithm of
this probability for the special case N, = 100 and Ny = 25.
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4.9 Assuming monatomic molecules in Question 4.8, obtain
an expression for the logarithm of the number of accessible
states In Q) after mixing in terms of the total volume V; the
temperature 7T, and the molecular masses.

4.10 Calculate In ‘Q for 0.1 mol of helium gas in a container of
volume 10-3 m? at a temperature of 300 K. First calculate the
volume per helium atom and the thermal de Broglie wave-
length and use the ratio in your calculation. Show that the
classical approximation applies in this case.

4.11 A monatomic gas adsorbed on a surface may be considered
to be a two-dimensional ideal gas if the molecules are free to
move on the surface. Write down the energy eigenvalues for
each atom and show that the single particle density of states
is independent of energy ¢. Obtain the density of states as a
function of total energy E for the N particle system.

4.12 A system consists of N particles in a cubical container of
edge length L. Assuming that the force exerted by a particle
in a collision with a wall is given by F, = -dg /dL, where ¢; is
the energy of the particle in a given quantum state specified
by i, show that the pressure in the container may be written
as P = (2N/3V) (¢), where (¢) is the average energy of a parti-
cle. Give an explicit expression for {¢) in terms of the particle
in a box quantum numbers. By comparing your expression
for the pressure with the ideal gas equation of state, obtain
the equipartition of energy result for the average energy of a
particle in terms of the temperature T.

4.13 Show that for two interacting spin systems, each consisting
of N/2 spins of magnetic moment u in a field B, the number
of accessible states for the composite system may be written
as the product of Gaussian functions of the form Q, (E,) =
Q, (0) exp[(-2/N) (E,/2uB)?], where E, is in the range —(N/2)
uB to 0, with a similar form for Q,(E,). Use your result
to sketch (or computer plot) the product function versus
energy of one of the systems.






CHAPTER 5

Entropy and
Temperature:
Microscopic Statistical
Interpretation

5.1 INTRODUCTION: THE FUNDAMENTAL POSTULATE

In Chapter 4, we introduced the number of accessible microstates Q(E)
for a system obtaining expressions for this quantity for an ideal spin
system and an ideal gas. It is now possible to use statistical methods to
establish various results such as the equilibrium conditions for two sys-
tems that interact. To do this, it is necessary to consider the probability
for a system to be in any one of its accessible states. A helpful analogy
is to consider the probability of various outcomes when a die is thrown.
If the die is good, we expect the probability for any one of the six faces
to land uppermost to be equal to 1/6. This postulate may be tested by
experiment. Similarly, for a large system with Q(E) accessible micro-
states, we expect that no one microstate is to be preferred over any other
microstate, and the probability of the system to be found in any one of
its accessible microstates should be the same and equal to 1/Q(E).

The fundamental postulate of statistical physics is based on these con-
siderations and may be stated as follows: A system in equilibrium in a
given macrostate is equally likely to be found in any one of its accessible

microstates.

95
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As with any postulate on which theory is based, the predictions made
by the theory are tested through experiment. The fundamental postulate
has been extensively tested in this way, as we shall see, and is found to be
a good postulate. The postulate is the quantum description analog of the
classical ergodic hypothesis introduced in Section 4.2 of Chapter 4 in con-
sidering the path of the representative point through accessible regions in
classical phase space. Over a sufficient time, all accessible regions are tra-
versed by the representative point.

Because the probabilities are all equal, the probability of finding a sys-
tem in a particular microstate i is simply P; = 1/Q(E). We require that
the sum of the probabilities for all accessible microstates is equal to unity
or e P =1. As a consequence of the fundamental postulate, the
most probable macrostate, specified by appropriate state variables (e.g.,
Vand T), will correspond to that state which has the largest number of
accessible microstates. This permits us to understand how a system will
approach equilibrium. The macrostate will change with time until the
number of accessible microstates reaches a maximum, with the system
equally likely to be found in any one of these microstates. For example, in
the situation shown in Figure 4.1 in Chapter 4, opening the tap increases
the volume available to the particles of the gas. Equation 4.19 shows that
In Q(E) < V¥, and it is clear that the number of accessible microstates
increases enormously as a result of the increase in V. The gas particles fill
the whole volume once equilibrium has been reached. Fluctuations in the
number of particles per unit volume in any region of the container will be
very small. In the next section, these ideas are explored in a quantitative
way for two interacting spin systems. Although spins constitute a particu-
lar type of system, the approach used and some of the results obtained are
quite general.

5.2 EQUILIBRIUM CONDITIONS FOR TWO
INTERACTING SPIN SYSTEMS

Consider two spin system systems, labeled 1 and 2, with fixed total
energy E, which interact at the microscopic level by exchanging heat.
System 1 contains N, spins, whereas system 2 has N, spins. The systems
are situated in a magnetic field B, and all spins have magnetic moment y.
Figure 5.1 depicts the situation.

Let the number of microstates accessible to system 1 be Q,(E;) and
the number accessible to system 2 be Q,(E,). Because of the thermal
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FIGURE 5.1 Two interacting spin systems 1 and 2 containing N, and N, spins,
respectively, situated in a field B. The total energy of the two spin systems is fixed,
but the subsystems 1 and 2 can exchange energy.

interaction, E, and E, can change, subject to the constraint that the total
energy remains fixed, that is,

E = E, + E, = constant. (5.1)

The total number of microstates available to the combined system is
clearly

Q(E) = Q,(E) Q; (E,). (5.2)

This follows because each accessible microstate of system 1 can be com-
bined with any of the accessible microstates of system 2. On the basis of
the fundamental postulate, we require that in equilibrium, (E) should be
a maximum and consequently the energy will be shared between the two
systems in such a way as to achieve this. In equilibrium, we therefore require
that dQ(E)/dE, = 0 and dQ(E)/dE, = 0. These considerations lead to the
condition dQ(E)/dE, = Q,(E,)[d,(E,)/dE, ] + Q,(E,)[dRQ, (E,)/dE,] = 0.

Dividing by [],(E; )] »(E,) and using the chain rule gives

dInQ, (E) . dInQ, (E,) (dEz)
dE, dE, dE,

From Equation 5.1, (dE,/dE,) = -], and the equilibrium condition

becomes

danl(El) _ dlngz(Ez)
dE, dE,

(5.3)

The argument up to this point is perfectly general and could apply to
any two interacting systems.
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Exercise 5.1: Show that two thermally interacting spin systems 1 and 2, with
numbers of spins N; and N,, respectively, share the total energy in such a way
that in equilibrium the fractional number of up moments is the same in the two
systems.

For spin systems, Equation 4.25 gives the following expression for [n €, (,):

(N BN (N B (N, BV (N B

[nQ“E”:N]lnN“L?_ 2u8) "2 T 2u8) L2 Tous) " 2

\ 2 2B

with a similar expression for In€Q,(E,). After differentiation and rearrangement,
this leads to

dinQue) 1 (N BN 1 (N )

de, 2uB '\ 2 " 2uB) " 2uB '\ 2 T 2uB)’ 64

again with a similar expression for dIn Q,(E,)/dE,. From Equation 5.3, these two
expressions must be equal in equilibrium, and after simplification we obtain
the result,

E] N1

E = /\T2 (5.5)

Because Ei=-muB+(N;—m)uB, we have E =(N;-2n)uB. Similarly £, =
(Ny = 2ny)uB, with n; and n, the number of up moments in systems 1 and 2,
respectively. Substituting for £, and E, in Equation 5.5 gives in equilibrium

m_oMN (5.6)
ny N2 N] N2

where my and n; are the equilibrium values for n, and n,, respectively. The equi-
librium energy values £, and £, follow immediately. These results show that in
equilibrium the energy is shared in such a way that the fractional number of up
moments is the same in the two systems.

Fluctuations in n, and n, away from the equilibrium values will occur,
but because Q(E) = Q,(E;)Q,(E,) is a very sharply peaked function, it fol-
lows that at the maximum, where 1:31 =F- Ez, the fluctuations are exceed-
ingly small. Using Equation 4.25 and taking antilogs, we obtain

NV
[N, /2 - E, /mB)]™M/?~E2m)0 N /5 4 E, /(2mB)]

Ql(El) =

[(N1/2)+(E2 /2mB)]

(5.7)

with a similar expression for Q,(E,).
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It is possible to show that a Gaussian function provides a very good
approximation to Q(E) in the vicinity of the peak. This is discussed in
Chapter 10 and Appendix B. In terms of the total energy E, the Gaussian
form for a system of N spins with a maximum at E = 0 is

Q(E) = Q(0)¢ N (E2nt) (5.8)

with ©(0) = 2V because for E = 0 each moment has equal probability to be
in its up or down state.

Exercise 5.2: Using a Taylor expansion about the maximum in Q(E), show that,
in the limit of large N, the form of Equation 5.8 is obtained for the number of
accessible states.

For large N, it is permissible to treat Q(F) as a continuous differentiable
function in spite of the fact that £ takes discrete values. This is because the dis-
crete values are very closely spaced, in comparison with the range of £ values
involved, and form a quasi-continuum.

Expanding In Q(E) in a Taylor series about £ = 0, we obtain

E? +

2
INQ(E);_o = InQ(O)+(d|nQ(E)) E+%(M\
0

dE dee ),

The first derivative is zero at the maximum (E = 0), whereas the second
derivative gives (d* InQ(E) /dE*), = ~(1/2uB)* (4 /N). Insertion of this expression
in the Taylor expansion and taking antilogarithms gives the required form.

To examine the behavior of the product function Q,(E,) Q,(E,) in detail
near the maximum, consider two systems with equal numbers of spins
N, = N, = N/2, which interact thermally and are situated in a magnetic
field B. Let the total energy of the two combined systems have the fixed
value E. For this special case of equal numbers of spins in the two systems,
Equations 5.2 and 5.8 give

Q(E) = Q,(E)Q,(E-E) =2 e—(Z/N)(El/ZmB)Z e—(Z/N)(E—EI/ZmB)Z. (5.9)

Figure 5.2 depicts the functions Q(E,) and Q, (E- E,) as a function of E,.

It is easy to show by differentiation of Equation 5.9 with respect to E,
that, at the extremum in Q, Q,, the energy is shared equally between the
two systems E, = E, = ; E. By differentiating again, it can be seen that the
extremum is a maximum. For this special case, Equation 5.9 becomes
2

Q(E) - 2Ne—2/N(E/2mB) (510)
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Accessible states

—~NuB/2 -NuB/4 E, 0

FIGURE 5.2 The number of accessible states Q, and Q, for two interacting spin
systems 1 and 2, each containing N/2 spins in a field B as a function of the energy
E, of system 1.

Equation 5.10 has the form of Equation 5.8, as expected. In Figure 5.2,
the energies E and E, have been chosen to be less than zero, corresponding
to a greater number of moments in the parallel to applied field or up state
than in the antiparallel or down state.

Exercise 5.3: Show that for two interacting spin systems 1 and 2, the number
of accessible states Q(E) is a sharply peaked function and that fluctuations in
energy are extremely small.

Assume that N, = N, = N/2 so that Equation 5.9 applies. In equilibrium, it
follows that £ = £, = LE. In examining the form of Equation 5.9, it is helpful
to put £ =£/2-aNpB/2, with a a factor in the range 0 to 1. In equilibrium,
E=E2-a (ONuB/2 , where a (0) = 0 is the equilibrium value of a. This gives
after some simplification

Q(F) = [zNe—(Z/N)(E/ZpB)2 ]e—(N/4)a2' (5.11)

Because N is very large, Q(E) decreases very rapidly as a takes values other
than zero. From the fundamental postulate of equal probabilities for all access-
ible states, it is clear that it is highly improbable that the systems will be found
in states that are not very close to the equilibrium state. Fluctuations in E; (and
a) are extremely small. Figure 5.3 shows a plot of In Q(£) as a function of £, for
systems with N; =N, = 100 spins.

Comparison of Equation 5.11 with a standard Gaussian function shows that
the half-height width of the peak is proportional to 1/+/N so that, for N ~10%
spins, fluctuations in £, will be given to order of magnitude by A /E, ~107".
Fluctuations are therefore very small and undetectable in conventional
measurements.
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In(Q(E))

E =E/2 E

FIGURE 5.3 PlotofIn Q, (E) versus E, on the basis of Equation 5.11 for two inter-
acting spin systems 1 and 2, with numbers of spins N; = N, = 100. E; is the most
probable energy for system 1.

E, E,

FIGURE 5.4 Two interacting large systems with fixed total energy E = E, + E,.

The discussion of interacting spin systems given above has served to
illustrate the usefulness of the accessible state formulation when consid-
ered together with the fundamental postulate. We now proceed to gener-
alize the approach to include any thermally interacting systems.

5.3 GENERAL EQUILIBRIUM CONDITIONS FOR
INTERACTING SYSTEMS: ENTROPY AND TEMPERATURE

In Section 5.2, the specific case of two localized spin systems that exchange
energy through thermal interaction is considered. Certain of the results

obtained are perfectly general for any interacting systems subject to the con-
straint that the total energy E is fixed. Figure 5.4 depicts the general case.
Ifthe additional constraints of fixed volume Vand fixed particle number
N are added to the energy constraint, Equations 5.2 and 5.3 may be taken
over immediately and applied to systems other than spin systems. The
number of accessible states for the combined system is Q(E) = Q,(E)Q,(E,),
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and in equilibrium, Equation 5.3 gives dInQ, (E, )/dE, = dInQ, (E,)/dE,
as the condition for Q(E) to be a maximum. These results on the basis of
microscopic considerations may be compared with macroscopic equilib-
rium conditions given by thermodynamics. In equilibrium, the entropy
§ is a maximum, as given by the second law, and the temperatures are
equal, that is, T, = T,. This suggests a fundamental connection between the
entropy and Q(E) of the form § o InQ(E). The proportionality constant
is introduced below. We relate the entropy to In Q(E) rather than Q(E)
because we require entropy to be an extensive quantity. For our interact-
ing systems, we have Q(E) = €,(E;)Q,(E,), and it follows that S=§, +S,.
We now examine the proposed relationship between S and In Q(E) in some
detail to show that it leads to results consistent with the thermodynamic
approach discussed in Chapter 3.

From the fundamental relation (Equation 3.18) in the form T'dS=dE +
PdV, it follows that (3S/dE)y =1/1, and comparison with the relationship
between first derivatives in Equation 5.3 dInQ,(E,)/dE, = dInQ,(E,)/dE,
provides strong support for the relationship S « InQ as we shall see. To
proceed, we need to introduce a proportionality constant, and for reasons
given below, this is simply taken as Boltzmann’s constant kg,

S=kylnQ. (5.12)

This is an extremely important relationship. We show in Section 5.5 that
identifying Boltzmann’s constant as the constant of proportionality leads
to consistency with our thermodynamic definition of entropy. Equation
5.12 expresses the entropy in terms of the logarithm of the number of
accessible states and provides a direct means for obtaining the entropy.
The definition Equation 5.12 shows immediately that the entropy for the
composite system in Figure 5.4 is given by

S=kplnQ, +kz InQ, = S, +S,. (5.13)

This is consistent with entropy being an extensive quantity as pointed out
above.

The use of Equation 5.12 in Equation 5.3 immediately leads to
1/kg(3S,/0E,) =1/kg(9S, / IE;), or T, = T,, which is the thermodynamic
equilibrium condition. We can write

olmQ 1 _ (5.14)
OE kT
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and this relationship defines $ as the slope of the InQ(E) versus E plot. /3 is
related to 1/T by Equation 5.14. The behavior of the reciprocal temperature
S with E for ideal gases and ideal spin systems is discussed in Chapter 6.
is a convenient quantity to use in a number of expressions, as we shall see
later, and is called the temperature parameter. Equation 5.12 is an important
bridge relationship between the microscopic description and the macroscopic
or thermodynamic description of a system. As noted above, knowledge of the
number of accessible states immediately gives the entropy for a particular
system of interest. Examples based on results obtained in Chapter 4 for our
two ideal model systems are given in the following section.

The approach that we have used to arrive at Equation 5.12 involves sta-
tistical methods for a system with fixed total energy. We have considered
time average properties for a single system. In Chapter 10, the concept of
statistical ensembles or collections of identical systems is introduced. We
shall see there that the statistical approach used in the present chapter
involves the microcanonical ensemble, in which the energy E and the par-
ticle number N are kept fixed for each member of the ensemble. Two other
ensembles, termed the canonical ensemble and the grand canonical ensem-
ble, with different constraints on E and N, are considered in Chapters 10
and 11.

5.4. THE ENTROPY OF IDEAL SYSTEMS

In Chapter 4, expressions for In Q(E) are obtained for an ideal gas, consist-
ing of N particles in a box of volume V; and also for an ideal spin system,
made up of N spins of magnetic moment g, situated in a magnetic field B.
From Equation 5.12, it is now a simple matter to write down entropy
expressions for these two systems.

(@) Ideal Gas. Using Equation 4.19 for InQ(E) in Equation 5.12 gives the
following expression for the entropy of an ideal monatomic gas with no
internal degrees of freedom:

3/2

V (4pmE)
N\ 3NK? )

S = Nk, In 4 gNkB. (5.15)

This important expression for the entropy, known as the Sackur-Tetrode
equation, gives a properly extensive quantity that depends on the number
of particles per unit volume N/V and on the energy of the system E. In
terms of the atomic volume V, and the quantum volume V4, the classical
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limit expression is

= Nk |1 V) £ 24 31 2P)

+
2 2

Equation 5.16 is compact and useful.
Differentiation of S in Equation 5.15 with respect to E gives

(88) =l=i(§NkBlnE) =§Nk3(i)
B}, T oE\2 2\

N,V

or

E=>NkT.
2

This is the classical equipartition theorem result given in Chapter 1.

The heat capacity at constant volume follows immediately,
Cyv =(dQ/dT)y =(0E/9dT)y =3 Nkg, or in terms of the gas constant,
C = %”R, in agreement with Equation 2.41.

Theideal gasequation of state may be obtained from Equation 3.24, which
gives with Equation 5.15 (9S/0V)py =(P/T)=(3/9V)(NksIn V)E,N =
(Nkg /V)or PV = NkgT = nRT.

We see that knowledge of In Q immediately leads to an expression for the
entropy S and that other thermodynamic quantities may then be obtained
with use of the fundamental relation. As stated previously, the relation
S = kg InQ provides an important bridge between the microscopic and macro-
scopic descriptions for large systems, such as an ideal gas in a container.

In the general formulation of thermodynamics in Section 3.13 of Chapter 3,
we have introduced the chemical potential u, with the fundamental relation
(Equation 3.26) in the general form T'dS=dE+P dV —mdN for a single
component system for which the energy, volume, and particle number are
allowed to change through, for example, interaction with a large reservoir. As
mentioned in Chapter 3, we shall see the importance of the chemical potential
in discussing chemical reactions and phase transitions and in the derivation
of the quantum distribution functions. For later use, we give an expression
for u obtained from our expression for the entropy. From m= -T(3S/IN)gy
and with (€) = E/N = 3 kgT as the mean energy per particle, it follows that

3/2

(5
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We note that # depends on the density of particles and on the temperature.
The equipartition theorem Equation 1.10 and the expression for the ther-
mal de Broglie wavelength, introduced in Section 4.3 of Chapter 4, enable
us to rewrite Equation 5.17 as m= kyT[In(Vy/V,)—C], with, as before,
V, = V/N the atomic volume and Vi = (h/{p))’ the quantum volume. The
numerical constant C = 3[In(2p/3)+1] is of order unity. In the classical
ideal gas case, we have V, « V,, which gives y < 0 in this limit. We may
expect the above expressions for u to break down when this condition is
not met, that is, for Vi ~ V,. Different expressions apply to Fermi and Bose
gases in the quantum limit, as we shall find in Chapter 12.

(b) Ideal Spin System. 'The entropy of an ideal system of N spins j in a

magnetic field B follows immediately from Equation 4.24 when inserted
into Equation 5.12 S = kz InQ(E). This gives the useful form

S=NkBlnN—(I;]-2E) kBln(N_E)

mB 2 2mB
(N, E kg In N, E) (5.18)
2 2mB 2 2mB

Note that for E = 0, with N/2 moments up and N/2 down, we obtain
S = Nk In2, which corresponds to 2" spin arrangements. This is the maxi-
mum value of S as a function of E. Equation 3.23 gives the reciprocal tem-
perature for the N spin system as

1_(68) _( ke |, (NmB-E)
T \0E)y, \2mB) (NmB+E)

This equation may be solved for E by taking antilogs and multiplying top
and bottom by e ™" This procedure leads to the following expression

MBIKBT _ p=mB/ksT

E=-NmB

emB/kBT -mB/kgT

+e B

} _ _NmB tanh(mB). (5.19)
kT

At high temperature in magnetic fields that are not too large, we have
mB < kT, and the approximation tanh x @x can be made. This gives
the following simple expression for the energy, E= —(Nm’B*)/(kyT).
Now, as discussed in Section 2.7 of Chapter 2, E = —MB, where M is the
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magnetic moment of the system. It follows from Equation 5.19 that for
mB < kT the magnitude of the magnetic moment is M = (Nm’B)/(kT)
with magnetization

M Nm’mH
VO VT (5:20)
where it is assumed that internal fields are negligibly small, so that B = myH.
Equation 5.20 is Curie’s law, and comparison with Equation 1.4 shows that
the Curie constant is given by C = Nm’my/Vky.
The heat capacity C,, is readily obtained using C,, = (dQ/dT), = (OE/dT),,,
where E is the energy of the magnetic material in the applied field, as dis-
cussed in Sections 2.6 and 2.7 of Chapter 2. This gives

2
mB mB
Cut = Nk b () .

H B ( kBT) sec kT (5.21)

The behavior of Cy/Nkg as a function of mB/kgT is shown in
Figure 5.5.

A further discussion of spin systems is given in Chapter 10 as an illus-
tration of the canonical ensemble approach. The peak in the specific heat

Cy/Nkg

UB/kgT

FIGURE 5.5 Reduced specific heat Cy;/Nkg of a paramagnetic material in a mag-
netic field B as a function of mB/kgT. The curve shows a Schottky peak followed
by a decrease in Cy; at high T, for constant B, as the population difference between

levels decreases.
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is known as a Schottky peak and occurs for mB/ksT ~ 1. Physically, the
peak corresponds to a maximum change in the populations of the spin
states and hence the energy of the system for a given temperature rise in
a given field. For low B and high T, in the low B/T region of the curve, the
heat capacity decreases toward zero as (B/T)’. For high T, the spin popula-
tions tend to equality and the heat capacity therefore becomes very small.

The form of the specific heat for a paramagnetic material shown in
Figure 5.5 is found to be in good agreement with experimental results for
representative paramagnetic materials that obey Curie’s law over the B/T
range of interest.

5.5 THERMODYNAMIC ENTROPY AND
ACCESSIBLE STATES REVISITED

For an ideal gas of N particles in a box, with total energy E, Equation 4.19
gives for the logarithm of the number of accessible states

312
() G ) J*
N/ \3Nh

Consider the ideal gas as the working substance of a reversible heat
engine such as a Carnot engine. In a complete cycle, the change in the

InQ(E,V,N)=N N.

[S][¢;]

number of accessible states is zero because E and V return to their ori-
ginal values and N is unchanged in the process. This may be expressed as
rdInQ = 0, where, as before, the special integral sign represents the sum of
all the infinitesimal changes in In Q around the cycle. The total differential
of In Q may be written as dInQ = (dIn€Q2/JE)y,ydE + (0InQ/9V)g ydV.

If we put b =(dInQ/E)y yand g =(dInQ/V)g n, we have

gidlng=95b(dE+(g) dV) 0. (5.22)

For a reversible cyclic process, Equation 3.13 gives ¢ dS = § dQ/T = 0.
From the fundamental relation (Equation 3.18) for a gas, TdS = dE + PdV,
we obtain

.(PR %(dE +PdV)=0. (5.23)
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Comparison of Equations 5.22 and 5.23 leads to the relationships

(aan) b 1
oF . T (5.24)
and
(aan) - gocf, (5.25)
Vv EN T

If we choose b = 1/kgT, with kg Boltzmann’s constant, we obtain the
expression given previously for the temperature parameter in Equation
5.14. For consistency, the same proportionality constant &y is chosen for
(0lnQ/0V)g y in Equation 5.25:

(8an

oV

p
= . =bP. 5.26
) on kT (5.26)

This discussion supports the arguments given previously in Section 5.4,
in which the important bridge relationship (Equation 5.12) §=kzInQ
was established. The microscopic and macroscopic descriptions are there-
fore shown to be completely consistent using the entropy identification
we have made. The microscopic approach permits us to obtain explicit
expressions for the entropy, provided we are able to calculate In[1 for the
system of interest. This has been done in Section 5.4(a) for the ideal gas
in what is termed the microcanonical ensemble approach with E, V, and N
held constant. The approach has also been applied to an ideal spin system
in Section 5.4(b) for which E, B, and N are kept fixed. We now apply the
approach to a number of other systems in a series of exercises.

Exercise 5.4: Obtain the equation of state for an ideal lattice gas consisting of
a lattice of sites, which may be either occupied or unoccupied by particles, as
shown in Figure 5.6.

Assume that for the lattice gas there are n particles distributed among N lat-
tice sites. From Equation 5.12, the entropy is given by S = kg InQ. The number
of accessible states is

), (5.27)
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FIGURE 5.6 'The figure gives a two-dimensional representation of a lattice gas.
There are N lattice sites, with n particles distributed among the sites.

which is the number of ways of arranging the n particles on the N possible sites.
If we take the logarithm of Q and apply Stirling’s formula, we get

S=kg [NInN—nInn—(/\l—n)ln(/\/—n)]. (5.28)

From the fundamental relation (Equation 3.18), the pressure is obtained as
P=T(0S/0V)e

For the lattice gas, the particles do not interact with each other and interact
very weakly with the lattice structure. As a result, there is negligible potential
energy contribution to the total energy. The kinetic energy is also assumed to
be negligible. In a quasi-static, adiabatic compression of the system, the energy
E therefore remains constant.

Let the number of lattice sites per unit volume be p, so that N = rV,
with V' the volume of the lattice gas. From the chain rule, we can
write P =T(3S/IN)@ON/oV), and with Equation 5.28 this leads to
P = rkgT[InNN = In(N = n)] = —rkgTIn[1-(n/N)I.

Forn< N, In[1-(n/N)l=-n/Nand P = rkgTn/N or P = nkgT/V. This is the
required equation of state. The entropy of the lattice gas increases as the vol-
ume is increased because of the increase in the number of accessible states. In
the limit of small V, we have n = N, and Equation 5.28 gives Q =1 and § = 0.
The pressure exerted by the lattice gas is linked to the entropy change that
accompanies any change in volume.

Exercise 5.5: Obtain an expression for the number of Schottky defects in a
cubic crystal at temperature 7. A Schottky defect corresponds to a vacancy
in a crystal lattice. The ion from the site is assumed to have migrated to the
surface of the crystal. Figure 5.7 schematically illustrates the nature of the
defect.

If the crystal contains N lattice sites and there are n Schottky defects with
n < N, the entropy of disorder of the crystal is to a good approximation given by

N

S=k3|nQ=kB[n(n

) =kgINInN=nInn=(N=n)In(N=n)]. (5.29)
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FIGURE 5.7 'The two-dimensional sketch shows a Schottky defect in a crystal-
line solid. An ion has migrated from a lattice site to the crystal surface leaving a
vacancy as shown.

The contribution to the entropy from ions that have migrated to sites at the
surface is negligible because of the small surface-to-volume ratio for a crystal
of macroscopic size. Any volume changes that accompany the formation of
Schottky defects are extremely small.

From the fundamental relation (Equation 3.18), 1/T = (9S/dE), =
(95/dn)y(dn/dE)y The energy E associated with the defects is given by E = ne,
where e is the energy of formation of a single defect. The use of Equation 5.29,
with evaluation of the partial derivatives for n <« N, leads to

N _ gelhoT (5.30)
N

Equation 5.30 shows that the fraction of defects n/N depends very sensi-
tively on ¢ via the exponential function. The formation energy ¢ of a Schottky
defect is of the order of 1 eV. Because Boltzmann’s constant has the value
ks = 8.62x 107 eVK™, it is necessary to reach fairly high temperatures

T =1000K (provided the material does not melt) for a significant number of
defects to be formed.

Exercise 5.6: Obtain an expression for the force required to extend a polymer
chain by a small amount. Use a simple model for a polymer in which the poly-
mer molecules consist of long chains of segments in which adjacent segments
can take up different orientations with respect to one another.

To simplify the problem, we choose a particularly simple model for a polymer
which allows just two relative orientations, either parallel (0°) or antiparallel (180°),
for two representative segments of the long chain as depicted in Figure 5.8.

Let the polymer chain consist of N segments, each of length 7. If n segments
are aligned parallel and the other (N - n) are antiparallel, the length of the chain
is L = m{, where m=n—(N-n) =(2n - N). This expression gives n = 5(N + m)
and (N = n) = 3(N = m). The number of accessible microstates is clearly

NI

- N +mIEN=m] (5.31)
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FIGURE 5.8 Two segments of a polymer chain with relative orientations (a) par-
allel (0°) and (b) antiparallel (180°) to each other.

The entropy of the chain is therefore, in compact notation, given by
S=ks [N InN-N - %(N:mﬂn {%(N:m)]+ f(N:m)},

where use has been made of Stirling’s formula (Appendix A). (The + notation
implies that both sets of signs must be used to give the complete expression.)
The above expression simplifies to give

S =kg {NInN—%(N:m)In{%(N:m)H. (5.32)

For a polymer subjected to a force F with associated extension dL, the funda-
mental relation is TdS = dE - FdL, which gives F = =T(3S/ dL); or, for the present
case, F = =T(dS/am):(dm/dL). This expression with Equation 5.32 leads to

F=_(I<37T)|n[(N—m)]. (5.33)
20} |(N+m)

For m < N, we approximate the In function by —2m/N (with use of the bino-
mial theorem) and obtain F = (2mksT) /(2¢N) = k, TIL/(N£)].

The force required to extend the polymer is proportional to the tempera-
ture and to L/N¢#?. An increase in temperature increases the entropy, which
corresponds to increased disorder in the chain, and this tends to decrease the
length L.

In Chapter 6, we use the results obtained in the present chapter to gain
insight into the concept of absolute temperature. Our two model systems,
theideal gasand the ideal spin system, are used for illustrative purposes. We
are led to a formulation of the third and final law of thermodynamics.

PROBLEMS CHAPTER 5

5.1 Calculate the entropy of 0.1 mol of helium gas at 300 K in
a container of volume 2 x 10 m3. Express you answer in
terms of the gas constant R.
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5.2

5.3

54

5.5

5.6

5.7

A mixture of two monatomic gases consists of N, molecules
of gas A and N molecules of gas B in a container of volume
V at temperature T. Obtain an expression for the entropy
of the mixture in terms of the total energies E, and E; for
the two molecular species, the numbers of molecules of
each kind and the volume of the container. Make use of the
equipartition of energy theorem to write your expression in
terms of the temperature and hence derive an expression for
the specific heat of the gas.

By considering the number of accessible states for an ideal
two-dimensional gas made up of N adsorbed molecules on
a surface of area A, obtain an expression for the entropy of
a system of this kind. Use the entropy expression to obtain
the equation of state in terms of N, A, and the force per unit
length F. What is the specific heat of the two-dimensional
gas at constant area?

A solid contains N lattice sites and an equal number of inter-
stitial sites. Energy ¢ is required to transfer an atom from a
lattice site to an interstitial site. If at temperature T there
are n atoms at interstitial sites, obtain an expression for the
entropy of the system in terms of N and n. Use your expres-
sion to obtain the temperature parameter f in terms of ¢
and hence the energy and specific heat as a function of T.
Assuming that the solid does not melt as T is raised, sketch
the specific heat versus T curve and give a qualitative expla-
nation for its form.

Derive an expression for the entropy of a system that con-
sists of N noninteracting localized particles each of which
has two energy states 0 and ¢. Express your result in terms
of the total energy E. Use your expression to obtain the tem-
perature parameter f in terms of E and hence the specific
heat as a function of T. Sketch the specific heat versus T
curve and give a qualitative explanation for its form.

In this chapter, it is shown that the energy of a spin system
may be written as E = NuB tanh[uB/k,T]. Consider a system
of electron spins § = 1/2 and g = 2 in a magnetic field of
1 T. Find the temperature at which the magnetization of the
system reaches 90% of the saturation value. Repeat the cal-
culation for solid helium-3 nuclear spins for which I = 1/2
and p = 2.2 nuclear magnetons.

A paramagnetic salt containing 10?° electron spins with
S =1/2 and g =2 is situated in a magnetic field of 4 T. If the
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sample temperature is 2 K, determine the spin contribution
to the energy and the entropy of the system using microstate
considerations.

5.8 A d-dimensional ideal gas of N particles is contained
in an L¢-sized container where L is the length of a side.
Obtain an expression for the density of states for the system
and hence the entropy. Express your results in terms of d.
Determine the equation of state for the system, the total
energy, and the heat capacity as a function of temperature.






CHAPTER 6

Zero Kelvin and
the Third Law

6.1 INTRODUCTION

The kelvin or absolute temperature scale is introduced in Chapter 1 in
terms of the constant volume ideal gas thermometer and is further dis-
cussed in Section 3.11 of Chapter 3, in a general way, on the basis of revers-
ible heat engines. Through the choice of a fixed reference point, the triple
point of water, to which a particular temperature of 273.16 K is assigned,
the absolute temperature or kelvin scale is completely specified. The choice
of the particular temperature value for the triple point is based on histori-
cal considerations and ensures that 1 K is equal in magnitude to 1°C.
Because the analysis of the Carnot cycle makes use of the ideal gas equa-
tion of state, it follows that the kelvin scale and the ideal gas thermometer
scale must be the same. An ideal gas thermometer can be used to measure
absolute temperatures provided they are not too low. Helium-4 (*He) gas
liquefies at 4.2 K, at a pressure of one atmosphere, and other gases liquefy
at higher temperatures at atmospheric pressure. Transition to another
phase therefore limits the range of use of gas thermometers. Secondary
thermometers such as resistance thermometers, which use metals or semi-

conductors as sensors, are generally used at temperatures down to 0.05 K
(or 50 mK). A variety of other thermometers, such as ideal paramagnetic
thermometers, have been developed for use at still lower temperatures.
The present chapter is concerned with the low-temperature behavior of sys-
tems of many particles and with the third law of thermodynamics. Figure 6.1
shows the temperature range from 10 to 107 K, plotted on a log scale, with

115
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q7<—Solar interior

10* +=—Solar surface

<«— Freezing point of water
102 =+ High T¢ superconductor
=— Boiling point of liquid nitrogen

la Cosmic background radiation
100 4~ Superfluid He-4

{=—Superfluid He-3

Nuclear antiferromagnetism in Cu

Black hole of five times solar mass

FIGURE 6.1 Representative temperatures that occur in nature or that have been
achieved in the laboratory, plotted on a logarithmic scale. Some important phase
transition and other significant temperatures are shown.

an indication of various important phase transition and other temperatures
that include superfluidity and superconductivity transition temperatures.
The temperature of the cosmic microwave background radiation and the
interior temperature of a representative black hole are also shown. With the
temperature plotted on alog scale rather than alinear scale, it is apparent that
it becomes increasingly difficult to reach lower and lower temperatures.

Temperatures below 1 nK have been achieved in nuclear spin systems
that are not in equilibrium with the lattice in which they are located. The
nuclear spin-lattice relaxation times are generally very long, and this allows
experiments to be performed on the “thermally isolated” nuclear spins
at temperatures in the nanokelvin or even picokelvin range. Adiabatic
demagnetization techniques are used to cool the nuclear spins. The cold-
est places in the universe are inside the horizons of black holes where the
temperature depends on the inverse mass of the black hole. A representa-
tive temperature is shown for a black hole of five solar masses.

6.2 ENTROPY AND TEMPERATURE

In Section 3.4 of Chapter 3, it was pointed out that the inexact differential
dQ may be converted into an exact differential on division by the absolute
temperature T. This gives the infinitesimal change in entropy, dS = dQ/T,
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that accompanies a process in which heat energy dQ is transferred at tem-
perature T. Entropy is a state function and, as pointed out previously, is of
central importance in thermodynamics.

The fundamental relation of thermodynamics for fluids, introduced in
Section 3.9 of Chapter 3, with a fixed number of particles, may be written
as TdS =dE + PdV (Equation 3.18). It follows that 1/T = (dS/dE)y. From
the definition of entropy introduced in Chapter 5, S = kg In Q(E), where
Q(E) is the number of accessible states for a system, the fundamental rela-
tion leads to Equation 5.14 b =1/kT = (0InQ/JE) x 5. The symbol X rep-
resents variables that are held fixed, such as the volume V for a fluid or the
applied magnetic field H for a paramagnet. To gain further insight into the
temperature concept, it is instructive to use the expressions for InQ(E)
obtained in Chapter 4 to examine the behavior of § as a function of energy
for the ideal spin system and the ideal gas system.

6.3 TEMPERATURE PARAMETER FOR AN IDEAL SPIN SYSTEM

For N noninteracting spins 1 situated in a magnetic field B, Equation 4.25

gives

nQ(E)=NnN -[ Y E (N E ) N+E)1n N, B
2 2mB 2 2mB 2 2mB 2 2mB

A plot of In Q (E) versus E is shown in Figure 4.7, and this is repro-
duced in Figure 6.2a. The energy of the spin system has both a lower
energy bound (-NuB) and an upper energy bound (NuB). The maximum
in In Q(E) occurs at E = 0 and has the value NIn2, which corresponds to
Q(E) = 2N. Each spin can point up or down with equal probability so that
there are two orientations for each of the N spins and therefore 2N arrange-
ments for all of the spins. The temperature parameter f that corresponds
to a particular energy is given by the slope of the tangent to the curve,
in a plot of InQ(E) versus E, for that particular energy value. Figure 6.3b
shows the behavior of f# as a function of E, whereas Figure 6.3c shows the
temperature T o« 1/f as a function of E.

From Figure 6.2¢c, we see that, for —-NmB < E <0, the temperature
increases from 0 to +oo as the energy increases. Infinite temperature cor-
responds to each spin having equal probabilities for up or down orienta-
tions. Zero temperature corresponds to all spins pointing parallel to the
applied field, and in this situation, there is only one arrangement for the N
spins so that Q(E) = 1 and In Q(E) = 0.
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FIGURE 6.2  Plots of In Q(E), #, and T versus E for an ideal system of spins with
moment y in a field B. The temperature passes from +oo to —eo as E passes through
Zero.

|-1)  uB I — —

%) —us | | /N
(@) (b) ©

FIGURE 6.3 Population bar diagrams for various spin configurations n, and n_
for three temperatures: (a) positive, T > 0 K; (b) infinite, T' = oo; and (c) negative,
T < 0 K. The particles are not electrons and have their magnetic dipole moments
parallel to the spin.

A highly interesting region occurs for E > 0, where the temperatures
are negative, as shown by the negative slope of the plot of In Q(E) versus
E. A population bar diagram is helpful in understanding the significance
of negative temperatures. Figure 6.3 shows the populations of the two
states for N spins 1 in a field B. Note that the spins are not necessar-
ily electrons, and in this case we have shown the ‘+%> state as the lower
energy state, which implies that the magnetic dipole moment and the
spin are parallel.

In Figure 6.3, the length of the bar for each of the two spin states is pro-
portional to the population of that state. Positive temperatures correspond
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to the lower energy state having a larger population than the higher energy
state, whereas the reverse applies for negative temperatures. Infinite tem-
perature occurs when the populations are equal. The negative temperature
region involves what is termed population inversion and requires manipu-
lations of the spin system by some means to achieve a high-energy config-
uration. For example, we could in principle suddenly reverse the applied
field, although this is difficult to accomplish sufficiently quickly in prac-
tice. Special methods have been developed for inverting spin populations
in particular systems. Spin systems at negative temperatures are very hot.
They cool down, with loss of energy to other degrees of freedom of the sys-
tem, and pass from negative to positive temperatures via infinite 7, with T
=400 and T'= —oo taken as being equivalent. It is not possible to move from
positive to negative temperatures through 0 K, as we shall see.

Many experiments have been carried out to verify the physical impor-
tance of negative temperatures. Spin calorimetry experiments can be car-
ried out between two spin systems, one at a positive temperature and the
other at a negative temperature. These results verify the negative temper-
ature concept. It must be emphasized that negative temperatures can only
occur in systems where there is an upper energy bound and the plot of
InQ (E) versus E has a region of negative slope.

6.4 TEMPERATURE PARAMETER FOR AN IDEAL GAS

For an ideal gas of N particles in a box of volume V, Equation 4.19 gives
InQ (E) as follows:

3/2
InQ(E)=NIn - +>NIn = + > NIn( 227 2N,
N 2 N 2 \3/) 2

This shows that In Q(E) increases steadily with E, as depicted schematically
in Figure 6.4a. There is no upper energy bound in this case, and the energy
can increase indefinitely in principle. Using the equipartition theorem, we
obtain b = 3 (N/E), which shows that  decreases as E increases. It is import-
ant to examine the behavior of InQ (E) as E — 0. In this limit, it is no longer
appropriate to ignore the fact that the particles may be either fermions or
bosons. Such considerations will be dealt with carefully later in the discus-
sion of quantum statistics. For the present, we simply assume that as E — 0,
Q(E) = 1 and InQ(E) — 0. In the lowest energy state, there is only one state
accessible. (We shall see that bosons can condense into a single ground
state, but because of the exclusion principle, fermions cannot.)
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FIGURE 6.4 Plots of (a) InQ(E), (b) f, and (c) T versus E for an ideal gas sys-
tem. The temperature increases linearly with E, as required by the equipartition
theorem.

The temperature T shown in Figure 6.4c increases steadily with the
energy E. This type of behavior is found for many systems, including sol-
ids and liquids, for which the energy has no upper bound, although the
details for the condensed phases are different. Solid and liquid systems
may, of course, change phase, with the possibility of a sudden change in
InQ(E) and S. Changes of this sort are discussed Chapter 9.

6.5 THE APPROACHTO T=0K

In our discussion in the previous two sections, we have seen that In Q(E),
and correspondingly the entropy S go smoothly to zero as the energy
approaches some lower energy bound value, which, for the present dis-
cussion, will be designated E,. T-S diagrams are helpful in consideration
of the approach to absolute zero. Figure 6.5 shows a T-S diagram for an
ideal paramagnet, where the two curves correspond to different applied
magnetic fields.

The curves in Figure 6.5 may be generated using the entropy expres-
sion (Equation 5.18) together with the energy of a spin system given in
Equation 5.19.

Exercise 6.1: Discuss the form of the entropy for a system of N spins in a field
B for the low-temperature case where pB > kgT .
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Isothermal magnetization

T

FIGURE 6.5 T-S diagram for a paramagnet. The two curves correspond to dif-
ferent magnetic fields B, and B,, with B, > B,. The vertical arrow represents an
isothermal magnetization process, whereas the dashed horizontal line represents
an isentropic (adiabatic) demagnetization process.

From Equations 5.18 and 5.19, the entropy has the form
! N+ ! Ntanh(k ”kgln{ N+ﬂtanh( NB”
B

S=Nkg InN -
g 1IN kT
—[1N—1Ntanh(}“’3”k3ln{2l\l—1/\Itanh(p8)

2 2 keT 2 keT 6.1

From Equation 6.1, it can be seen that as T — 0, the entropy S — 0 because
tanh (uB/ksT) — 7 in this limit. Furthermore, it is clear that entropy curves,
which correspond to different magnetic fields B, tend to zero together, as
shown in Figure 6.5.

An important question that arises is whether it is possible to reach the
absolute zero of temperature T = 0 K? To answer this question, it is neces-
sary to examine ways in which the entropy of a system may be reduced or,
in other words, how the order of a system may be increased. Processes for
reducing the entropy are often referred to as entropy-squeezing processes.
Examination of Figure 6.1 shows that approaching absolute zero repre-
sents a formidable challenge.

6.6 ENTROPY-SQUEEZING PROCESSES

(a) Adiabatic Demagnetization. ~Adiabatic demagnetization processes were
discussed in Section 2.7 of Chapter 2 for paramagnetic systems that obey
Curie’s law. The temperature reached in such a process is given by Equation
2.31T, =Ty(H,/H,), where T, is the final temperature in field H, = B,/ my,
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whereas T, is the initial temperature in field H, = B,/m,. Equation 2.31
suggests that if the final field H, = 0, then we expect T, = 0. It was pointed
out in Section 2.8 that the presence of local fields in paramagnets causes
departures from Curie’s law and prevents the attainment of T = 0 K.
For real systems, there are always small interactions between the spins,
resulting in departures from ideal spin system behavior at sufficiently low
temperatures. These effects may produce spontaneous ordering into a fer-
romagnetic or antiferromagnetic state at some finite temperature. This
complication prevents attainment of lower temperatures in these systems
by means of demagnetization processes. Equation 2.31 may be modified as
follows to allow for local fields H;:

2 2\1/2
=T ( Egzz :Zé;m ) 6.2
1 L

Because H; # 0, it follows that it is not possible to reduce T, to 0 K.

It is helpful to use a population bar diagram to understand adiabatic
demagnetization processes. Figure 6.6 shows populations in the energy
states before and after the demagnetization process.

uB, [F—— 1

UB, I

FIGURE 6.6 Population bar diagram for an ideal spin 1 paramagnetic system
(@) in high-field B, and (b) in low-field B, after adiabatic demagnetization. The
populations of the levels shown are unchanged in this process.



Zero Kelvin and the Third Law = 123

The entropy is unchanged in the adiabatic demagnetization process,
and the populations of the two states remain unchanged in the lower field.
From Equation 6.1, we see that constant S implies constant B/T. Lowering
B at constant S results in reduced T so that the final state is at a lower tem-
perature than the initial state. In Figure 6.5, an adiabatic demagnetization
process, which is isentropic, is represented by a horizontal path.

(b) Adiabatic Expansion of a Gas. Reduction of temperature may also be
achieved by the adiabatic expansion of a gas. Equation 2.13 may be written
in the form

g-1
n-n( ] 63)

2

with g = cp/cy the ratio of the specific heats as shown in Equation 2.51.
For the condition V, >V}, the gas cools. Processes of this sort are used in
Carnot engines and refrigerators. It is clear from Equation 6.3 that, for a
finite volume change, a finite drop in temperature will occur. However,
weak interactions between particles will lead to condensation into a liquid
phase when the temperature is sufficiently low, and this prevents further
use of the method.

Exercise 6.2: By what factor should the volume of nitrogen be increased to
cool the gas from 290 K to the liquefaction temperature of 77 K?

For diatomic N,, we have g = cy/c, = 7/5. From Equation 6.3, we obtain
(290/77) = (Vo /V4)*"3, and this gives V, /V; = 27.5.

6.7 MULTISTAGE PROCESSES

For combined refrigerator stages, it is possible to reach very low tempera-
tures in bulk samples. For example, a helium dilution refrigerator, which
uses a mixture of helium-3 and helium-4 as its working substance, can
reach temperatures below 0.01 K (10 mK). This temperature can be used
as the initial point for one or more adiabatic demagnetization stages to
achieve temperatures in the microkelvin range. Cooling of nuclear sub-
systems to temperatures well below 1 uK has been achieved in a num-

ber of laboratories around the world. Figure 6.7 schematically illustrates
multiple adiabatic-isothermal processes on a T-S diagram. The processes
shown are not easily achieved because a series of low-temperature baths
are required to achieve the consecutive isothermal magnetization steps. In
practice, multiple stages with multiple heat switches are used. Figure 6.7
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FIGURE 6.7 T-S diagram that illustrates multiple isothermal and adiabatic pro-
cesses for a paramagnetic system. The entropy curves shown correspond to dif-
ferent applied magnetic fields.

is useful in obtaining a general understanding of why it becomes increas-
ingly difficult to reach lower and lower temperatures.

From Figure 6.7, it can be seen that as the temperature tends toward
absolute zero, the effectiveness of each temperature reduction process
diminishes. This is because the entropy tends to zero regardless of the
conditions under which the system is held. The entropy curves converge
as shown, and as the temperature is lowered, it becomes harder and harder
to squeeze out entropy from the system. Phase transitions may occur in
the system at low T'and further complicate the procedure. Research at low
temperatures is generally concerned with how the entropy tends to zero
and phase transitions to new states of matter are of particular interest.

6.8 THE THIRD LAW

The third law of thermodynamics may be stated as follows: It is impossi-
ble to reach the absolute zero of temperature in a finite number of cooling
processes. An equivalent statement is that the entropy S tends to zero as
the temperature T tends to zero, thatis, S - 0as T — 0 K.

In common with the other laws of thermodynamics, the third law is based
on observation. In our discussion leading up to the statement of the third law,
a large body of experimental and theoretical work has been distilled into a
few pages. All of the evidence shows that the third law cannot be violated.

As noted above, a question of interest is how the entropy approaches
zero for various systems. Phenomena such as ferromagnetism and




Zero Kelvin and the Third Law = 125

T

FIGURE 6.8 T-S diagram for a “glassy” spin system in two different applied
magnetic fields showing the low-temperature limit entropy Sy at T=0 K.

antiferromagnetism may occur in magnetic materials. Superconductivity
occurs in many metallic systems, and superfluidity or frictionless flow
occurs in helium-3 and helium-4, which remain liquid down to the lowest
temperatures reached and which would still be liquid at 0 K at standard
pressure. Other interesting phenomena, such as heavy fermion behavior,
occur in certain alloys at low temperatures. All of these transitions are
manifestations of small interactions between particles that produce new
ordered states at sufficiently low temperatures.

The statement S — 0 as T — 0 may be an idealization as there can be
some frozen disorder in a system at low temperatures. This occurs, for
example, in noncrystalline glassy materials. To include this possibility, an
alternative statement of the third law is given as follows: The entropy tends
to a lower limit value as the temperature tends to zero, that is, S — S, as
T — 0 K. This situation is depicted in Figure 6.8.

The shift in the low T limit entropy value from 0 to S, does not alter the
statement that it is impossible to reach the absolute zero of temperature in
a finite number of processes.

6.9 SUMMARY OF THE LAWS OF THERMODYNAMICS

The laws of thermodynamics, which are based on experience and which
form the foundation for the subject, are grouped together here for conve-
nience. They are stated in simple, general ways. We have not previously
stated the zeroth law but include it for completeness. As discussed in
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Chapter 3, alternative equivalent statements for some of the thermody-
namic laws can be given, but these are not presented here.

Law 0: Two systems each in thermal equilibrium with a third system
are in thermal equilibrium with each other (law of thermometry).

Law 1: The energy of the local universe is constant or AE, = (.

Law 2: The entropy of the local universe tends toward a maximum or
AS, =0

Law 3: The entropy of a system tends to zero or, more generally, to a
constant value as the absolute temperature tends to zero, or § — §,
asT—0K.

In these statements of the laws of thermodynamics, it is clear that the
entropy S is of fundamental importance as emphasized previously.

Both macroscopic and microscopic definitions of entropy have been
introduced. Microscopic considerations strengthen our grasp of the
thermodynamic laws. From a macroscopic point of view, the entropy
change because of the transfer of heat energy is given by Equation 3.14,

AS = ;f dQ/T. If the entropy is defined to be zero at T= 0K, then in prin-
ciple, the absolute entropy at some finite temperature can be obtained
by integration, as shown in Equation 3.14. Actual calculations involve
knowledge of the heat capacity C as a function of temperature from 0 K
to some temperature of interest T, with dQ = C(T') dT. Microscopically,
the entropy can be obtained from the relation Equation 5.12 § = k3 In€Q,
once the number of states € that are accessible to a particular system has
been determined. As we have seen, the calculation of € for both an ideal
gas system and an ideal spin system has been carried out, and specific
expressions for the entropy of these two systems are given in Chapter 5.
Alternative and more powerful methods for obtaining the entropy of
various systems are given later in the book. These methods involve cal-
culation of the partition function Z or the grand partition function Z for
the system of interest corresponding, respectively, to the canonical and
grand canonical ensembles.

Exercise 6.3: The specific heat of liquid helium-3 in the normal fluid range
has an approximately linear dependence on temperature between 3 and
70 mK, with the specific heat given by ¢ = gje3T. Experiment shows that in this
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temperature range, ghes ~ 2.6 R. What is the entropy change of liquid helium-3
when heated from 10 to 50 mK?

.05
The entropy change is given by AS =j‘; o1 9He3 dT = 2.6R(0.05-0.01) = 0.86/ J/K.

We have now introduced the basic concepts and all of the laws of ther-
modynamics. In addition, we have established many of the relationships
that are required for applications of thermal physics to processes in bulk
matter. In Chapters 7 and 8, the thermodynamic approach is used to
describe processes in classical gases and condensed matter, respectively.
Chapter 9 deals with phase transitions and critical phenomena. In subse-
quent chapters (Chapters 10-14), the microscopic approach is developed
and applied to systems in the low-temperature, high-density quantum
limit.

PROBLEMS CHAPTER 6

6.1 A nuclear spin system (I = 1/2) in an applied magnetic field
B is prepared at a negative temperature by subjecting the
system to a short radiofrequency pulse. Sketch the time
evolution of the nuclear magnetization as the spin system
returns to equilibrium with the surrounding lattice. Show
the behavior of the spin temperature with time in a separate
plot. Give an expression for the total entropy change of the
spin system in returning to equilibrium with the lattice.

6.2 Liquid helium-3 behaves as a Fermi liquid with specific heat
€ = Pnes] below 100 mK before undergoing a transition to a
superfluid phase around 2 mK. Sketch an entropy versus a
temperature diagram for liquid helium-3. Obtain an expres-
sion for the internal energy change in heating 1 mol of lig-
uid helium-3 from 5 to 100 mK. Assume that the volume
change is negligible (yy.; ~ 2.6 R).

6.3 The low-temperature molar-specific heat of a metal such as
copper may be written as the sum of the conduction elec-
tron and lattice vibration (phonon) contributions in the
form ¢ = yT + BT1°, with y = (3/2) R(n?/3)1/T;; and f = (3/2)
R(87%/5) (1/03). Ty and 6}, are the Fermi temperature and the
Debye temperature of the metal, respectively. Taking, for
copper, Tp = 8.1 x 10* K and 0}, = 343 K, compare the elec-
tron and phonon specific heat contributions at 10, 1, and 0.1
K. Find the entropy change in terms of R for 1 mol of copper
in cooling from 1 to 0.01 K. Compare these values with the



128 m Statistical and Thermal Physics: An Introduction

6.4

6.5

6.6

entropy change of a paramagnetic salt obeying Curie’s law,
taking g = 2 and S = 1/2 in a low magnetic field of 0.01 T.
Show that uB/k,T <« 1 over the temperature range of interest
and use the approximation sech? x ~ 1 for x < 1.

In an adiabatic demagnetization process, it is clearly advan-
tageous for the paramagnetic material to have a large heat
capacity when the cooling process is completed and the
material is at final temperature T;. As shown in Section
5.4(b), the heat capacity of a paramagnetic system that obeys
Curie’s law is given by Cy; = Nkpx? sech?(x), where x = uB/k,T.
Find the optimum B;/T;ratio for a demagnetization stage in
terms of the initial field and temperature. If B;= 0.01 T and
T; = 1.3 K (pumped liquid helium-4), what should B, be set
as? What is the final temperature after demagnetization?
Take y = i =9.27 x 10724 ] T-L.

A number of metals undergo a phase change to a super-
conducting state at a transition temperature T.. The phase
transition is found to be continuous (see Chapter 9), with
no entropy change at T;.. In the normal state, the specific
heat is given by c; = y T'and in the superconducting state by
¢, = T3 where y and ff are approximately temperature inde-
pendent. With the use of the third law, compare expressions
for the entropy of the normal and superconducting states
at T and establish a relationship between y and f. Obtain
an expression for the energy difference between the normal
and the superconducting states at 0 K.

In an adiabatic magnetization process carried out on a
paramagnetic solid of volume V that obeys Curie’s law,
the applied field is increased from H, to H,. The ratio H/T
remains constant along the adiabatic. Sketch an M-H dia-
gram for the process. How much magnetic work is done in
the process? What is the change in internal energy of the
system? Obtain an expression for the entropy change in the
process.
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CHAPTER 7

Application of
Thermodynamics
to Gases: The
Maxwell Relations

7.1 INTRODUCTION

In previous chapters, it has been shown that thermodynamics provides a
phenomenological description of processes for systems made up of many
particles. The methods of thermodynamics allow us to establish relation-
ships between various properties of a system so that measurement of one
property permits other properties to be deduced without further mea-
surement. Use is often made of the fundamental relation that combines
the first and second laws of thermodynamics. For fluids, this has the form
TdS =dE + PdV (Equation 3.18). Together with the equation of state and
the heat capacity C, as a function of temperature, the fundamental relation
permits a wide range of processes to be analyzed. For solids and liquids,
it is often convenient to use the isothermal compressibility k, defined in
Equation 2.53, and the isobaric thermal expansion coefficient 3, defined in
Equation 2.52, in place of a formal equation of state. From time to time, it
may be convenient to use the adiabatic equation that provides a relation-
ship between two thermodynamic variables for an adiabatic process, such
as PV" = constant for an ideal gas. For a fluid, the equation of state provides

131
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a relationship between the three thermodynamic variables, P, V, and T. The
state of a system may be specified with any two of these variables. Because
the internal energy E and the entropy S are state functions, these two quan-
tities may also be used to specify the state of a system.

In Section 3.13 of Chapter 3, we introduced three thermodynamic
potentials that involve combinations of the five variables E, S, P, V, and T.
In these special functions, T'and S occur together, as do P and V. The con-
jugate pairs PV and TS, which are products of intensive and extensive vari-
ables, have dimensions energy. The thermodynamic potentials are defined
as follows for a single component system such as a pure gas:

Enthalpy, H = E + PV; (7.1)
Helmholtz potential, F = E — TS; (7.2)
Gibbs potential, G=E — TS + PV. (7.3)

These forms for the thermodynamic potentials were obtained in the
energy representation with use of Legendre transforms as described
in Appendix D and Section 3.13. The potentials are discussed in detail
below, and their usefulness in the development of the subject will become
apparent in this chapter. The Helmholtz and the Gibbs potentials are par-
ticularly important and are involved in bridge relationships between mac-
roscopic and microscopic descriptions of systems.

7.2 ENTHALPY

(a) Useful Relationships. From the definition of the enthalpy H given in
Equation 7.1, the differential of H may be written as

dH = dE + PdV +V dP. (7.4)

The first law, as given in Equation 2.7, together with Equation 7.4 leads
to

dH =dQ+VdP. (7.5)

For isobaric processes where the pressure P is held constant, dH = dQ,
and the heat capacity at constant pressure may be written as follows:

-(29) (2],
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Many processes are carried out at constant pressure, which is often simply
atmospheric pressure, and Equation 7.6, which expresses C, in terms of
the partial derivative of H, is useful in such cases. For an infinitesimal
reversible process, dQ = T'dS, and with Equation 7.5 this gives

dH =TdS+VdP. (7.7)

For isobaric processes, we note that dH = T dS, which shows that the
infinitesimal change in enthalpy is proportional to the change in entropy
if P is held constant. Enthalpy plays an important role in the treatment
of isobaric processes, particularly in fields such as chemistry and chemi-
cal engineering. An instructive application of the enthalpy function is in
analysis of throttle processes where a gas passes through a constriction or
set of constrictions in the form of a porous plug or partition. Such pro-
cesses are used in the liquefaction of gases.

(b) Adiabatic Throttle Processes. Consider a quantity of gas that is forced
through a permeable barrier, made up of a set of constrictions, by means
of a pair of coupled pistons, as shown in Figure 7.1.

The two pistons are arranged to move in such a way that the pres-
sures on the two sides of the porous partition remain constant during the
process, with P, > P;. The process is carried out adiabatically for a ther-
mally insulated system so that AQ = 0. Application of the first law gives
AE = E; - E; = — [ PAV. The work done consists of two parts, which cor-
respond to the two regions on either side of the piston, and is easily seen to
be —[PdV =P [,"dV - B[ dV. It follows that E; - E; = ~BV; + PV,
and rearrangement leads to E; + PV, = E¢ + P;V;. This shows that the
enthalpy is the same for the initial and final states or

H, = H;. (7.8)

BV PVy

FIGURE 7.1 Schematic depiction of a quantity of gas being forced through a
porous partition from initial pressure P, and volume V; to final pressure P; and
volume V..
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The fact that the process may be considered isenthalpic is important
and will be used in the detailed discussion of throttle processes given in
Section 7.8. Our equilibrium thermodynamic discussion does not consider
intermediate nonequilibrium states for the gas that flows through the porous
partition under the effect of the steady pressure gradient across the partition.
We simply consider the gas in equilibrium on either side of the barrier.

7.3 HELMHOLTZ POTENTIAL F

(a) Relationships Involving F.  'The definition of the Helmholtz potential F
is given in Equation 7.2, and the differential is

dF = dE-TdS-SdT. (7.9)

The fundamental relation (Equation 3.18) TdS=dE+ PdV together
with Equation 7.9 gives

dF =-SdT -PdV. (7.10)

For isothermal processes, it follows that

dF = -PdV. (7.11)

For processes that are both isothermal and isochoric, dF = 0, which
shows that F remains constant in such processes. This is a useful and
important result. From Equation 7.10, it follows immediately that the
entropy and the pressure are given by partial derivatives of F

s--(1) o
and
P= —((;a‘lj)T. (7.13)

Equations 7.12 and 7.13 require knowledge of F as a function of V and T.
For a system in equilibrium, the energy may be fixed within certain limits,
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and the entropy will tend to a maximum value, as required by the second
law. This suggests that the Helmholtz potential will exhibit a minimum
value in equilibrium. The maximum work output from a heat engine is
given by the change in the Helmholtz potential in the operation of the
engine. In the past, the Helmholtz potential was named the Helmholtz
free energy because of this connection to the work output of an engine.

Exercise 7.1: A heat engine in contact with a heat bath produces an amount
of work W. Show that the maximum work output of the engine, in a process
where heat Q is absorbed from the heat bath, is given by —AFg,, the change
in the Helmholtz potential or free energy of the engine in this process. As a
corollary to the work output analysis, show that the Helmholtz potential feng of
the engine system is a minimum in equilibrium.

The change in internal energy [JEeg of the engine in a process in which
heat Q is absorbed from the heat bath and work W is done by the engine
is from the first law Afg,, = Q - W. The total change in entropy for the com-
bined system of heat bath plus engine is, from the second law, either posi-
tive or zero. If we denote the heat bath by subscript B, we have for the total
entropy change AS = ASgng + ASy = ASeng — Q/T = 0. Using the first law relation-
ship gives Q = AE,, + W, and this leads to (TASgy, — Afgng —W)/T = C or, as
required, —Afe,g = W. The maximum work output is obtained when the equal-
ity holds, and we see that the term Helmholtz free energy was used because of
the relationship to the work output as mentioned above. If no work is done (W
= 0), it follows that Ak, = 0, and in equilibrium the Helmholtz potential tends
to a minimum. To prove this result more formally, we can expand the Helmholtz
potential, expressed as a function of two variables T and V, in a Taylor series about
the extremum point and examine the coefficients of second-order terms.

As an exercise, show that (0°F/9T?)y = 0, consistent with the extremum
in F being a minimum.

(b) Connection to the Partition Function. The partition function, or sum
over states, Z will be introduced in Chapter 10. For a system whose energy
eigenstates are known, it is in general simpler to calculate Z rather than
Q(E), the sum over accessible states introduced in Chapter 4, because Z
involves an unrestricted sum over states. The following relationship is
established in Chapter 10:

F=-k;TInZ. (7.14)

This is an important bridge relationship between the microscopic
and the macroscopic formulations. Once Z is calculated, the Helmholtz
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potential F is obtained from Equation 7.14 and then the entropy S with
use of Equation 7.12. From S, other thermodynamic quantities of interest
may be determined with use of the fundamental relation as described in
Section 3.12 of Chapter 3.

(c) Changesof State. ~ When a substance changes from one state to another,
for example from liquid to gas, at constant temperature and at constant
volume, the Helmholtz potential remains constant, as shown by Equation
7.10. Very often, however, T and P are held constant rather than T and V.
The Gibbs potential is useful in such situations.

74 GIBBS POTENTIAL G

(a) Relationships Involving G.  From Equation 7.3, which defines G, the dif-
ferential dG is immediately obtained:

dG=dE-TdS-SdT+PdV +VdP. (7.15)

Making use of the fundamental relation Equation 3.18 gives

dG=-SdT+VdP. (7.16)

Expressions for S and V, as partial derivatives of G, follow from
Equation 7.16:

s--(29) o1
and
V= (‘;IG)) (7.18)

The second-order partial derivatives are —Cp/T = (0*°G/9T?)p and, with
use of Equation 2.53, -kV = (0°G/oP?),. Arguments similar to those made
for the Helmholtz potential, with allowance for small changes in both T
and Vin the fundamental relation, show that the Gibbs potential will be a
minimum for a system in equilibrium.
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(b) Changes of State. ' When a change of state occurs at constant pressure
and constant temperature, the molar Gibbs potentials for the two differ-
ent states, or phases, in equilibrium are the same. This statement is justi-
fied below. An example of two phases in equilibrium is a liquid in contact
with its vapor at some temperature and under a pressure of, say, 1 atm, as
shown in Figure 7.2.

The Gibbs potential for the two phase system may be written as

G=mg +mg, (7.19)

where g, and g, are the molar Gibbs potentials for the two phases and
n, and n, are the equilibrium molar quantities for the two phase system
at the particular instant considered. Particles will traverse the interface
between the liquid and the vapor phases such that the net rate of transfer
is zero in equilibrium. The total number of moles of substance is fixed so
that n = n, + n,, giving dn, = —dn,. In equilibrium, G is at a minimum, and
Equation 7.19 leads to

dG =& dnl + §§) dnz = O, (720)
from which it follows that
g1 = 4. (7.21)

This proves the statement made above that the molar Gibbs potentials
for the two states are the same. Use will be made of the result given in
Equation 7.21 when phase transitions are discussed in Chapter 9.

Floating

~[—> .
piston

FIGURE 7.2 A two-phase system, such as liquid and vapor, in equilibrium at
constant T and P.
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7.5 THE GIBBS POTENTIAL, THE HELMHOLTZ

POTENTIAL, AND THE CHEMICAL POTENTIAL
We are now able to express changes in F and G in terms of the chemi-
cal potentials y; introduced in Section 3.12 for a multicomponent sys-
tem. Applications to phase equilibria and chemical reactions show
the importance of u in such processes. The general form of the funda-
mental relation for a multicomponent system is given in Equation 3.26,
TdS=dE+PdV -Z; m dN,, where y; is the chemical potential for the ith
particle species and dN; is the change in the number of molecules of this
type. If Equation 3.26 is used together with the expressions for the differ-
entials dF and dG given in Equations 7.9 and 7.15, we obtain

dF = —S dT—PdV+Em,-dNi (7.22)

and

dG=-SdT+VdP+ E m dN,. (7.23)

It follows from Equation 7.22 that

m =(3F) , (7.24)
ON; T,V.N;

and similarly from Equation 7.23

G
m = () . (7.25)
ON; T,P,Nj

We see that the chemical potential is given by the partial derivative of
F with respect to N, with T, V; and the other particle numbers held fixed.
Similarly, it is given by the partial derivative of G with respect to N; for
constant T, P and N; = N;. For processes carried out at constant T and V,

dF = 2 m dN;, (7.26)
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whereas for constant T'and P,

dG = E m dN,. (7.27)

Equations 7.26 and 7.27 are useful and important results for multicom-
ponent systems, such as systems in which chemical reactions can occur or
systems that undergo phase transitions. As an example, consider a system
in which a phase transition occurs at some temperature T for constant
pressure P. For phases that coexist, Equation 7.20 gives

dG = E gi dn,' = (1) E gi dNi, (7'28)
K NA 1

for the composite system in equilibrium. Comparison of Equation 7.28
with Equation 7.27 leads to the following identification:

m=-_". (7.29)

This shows that the chemical potential is equal to the molar Gibbs
potential divided by Avogadro’s number, or the Gibbs potential per par-
ticle, which is a very useful relationship. As noted previously, the chemi-
cal potential is an important quantity in thermal and statistical physics.
Gradients in u drive diffusion processes in systems in which there is a
nonuniform particle concentration. We shall see that x plays a crucial role
in the quantum distribution functions that are discussed in Chapter 12.

7.6 CHEMICAL EQUILIBRIUM

Consider a gaseous mixture made up of different kinds of molecules i,
with numbers N, which undergo chemical reactions. It is of interest to
determine the equilibrium condition for a multicomponent system of this
kind. We denote different types of molecules by the symbol X;. A chemical
reaction may then be written in the form,

2 XX, =0, (7.30)

1
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where x; denotes the number of molecules that participate in a single reac-
tion process. We take the sign of x; to be positive for products and negative
for reactants.

As a simple example, consider the reaction

H, +Cl, = 2HCL (7.31)

This reaction occurs when hydrogen and chlorine gases are mixed.
Equation 7.31 is rewritten in the form of Equation 7.30 as follows:

-1H, -1Cl, + 2HCl = 0. (7.32)

In general, any change in the Gibbs potential for a multicomponent
gaseous system is given by Equation 7.23. If the pressure and temperature
are held constant, Equation 7.23 takes the form given in Equation 7.27.
Changes in the numbers of molecules of type i are proportional to the x;
in Equation 7.30. It follows that in equilibrium, when G is a minimum,
Equation 7.27 may be written as

E x;m =0, (7.33)

1

Equation 7.33 is a useful relation and for the specific example consid-
ered above we obtain

zmHCl - mHz - InClz = Oa (7.34)

which establishes a relationship between the chemical potentials of the dif-
ferent species for the system in equilibrium. Using Equation 7.24 together
with Equation 7.14 permits the chemical potential to be obtained from the
partition function Z. We have previously given an expression Equation
5.17 for the chemical potential of a classical monatomic ideal gas which,
with use of the equipartition theorem, may be written as
1n(ﬁ) - c},
Vi

with C = 3(In(2p/3) +1), Vi = VIN the atomic volume, and Vg, = (h/{p))’
the quantum volume, as discussed in Section 4.3 of Chapter 4. Monatomic
gases are, of course, generally nonreactive. Expressions for the chemi-
cal potential of polyatomic molecules are similar to that given above, but

3/2

ln(%) +ln(2p:12kBT) _%

m= —T(LS) = kBT = kBT
ON/ .y
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allowance must be made for internal degrees of freedom as well as the three
translational degrees of freedom. In Chapters 16 and 19, it is shown how
explicit expressions for the y; may be obtained for polyatomic molecules.
This approach allows a quantitative discussion of chemical equilibrium to
be given in terms of the important law of mass action, which has the form
IT;N;* = Ky(T, V), with N, the number of molecules of species i. Ky, is the
equilibrium constant that may be measured experimentally, for various
reaction conditions, and which may also be theoretically calculated for a
given reaction using molecular partition functions, as is shown in detail
in Chapter 19. For the above reaction, under particular conditions of T
and V, the law of mass action provides a simple relationship between the
numbers of molecules of each species. For the present, we regard K, as an
experimentally determined constant for a particular reaction, under given
conditions. The law of mass action is of great usefulness in optimizing
chemical reaction processes.

Exercise 7.2: For the reaction described by Equation 7.32, obtain an expression
for the equilibrium number of molecules of HCI for the case Ny, = N,
From the law of mass action NiiciNiy N, = Ky, we find Nya = /Ky N&, -

7.7 MAXWELL'S THERMODYNAMIC RELATIONS

The four Maxwell relations that are derived in this section are of great

use in thermodynamics because they relate various partial derivatives of
thermodynamic functions to each other. This permits substitution of one
partial derivative by another in deriving thermodynamic expressions. In
obtaining the Maxwell relations, use is made of a number of identities
from multivariable calculus. Consider a function f = f (x, y) of two vari-
ables x and y, for which the following useful identities involving the partial
derivatives hold:

FfN_ (S (7.35)
ay) ~\ayox)’

(9x\ _ (f19y)
Lay), ™ " Gofra0),” 739

[ 9x) _ 1
Lo}, ™ @rram),” 77
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We make use of these identities in our derivation of the Maxwell rela-
tions and consider, in turn, the differentials of the energy E, the entropy S,
the Helmholtz potential F, and the Gibbs potential G, each of which leads
to a different Maxwell relation.

(a) The First Maxwell Relation for a Single Component System. The funda-
mental relation Equation 3.18 is dE = T dS — PdV. Consider E to be a func-
tion of Sand Vor E = E (S, V), so that the total differential is

dE=(aE) dS+(aE) v, (7.38)
as), T Lav ),

Comparison of Equations 3.18 and 7.38 permits the following identifi-
cations to be made:

(ZI;) -7 (7:39)
and
(jﬁ)s __p. (7.40)

From the identity given in Equation 7.35, we have 9°E/dVaS =

9*E/9SaV or, equivalently, (0/9dV)s(0E/dS)y =(9/9S)y(0E/dV)s. With
Equations 7.39 and 7.40, it follows that

(29,3,

This is the first Maxwell relation, and it expresses the fact that T, V,
P, and S cannot be chosen independently; any two specify the state of
the system. Useful connections between the partial derivatives follow as
a consequence. Derivations of the other Maxwell relations are similar to
that given above.
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(b) The Second Maxwell Relation. The differential for the enthalpy is
given by dH = T'dS+ V dP (Equation 7.7). If we let H = H(S, P), we obtain
dH = (0H/3S)pdS + (0H / 9P)sdP and identify the partial derivatives as

oH
NGt I
( as)P (742
and similarly
(aH) -V, (7.43)
P )

From Equation 7.35, with f= Hand x = P, y = §, it is easily shown that

(an), =[5, 744

This is the second Maxwell relation.

(c) The Third Maxwell Relation. ~Consider the differential of the Helmholtz
potential given in Equation 7.10, dF = =S dT — P dV. With F = F(T,V), we
obtain dF = (dF/dT)ydT + (0F/dV);dV, and this permits the following
identifications for the entropy,

_S=(8F) , (7.45)
aT}),
and the pressure,
_p-= (aF) . (7.46)
v/,

The use of Equation 7.35, with f = F, leads to
p
av), \atr),

the third Maxwell relation.
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(d) The Fourth Maxwell Relation. From Equation 7.16, the differen-
tial of G is given by dG = -SdT +V dP, and with G = G(T, P), this gives
dG =(0G/9dT)pdT +(0G/dP)rdP. This expression permits the following
identifications: the entropy is

-S= (aG) 7.48
and the volume
oG
V=|—| .
( 8P) T (7.49)

Finally, Equation 7.35, with f=G, results in the fourth Maxwell

relation:
A vV
(aP)T - (aT) (7.50)

(e) Summary of the Maxwell Relations.  The four Maxwell relations are sum-
marized as follows:

from Equation 7.41, M1, (dT/0V)s = —=(0P/dS)y;
from Equation 7.44, M2, (dT/dP)s = (dV/9S)p;

from Equation 7.47, M3, (8S/0V); =(dP/dT)y; and
from Equation 7.50, M4, (3S/dP)r = —(dVIdT)p.

As mentioned above, the Maxwell relations are a consequence of the
fact that T, S, P, and V are not independent. The Maxwell relations may
be written down immediately with the aid of the fundamental relation
(Equation 3.18) in the form dE = T'dS - PdV, with the following rule that
involves the variables T, S, P, and V, which occur on the right-hand side
of the relations. If in M1 to M4 the variables, with respect to which one
differentiates, occur as differentials in the fundamental relation, a minus
sign must be used in the corresponding Maxwell relation while any single
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permutation away from this results in a change in sign. The physical sig-
nificance of the relations may be understood from an examination of the
partial derivatives. In M1 (Equation 7.41), (T/dV)s gives the infinitesimal
change in temperature with volume in an isentropic (quasistatic, adia-
batic) process, whereas (0P/dS)y gives the infinitesimal change in pressure
when a gas is heated at constant volume. The negative sign signifies that
the two infinitesimal changes have opposite signs. Similar consideration
may be used in interpreting the other relations. The great usefulness of
the Maxwell relations is that different properties can be connected, and
this permits a complete description of a system on the basis of a few of its
experimentally measured properties. We make use of the Maxwell rela-
tions in Sections 7.8 and 7.9.

7.8 APPLICATIONS OF THE MAXWELL RELATIONS

The Maxwell relations together with the equation of state for a system
permit the thermodynamic analysis of a variety of physical processes to
which the system may be subjected. As mentioned in Section 7.1, it is con-
venient to use the isothermal compressibility x and the thermal expan-
sion coeflicient f for liquids and solids in lieu of an equation of state.
Results may often be expressed in terms of the heat capacities C, and C,.
When adiabatic processes are involved, the adiabatic equation for the sys-
tem is useful. Armed with the Maxwell relations, the thermodynamic
potentials, and the fundamental relation, we are now in a position to deal
with a large variety of situations. Illustrative examples for expansion pro-
cesses in gases are given below. Chapter 8 deals with processes in con-

densed matter.

(a) The Joule Effect and the Joule-Kelvin Effect. In the mid-nineteenth cen-
tury, Joule considered the free expansion of a gas and attempted to measure
what is now called the Joule coefficient. Figure 7.3 gives a sketch illustrat-
ing Joule’s experiment.

Initially, the right-hand reservoir in Figure 7.3 contains gas, whereas
the left-hand reservoir is evacuated. When the tap between the two reser-
voirs is opened, gas flows through the tube that connects the vessels until
the pressures are the same. No pistons are involved and no work is done
by the system, that is, AW = 0. Furthermore, no heat energy is transferred
during the sudden and irreversible expansion process for which AQ =0
but, as we have seen in Section 3.6, AS > 0 . Because AQ and AW are both
zero, it follows from the first law that AE = 0 in the expansion. Joule was
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<4—— Thermometer

O G2

o

Thermal bath

FIGURE 7.3 Schematic representation of Joule’s free expansion experiment in
which he attempted to detect a change in temperature of a gas that is allowed to
expand into an evacuated space by opening a valve while the temperature of the
surrounding heat bath is monitored.

K

FIGURE 7.4 The Joule-Kelvin controlled expansion process that involves the
flow of gas through a throttle valve. The tube that connects the two containers
has a small diameter, and this permits a pressure difference to be maintained
between the two large volumes.

interested in possible temperature changes of the gas in a free expansion
process. The Joule coeflicient is defined as

Iy = (::‘T,)E- (7.51)

Joule attempted to determine the coefficient I'y for a gas from measure-
ments of the temperature of the external thermal bath before and after the
valve was opened but found no detectable effect. An analysis of the experi-
ment is given below, but we first consider a somewhat different expansion
process, known as the Joule-Kelvin effect, which involves a porous plug or
throttle valve between two reservoirs, as shown in Figure 7.4.
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Gas from the left-hand container is forced through the throttle valve
by the pressure gradient across the valve. The pistons are moved so that
the pressures in the two containers are maintained at constant values P,
and P, respectively. As discussed previously in Section 7.2(b), the enthalpy
H remains constant provided the process is carried out adiabatically.

The Joule-Kelvin coeflicient is defined as

I = (aT) - (7.52)

and the temperature change in a throttled expansion process is

Pf Pf
aT- [ (”) dp= [ () dP. (7.53)
p \OP/, »

1

The Joule-Kelvin effect can lead to significant cooling of gases and is
used, for example, in the liquefaction of helium.

It is straightforward to obtain expressions for I';and I'jy from the funda-
mental relation, the definition of the enthalpy and certain of the Maxwell
relations.

Consider the Joule coefficient I';, defined in Equation 7.51 T’y = (0T/0 V).
We make use of the identity given in Equation 7.36 in the form
(0T/OV)g = —(0E/0V ) [(AE/OT)y.

From the fundamental relation dE=TdS-PdV, we obtain
(0E/0V)r =T(3S/0V)r =P, and if we put (0E/dT)y =Cy, we get
Iy =-(1/Cy)[T(0S/0V)r - Pl. Using Maxwell M3 (Equation 7.47), we
obtain the Joule coeflicient as

r, =(HP-T(§}TDM. (7.54)

If the equation of state for the gas is known, the Joule coefficient can
immediately be determined. Note how useful the Maxwell relations are in
obtaining an expression for a quantity of interest in a form that is conve-
nient to apply.

A similar procedure on the basis of the identity Equation 7.36
gives Iy

Ik =(0T/0P)y = —(dH/0P)7 [(0H/OT )p.
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From Equation 7.7 (9H/9P); =[T(dS/dP); + V], and with Equation
7.6 we have Cp=(9H/9T)s These expressions lead to I}y = —(1/Cp)
[T(0S/dP)r + V]. Inserting M4 yields

- 2 r(5%) V] o

and knowledge of the equation of state allows an explicit expression for
the J-K coeflicient to be obtained.

It is a simple matter to show that both I';and I'y are zero for an ideal gas so
that no cooling occurs in either process for this system. The ideal gas equa-
tion of state PV =nRT gives (P/dT)y, =nR/V =P /T, which means that
the right-hand side of Equation 7.54 vanishes and ('), = 0. Similarly,
(0V/IdT)p = nR/P = VIT and insertion in Equation 7.55 shows that (I'j¢); 4. =
0. The physical reason for the vanishing of the Joule and Joule-Kelvin coef-
ficients for an ideal gas is that there are no interparticle forces present and
therefore no potential energy contributions to the internal energy of such
a gas. The internal energy is a function of temperature only (E = E(T)), as
noted previously, and does not depend on the volume V.

(b) Joule and Joule-Kelvin Coefficients for a van der Waals Gas. It is of inter-
est to examine both I'y and I'j for a real gas. The van der Waals equation
of state provides a useful model for this calculation. Equation 1.2 gives
the van der Waals equation of state as (P+a/V*)(V —b) = nRT, and it
is convenient to choose n = 1 mol. To obtain the coefficients, we require
(0P/OT)y and (AV/IT)p.

From Equation 1.2, we get (dP/0T), = R/(v-b), with v as the molar
volume. (It is straightforward to allow for n # 1.) Substitution in Equation
7.54 gives

T = i(%) (7.56)

with ¢, as the specific heat per mole. Similarly, for the Joule-Kelvin case,
we obtain

(aV) _ 1 _ R , (7.57)
aT ), (AT/0V), [P-(a/v?) + 2ab/v’]
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With the approximation that small terms ab/v? and 2ab/v* may be
neglected and use of Equation 7.57 in Equation 7.55, we get

_ _i [bP - (261/1/)] (758)

B G [P-@v)]]

We can now calculate the temperature change in the Joule free expan-
sion of a van der Waals gas if we assume that the specific heat is approxi-
mately constant,

f Vf
AT=f rdv- -2 (dv_a [1-1]. (7.59)

=
cvdw V cv |ve W

Inspection of Equation 7.59 shows that a thermally insulated van der
Waals gas cools down in a free expansion process. Physically, this is
because the molecules or particles are further apart, on average, after the
expansion process than they were before. For a van der Waals gas, the
intermolecular potential has the form shown in Figure 7.5.

The short-range repulsive core with radius r = b corresponds to a hard
sphere-type potential. The long-range attractive potential is produced by
weak fluctuating electric dipole-dipole interactions between molecules
and falls off approximately as 1/r®. The forces responsible for the attrac-
tive potential are generally referred to as van der Waals forces. After an

u(r)

UG b

FIGURE 7.5 Intermolecular potential for a van der Waals gas with a short-range
infinite repulsive core at r = b and a long-range attractive potential that reaches a
minimum value of —u, as shown.
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expansion process, the total potential energy U of the system of molecules
has increased because

U= E u(ry) (7.60)

1<j

will be made up of contributions u(r;), which are on average less nega-
tive than before. To keep the total energy fixed, the total kinetic energy
K =Y, p?/2m of the system must decrease as required by energy conserva-
tion. The total energy is given by

E=K+U, (7.61)

with K and U defined above. A decrease in kinetic energy corresponds to
a drop in temperature of the gas.

We have previously shown that in an irreversible free expansion process
of the kind used by Joule the entropy of a gaseous system increases. The
increase in entropy reflects the increase in the number of accessible states
available to the system as a result of the expansion. An entropy increase
occurs whether or not the gas cools.

The change in temperature of a van der Waals gas caused by a throttled
or Joule-Kelvin expansion can be obtained, at least for small changes in
pressure, using

AT = f T dP, (7.62)

with I'j given by Equation 7.58. Because of the presence of terms involv-
ing the volume V; which is a function of the pressure, the integral is not
simple and must be carried out numerically.

Measurements and calculations show that, dependent on the condi-
tions, the temperature of a real gas may increase or decrease in an isen-
thalpic Joule-Kelvin expansion. Figure 7.6 shows representative schematic
plots of final temperature T; versus final pressure P; for the isenthalpic
expansion of a real gas for various initial pressure P,and temperature T;
conditions.

A number of features are apparent from the curves based on series of
points, which correspond to particular initial and final conditions. For
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Tt

FIGURE 7.6 Representative plots of final temperature T; versus final pres-
sure P; of a gas in an isenthalpic throttled expansion from a series of fixed
initial pressure P, and temperature T; conditions. The maximum, or inversion
point, shifts to lower final pressures with changes in the initial conditions as
shown. No cooling of the gas occurs when T; exceeds the maximum inversion
temperature.

given P, and T, the gas may either warm or cool, depending on the final
pressure P In general, the isenthalpic curves show a maximum that is
called the inversion point. The slope (dT/dP)y changes from positive to
negative at the inversion point. From Equation 7.55, it can be seen that
Ik = 0when (0V/dT)p = V/T. It is important to remember that the curves
plotted in Figure 7.6 correspond to finite changes in T and P as the gas
passes through the throttle valve. This process involves nonequilib-
rium intermediate states, as mentioned in Section 7.2(b). I'j¢ is given by
the slopes of the fitted curves at constant enthalpy shown in Figure 7.6.
Clearly, Iy may be positive or negative, with the sign dependent on the
conditions which apply. At a sufficiently high initial temperature, it can be
seen that the inversion point occurs at zero pressure. This is the maximum
inversion temperature. No cooling of the gas can be achieved by means of
a Joule-Kelvin expansion at this or higher temperatures. To cool a par-
ticular gas in a Joule-Kelvin expansion, the gas temperature must first
be lowered below the maximum inversion temperature and the starting
conditions chosen to ensure that cooling occurs. Table 7.1 gives the maxi-
mum inversion temperature for important gases that can be liquefied in
expansion processes.

The physical reason for the change from cooling to heating in a throt-
tled expansion, with different starting temperatures and pressures, is
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TABLE 7.1 Maximum Joule-Kelvin Inversion
Temperatures for a Number of Gases

Maximum

Inversion
Gas Temperature (K)
Carbon dioxide 1500
Argon 723
Nitrogen 621
Air 603
Hydrogen 202
Helium 40

u(r)

~u, \./k

v r

FIGURE 7.7 'The Lennard-Jones 6-12 intermolecular potential for a real gas,
which reaches a minimum value of -4, at molecular separation r,,.

linked to the relative importance of repulsive and attractive interactions
between particles. At sufficiently high starting temperatures, repulsive
interactions become very important and make a major contribution to
the potential energy of the gas. Figure 7.7 shows a representative inter-
molecular potential commonly referred to as the Lennard-Jones or the
6-12 potential.

The pair potential is described by the empirical expression,

«=w(2) -2(2)] 06)

The form of the potential is similar, in some respects, to that shown in
Figure 7.5 for a van der Waals gas. Overlap of the molecular wave func-
tions at small molecular separations gives rise to the repulsive part of the
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potential represented by the first term in Equation 7.63. (The repulsion
is linked to the Pauli exclusion principle for fermions, which is given in
Chapter 12.) It can be seen that when the repulsive interactions make a
dominant contribution to the total potential energy U of the gas, the drop
in pressure in a throttled expansion will lead to a decrease in U and a
corresponding increase in the kinetic energy K. An increase in K is asso-
ciated with an increase in the temperature of the gas. Conversely, if the
attractive interaction is dominant in the potential energy, the throttled
expansion will lead to cooling. The kinetic energy will decrease as the
potential energy increases (becoming less negative) using an argument
similar to that which predicts cooling in the Joule expansion of a van der
Waals gas.

7.9 THE ENTROPY EQUATIONS

It is useful for a number of applications to establish general expressions
for entropy changes in terms of changes in state variables. The entropy
is a state function and may therefore be written as a function of the state
variables T, V; and P. As noted previously, because the state variables are
related by an equation of state, two variables are sufficient to specify the
state completely.

Generally, we choose

§=38(T,V) (7.64)

or

although we could also take S = (P, V). Expressions for the total differen-
tial of $ may be obtained immediately.

(a) First TdS Equation. From Equation 7.64, we obtain the differential
dS =(8S/aT)ydT +(8S/9V)rdV. This may be written as

TdS=C, dT+ T(ap) av, (7.66)
oT),
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where use has been made of M3 given in Equation 7.47. Integration of
Equation 7.66 results in

f f
AS=S(T, V) -ST V) = [ () are [ () av. e
1 1 )4

This shows that the entropy change in a process specified by initial and
final temperatures and volumes may be calculated from a knowledge of
the heat capacity C, and the equation of state.

(b) Second TdS Equation. It follows from Equation 7.65 that
dS=(3S/9T)p AT +(9S/0P)r dP or, using M4 Equation 7.50,

TdS=deT—T(aV) dp, (7.68)
AT},

The entropy change in a process in which the initial and final tempera-
tures and pressures are known may be calculated from C,and the equa-
tion of state,

sf(@ar (e oo

Application of Equation 7.69 to ideal gases, where C, is known and the
equation of state has a particularly simple form, is straightforward. In per-
forming the integrals in Equations 7.67 and 7.69, reversible paths are con-
sidered with the system passing through a succession of equilibrium states
to which the equation of state can be applied. Actual processes in which the
system goes from i to f may be irreversible. In calculating entropy changes,
the irreversible process is replaced by a reversible process for integration
purposes. Because the entropy is a state function, it does not matter which
reversible path is followed in the calculation of AS. The temperature—entropy
or TdS equations are useful and may be applied in a variety of situations,
which include processes in condensed matter as described in Chapter 8.

(c) 'The Entropy Equations for an Ideal Gas.  The equation of state for a molar
quantity (n = 1) of an ideal gas is Pv = RT, with v as the molar volume.
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If the gas is monatomic, then the specific heat per mole at constant volume
is cy = 3 R and at constant pressure ¢p = 5 R. For a monatomic ideal gas,
Equation 7.67 becomes

AS=;Rln(Tf) +Rln(w), (7.70)

i Vi

and similarly the second entropy Equation 7.69 may be written as

AS=§Rln(¥) —Rln(Pf). (7.71)

i i

Itis instructive to compare the above results with those obtained from our
definition of entropy in terms of microscopic accessible states S = kg In Q.
In Section 5.4 of Chapter 5, where we used the fixed total energy microca-
nonical ensemble approach, the Sackur-Tetrode equation (Equation 5.15)
for the entropy was obtained,

3/2

4pmE

( 4pm)
L)

- (V) >
S NkB ln[\N]f} + 2NkB

For fixed N = N,, the entropy change corresponding to a change in V'
and E is

Ve 3 E;

i i

For a mole of monatomic ideal gas, the equipartition theorem gives
E = 3 N,kgT, and insertion of this expression for E in Equation 7.72 results
in AS = 3 RIn(T;/T;) + RIn(V;/ V;), in agreement with Equation 7.70 above.
The use of the ideal gas equation of state to replace v; by (RT;/F;) and v, by
(RT;/P,) in Equation 7.72 leads immediately to Equation 7.71. It is clear that
complete consistency is found in calculating entropy changes for an ideal
gas using the various expressions we have for S. If the equation of state is
known, similar results may be obtained for other more complicated sys-
tems. Condensed matter systems are discussed in Chapter 8. The results
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derived in this chapter provide a comprehensive and useful description of
the thermodynamics of gases. As illustrations, the ideal gas equation and
the van der Waals equation have been used to obtain explicit expressions
for certain properties of gases with use of the general formalism.

PROBLEMS CHAPTER 7

7.1 By writing E and S as functions of T and P, obtain
the following expressions for the differentials dE
and dF: dE=(Cp-PVb)dT+V(kb-bT)dP and
dF = —(PVb + 8S)dT + PVk dE.  and k are the isobaric ther-
mal expansion coefficient and the isothermal compressibil-
ity, respectively.

7.2 Show that the Gibbs potential for a system is a minimum in
equilibrium.

7.3 The equation of state for a nonideal gas is written in the
virial expansion form as P =(N/V)kgT[1+ B,(N/V)+ -],
where B,(T'), the second virial coeflicient, is an increasing
function of T. Obtain an expression for (JE/dV); for the
gas and determine whether the energy of the gas increases
or decreases with volume in a Joule expansion experiment.

7.4 Dieterici’s equation of state is written in terms of constants
a and b as P(V -b)=RTexp(-a/RTV). Determine the
Joule and Joule-Kelvin coefficients for a gas obeying this
equation.

7.5 1If a gas obeys the van der Waals equation of state
(P+al/VH(V -b)=RIT (with N =N,), obtain
(0E/dV )y =[T(0E/dV)r — P] for the gas and determine
whether the energy of the gas increases or decreases with
volume in a Joule-free expansion experiment.

7.6 Use the first TdS equation to obtain an expression for the
entropy change AS of a van der Waals gas in a process in
which the volume and temperature increase. Assume as an
approximation that C,, is almost constant in the process
and express your result in terms of the initial and final tem-
peratures and the initial and final volumes. Compare your
result for AS with that for an ideal gas undergoing the same
changes in volume and temperature.

7.7 Use the Maxwell relations to obtain an expression for the
dependence of the specific heat ¢, on pressure P at constant
temperature in terms of the volume expansion coefficient
at constant P.
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7.8 Consider a gas phase chemical reaction of the form
2i%:X; =0, where x, may be positive or negative, which
is carried out under constant volume conditions. Show
that the law of mass action may be written in the form
[T:i(P)" = Kp(T), where is the temperature-dependent
equilibrium constant and P, is the partial pressure of con-
stituent i. Use the result to rewrite the law of mass action
in terms of the concentrations ¢; = N;/N, where N; is the
number of molecules of chemical species i in equilibrium
and N is the total number of molecules. First show that the
pressure dependence of a reaction may be determined with
the relationship (9 In(K,(T,P)/dP);y = -AV/RT.

7.9 A gaseous dissociative reaction of a diatomic molecule X,
into two monatomic components X is carried out under con-
stant volume conditions. Use the law of mass action to relate
the partial pressures and concentrations of the diatomic and
monatomic components in equilibrium at some high tem-
perature T. Discuss the effect that an increase in pressure
would have on the concentrations of the components.






CHAPTER 8

Applications of
Thermodynamics to
Condensed Matter

8.1 INTRODUCTION

For thermodynamic processes that involve solid or liquid systems, it is
convenient, as noted in Section 7.1 (Chapter 7), to use the isothermal com-
pressibility k and the isobaric thermal expansion coefficient § in place of
an equation of state. Condensed matter is typically rather incompressible,

and volume changes produced by pressures available in laboratory equip-
ment are generally quite small. Thermal expansion effects are also gen-
erally small, and taking AV « V permits helpful approximations to be
made. When subjected to changes in temperature and/or pressure, solids
and liquids may undergo a change of state referred to as a phase change.
Phase diagrams that show boundaries between solid, liquid, and vapor
phases are available for many materials. A discussion of phase changes
and critical phenomena is given in Chapter 9, and this topic will not be
dealt with in this chapter. In addition to x and f, it is generally necessary
to have knowledge of the specific heat of a substance and if it is magnetic
the magnetization properties. We shall find, as might be expected, that the
specific heats ¢, and ¢, are almost equal for processes in which the volume
changes are small. Tables of measured physical properties are available for
many materials.

159
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Magnetic solids form a special class of materials, and in this chapter we
again confine our attention to the thermodynamics of ideal paramagnetic
materials that obey Curie’s law. The value of the Curie constant obtained
in Chapter 5 and the expression derived there for the specific heat of a
paramagnet are used in the discussion. The Maxwell relations, derived for
gases in Chapter 7, are extended to paramagnets to facilitate the analysis of
magnetic processes in these systems. Magnetic order that is found in non-
ideal magnetic systems, where interactions between spins are important,
is dealt with in Chapter 17.

8.2 SPECIFIC HEATS OF SOLIDS—THE LAW OF
DULONG AND PETIT

During the nineteenth century, Dulong and Petit observed that the molar-
specific heats of many solids, measured at room temperature and above,

at a pressure of around 1 atm (101 kPa), were approximately equal and
given by

¢p=3R, (8.1)

with R = 8.314 ] mol! K! the gas constant. This result is called the law
of Dulong and Petit, although it is not a strict law but rather a conve-
nient rule. When the temperature is lowered, the specific heat is found to
decrease steadily to zero. Figure 8.1 shows, schematically, representative
behavior found for solids.

3R fmmmmmmmmmmmmmmmeomo -

0 >
T

FIGURE 8.1 The specific heat ¢, of a typical solid as a function of temperature.
The Dulong-Petit value 3R is shown as the dashed line.
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Two important features of the specific heat behavior with temperature
are worth noting. First, the temperature at which the Dulong-Petit pla-
teau value is attained depends on the elastic properties of the solid. For
diamond, which is an extremely hard material, it is necessary to increase
the temperature to well above 1000 K in order for ¢, to tend to 3R. For
ductile materials, the plateau value is achieved at much lower tempera-
tures. Second, the decrease in the specific heat at low temperatures cannot
be explained by classical physics. Following the introduction of quantum
physics ideas at the beginning of the twentieth century, new theories for
the specific heats of solids were proposed first by Einstein and later by
Debye. The Debye model, in particular, satisfactorily explains the low-tem-
perature behavior of ¢,. The Einstein and the Debye models are discussed
in Chapter 15 and essentially treat the solid as a set of coupled oscillators
in which the atoms vibrate about their average positions with vibrational
amplitudes dependent on the lattice temperature. Both models correctly
predict the high-temperature behavior of the specific heat that can, as
shown below, be explained using the equipartition of energy theorem for
temperatures at which the classical approximation holds. Differences in
the elastic properties of solids are taken into account in a straightforward
way in the two models through the introduction of fitting parameters with
dimensions temperature, termed the Einstein temperature and the Debye
temperature, respectively. Hard materials have higher Einstein/Debye
temperatures than those of more ductile materials.

For an ideal gas, we have seen that ¢y = 2 R. In the case of solids, there
is little difference between c, and ¢, because the solid scarcely changes
its volume as the temperature changes and the mechanical work done in
the constant pressure case is negligible. A quantitative expression for ¢, -
¢y, expressed in terms of f and « as given previously in Equation 2.54, is
obtained in Section 8.4. The expression is used to show that the difference
in specific heats is indeed very small for typical solids. A comparison of
the specific heat of a monatomic ideal gas with that given by the Dulong-
Petit law for a solid at high temperature shows that they differ by a factor 2.
This comparison suggests that the equipartition theorem can be used to
explain the high temperature or classical specific heat of solids.

In Equation 4.2, the classical Hamiltonian for a gas of N particles is
given as H = 21, (p;/2m) + =1, u(r;), where the first term gives the total
kinetic energy contribution and the second term the total potential energy
because of interactions between pairs of particles. The restriction i < j is
inserted to avoid inclusion of the same pair twice. For a solid of N atoms,
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the classical Hamiltonian may formally be written in the same way.
Figure 8.2 depicts a simple model for a solid in which atoms are joined
together by springs. A two-dimensional slice through a three-dimensional
structure is shown for clarity.

This is essentially the model used by Einstein, who made the additional
simplification that all the atoms vibrate about their equilibrium positions
with the same frequency ;. For the model shown in Figure 8.2, each atom
has both kinetic energy and potential energy associated with vibrations
about an equilibrium position. Because the lattice is three dimensional,
each atom has six degrees of freedom (along x, y, and z), corresponding
to three kinetic energy degrees of freedom and three potential energy
degrees of freedom. Each of these may be represented in quadratic form
by e = p,/2mand e = 1kq;,. where m is the mass of each particle. p,,
q., are, respectively, the momentum and displacement of particle i along
direction v, while k is the effective spring constant of each spring. Use of
the equipartition theorem, introduced in Section 1.6 (Chapter 1), predicts
that the total energy of a solid of N, atoms is

E=6N, (%kBT) — 3RT. 8.2)

From the definition of the molar-specific heat ¢y =1/n(dQ/dT)y =
1/n(0E/dT)y (where n is the number of moles) with the use of Equation
8.2, we obtain ¢, = 3R, in agreement with the Dulong and Petit law in
Equation 8.1. The above derivation applies to monatomic systems that are

FIGURE 8.2 A two-dimensional representation of a simple model for a solid in

which atoms are connected by springs. The temperature-dependent energy of the
solid is made up of both kinetic energy and potential energy contributions.

:

:
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nonmetallic. In metallic systems, the conduction electrons make a contri-
bution to the specific heat that becomes very important at low tempera-
tures where the lattice vibration contributions tend to zero. The electronic
contribution to the specific heat of conduction electrons is dealt with later
in the quantum statistics section of the book specifically Chapter 13.

Each atom or ion in a solid contributes an energy 3k;T to the internal
energy E. For an ionic solid such as KCl, there are 2N, ions (N, of K* and
N, of CI") in 1 mol of the substance, giving a specific heat ¢, = 6R in this
case. Similar considerations may be applied to more complicated systems
in which the structural units consist of several atoms. The specific heat
contribution per atom is 3kp.

8.3 HEAT CAPACITIES OF LIQUIDS

Similar arguments to those applied to solids in Section 8.2 may be applied
to liquids in the high-temperature classical regime. Although for a lig-
uid the atoms or molecules are not fixed in a lattice, they nevertheless

experience strong interactions with neighboring atoms or molecules. For
a monatomic liquid, such as liquid helium-4 (*He) just below its boiling
point of 4.2 K, the specific heat is found to be close to 3R, showing that, to
a good approximation, the equipartition theorem applies, with six degrees
of freedom for each helium atom.

At lower temperatures in liquid helium, a specific heat anomaly occurs
which is linked to the superfluid transition at 2.17 K. Quantum statistics is
needed to explain the transition and further details are given in Chapter 14.
For other simple liquids such as liquid nitrogen (N,), the molar-specific heat
just below the boiling point of 77 K is again approximately given by 3R. For
more complicated systems such as organic liquids, where molecules may con-
tain several different types of atom, it is necessary to allow for this increase in
estimating the molar-specific heat.

8.4 THE SPECIFIC HEAT DIFFERENCE ¢, — ¢,

From the first TdS equation (Equation 7.66) in Chapter 7, we have
TdS=CydT +T(0P/dT)y dV, and this gives the heat capacity C, as

cP=T("S) =CV+T(6P) (a") or CP—CV=T(6P) (a")
T}, aT), \aT ), aT) \aT),

(8.3)
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Equation 8.3 may be applied to any system for which the equation of state
is known. For 1 mol of an ideal gas, we obtain for the difference in specific
heats ¢, ¥ ¢, = R, as shown previously. More generally, it is convenient to
manipulate Equation 8.3 into a form that involves the thermal expansion
coefficient f (Equation 2.52) and the compressibility x (Equation 2.53).
The use of Equations 7.36 and 7.37 for the partial derivatives permits us
to write

and substitution into Equation 8.3 results in the relation
Cp —Cy ==T(dVI3T)} (dP/dV); or, using the definitions of # and «,

T 2
CP—CV = ka . (84)

Because « is chosen positive and f? is positive, it follows that C, > C, in
all instances, as expected when allowance is made for the mechanical work
done in the constant P case. The ratio of the specific heats y is given by

2
g=cl=1+va , (8.5)
Cy Cvk

with v as the molar volume. For solids and liquids, it is found that y = 1
with ¢, = ¢y

Exercise 8.1: Make an estimate of ¢, — ¢, for metallic copper at ambient
temperature.

For copper at 295 K, =5 x 105 K' and « = 4.5 x 1072 m? N-' (Pa¥).
The molar volume of copper is v = 7 x 10% m?> mol® (p = 8.92 x 10> kg m®)
and ¢, = 24.5 Jmol® K*. Substitution of values for v, §, and « into Equation
8.4 gives ¢, — ¢, = 1.15 Jmol® K. From the quoted value for c,, we obtain y=
cp/cy, = 1.05.

It is clear that ¢, = ¢, (within 5%) for copper at room temperature.
Furthermore, it is seen that ¢, = 3R, as predicted by Dulong and Petit’s law.
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8.5 APPLICATION OF THE ENTROPY EQUATIONS
TO SOLIDS AND LIQUIDS

In Chapter 7, the two T dS equations were derived. The first T dS equation
(Equation 7.66) is given as T dS = Cy dT + T(dP/dT)ydV, whereas the
second T dS equation (Equation 7.68) is T dS = Cp, dT - T(0V/9T)p dP.
For condensed matter, it is convenient to rewrite these equations in terms
of f and k. From the definitions given in Equations 2.52 and 2.53, we see
that Equation 7.66 can be expressed as

b
TdS=CydT + T(k) dv. (8.6)

Similarly, Equation 7.68 becomes
TdS=CpdT-TVbdP. (8.7)

We consider molar quantities of solid or liquid that undergo processes
in which the pressure is changed. The molar volume v, the isothermal com-
pressibility «, and the thermal expansion coefficient /3 are relatively insen-
sitive to changes in pressure. This permits Equation 8.6 or Equation 8.7
to be integrated, with v, k, and f taken outside the integral and replaced
by average values v, k,and p over the range of integration. Considerable
simplification, compared with the case of gases, results from this approxi-
mation. Two important cases are considered based on Equation 8.7.

(a) Adiabatic Compression of a Solid. For a reversible adiabatic com-
pression process, dQ=TdS=0, and Equation 8.7 becomes 0 = C,
dT X TVpBdP. Integration gives deT/T = ff(V/f/CP)dP and hence
In(T;/T,) = (Vb/cp)(P; —=B). If it is assumed that T, =T, + AT, with
AT < T, the log function may be expanded to yield for molar quantities of
the solid material

AT (vb)

T =g ) B (8.8)

Exercise 8.2: Consider a compression process involving 1 mol of solid copper
at 295 K. If the pressure is increased from zero to 108 Pa (~10° atm), find the
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rise in temperature of the copper assuming that the metal is thermally isolated
from its surroundings. B

Substitution of values for v, b, and ¢, from Section 8.4 into Equation 8.8
gives AT/T, =107, and we obtain M7 = 0.4K. It is seen that, in this case for a
metallic system, AT < T.

(b) Isothermal Compression ofa Solid.  In the case of a reversible isothermal
process, Equation 8.7 becomes dQ = T dS = =TV b dP. Integration of this
equation gives

AQ=-TVb(P -P). (8.9)

The minus sign shows that heat energy is transferred from the solid to
the surroundings.

Exercise 8.3: Find the heat given out when 1 mol of copper is subjected to a pres-
sure increase from zero to 108 Pa while kept at a constant temperature of 295 K.
Substitution for T,v, and B in Equation 8.9, with the same values as used
above, results in AQ = K10 J. This relatively small amount of heat energy is trans-
ferred to the constant temperature heat bath with which the copper is in contact.

8.6 MAXWELL RELATIONS FOR A MAGNETIC SYSTEM

In Chapter 2, the firstlaw for a magnetic system was written in the two alter-
native forms dE* = dQ + u,VH dM (Equation 2.19) and dE* = dQX u, VM
dH (Equation 2.21), where H is the applied field strength and M the mag-
netization. The two forms correspond to different views of what consti-
tutes the system, as explained in Chapter 2. The energy E* includes the
vacuum field energy, whereas E* includes the vacuum field energy and
the mutual field energy. In the latter case, the work term corresponds to
work done on the sample alone. For the present discussion, we shall use
the first law in the form Equation 2.21, dropping the superscript once
more for simplicity. The fundamental relation for a magnetic system is

therefore

TdS=dE+mVMdH. (8.10)

In the derivation of the Maxwell relation for fluids in Chapter 7, use was
made of the fundamental relation in the form dE = T dSX P dV (Equation
3.18). Comparison of Equation 8.10 with Equation 3.18 shows a correspon-
dence between the intensive variables M <> P and the extensive variables V'
<> u,VH. The Maxwell relations are easily written down for the magnetic
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case simply by replacement of P with M and V by y,VH in the set of equa-
tions M1 to M4 given in Equations 7.41, 7.44, 7.47, and 7.50. We obtain the
relations:

oT oM
ML [—| =-mV|—]| ; .
(8 )s o ( S )H @1
oT oH
M2, |— | =mV|—| ; 12
(6 )s o (GS)M ®12)
0S oM
M3, | —| =mV|—| ; 1
(8 )T o (8T)H ®.13)
H
M4, (‘95) =—m0V(a) . (8.14)
M), aT /),

We note that the same set of equations is obtained whether we consider
the system to consist of the sample plus mutual field or the sample alone.
Either of Equation 2.19 or Equation 2.21 may be used.

8.7 APPLICATIONS OF THE MAXWELL RELATIONS
TO IDEAL PARAMAGNETIC SYSTEMS

(a) Magnetic Susceptibility and Specific Heat of an Ideal Paramagnet. For an
ideal paramagnetic system, the magnetic susceptibility obeys Curie’s law,
with the magnetization given by Equation 1.4 M = M/V = CH/T, where C
is Curie’s constant and V' is the volume of the magnetic material. This is
the equation of state for this system. The inverse magnetic susceptibility
1/x = T/C depends linearly on T. For a system of N spins 4, we have from
Equation 5.20 C = Np?u,/Vky, where p is the magnetic dipole moment
associated with each spin. As a check on whether a given material obeys
Curie’s law or not, it is convenient to plot 1/¥ versus T. If magnetic order-
ing occurs at some temperature, the form 1/¥ = (T X T.)/C on the basis of
the Curie-Weiss law (Equation 1.5) is generally found to hold, and this
form is depicted in Figure 8.3. For a transition to a ferromagnetic phase,
a positive T called the Curie temperature is obtained from a plot of this
kind, whereas for an antiferromagnet, a negative T}, called the Neél tem-
perature is obtained corresponding to the form 1/¥ = (T + T)/C. Further
discussion of nonideal spin systems in which interactions between spins
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1/y

Te T (K)

FIGURE 8.3 Illustrative plot of the inverse magnetic susceptibility 1/¥ versus
T for a material that obeys the Curie-Weiss law. The transition temperature T
to an ordered phase is estimated by extrapolation from measurements made at
high T.

are important is given in Chapter 17. For the present, we confine our dis-
cussion to paramagnets well above any transition temperature.

The heat capacity of an ideal paramagnet at constant applied magnetic
field C, is given by Equation 5.21,

2
Cy =(dQ) =T(68) =NkB(mB) sechz(MB).
dT /4 aT /)y kT kT

The specific heat per mole is obtained immediately for N = N,. In fields
that are not too large and at temperatures that are not too low, uB < k,T
and sech?(uB/k;T) — 1, giving

2

mB

cy =Nupkg| —| . 8.15
H AKs ( kBT) (8.15)

This shows that the specific heat decreases with temperature as 1/T2 on
the high-temperature side of the Schottky peak in the specific heat.

Earlier in this chapter, an expression for ¢, - ¢, was obtained in terms of
T, f, and k. Similar procedures may be applied to obtain ¢, - ¢,,.

Exercise 8.4: Obtain an expression for ¢;, — ¢, for a paramagnetic system of N
spins with magnetic moment p in a field B. Discuss the form of the heat cap-
acity ¢y,



Applications of Thermodynamics to Condensed Matter m 169

We choose the entropy to be a function of T and H. The total differential
of $ =S (T, H) is dS = (85/dT),, dT + (3S/0H); dH, and this gives T(dS/dT),, =
T(dS/dT),, + T(0S/0H); (0H/dT),,, from which we obtain C,; — C,, = — T(dS/0H);
(0H/dT),,. With M3 from Equation 8.13 plus application of the partial derivative
rules given in Equations 7.36 and 7.37 to (dH/dT),,, it follows that

(MY (oH (8.16)
Q”CM_’JOVT(aT)H(a/\/l),'

(OM/dT),; and (0H/OM); are determined from the equation of state (Equation
1.4), with B = 11,H, and substitution in Equation 8.16 together with our expres-
sion for the Curie constant gives for 1 mol of the material

2
poC H? ( ,UB) (8.17)
= Nak || .
M ks

In Equation 8.17, v is the molar volume of the system. Comparison with
Equation 8.15 shows that C,, = 0. This result for C,, may appear strange
but is a consequence of the special form of the equation of state given in
Curie’s law Equation 1.4. To keep M constant, the ratio H/T must be kept
constant. Quasistatic processes with constant H/T are isentropic with no
heat energy transfer. These processes are discussed in greater detail below.
The entropy is obtained from Equation 5.18, with use of the relation E =K
MB. Because M is held constant by keeping H/T constant, the entropy
remains fixed and such processes are therefore isentropic.

(b) Adiabatic Demagnetization. ~Adiabatic demagnetization of a paramag-
netic system has been dealt with previously in Sections 2.7 and 6.6(a). The
temperature—entropy equations together with the Maxwell relations provide
a concise means for dealing with such processes. Let the entropy S be a func-
tion of T and H. The total differential of S is given by dS = (9S/0T), dT +
(0S/0H), dH. It follows that

Tds =G, dT+mOVT(aM) dH, (8.18)
or ),

where use has been made of M3 given in Equation 8.13.
In an isothermal magnetization process, the heat energy transferred is

AQ=fdeS=—(%§V> :fHdH= —é("’OTCV)(H?—Hf), (8.19)
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where C is Curie’s constant. The minus sign in Equation 8.19 shows that
heat energy is given out to the heat bath during the magnetization process.
For an adiabatic demagnetization process from H, to H,, Equation 8.18
gives 0 = CydT X (1,CV/T)H dH. Substituting for Cy; from Equation 8.15
and for Curie’s constant C from Equation 5.20 results in the first order
differential equation, (Nky m’m;H*ky*T*)dT = (Nm’miVH/VksT)dH
or dT/T = dH/H. Integration followed by antilogs gives H,/T, = HJ/T; =
constant, and hence T; = (H{/T)T,, in agreement with Equation 2.32. This
confirms that H/T remains constant during the adiabatic demagnetization
process, and it follows that M remains constant according to Curie’s law
Equation 1.4.

In this chapter, we have considered the properties of condensed matter
in the classical limit. Chapter 9 is concerned with the thermodynamic
description of phase transitions and critical phenomena again in the clas-
sical limit. Many interesting phenomena in condensed matter occur at
low temperatures. Examples are superconductivity in metals and super-
fluidity in the helium liquids. It is necessary to use a quantum mechanical
approach in discussing phenomena of this kind. In particular, it is impor-
tant to introduce quantum statistics for systems of particles that may be
either fermions or bosons, and this is done in later chapters in the book.

PROBLEMS CHAPTER 8

8.1 A 200-g cylinder of metallic copper is compressed isother-
mally and quasi-statically at 290K in a high-pressure cell.
Find the change in internal energy of the copper when the
pressure is increased from 0 to 12 kbar. How much heat
is exchanged with the surrounding fluid? If the process
is instead carried out adiabatically, find the temperature
increase of the copper. For copper, ¢, = 16 J(mol K)!, = 32
x 109K, k=0.73 x 10-®atm™!, and v = 7 cm?® mol .

8.2 Use the Maxwell relations to obtain an expression for the
dependence of the specific heat of a solid ¢, on pressure P at
a given temperature in terms of the volume expansion coef-
ficient /3 at constant P.

8.3 Determine the specific heat at constant volume for liquid
mercury at 273 K, and at a pressure of 1 atm, from the infor-
mation provided below. What is the ratio y of the specific
heats? Molar volume = 14.5 cm?, f = 1.8 x 10 K}, k = 4.0 x
10" m? N7, and ¢, = 28.0 ] mol! K.
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The Einstein expression for the specific heat of an insulating
solid is ¢y = 3Rx*[e* /(e* —1)*], where x =hwy/ksT =qp/T
and 6, is the Einstein temperature. Obtain the low-
temperature limit of the Einstein expression and use this
form to find the change in entropy of a solid when heated
from T, to T, at constant volume. Assume that both T, and T,
are much less than 0.

Some solids such as graphite have a layered structure with
strong in-plane bonding and much weaker interplanar
bonding. The Einstein frequency for atomic in-plane vibra-
tions is therefore much higher than for interplanar vibra-
tions. Give a qualitative prediction of the behavior of the
specific heat ¢, with temperature for a solid of this type.
The magnetic susceptibility of a solid of volume V follows
the Curie-Weiss law XY= C/(T — 6), where C and 6 are con-
stants for the material. Obtain an expression for the heat
capacity of the solid at constant applied field. By how much
would the temperature of the solid decrease in an adiabatic
demagnetization process from H; to H Sketch the pro-
cesses on a T-S diagram.

The work done on a system of electric dipoles in increas-
ing an applied electric field E, by an infinitesimal amount is
given by dW = VP, dE,, where P, is the electric polarization
and V is the volume of the material considered. This result
is analogous to that for the magnetic case dW =—- VM +dH
given in Chapter 2, and similar considerations apply as to
what constitutes the system in the electric polarization case
as discussed in detail for the magnetic case. (Ignore dipole
moments induced by the applied electric field.) Obtain the
form of the fundamental relation for a system of electric
dipoles and use this expression to write down the Maxwell
relations for this case by analogy with the magnetic case.
Find the difference in the specific heats c; X cp..






CHAPTER 9

Phase Transitions and
Critical Phenomena

9.1 INTRODUCTION

Phase transitions occur widely in nature and are part of everyday experi-
ence. For example, water freezes into ice at 0°C, or vaporizes into steam at
100°C at sea level. Over the past several decades, considerable insight into
the nature of phase transitions has been gained using the methods of ther-
mal and statistical physics. As discussed in Chapter 6, the third law states
that the entropy S tends to zero as the temperature tends to zero. As the
temperature is lowered, interactions between particles become increas-

ingly important and may lead to the onset of some type of long-range
order accompanied by symmetry breaking in the system. For example, a
magnetic material, such as iron or nickel, undergoes a change at its Curie
temperature T, from disorder and high symmetry in the paramagnetic
phase to order and lower symmetry in the ferromagnetic phase. The sym-
metry change is associated with the orientation of the magnetic dipoles
associated with the ions in the material; in zero magnetic field, there is
no preferred direction for the dipole moments in the paramagnetic phase
while, within magnetic domains, the dipoles are aligned with each other
in the ferromagnetic phase. We shall see that it is convenient to introduce
an order parameter 7 to describe order—disorder transitions. As an exam-
ple, for a ferromagnet, the order parameter is defined as = M/M,, with
M the bulk magnetization at the temperature of interest and M, the low-
temperature saturated magnetization.

173
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Phase transitions may be classified into several different types on the
basis of the behavior with temperature of the thermodynamic potentials
and the order parameter. The order parameter may change discontin-
uously or continuously at the transition point. In the thermodynamic
description of phase transitions, the Helmholtz potential F (constant V)
and the Gibbs potential G (constant P) play important roles. A scheme on
the basis of the behavior of F or G in the vicinity of the transition point
has been developed for the classification of phase transitions as contin-
uous or discontinuous and is discussed in Section 9.3. Figure 9.1 shows
a representative phase diagram in the P-T plane for a single component
system.

The curves in Figure 9.1 show the boundaries between solid, liquid, and
vapor phases. At the triple point, which corresponds to particular values
of P and T, all three phases coexist. Note that the gas-liquid coexistence
curve terminates at the critical point given by P T... For T > T, the sys-
tem does not liquefy at any pressure. For multicomponent systems, phase
diagrams can become much more complicated than for single component
systems. The present chapter will focus on single component systems.

9.2 NONIDEAL SYSTEMS

(@) van der Waals Fluid. 'The empirical van der Waals equation of state for
nonideal gases involves attractive interactions between particles that have
arepulsive hard core. The form of the intermolecular potential is shown in

P A

P

Solid

Triple point
Vapor !

» 7

FIGURE 9.1 Phase diagram for a single component system in the P-T plane with
phase boundaries shown between gas, liquid, and solid phases. In general, two
phases coexist along the phase boundaries. At the triple point, the three phases
coexist. The liquid-gas coexistence curve ends at the critical point C.
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Figure 7.5. If values for the van der Waals constants a and b are chosen, it
is possible to generate P-V isotherms for various temperatures, as shown
in Figure 9.2.

Examination of Figure 9.2 shows that for T lower than a critical tem-
perature T, the isotherms exhibit a sigmoid shape over a region where
the volume changes significantly, whereas the pressure remains fairly con-
stant. For T < T, three different values of the volume correspond to the
same pressure for each isotherm. For stability of a fluid system, we expect
the pressure to decrease with increase in volume or (0P/9V)r < 0, which
corresponds to a negative slope of an isotherm shown in a P-V diagram.
Those portions of each isotherm that, for T' < T, have positive slopes are
unphysical, which shows that the van der Waals equation of state has limi-
tations at high densities. Nevertheless, the isotherms in Figure 8.2 indicate
that the van der Waals fluid undergoes a transition from the gaseous to
the liquid state, provided that T < T and the pressure is increased sufhi-
ciently. For T > T, the van der Waals system remains a gas for all pres-
sures. Point C, at pressure P and volume V, is the critical point where
the fluid behaves in a special way, as illustrated in the Figure 9.3 plot of the
isobaric density of the fluid p as a function of temperature T.

Figure 9.3 shows that, for P < P, a discontinuity in density occurs in a
transition from a gaseous to a liquid phase. For P = P, however, the tran-
sition from high to low density occurs continuously as the temperature is
increased through T. Finally, for P> P, the density varies smoothly, with

Vv

FIGURE 9.2 P-V isotherms for a van der Waals gas as a function of increasing
temperature T. The critical isotherm, which shows a point of inflection, corre-
sponds to T¢.
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N

FIGURE 9.3 Schematic plot of the isobaric variation of the density of a van der
Waals fluid with temperature at and near the critical point.

no major change in value, as a function of temperature. The critical dens-
ity p, is the density of the fluid at the critical point (P, Tc). A phenom-
enon, called critical opalescence, occurs in fluids under conditions close to
the critical point. It is found that light shone through the fluid is strongly
scattered because of critical fluctuations in the local order parameter that
occur in this region. We discuss this phenomenon in slightly greater detail
later in this chapter.

(b) Nonideal Spin System. The Curie-Weiss equation of state, which
applies in the paramagnetic phase for a magnetic system, is given by
M = CVH/(T - T¢) (Equation 1.5), with T, as the Curie-Weiss empirical
fit temperature, which is generally found to be somewhat higher than
the actual transition temperature. Equation 1.5 predicts that the mag-
netization M, and the susceptibility € = (0M/dH); will tend to diverge
as T — T.. As shown in Figure 8.3, a plot of 1/¥ versus T for Curie-
Weiss systems gives a straight line form from which T, can be estimated.
Experiment shows that below the critical temperature T, in a low applied
magnetic field, the magnetization increases steadily, reaching a limiting
value M, for T — 0 K. This behavior is shown in Figure 9.4 for fields H=0
and H > 0.

For H =0, the magnetization is zero for T'> T, but increases rapidly for
T < T because of spontaneous ordering and the onset of ferromagnetism.
For the present discussion, we ignore the formation of magnetic domains
separated by domain walls that occurs in ferromagnetic crystals. In effect,
we are focusing on the magnetization in a single domain.



Phase Transitions and Critical Phenomena m 177
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FIGURE 9.4 The magnetization M versus T behavior for a nonideal magnetic
system in zero and nonzero applied magnetic fields illustrating changes that
occur particularly near T.

9.3 CLASSIFICATION OF PHASE TRANSITIONS

In Section 7.4(b), it is shown that, for a system in which two phases coexist
in equilibrium at constant pressure, the molar Gibbs potentials are equal
for the two phases. Away from coexistence, the system is found in the phase
that has the lower Gibbs potential under the given conditions. This topic
is discussed in detail in Section 9.4. Historically, Ehrenfest introduced a
classification system for phase transitions on the basis of the behavior of
the Gibbs potential, and its derivatives, in the vicinity of the transition
under constant pressure conditions. A similar classification can be given
in terms of the Helmholtz potential when the volume is kept fixed. From
Equation 7.16, we have dG = =S dT + V' dP. The entropy and the volume
are given by the first-order derivatives, S = -(dG/9T)p (Equation 7.17) and
V =(0G/dP)r (Equation 7.18), whereas the second-order derivatives give
the heat capacity, Cp/T = (3S/dT)p = —(3°G/dT?)p and compressibility,
k =-1/V(dV/dP); = =1/V(8°G/dP?);. Higher-order derivatives may be
formed but the above are sufficient for our purposes.

In the Ehrenfest scheme, a transition is classified as first order if there
are finite discontinuities in the first derivatives of G, that is, in the entropy
S and in the volume V. A transition is classified as second order if the first
derivatives of G are continuous but there is a finite discontinuity in the
second derivatives, C, and k. Transitions of still higher order are classified
according to which order derivative first shows a discontinuity. Figure 9.5
graphically illustrates the Ehrenfest classification scheme for first- and
second-order transitions.
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First order Second order
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FIGUREY9.5 Thebehavior of the Gibbs potential G and its derivatives with respect
to temperature for first- and second-order phase transitions in the Ehrenfest
scheme. Note that G changes slope at T for a first-order transition but does not
change slope at T for a second-order continuous transition.

Many phase transitions are found to be of first order, with a finite change
in molar volume and with a latent heat of transition. A well-known example
of a first-order transition is the melting of ice. For second- and higher-order
transitions, the entropy and the volume are continuous through the tran-
sition with no latent heat. These phase changes are therefore referred to as
continuous transitions, and this terminology is nowadays preferred to that
used in the Ehrenfest scheme. Although the Ehrenfest classification does
provide useful guidance in considering phase transitions, the subtleness of
the changes that accompany continuous transitions makes it increasingly
difficult to distinguish between transitions of order higher than two. Systems
in which continuous phase transitions are observed include the following:

Metal-superconductor (H = 0)
Paramagnet-ferromagnet (or antiferromagnet)
Liquid *He normal-superfluid transition

a to f brass
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Careful measurements of the specific heat have been carried out for
these systems and reveal discontinuities of the type shown in Figure 9.5
for Ehrenfest second-order transitions. Continuous phase transitions are
considered in some detail later in this chapter.

9.4 THE CLAUSIUS—CLAPEYRON AND
THE EHRENFEST EQUATIONS

(a) First-Order Transitions: The Clausius-Clapeyron Equation. ~ Consider a sys-

tem that undergoes a discontinuous or first-order transition from phase 1
to phase 2. Figure 9.6 shows the equilibrium curve that separates the two
phases on a P-T diagram.

Ifthe equilibrium curve s crossed at any point (P, T) from phase 2 to phase
1, there is a molar volume change Xv and a molar latent heat £ is involved in
the transition. The associated molar entropy change is Ks. (Lower case sym-
bols denote molar quantities.) The Clausius—Clapeyron equation relates the
slope of the equilibrium curve at the point at which it is traversed to the ratio
of the entropy change and the volume change that accompanies the first-
order transition. The derivation is straightforward and is presented below.

If Equation 7.21 is applied to points a and b in Figure 9.6, g,(T, P) =
& (T, P) and g (T + dT, P + dP) = g, (T + dT, P + dP). If we expand both
g(T+dT, P+dP) and g,(T + dT, P+ dP) in Taylor series in two variables
about the point T'and P and retain only first-order terms as a sufficiently
good approximation, we obtain

ot agl) (8g2) (8g2)
T,P)+( 81| dT dP = g,(T,P ar dP.
& )+(3T)P +(ap ; M Tt L ap ),

P/
Phase 2 8178
81<8&
P+dP | __________._._b
p [~ Phase 1
81> 82

v

T

~

dT

FIGURE 9.6 P-T phase diagram for a system that undergoes a phase transition.
The diagram shows the equilibrium curve along which two phases 1 and 2 coex-
ist. Points a and b lie close to each other on the coexistence curve.
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With use of Equation 7.21 followed by rearrangement, the above
expression leads to

(agl) _(agz) dT:-(f’gl) _(ag) dp.  (91)
aT }, aT }, P/, P/,

Equation 7.16 may be written for molar quantities as dg=-sdT +vdP. It
follows that the molar entropy is given by

. (ag) , 9.2)
T},
whereas the molar volume is
v = (ag) . 9.3)
P},

Equations 9.2 and 9.3, when substituted into Equation 9.1, give
dP/dT= (51 —52)/(V1 —Vz) or

dP _As 9.4)
dT  Av
which is the Clausius—-Clapeyron equation. An alternative form is
dp _ L’ 9.5)
dT  TAv
where the molar entropy change is
!
As=—.
T 9.6)

Exercise 9.1: Use the Clausius—Clapeyron equation to obtain an expression for
the vapor pressure above a liquid in a sealed container as a function of tem-
perature. The situation is illustrated in Figure 9.7.

Well away from the critical point, the vapor pressure will, to a good approx-
imation, obey the ideal gas equation of state, which, in terms of the molar
volume, may be expressed as Pv = RT. Furthermore, Rv = v, — v, =~ v, because
the molar volume of the vapor is very much larger than that of the liquid.
Substitution in Equation 9.5 gives dP/dT ~ ¢/Tv, = ¢P/RT?. Integration of this
equation leads to fdP/P = ¢/R [dT/T? and hence

P =Py e"/RD, 9.7)
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The constant P, is a constant of integration and gives the vapor pressure
in the high T limit. Equation 9.7 shows that the vapor pressure depends expo-
nentially on 1/T and the slope of a plot of In P versus 1/T is —#/R. Experimental
results for the vapor pressures of many liquids, measured as a function of T, are
described very well by Equation 9.7.

(b) Higher-Order Transitions: The Ehrenfest Equations. The Clausius—
Clapeyron equation cannot be applied to second- or higher-order tran-
sitions because As and Av are both zero in these cases. For continuous
(second-order) transitions, the entropy does not change through the tran-
sition. This implies that s,(T, P) =s,(T, P) and s,(T+dT, P+dP)=s,(T+dT,
P+ dP). Expansion of s, and s, about T'and P in a Taylor series in two vari-
ables up to first order leads to

dip _ (BSI/GT)p - (652 /aT)p

- 9.8
dT  (9s,/9P); - (9s,/9P); 68

From Maxwell relation M4 given in Equation 7.50 and the definitions of
the specific heat ¢, and the thermal expansion coefficient 5, we obtain

(9.9)

dT  vT

dp_l(cﬂ—cﬂ)
b-b, )

Equation 9.9 relates the slope at a chosen point on the P-T equilibrium
curve for the two phases to the specific heat difference divided by the
expansion coefficient difference between the phases at the chosen point.

Vapor

Liquid

FIGURE 9.7 Liquid and vapor in equilibrium at temperature T in a sealed con-
tainer. The vapor pressure at temperature T is P.
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A similar procedure in terms of volume continuity rather than entropy
continuity gives

(9.10)

or (e e)
dr \k, -k,)’

where «; and «k, are the isothermal compressibilities of the two phases.
Equations 9.9 and 9.10 are the Ehrenfest equations for a second-order
transition. In the case of a third-order transition, where C,, f, and « are
continuous, three Ehrenfest equations apply.

9.5 CRITICAL EXPONENTS FOR CONTINUOUS
PHASE TRANSITIONS

The modern discussion and development of the subject of critical phe-

nomena, which is concerned with the behavior of physical properties of
systems that undergo continuous phase transitions, has, to a large extent,
involved critical exponents. Before critical exponents are introduced we
consider experimental results for fluids and magnets. Figure 9.8 shows
a schematic plot of the liquid—vapor coexistence curve for a number
of pure fluid substances plotted in reduced temperature and density
coordinates.

»
»

1.0 P
Pe

FIGURE 9.8 Representation of the liquid-vapor coexistence curve for eight sub-
stances (Ne, Ar, Kr, Xe, N,, O,, CO, and CH,) plotted in reduced temperature and
density coordinates. Experimental results which are not shown lie very close to
the curve.
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Figure 9.8 illustrates that the experimental data (not shown but which
cluster along the curve) for eight substances, when plotted in reduced
coordinates, can be well fit by a single curve. T, is the critical temperature
and p. the critical density. The use of reduced coordinates is based on what
is called the law of corresponding states, which implies that in reduced
coordinates all fluids of this kind have the same equation of state. As an
example, the van der Waals equation of state may be rewritten in terms of
reduced coordinates.

Exercise 9.2: Express the van der Waals equation of state in terms of reduced
coordinates T/T¢, P/P, and v/v. instead of the van der Waals constants.

The critical point is characterized as a point of inflection on the critical
isotherm plotted on a PV diagram, that is, (0P/dV);. = 0 and (9°P/9V?);. = 0.
For molar quantities, the van der Waals equation is (P+a/v*)(v —b) = RT. We
obtain the first- and second-order partial derivatives of P with respect to v at
T = T¢ and place the results equal to zero to get

(%) =_L+£=O (9-”)
W)l  ve=bP o ve .
and

{ 3P\ 2RT 6a

— =——-—=0. .

k BVZJ (VC - b)3 Vc4 (9 12)

If we then equate the right-hand part of Equations 9.11 and 9.12 and solve
for the critical volume v, we find

ve=3b. (9.13)
It follows that
o=
27bR (9.14)
with
o= 9.15)

Introduction of reduced coordinates v/v¢, T/T, and P/P. gives

R o
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The constants a and b no longer appear. In terms of the reduced pressure,
temperature, and volume, Equation 9.16 leads to a law of corresponding states
for all substances that obey the van der Waals equation of state. The law of
corresponding states permits the collapse of a family of P-V curves into a single
curve by scaling P and V with the values of P and V, respectively.

We turn now to critical exponents. Near the maximum in Figure 9.8,
the universal curve has the form

1/3

T-x [T—Tc]
o (9.17)

I TC

At T, the liquid density p, and gas phase density p, are equal. For mag-
netic systems, the magnetization in zero applied field, as depicted in Figure
9.4, can be fit close to T with an expression of the form,

1/3

Moc|:T_TC:| (918)

M, Tc

The identical exponents in Equations 9.17 and 9.18, which apply to quite
different systems, suggest the importance of underlying universal features
in critical phenomena.

It is convenient to define the order parameter # for each system and to
introduce the reduced temperature e= (T - T¢)/Tc. For a magnetic sys-
tem, we take h = M/M,, whereas for a fluid h=(r, - r,)/ r.. For T " T¢,
Equations 9.17 and 9.18 may immediately be rewritten as

h~-€". (9.19)

Equation 9.19 applies to continuous phase transitions in general, with
the order parameter critical exponent. Order parameters for certain low-
temperature continuous phase transitions, such as the superconducting
and superfluid transitions, are defined with use of the quantum mechan-
ical wave functions for those systems. A number of other critical expo-
nents may be defined for fluids and magnetic systems. These include the
heat capacity exponent a, the isothermal compressibility/susceptibility
exponent y, and the critical isotherm (T = T) exponent §. Considerable
effort has been devoted to the measurement and theoretical prediction of
the critical exponents for a variety of systems that undergo continuous
phase transitions. Using scaling ideas, it is possible to show that, for a given
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system, determination of two of the exponents fixes the values of all the
other exponents.

Exercise 9.3: Obtain the order parameter critical exponent f for a system obey-
ing the van der Waals equation of state.

In terms of reduced variables p = (P-FP)/Pv = (V-V)/V and e=
(T =Tc)/Tc, Equation 9.16 becomes

1+p)+3 -
(#) 31+7)-11=8(1+6.
This gives
201+ 27+ 4%V + 397 = =37 + 8e(1+ 2V + V).

With use of the binomial theorem and retention of leading terms as an approxi-
mation, we obtain

,3:_%# - 6eV + det - (9.20)

Consider the p — v isotherms for ¢ at or close to the critical point, as shown
in Figure 9.9.

For e” 0, points a and b in Figure 9.9 represent the limits of coexistence of
liquid and vapor. The pressure at points a and b is the same, and in terms of
liquid and gas volumes at the points a and b, Equation 9.20 becomes

P, =%‘7c3+6e\7€+4e+--" 9.21)

P, = -%\7; — bevg + de. 9.22)

The negative sign for |V,|, which takes into account our choice of origin, has
been used in Equation 9.21. Subtraction of Equation 9.22 from Equation 9.21
gives

0=y +7/)+4ely + V). 9.23)
Fore—0, |V, |—|V/|.Asan approximation in this limit, | V¢ |=| v/ |= 2| e[
or

(vg =Vvy)
Ve

=vg-vi~4|el”?. (9.24)

With
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FIGURE 9.9 p - v isotherms for a van der Waals gas.p = (P - P.)/P. and
v = (V- V)/V, are the reduced pressure and reduced volume, respectively. The
isotherm with ¢ = 0 has a point of inflection at 0 as shown.

to a good approximation, because we need only allow for small differences in p,
and p, from p_, we obtain from Equation 9.24 the van der Waals critical exponent
value g = 1. This contrasts with the experimental value § = § obtained for pure
fluids, as given in Equation 9.17. In view of the simple empirical form chosen for
the van der Waals equation of state, it is not a surprise that the predicted order
parameter exponent disagrees with the measured value. More elaborate theoreti-
cal approaches are required to predict the values of the critical exponents.

9.6 LANDAU THEORY OF CONTINUOUS TRANSITIONS

In the mid-twentieth century, Ginzburg and Landau developed a phenom-
enological approach that provides considerable insight into continuous
phase transitions. The theory involves the expansion of a thermodynamic
potential in a power series in the order parameter . Consider a fluid at
constant volume, or a magnetic system in zero field (H = 0). In equilib-
rium, the Helmholtz potential F is a minimum. As independent variables,
we choose the absolute temperature T and the order parameter 1. Assume
that F(T, 7) may be expanded as follows:

F(T,h) =F,(T) + L,(T)h* + L,(T)h* + -+ (9.25)

We treat the order parameter as a vector quantity, with #* = 5-#5. For
symmetry reasons, only even powers of 7, which are scalars and do not
depend on the sign of #, are retained in the expansion. The coefficients
L,(T) and L,(T) are chosen so that # = 0 for T > T, whereas > 0 for
T < Tc.. F(T,n) is required to vary smoothly and continuously through the
transition, following the Ehrenfest description. The coefficients L,(T) and
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L,(T) should go to zero at T = T,.. Landau suggested the following form
for L,(T):

Lz(T) = a(T—Tc)+"" (9.26)

This is of the form of an expansion about T, with the leading term
chosen to be zero in order that L,(T) — 0 as T — Tc. In the case of L,(T), it
is sufficient to require that L,(T) > 0 in order that the Helmholtz potential
increases for large values of 7 to ensure stability of the system. Although
the choice of L,(T) in Equation 9.26 appears somewhat arbitrary, and it is
furthermore not clear that the expansion of F in terms of 7 can be justified
mathematically, the approach has the virtue of simplicity.

As shown in Chapter 7, the Helmholtz potential is a minimum in equi-
librium, and the equilibrium value of 7 at a given temperature is obtained
by differentiation of F with respect to #,

((‘Zi) =0=2L,(T)h+4L,(T)h* +--- (9.27)

It is obvious that 7 = 0 is always a solution. Finite # solutions exist and
are given by

h=x% |-, (9.28)

In order for the finite solutions to be real, we require L, < 0, and with
Equation 9.26, this implies T < T¢. In this case, we obtain

aT 1/2
h=|2=¢ vz 9.29
(2L4) " 9.29)

Comparison with Equation 9.19 shows that Landau theory predicts f =
1 for the order parameter critical exponent. This agrees with the van der
Waals equation of state prediction but is not in agreement with the experi-
mentally determined value f = § for fluids and magnets. It is instructive
to plot curves of F(T) versus 7 as shown in Figure 9.10. Note the form of
the minimum in the Helmholtz potential as T passes through T..
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FIGURE 9.10 Landau theory plot of the Helmholtz potential versus the order par-
ameter 7 for various temperatures in the vicinity of the critical temperature 7.

For T < T, nonzero equivalent solutions +# are found, which cor-
respond to the two minima in the symmetric Helmholtz potential. For
T — T, the two minima move toward # = 0 and, at T = T, a single broad
minimum emerges. Finally, for T > T, a parabolic-shaped minimum cen-
tered at 7 = 0 is obtained. Note that for T = T¢, the broad shallow mini-
mum allows large fluctuations in » with little change in F. These critical
fluctuations turn out to be important in more advanced treatments of crit-
ical phenomena. Critical opalescence, which is mentioned in Section 9.2,
is linked to the large fluctuations in 7. For temperatures in the vicinity of
the critical point, dynamical clusters or islands of order appear and disap-
pear, as a function of time. The large-scale fluctuations in density give rise
to enhanced scattering of light.

Exercise 9.4: Use the Landau theory to obtain expressions for the heat capacity
C of a magnet or fluid system for T just above and just below the critical tem-
perature T.. These heat capacity values give the magnitude of the discontinuity
in C at the critical point. Assume that L,(T) varies slowly with temperature.

From Equation 7.12, S = —(dF/aT),, and the heat capacity in terms of the
Helmholtz potential is C = T(8S/9T), = T(0*F/aT?),. For T < T, with & =
(T - T/T., we get from Equations 9.25 and 9.29,

?’h 9 a*T-T) ESEEE
3 - 4. =[.|—— 5
aT? oT L, )7 )

(
C.=-T
|
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» T

FIGURE 9.11 Heat capacity as a function of temperature for a continuous phase
transition as given by the Landau theory. The predicted shape is similar to that
observed in systems that exhibit continuous transitions.

and forT = T.C, =~ -T. 8°F, / 9T*. The change in the heat capacity across the
transition is

AC=C_-C, = (%2) Te. (9.30)

4

The expected form of the heat capacity dependence on temperature from
the Landau theory is given in Figure 9.11. The discontinuity in C at T is based
on Equation 9.30. A more complete analysis is required to predict the shapes
of the curves on either side of T... The form of the curves is determined by the
temperature dependence of the Helmholtz potential as shown in the analysis
given above.

For ferromagnetic materials in the vicinity of the Curie tempera-
ture, experiment gives heat capacity curves with shapes similar to those
shown in Figure 9.11. Over the past several decades, techniques that are
applied to various model systems have been developed to describe con-
tinuous phase transitions and to predict critical exponent values. Wilson
pioneered the use of what is called the renormalization group method,
and the modern theory of continuous phase transitions is often referred
to as Ginzberg-Landau-Wilson theory. An introduction to some of the
ideas and the models used in development of the theory are given in
Chapter 17.

The present chapter has shown how the thermodynamic approach pro-
vides a means for classifying phase transitions on the basis of the behav-
ior of the Helmholtz potential in the vicinity of the critical point. For
second-order transitions phenomenological approaches based firstly on
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the van der Waals equation of state for the vapor-liquid transition and
secondly, and more generally, on the Landau expansion of the Helmholtz
potential in terms of the order parameter 7 permit estimates of the order
parameter critical exponent f to be made. The value obtained for S is
somewhat higher than the values obtained experimentally for a variety

of systems.

The following chapters are concerned with the microscopic statistical
approach to thermal physics. Several chapters are devoted to quantum
statistics and the properties of systems of noninteracting fermions and
bosons. Further discussion of phase transitions, specifically in magnetic

materials, is given in Chapter 17, which deals with nonideal systems.

PROBLEMS CHAPTER 9

9.1

9.2

9.3

9.4

9.5

Obtain an expression for the entropy of a vapor just above
the boiling point in terms of the molar entropy of the con-
densed state, the latent heat of vaporization and the tem-
perature T. Equate your expression to the Sackur-Tetrode
expression for the entropy of a monatomic ideal gas obtained
in Chapter 5. With the use of the ideal gas equation of state,
find the entropy of the condensed (liquid) state in terms
of measured quantities, including the latent heat of vapor-
ization and the pressure of the vapor at its normal boiling
point.

Apply the result of Question 9.1 to find the entropy of liquid
helium at its boiling point of 4.2 K. The latent heat of vapor-
ization of helium is 21 x 10% J kg™

Obtain an expression for the entropy of an Einstein solid
in the low-temperature limit with use of results given in
Question 8.4. If the solid is in a sealed container in equilib-
rium with its vapor, find the vapor pressure at temperature T.
Assume that the vapor may be treated as an ideal gas and use
the Sackur-Tetrode equation for the entropy of this phase.
For a single component system, the solid, liquid, and vapor
phases coexist at the triple point as shown in Figure 9.1. The
latent heat of sublimation is equal to the sum of the latent
heats of melting and vaporization. Use this condition to relate
the slopes of the sublimation curve to the slopes of the vapor-
ization and melting curves in the vicinity of the triple point.
A particular solid undergoes a first-order phase transi-
tion from crystallographic phase 1 to another phase 2 at a
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temperature T, under a constant pressure of one atmosphere.
By how much would the transition temperature change if
the pressure were increased by an amount XP? The enthalpy
change at the transition is H, and the densities of the solid in
the two phases are p, and p,, respectively.

9.6 At a pressure of 32 atm, the liquid and solid phases of
helium-4 can coexist down to absolute zero temperature.
Find the slope of the coexistence curve as the temperature
tends to 0 K.

9.7 Derive the second Ehrenfest equation (as given in Equation
9.10) which applies to continuous second-order phase tran-
sitions in which the volume remains constant through the
transition.

9.8 'The Dieterici equation of state for a nonideal gas has the
form P = (RT/V -b)exp(—a/RTV) Obtain expressions for
the critical temperature, volume, and pressure in terms
of a and b. Write the equation of state in terms of reduced
dimensionless variables P/P., V/V,, and T/T.. Determine
constants a and b for nitrogen gas for which T, is 77 K and
P is 35 atm.

9.9 Use the van der Waals equation in terms of reduced vari-
ables p, = P/P., v, = VIV, and t, = T/T to determine how
the slope of the critical isotherm changes in the vicinity of
the critical point. Gaseous carbon dioxide has a critical tem-
perature of 304 K and a critical pressure of 74 atm. If it is
assumed that the van der Waals equation applies to this gas
determine values for the van der Waals constants a and b
and obtain the critical volume. Compare b with the molar
volume of the gas.

9.10 According to the Ehrenfest classification scheme phase
transitions of order higher than two may exist. Describe
distinguishing features of a third-order phase transition in
the Ehrenfest scheme. Give sketch graphs of the derivatives
of the Gibbs potential for this type of transition.

9.11 A magnetic system is situated in a small applied magnetic
field H at temperature T. Make use of the Landau theory for
continuous phase transitions to predict the behavior of the
magnetic susceptibility as T — T.. Assume the Gibbs poten-
tial has the form G(H,T) = Go(H,T) + a,(T)M* + a,(T)M*,
with Go(T) = F(M,T)- H- M.
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CHAPTER 10

Ensembles and the
Canonical Distribution

10.1 INTRODUCTION

In Chapter 5, the microscopic interpretation of entropy is presented in
terms of the logarithm of the number of accessible microstates Q (E, V,
N) for a system such as a gas with fixed total energy E, volume V, and
particle number N. The high point of this discussion is the relationship
between the entropy S and Q given in Equation 5.12, § = k3 InQ(E, V,N).
This relationship shows that the entropy of a system can be determined by
counting the number of accessible microstates. As pointed out in Chapter
5, Equation 5.12 is an important bridge that connects the microscopic and
macroscopic descriptions of systems with large numbers of particles. Once
an expression for the entropy has been obtained, various other thermody-
namic quantities may be derived from it. Examples of what is termed the
microcanonical ensemble description are given in Chapter 5 for the ideal
gas and ideal spin systems.

For systems not in equilibrium, the approach to equilibrium, which is
characterized by an increase in entropy, may be understood in terms of the
fundamental postulate given in Section 5.1. In equilibrium, all accessible
microstates occur with equal probability. This implies that the probability
of finding the system in a particular microstate |r) is p, =1/Q(E,V,N).
A system not in equilibrium at some instant will not have equal probabil-
ities for all the accessible microstates. The system will then evolve with time
until the probabilities are equal. These considerations do not, however,
provide any information on how long it will take to reach equilibrium.

197
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Because Q (E, V; N) is a restricted sum over states, its evaluation may,
in some cases, present difficulties. This is seen, for example, in the dis-
cussion of the entropy of an ideal gas in Chapter 5, where a number of
approximations were made. In this chapter, a more general approach is
developed in terms of the partition function Z. This quantity involves an
unrestricted sum over the states of the system, which, in most cases, sim-
plifies the summation procedure. For systems with high densities of states,
the unrestricted sum may be expressed as an integral over the range of
energy values involved, such as 0 to oo for a gas. The partition function is
extremely useful in the determination of mean values for state variables.
In this chapter, we shall focus mainly on systems of localized and, in prin-
ciple, distinguishable particles such as spins on fixed lattice sites in solids.
The evaluation of the partition function for ideal systems of this kind is
straightforward as we shall see. For systems of indistinguishable delo-
calized particles, we have to allow for the particle indistinguishability to
avoid overcounting states, as discussed in Chapter 5. Our strategy will be
to derive complete expressions for ideal Bose and Fermi gases in the quan-
tum limit in Chapter 12 and then to obtain the proper classical limit form
for the partition function. This approach avoids the ad hoc introduction of
correction factors as used in Chapter 5 in evaluating In Q for an ideal gas.
Before introducing Z, we summarize a number of concepts and results
from probability theory.

10.2 STATISTICAL METHODS: INTRODUCTION
TO PROBABILITY THEORY

10.2.1 Discrete Variables and Continuous Variables

Probability theory deals with both discrete variables and continuous
variables. In the case of discrete variables, there are discrete outcomes,
which are observed when an event occurs. Examples of events of this
kind are the tossing of sets of coins or dice for which different outcomes
are possible. The discrete outcomes involve heads or tails for each of the
coins in a set and, similarly, the numbers 1 to 6 for each die in a set.
Continuous variables, as the term implies, can take a continuous set of
values within some range. For simplicity, discrete statistical variables are
considered first. Statistical ensembles are important in probability theory
and involve a large number of identical systems prepared in similar ways.
For example, an ensemble of dice would involve N good dice thrown in
similar fashion.
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The number of times n; that a particular outcome i is found in a large
ensemble of N systems gives the probability p; of that outcome:

. n;
pi= AI}E}O N (10.1)

It is readily seen that X, p, = 1. If p; is the probability of a particular

outcome, then 1 —p; is the probability of not obtaining that outcome. The
ensemble average of a variable X that takes discrete values x;is defined as

(x)= E p(x:)x;i, (10.2)

where p(x;) is the probability of the outcome x;. It is useful to consider
moments of the distribution, with the nth moment of x given by

(x") = E plx)x". (10.3)

The variance or dispersion is defined as
s2=(x*) = (x), (10.4)

where o, is called the standard deviation. The standard deviation provides
information on the width of the probability distribution p(x;).

For continuous variables, the summations in Equations 10.2 and 10.3
are replaced by integrals. The mean value (x) of the variable X is defined
as

b
(x)= f p(x)x dx, (10.5)

where the limits a and b specity the range of the continuous variable. The
normalization condition becomes

f b plx)dx =1, (10.6)
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The nth moment of the variable X is
b
(x") =f plx)x" dx, (10.7)
whereas the average of a function f(x) is given by

b
(f)= f p(x) f(x) dx. (10.8)

Exercise 10.1: For a good die with six faces, show that (X) = 3.5 and (x?) =
15.17. Use these values to obtain 6,. Discuss the form of the probability
distribution.

We have (X) = ¥, p(x) x; with p(x) = 1/6 and x; = 1 to 6. Substitution in the

expression gives (X) = 3.5. A value for {x?) is obtained with use of Equation
10.3 for n = 2 and the dispersion s} from Equation 10.4. The probability distri-
bution p(x;) is constant for x; in the range 1 to 6 and zero outside this range.

Exercise 10.2: The continuous variable @ has a probability distribution given
by p(@dg=dgp in the range 0 to 7. Obtain values for (¢) and (#?) and the
variance. Repeat the calculation for the function f(g) = cos’q.

From Equation 10.5, we have (g) = (1/p )ff gdg=p/2 .Similarly, () =p*/3
is obtained with use of Equation 10.7, and the variance from Equation 10.4 is
(€)-{g)* =p712 . The similar calculation for f(g) = cos® g is straightforward.

10.2.2 Joint Probabilities

Joint probabilities arise when two or more variables are involved. As an
example, the statistical ensemble may consist of dice with several differ-
ent colors, and we could, for example, obtain the probability of blue dice
with the number 6 uppermost. The joint probability for discrete variables
is specified as p(x; y;), where x; is the value of variable X and y; is the
value of variable Y. The normalization condition for continuous variables
becomes

f f p(x,y)dxdy =1 (10.9)
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In special cases when the two variables are statistically independent,
the joint probability is simply the product of the separate probabilities,

plx, y) = p(x)p(y). (10.10)
For statistically independent variables, it follows that
() = () (y), (10.11)

or the mean of the product is equal to the product of the means.
Consider functions f (x, y) and g (x, y) of the variables x and y. The mean
value of the function f1is

(f)= f p(x,y) f (x,y)dx dy, (10.12)

with a similar expression for ( g). It is easy to see by carrying out the inte-
grals that

(f+8)=(f)+(g) (10.13)

or the mean of the sum of two functions is equal to the sum of the means. The
mean of the product of two functions is, in general, not given by the product
of the means. However, if the variables are statistically independent, then

(for=(f){g) (10.14)

The proof is straightforward:

(fg)= f f p(x, y)f(x)g(y) dx dy = f p(x) f(x) dx f (g dy =(f){g).

10.2.3 The Binomial Distribution

The binomial distribution is important in many statistical calculations.
Consider an ensemble of N similar systems, each of which is described by
a variable that has two possible discrete outcomes. Examples are N coins or
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N spins 1. Let p be the probability of one of the two outcomes and g = 1-p
the probability of the other outcome. The probability of n outcomes of one
kind (e.g., heads) and N — n outcomes of the other kind (tails) is

n N-n

pN(n) = (f)? 9 (10.15)

with (%) = N!/[n!(N - n)!], a degeneracy factor which is simply the num-
ber of ways of arranging N objects where # are of one kind and (N — ») of
another kind, as discussed for spin systems in Chapter 4. Equation 10.15
is called the binomial distribution. The name derives from the identical
form that the right-hand side of Equation 10.15 has with the general term
in the binomial expansion,

(p+q" =2(N)p”qN‘”. (10.16)

n
n

Because the sum of the probabilities is (p + q) = 1, Equation 10.16 may
be used immediately to show that the distribution is normalized. The fol-
lowing relations are obtained for the mean value and variance:

(n)=Np (10.17)
and
sy =(n*)=(n)* = Npq. (10.18)

Details are given in Appendix B. From Equation 10.18, the standard
deviation is

sy =Npq, (10.19)

and it follows that the fractional deviation is given by

st q 1/2 1

wls) & -

Equation 10.20 shows that the fractional deviation decreases as 1//N
and, for N very large, will tend to zero. This is consistent with #/N — p as
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FIGURE 10.1  The binomial distribution (triangles) for N =12 and p = q = 1. The
Gaussian approximation to the binomial distribution given by Equation 10.21
is also shown (circles). Even for this comparatively small value of N, the agree-
ment between the two distribution functions is good and improves as N is made
larger.

N — 0. For large N, the binomial distribution is well approximated by the
Gaussian distribution,

1 —n—«n>>2/s
e

N2

Py (n)=

= m (10.21)

Equation 10.21 is obtained using a Taylor expansion of In Py(n) retaining
terms up to the second order. Further details are given in Appendix B.
Figure 10.1 shows a comparison of the binomial distribution with the
Gaussian approximation to it for N=12and p=¢q=0.5.

10.3 ENSEMBLES IN STATISTICAL PHYSICS

In Section 10.2, it is pointed out that, in probability theory, statistical
ensembles are used in the definition of probabilities of particular out-
comes. The various ensembles introduced into statistical physics corres-
pond to particular physical situations of interest. They are known by the
names microcanonical ensemble, canonical ensemble, and grand canon-
ical ensemble. Canonical ensemble simply means the standard ensemble.
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The microcanonical ensemble approach is dealt with in Chapter 5,
although this terminology is not emphasized there.

The number of accessible microstates for a system with fixed total
energy E is Q(E, V, N). In Section 5.1, the fundamental postulate is intro-
duced and leads to the expression for the probability that a system is
found in a particular microstate. In Sections 5.2 and 5.3, equilibrium
conditions for two interacting systems are developed on the basis of con-
siderations of Q(E, V, N) for the combined system. These conditions lead
to the identification S = k; In Q(E, V; N), given in Equation 5.12. For the
microcanonical ensemble, a large number of identically prepared sys-
tems with fixed total energy E and fixed particle number N are consid-
ered. Members of the ensemble are in the same macrostate but may be
found in any one of the accessible microstates. The statistical methods
applied in Chapter 5 are based on probabilities determined using this
approach.

Animportant point arises in comparing the ensemble average of some
physical quality with the time average, which is measured experimen-
tally for a given system. Over a period of time, a system, even one that
is close to ideal, will make transitions between its accessible microstates
because of interactions between particles. For systems close to ideal, the
interactions between particles are extremely small but nevertheless do
allow the exchange of energy between particles, with a simultaneous
change in the set of quantum numbers that describe the system. It is
asserted that the time average of any quantity is equal to the ensemble
average of that quantity. In most systems of interest, the time needed for
transitions between microstates to occur is very short and the assertion
is well justified. The proof that ensemble and long-time averages are the
same is not simple and is linked to the ergodic hypothesis mentioned
in Section 4.2. This matter is discussed in somewhat greater detail in
Chapter 18.

In the canonical ensemble, the N systems do not have fixed energy but
each is in contact with a heat bath at temperature T, with which heat may
be exchanged. The grand canonical ensemble involves N systems, each
in thermal and diffusive contact with a reservoir at temperature T and
with chemical potential x. In this case, both heat exchange and particle
exchange can occur. Figure 10.2 depicts the three ensembles. For each of
the three ensembles, a probability distribution function is obtained. These
are called the microcanonical, canonical, and grand canonical distribu-
tions, respectively.



Ensembles and the Canonical Distribution m 205

@ |EN| | | | peeeeeeemmee

Microcanonical ensemble

T

Canonical ensemble

(c) _IT_u
L

Grand canonical ensemble

FIGURE 10.2 (a) Microcanonical ensemble, E and N constant for each member;
(b) canonical ensemble, T'and N held constant; (c) grand canonical ensemble, T
and u held constant. In the canonical ensemble, a large heat bath is used to fix the
temperature for each member of the ensemble. In the grand canonical ensemble,
alarge reservoir is used to fix the temperature and the chemical potential for each
member of the ensemble.

10.4 THE CANONICAL DISTRIBUTION

In the derivation of the canonical distribution, it is convenient to consider
a small system 1 that has discrete energies E,. We defer until later speci-
fication of the eigenstates |n) for a particular system. To avoid complica-
tions because of indistinguishability of particles and the statistics they
obey, which depends on whether they are fermions or bosons, we shall in
this chapter largely confine application of the formalism that we develop
to systems of localized particles. Examples are spins, with associated mag-
netic dipole moments, at fixed lattice sites in a solid situated in a magnetic
field or fixed electric dipoles in an electric field. The expressions we obtain
in this section are quite general, and the approach is readily extended to
systems of delocalized indistinguishable particles as shown in Chapters 12
and 16.

For each member of the canonical ensemble that we consider, a heat
bath at temperature T is in contact with a small system, as shown in
Figure 10.2. Each heat bath is effectively infinite in size in comparison

with its small system. For convenience in the discussion that follows,
we label the small system 1 and the heat bath 2. As a starting point, we
use results obtained for the microcanonical ensemble case in Chapter 5.
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The total number of accessible microstates for the combined system is
given by

Q= Ql(El) 92 (Eo - E1)7 (10-22)

where E is the total combined energy of the small system plus heat bath.
From the fundamental postulate given in Chapter 5, the probability P (E,) of
finding the small system with energy E, and the heat bath with energy E,— E,
(with E, < E,)) is proportional to the total number of accessible microstates
for the combined system when energy is shared in this way. Therefore,

P (E,) « € (E;)Q,(E, - Ey). (10.23)

Now, we choose system 1 to be in a particular microstate, with energy
E,, so that Q,(E) = 1.
Consequently, we have

P (E,) x Q,(E, - E)). (10.24)

In Chapter 5, it is pointed out that, for a large system, Q(E) is a very
rapidly varying function of E, which reaches a maximum when E, = E,.
We expand InQ,(E,—E,), which varies more slowly with energy than
Q,(E,—E,), in a Taylor series about E,

dlnQ 1(0*InQ
anz(EO—E1)=anZ(E0)+( anEzz)(—El)+2( BEZZ)Z)E12+---- (10.25)

Because E; < E,, this series may be expected to converge rapidly, and as
an approximation, terms of order higher than unity are neglected. With
(0InQ,/0E,) = b, as defined in Equation 5.14, we obtain

InQ,(E, —E)=InQ,(E)) - bE, =In[Q, (Ey)e ®™].  (10.26)

After taking antilogs, insertion of the resultant expression into Equation
10.24 leads to

P,(E,) = Ce™?". (10.27)
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The proportionality constant C contains the quantity Q,(E,). Cis deter-
mined by the normalization condition

Z P(E)=1, (10.28)

and this gives

—-bE
e 1

I)I(El)= Z >

(10.29)

with the partition function defined as

7= 2 ebh (10.30)

The symbol Z is derived from the German word zustandsumme or sum
over states. Equation 10.29 is the canonical distribution and is of central
importance in statistical physics and a high point in our development
of the subject. As pointed out in Chapter 7, the Helmholtz potential is
given in terms of the partition function by F = k3T In Z, and this bridge
relationship is established in Section 10.6. From F, other thermodynamic
quantities can be obtained. A number of approximations have been made
in the derivation of the canonical distribution given above. Justification
for these approximations can be given in mathematical terms but comes
also from the agreement of predictions on the basis of the canonical distri-
bution with experimental results for macroscopic systems.

Mean values may readily be obtained with the canonical distribution.
Equations 10.29 and 10.2 give the mean energy of the system as

(E)= (%) E Ee™®" (10.31)

or, in equivalent form in terms of In Z,

gy -0z (10.32)

ob
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where Z = 3 ;e”?". Equation 10.32 is a useful form for calculations on a
variety of systems.

In general, we have for the partition function Z=73, . . e ?ma*
me+me+) where n, is the number of particles found in state 1 with energy
&, 1, is the number with energy ¢,, and so on subject to the constraint on
particle numbers N = ¥,_,  n;.. The number of particles in a particular
state depends on the statistics that the particles obey. In the classical limit,
the single particle states are sparsely occupied as pointed out in Chapter 4.
However, for a gas allowance has to be made for the indistinguishability
of particles. As mentioned above, we defer consideration of the partition
function for delocalized particles in an ideal gas until after the introduc-
tion of the quantum distribution functions in Chapter 12. In the classical
limit of the quantum distributions for bosons and fermions, we obtain
a result that automatically corrects for overcounting of states. A short
discussion of the partition function for an ideal classical gas is given in
Section 10.10 at the end of this chapter.

In the next section, we consider a system of distinguishable localized
spins for which the partition function is easily evaluated. The spin system
in contact with a heat bath may consist of a single localized moment or
a large number of localized moments. In the latter case, each quantum
state will correspond to a set of quantum numbers, and the energy E, will
be the net energy of system 1 in this state. In such cases, it is necessary
to allow for degeneracy effects for the set of microstates with the same
energy if we require the probability of finding the system with a particular
energy rather than in a particular quantum state labeled by a set of quan-
tum numbers. The degeneracy factor is usually denoted by g, and if we put
Q,(E)) = g,> Equation 10.29 becomes

bE;

.
R(E)= ng, (10.33)

with

Z= Z gebh. (10.34)

The distribution in Equation 10.33 gives the probability of finding sys-
tem 1 in any one of the degenerate states with energy E,.
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10.5 CALCULATION OF THERMODYNAMIC

PROPERTIES FOR A SPIN SYSTEM USING

THE CANONICAL DISTRIBUTION
In Chapter 5, various results for the properties of an ideal spin system of
N localized electron spins 1 with dipole moment m = —gmg§ in a mag-
netic field B were obtained from the expression for Q(E). These results
may readily be derived with the canonical distribution. It is necessary to
evaluate Z for the system with E; = 3", @ = gmy BY Y, m;, and m; = =1
for a spin 1 system. The properties of the exponential function permit the
partition function to be factorized as follows:

7 = § : e—bganB(m1+m2+"~+mN) _ § : e—bgmBBml § : e—hﬂgmz § : e—bgmBmN

|
{mm2,...mN } my=xy my=*7 mN =1%

or Z = z~, where z, defined as

z= E o~ bgmbm_ (10.35)

m==

ol

is the partition function for a single spin and is readily evaluated. We see
that for the system of localized spins In Z = N In z, with the single spin
partition function given by z = (¢™/**$™% 4 ¢!/226™F) = 3 cosh[ b(3 gmy B)].
For g = 2, this gives z = 2cosh(bmy B) and hence

In Z = N1n(2cosh bmgB). (10.36)

From Equation 10.31, the mean energy of the system is
(E)=(1/Z) 31 E:e™™ or, in equivalent form (Equation 10.32) in terms of
In Z, (E) = -0InZ/db. With use of Equations 10.36 and 10.32, the mean
energy is easily calculated to be

(E) = =N mBtanh(bm; B), (10.37)

in agreement with the microcanonical ensemble result given in
Equation 5.19.
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The mean magnetic moment for a single spin is obtained on differentia-
tion of In z with respect to B, {m)=+(1/b)dInz/dB = my tanh bmsB, so

that for N spins
(M) = N(m) = Nmg tanh bmB. (10.38)

This result may be obtained directly using the following relation involv-
ing the partition function Z for N spins:

1\ dlnZ
<M>=(b) B (10.39)

Note that (E) = —(M)B, as expected. Figure 10.3 shows the behavior of

(M)/Nmg as a function of myB/kgT.
The linear region close to the origin in Figure 10.3 corresponds to the
high temperature Curie law regime. From Equation 10.39 with B = m)H,

the magnetic susceptibility per unit volume is given by

Nm
oo M) =( Bmo) tanh(mBB)' (10.40)
VH VB kg T
1.5
10+ - oo
=
X
S
0.5
0 2 4
upB/kgT

FIGURE 10.3 The reduced magnetic moment (M)/Nuj; plotted as a function of
ptg Blky T for an ideal spin system of N spins 1. The Curie law region corresponds

to low B/T.
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At high temperatures and in fields that are sufficiently small so that
mg B/ ksT <1, we obtain

2
L i (10.41)
kgT

where n = N/V. Equation 10.41 is Curie’s law with an explicit expression for
the Curie constant. From Equation 10.37, the heat capacity follows as

C =(8<E>)H - ( 8<E>)H (‘“’) - NkB(mBB)zsechz (’ZB;?) (10.42)

oT ob oT kgT B

This is the result given previously in Equation 5.21. The behavior of Cy
= N/ky as a function of k;T/upBis shown in Figure 5.5 and is discussed in
Section 5.4.

10.6 RELATIONSHIP BETWEEN THE PARTITION

FUNCTION AND THE HELMHOLTZ POTENTIAL
In Section 10.5, various thermodynamic properties of an ideal spin sys-
tem have been obtained from Z. We now establish the bridge relationship
between F and Z, which is closely connected to the relationship between S
and Q. For an ideal spin system, Equation 10.36 shows that

Z = Z(b,B). (10.43)

The total differential of In Z is

0lnZz dlnZz
dlnZ = ( ) db + ( ) dB=—(E)db+ b(M)dB, (10.44)
b}, B /,

where we have made use of Equations 10.32 and 10.39. Now
d(b(E)) =bd(E)+(E)db, and with dB = m, dH, which is a good approx-
imation for a paramagnetic material, this gives d[InZ+ b(E)]=+
bd(E) + bmy(M)dH. From the first law in Equation 2.21, with the work
term being the work done on the sample only, which is appropriate here,
we obtain d[InZ + b(E)] = bdQ = dS/kg. Integration and rearrangement
leads to the required result,

F=(E)-TS = -kyTInZ. (10.45)

Equation 10.45 allows the Helmholtz potential to be obtained from the
partition function for the system. Other thermodynamic quantities may
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be obtained from F with the relationships established in Section 7.3.
Determination of the partition function therefore leads to a complete ther-
modynamic description of a system.

Although the expression for Z used in this section refers to an ideal
paramagnet of localized moments, Equation 10.45 is a general result appli-
cable to any system. An alternative derivation of Equation 10.45 is given
as follows. The partition function is from Equation 10.34 Z = 3 5, g, e 2%,
where g, is a degeneracy factor for states with energy E,. For a large system
with many degrees of freedom, we can regard the energy levels as forming
a quasi-continuum and write Equation 10.34 as

Z- Z Q(E)e ", (10.46)

where Q(E) is the number of accessible states in the small range E to
E + dE In Equation 10.46, Q(E) increases very rapidly with E, as discussed
in Chapter 4. The exponential factor e®* decreases very rapidly with E.
The product, which is sharply peaked, has a maximum at E, as depicted
in Figure 10.4. To a good approximation, the partition function written
in terms of the peak energy E is given by Z = Q(E)e " AE/dE, where ME
is the half-height width of the peak in the function shown in Figure 10.4.
Taking logs gives

InZ = InQ(E) - bE + ln(%) . (10.47)

For a system with a large number of degrees of freedom, In([1E/dE)
may be neglected in comparison with the other terms. Equation 10.47 may
be rewritten as

kyTInZ = [kyTInQ(E)] - E,
giving
F=E-TS=-ksTInZ, (10.48)
with

S = ks InQ(E).
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Q(E)ePE

F E

FIGURE 10.4 The product Q(E)e ™" as a function of E showing a peak of width
AE at E. Q(E) is a rapidly increasing function of E, whereas e™°" is a rapidly
decreasing function. The product gives rise to a sharply peaked function with a
maximum at E.

This is the same result as Equation 10.45, provided we put E = (E). In
arriving at Equation 10.48, the summation over all energies has effectively
been replaced by the largest term. This is a good approximation because
of the very sharply peaked nature of the function depicted schematically
in Figure 10.4. It is also clear that the mean energy (E) of the system will
coincide with the energy E, at which the function Q(E)e ™" has its peak
value.

10.7 FLUCTUATIONS

In Section 10.6, it is argued that the partition function is sharply peaked
at (E). This discussion may be placed on a more quantitative basis in terms
of the variance in the energy for the ideal spin system. From the definition

of the variance in Equation 10.18, we can write
sp=(E*)-(E). (10.49)
Equation 10.32 gives (E)=-dInZ/db=12(dZ/0b), and from the

definition of an ensemble average Equation 10.2 with Equation 10.29, it
follows that

=) S (1) (28] - T o) ()




214 m Statistical and Thermal Physics: An Introduction

(Use has been made of the identity 9°InZ/db*> =(1/Z)(0°Z/db*)~
(1/Z2*)(dZ/9b)*)

From Equation 10.49 and with the use of Equation 10.32 to obtain (E)?,
we get

9*InZ

b (10.50)

2
Sg =

In Z for an ideal spin system (spin 1, g = 2) is given by Equation 10.36, and
application of Equation 10.50 leads to

st = N(mgb)* sech’(bmgB). (10.51)

The magnitude of the fractional deviation in energy, with (E) from
Equation 10.37, is

Sp N (mB)+/sech® (bmgB)

(E) N(myB)tanh(bmyB)

@ = (Jlﬁ) cosech(bmyB) = (\/IN) for bmygB<1.  (10.52)

This is consistent with Equation 10.20 and shows that, for large N com-
parable with N,, fluctuations in the energy are of the order of 1 partin 10'..
Such tiny fluctuations in energy are not detectable in usual physical mea-
surements. Fluctuations in other quantities, such as the magnetization of
the spin system, are also very small.

10.8 CHOICE OF STATISTICAL ENSEMBLE

In Section 10.3, the microcanonical, canonical, and grand canonical

ensembles are described. The systems in the microcanonical ensemble
have their total energy E fixed to within a small uncertainty SE. The
canonical ensemble fixes the temperature T of systems in contact with a
heat bath. Although the energy of each member in a canonical ensemble
can fluctuate about a mean value, it is shown in Section 10.7 that, for sys-
tems containing a large number of particles, with a very large number
of microstates, the fluctuations in energy are extremely small and can be
neglected for practical purposes. Similarly, it will be shown later that, in
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the grand canonical ensemble case, fluctuations in both energy and par-
ticle number are extremely small.

The above observations have important consequences for large systems
because they show that the three ensembles are effectively equivalent. This
means that results obtained using the canonical ensemble may, for example,
be applied to an isolated system whose total energy is fixed, provided the
temperature of the system is known. Flexibility in the choice of the ensemble
used for a particular system provides considerable advantages in calculations.
In the derivation of the quantum distributions, it will be convenient to make
use of the grand canonical ensemble. The results obtained are, nevertheless,
applicable to systems with fixed energy and particle number, provided the
temperature T and chemical potential y are specified for these systems.

10.9 THE BOLTZMANN DEFINITION OF THE ENTROPY

From Equation 10.29, it follows that the probability p, for a system in con-
tact with a heat bath to be in a particular state r is

-bE,
=€ (10.53)
Pr 7 .
The factor e”** is known as a Boltzmann factor. The ratio of the prob-

abilities for a system to be in two different states r and s is

% = e blEE) (10.54)

Equation 10.54 is a useful relation because it only requires knowledge of
the energies of the two different states involved.

Exercise 10.3: Obtain the ratio of the probabilities for occupation of the spin
states for an ideal paramagnet with spins 1 and g = 2 in an applied magnetic
field. The energy eigenvalues are E. = 4,8 as depicted in Figure 4.4.

Use of the Boltzmann factors with the given energies leads to

P
p-

- b(-ppB-pgB) 2bugB

=€ =€

Typically, for electron and nuclear systems at temperatures T = 4 K or higher
in laboratory fields of a few tesla, psB < ks T, and the exponential may be
expanded to give

Pe _q, 2mB (10.55)

P- kBT
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Equation 10.55 shows that, for the given conditions, the low energy ‘—%> state
has a slightly greater probability of occupation than the high energy ‘+%> state.
At very high temperatures, the probability ratio tends to 1. Note that we have
used p, to denote the probability to find spins in the low energy state, with
magnetic moment parallel to B, and p_ the corresponding probability for the
higher energy state. This notation is consistent with that adopted in Chapter 4
for the occupancy of the two states.

Boltzmann obtained the following important definition for the entropy
in terms of the probabilities p,:

S= _kBE prInp,. (10.56)

It is straightforward to get this expression from results derived earlier
in this chapter. The relationship Equation 10.45 for the Helmholtz poten-
tial is F = (E) = TS = —kgT In Z and for the entropy this gives

E
S= <T> +kglnZ. (10.57)

The mean energy is (E) = (1/Z) Y, E.e”"". Rearrangement of Equation
10.53 gives E, = (-1/ b)InZp, and insertion of this result into the above
equation for the mean energy leads to

(E) = E (-;) prInZp,. (10.58)

Equations 10.58 and 10.57 with the condition ), p, = 1give the required
result,

§= —kBE prnp,, (10.59)

or in alternative form S/kp = - Y., p,In p,.

Once the probabilities p, for a system to be in state r are determined, the
entropy may be obtained immediately. Equation 10.59 is useful in infor-
mation theory and may be applied to any phenomena for which probabili-
ties can be calculated.
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Exercise 10.4: An ideal N spin system has two states with occupation probabil-
ities p, = p_ = 0.5. Find the entropy of this simple system.

The Boltzmann expression gives S = —~2Nkg(0.5In0.5) = Nkg In2. This agrees
with the result obtained using Equation 5.18. It is a simple matter to obtain S for
other values of the occupation probabilities.

10.10 THE PARTITION FUNCTION FOR AN IDEAL GAS

For a system of N localized spins, as considered in Section 10.5, the par-
tition function can from Equation 10.35 be written as Z = zV, where z
is the single particle partition function. This result holds in general for
distinguishable localized particles. For delocalized, indistinguishable
particles, as found in an ideal gas, we have to allow for overcounting of
quantum states as discussed in Chapter 5. By taking the classical limit
of the quantum distributions, we show in Chapter 12 that to a good
approximation Z = (1/N!)z". It follows that InZ=NInz-NInN +N,
where use has been made of Stirling’s approximation for In N!. It is
therefore straightforward to obtain In Z for an ideal classical mona-
tomic gas once the single particle partition function z has been evalu-
ated. This calculation is carried out in Chapter 16 by making use of the
single particle in a box quantum states and conversion of the sum over
energy states to a definite integral. The result as given in Equation 16.4 is
z = V(mkpT /2ph*)*".

From In Z, the Helmholtz potential follows as —kgT'InZ and on dif-
ferentiation of F with respect to T the Sackur-Tetrode expression for
the entropy, as given in Equation 5.15, is obtained. The thermodynamic
properties of the ideal gas are completely determined in this way. Further
discussion is given in Chapter 16, where allowance is made for internal
degrees of freedom in polyatomic molecules.

Before considering ideal quantum gases, we obtain results for the grand
canonical ensemble and introduce in Chapter 11 the grand partition func-
tion or grand sum. The grand canonical ensemble involves baths for which
the temperature and chemical potential are specified. In this ensemble,
there are no constraints on energy or particle number, and as shown in
Chapter 12, this simplifies the derivation of the quantum distribution
functions for fermion and boson systems. As pointed out above, the clas-
sical ideal gas partition function is obtained in the classical limit of the
quantum distributions.
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PROBLEMS CHAPTER 10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

A red and a blue die are thrown simultaneously. What is
the probability of obtaining a pair of sixes? Find the prob-
ability of throwing six on red and three on blue. Compare
this probability with the probability of throwing a six and a
three if the dice have the same color.

Ten good coins are tossed simultaneously. Find the probabil-
ity of obtaining four heads. Use results given in Appendix B
to obtain the mean number of heads and the corresponding
dispersion in many throws of the coins. Sketch the form of
the probability distribution. Construct a table of probabil-
ities P(n) for various numbers of heads .

In a one-dimensional random walk with equal step lengths /
along a gently inclined plane the probability of a step down-
plane is 20% larger than for a step up-plane. Find the mean
displacement from the starting point after 200 steps have
been taken. Obtain the corresponding dispersion.

A monatomic ideal gas at high temperature T in a discharge
tube has a triply degenerate excited state at an energy € above
the ground state. Find the ratio of the population of the
excited state to that of the ground state. Apply your result
to helium in a discharge tube at a temperature of 10* K. The
ground state of the helium atom is nondegenerate, whereas
the first excited state at 19.8 eV above the ground state is
triply degenerate.

Schottky defects in crystals correspond to the removal of
an atom from a lattice site to the surface of the crystal as
described in Chapter 5. If the energy of formation of a defect
is &, find the ratio of the probabilities for a given site to be
either occupied or unoccupied at a given temperature T. If
the number of Schottky defects n is much smaller than the
number of lattice sites N, show that n/N = exp(—be). Use
the partition function for the system to obtain an approxi-
mate value for the total energy associated with defects at a
given temperature.

A system consists of N localized particles each of which has
three energy levels at &, 2¢, and 3¢ with degeneracy factors
g=1,2,and I, respectively. Use the canonical distribution to
obtain the mean energy and the heat capacity of the system.
Rare earth ions in a crystal have three doubly degenerate
energy levels at 0, A, and 3A. If the host crystal is in contact
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with a heat bath at temperature T, use the canonical distri-
bution to obtain the mean energy of a rare earth ion. If there
are n rare earth ions in the crystal, show you would obtain
their contribution to the low temperature heat capacity.

10.8 N localized noninteracting S = 1 spins with moment u are
situated in a magnetic field B and are in contact with a heat
bath at temperature T. Use the canonical distribution to
obtain the mean energy of the system and the magnetiza-
tion as a function of T. Sketch the form of the magnetization
curve as a function of uB/k;T and give a qualitative expla-
nation of its features. Compare your results with those for a
spin § = 1 system.

10.9 A nonideal spin system consisting of N ions per unit vol-
ume with spin S = 1 and magnetic moment y is situated
in an applied field B. In the mean field approximation, the
energy of each spin is given by ¢, = 2m(uB + kyaM/Ny),
where m takes values + 3 and - 4. The second term in par-
entheses is an effective local field with the parameter @ an
effective temperature. Write down the partition function for
the system and obtain an expression for the energy E = -Nx
tanh px, where x = (uB + kyaM/Nu). By making suitable
approximations obtain the magnetization M and the mag-
netic susceptibility in the high T, low B limit with M << Npu.
Compare your expression for the susceptibility with that
given by the Curie-Weiss law.

10.10 A system of Nlocalized spins in a solid is in thermal contact
with the lattice at temperature T. Each spin has an electric
quadrupole moment, and the electric field gradient associ-
ated with the crystal field gives rise to two doubly degener-
ate energy levels with energies —¢ and ¢, respectively. Write
down the partition function for the system and use the
expression to find the mean energy (E) as a function of T.
Sketch the behavior of (E) with T.

10.11 Consider a system of N noninteracting localized spins
(S =1) at temperature T in a magnetic field B. Each spin has
two quantum states, and the probability of occupation of
these states depends on B and T. Use the Boltzmann defini-
tion of the entropy to obtain an expression for the entropy of
the system as a function of the probability p, of occupation
of the lower energy state for p, in the range 0 to 1. Generate
a plot of S versus p, and briefly discuss its form.






CHAPTER 11

The Grand Canonical
Distribution

11.1 INTRODUCTION

In Chapter 10, the three important ensembles that are used in statis-
tical physics are introduced and discussed. In particular, the canonical
ensemble approach is considered in some detail. In Chapter 5, the micro-
canonical ensemble provides the basis for the microscopic description of

an ideal gas and an ideal spin system. The grand canonical ensemble,
which completes the ensemble set, is discussed in the present chapter.
For this case, both energy and particles can be exchanged with a res-
ervoir. In Section 10.8, it is pointed out that, for systems consisting of
macroscopically large numbers of particles, we can choose whichever
ensemble is most convenient for a particular calculation. This is because
fluctuations in energy and particle number are negligibly small for large
systems in contact with a reservoir. In deriving the quantum distribution
functions, it is convenient to use the grand canonical ensemble, and this
is done in Chapter 12 for systems of fermions and bosons. This approach
avoids the constraint on particle number and introduces the chemical
potential into the distributions in a straightforward way. Before introdu-
cing the grand canonical distribution, we first consider the equilibrium
conditions for two systems that interact thermally, mechanically, and via
particle exchange.

221
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11.2 GENERAL EQUILIBRIUM CONDITIONS

In Section 5.2, the equilibrium conditions for two systems in thermal con-
tact are obtained. To arrive at the general equilibrium conditions for two
systems that interact via thermal, mechanical, and particle exchange pro-
cesses, we again use accessible states considerations from Chapters 4 and 5
as our starting point. Figure 11.1 shows a container separated into two
parts by a movable, thermally conducting, porous piston.

The number of accessible states for the combined system is

Q(E,V,N) = Ql(Eb\/l)Nl)QZ(EZaVZaNZ): (111)

subject to the constraints

E=E1+E2, V=‘/1+V2, N=N1+N2, (11.2)

which correspond to fixed total energy E, total volume V; and total particle
number N, all being kept fixed. From the entropy definition, S = k;In €,
Equation 11.1 may be written in the alternative form

S(E,V,N) = Sl (Ela‘/I)Nl) + Sz(Ez,Vz,Nz). (11.3)

The entropies of systems 1 and 2 are added to give the entropy for the
combined system, as required for an extensive quantity. In equilibrium,

— [

Conducting porous
piston

FIGURE 11.1 Two systems interacting via thermal, mechanical, and parti-
cle exchange processes. The movable piston is made of thermally conducting
material and is equipped with small channels through which particles can be
exchanged. In equilibrium, the temperatures, pressures, and chemical potentials
of the two systems are equal.



The Grand Canonical Distribution m 223

according to the second law, the entropy is a maximum. It follows that

d5=0=(asl) dE1+(asl) dv1+(351) dN,
dE, VLN Vi E1,N; IN, EILVi

+("’S) dE2+(852) dv2+(332) dN,. (114)
aEz V2,N» a‘/z E;,N, aNz E»\V2

The constraints given in Equation 11.2 imply that dE, = KdE,, dV, =
XdV,, and AN, = KdN,. Equation 11.4 may therefore be rewritten as

o e o R I
0E, 0E, A% aV, N, 0N,

1
With the definitions given in Section 3.12 on the basis of the general
form of the fundamental relation, this equation becomes

(1_1)dEl+(Pl_PZ)dVl_(ml—mz)le=0. (11.5)
L T T

Because dN,, dV,, and dE, are independent and arbitrary in magnitude,
all coeflicients in Equation 11.5 must be identically zero. The equilibrium
conditions therefore become

=T, A=P, m=m,. (11.6)

In equilibrium, the temperatures, pressures, and chemical potentials of
the two subsystems are separately equal.

11.3 THE GRAND CANONICAL DISTRIBUTION

In Section 10.4, the canonical distribution is derived for a system in ther-
mal contact with a large heat bath at temperature T. We follow a simi-
lar approach in obtaining the grand canonical distribution for systems
in thermal and diffusive contact with a large reservoir. Consider a small
system in both thermal and diffusive contact, through a fixed permeable
wall, with a large reservoir at temperature T'and with chemical potential .
Figure 11.2 depicts the situation.
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[

FIGURE 11.2 A small system 1 in thermal and diffusive contact with a large
reservoir 2 at temperature T and with chemical potential u.

The grand canonical ensemble consists of a large number of replicas of
the combined small system 1 plus reservoir 2. As shown in Section 11.2,
in equilibrium T, = T and y, = u, where T and y refer, respectively, to the
temperature and chemical potential of the reservoir. Because of the large
size of the reservoir, T and y may be regarded as constant in any exchange
of energy and particles between the reservoir and the small system.

Let system 1 be in a particular state with energy E, and number of par-
ticles N,. The probability of this state is, from the fundamental postulate,
proportional to the total number of accessible states.

P(E;,N;) « Q,(E, - E;, Ny = Ny), (11.7)

where E; = E, + E, is the total energy and N; = N, + N,, the total number
of particles for the combined system plus reservoir. Using the definition of
the entropy S = k;In Q, Equation 11.7 is written in the form

P(EDNI’)O(eXP(klSZ(EO_EI’NO_Nl))- (11.8)
B

Because E, > E, and N, > N,, we can to a good approximation expand S,
in a Taylor series in two variables about E; and N, and retain only first-
order terms. This gives

aS aS
sz(Eo—EI,NO—N1)=SZ(EO,NO)+(2) (—El>+( ) (=N)) 4
2/ N, aNZ Eo
= Sz(Eo,No)—% + le. (11'9)
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In Equation 11.9, use has been made of the relationships 1/T = (dS/JE),
and X u/T = (dS/0N);; that follow from the general form of the fundamen-
tal relation given in Chapter 3. Substitution of Equation 11.9 into Equation
11.8 giVGS P(El,Nl) o e(l/kB)Sz(Eo,No)e—(llkBT)[El—le].

Because S,(Ey,N,) is constant, this quantity may be absorbed into the
proportionality constant, which is determined from the normalization con-
dition 2, y, P(E;,N;) = 1. This leads to the grand canonical distribution

eb[le ~E |

P(El,N1)=?, (11.10)

7 = Zeb“"’“‘“ (11.11)
14V1

is the grand partition function or grand sum. If the number of particles N,
is kept fixed, by blocking particle exchange, the factor ™' may be taken

where

outside the summation for Z and cancelled with the same factor in the
numerator. In this way, the canonical distribution Equation 10.29 is recov-
ered, thatis, P(E,) = e??/Z with Z = = Ele'bEl. The exponential function
e PEis called a Boltzmann factor, whereas e?™ 175 is called a Gibbs factor.

In both the canonical and grand canonical distributions, the probability
for the small system to have energy E, decreases exponentially as a function
of E,. This reflects the rapid decrease in the number of accessible states, and
hence the entropy, for the combined system because energy is transferred
from the large reservoir to the small system 1. To understand the depen-
dence of the grand canonical distribution function on particle number N,
it is necessary to determine the chemical potential u for the system of inter-
est. In general, regions of high particle density have a higher u than regions
of low particle density. This is determined by the convention adopted in the
definition of u, where a negative sign is introduced, with u =KXT (0S/0N) B,V
From this relation, and the definition of F, it is easily seen that = (9F/dN)y, v
gives a convenient alternative expression for determining u. From Equation
5.17 we obtain, for a classical ideal gas, the result

m=kgTIn[(N/V)(4pmE/3Nh*)™"*] = kg T [In(Vo/V,y) = C].

Because V,, < V,, it follows that u is negative for a classical ideal gas.
In Chapter 12, the chemical potential for ideal Bose and Fermi gases is
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discussed together with the evolution of u toward the classical form with
temperature. For a large classical gas system that is not in equilibrium,
particles will transfer from regions of higher u (less negative correspond-
ing to smaller V,, i.e., higher particle density) to regions of lower y until
equilibrium is achieved. Further discussion of the chemical potential is
given later in this chapter. In the grand canonical distribution, the num-
ber of accessible states decreases rapidly as particles are transferred from
the reservoir to the small system. To allow for a possible dependence of
the energy states of system 1 on the number of particles in the system, it is
appropriate to write E, = E, ().

11.4 THE GRAND CANONICAL DISTRIBUTION
APPLIED TO AN IDEAL GAS

The expressions given in Section 11.3 for the grand canonical distribution
and the grand partition function (grand sum) are quite general, and it is
helpful to consider a specific system to see how the summations are car-
ried out. The eigenstates for an ideal gas are those for a particle in a box,
as discussed in Section 4.3. Let the states be labeled by a set of quantum
numbers denoted r. Because the particles do not interact, all particles have
the same set of single particle states. The states may be occupied by zero,
one, or more particles, depending on the quantum statistics which the
particles obey.

For a noninteracting system of particles, the grand sum Z given by

Equation 11.11 may be written as

_ b[mN\-E1] _ blmm -me +mn ~me + ]
Z—Ze 1 1—26 ) (11.12)

1,41 nn2 ..

where n, is the number of particles in state 1 with energy ¢, n, is the
number in state 2 with energy ¢,, and so on. The chemical potential u is
assumed constant with the system in equilibrium. Equation 11.12 may be
rearranged as follows:

’ _ Ee_bm(q—m)ze—bnz(ez—m),,.=Hr [E e‘b”"e*"ﬂ. (11.13)
n "

n

Equation 11.13 shows that the grand sum can be written as a product of
factors for each single particle state . The values taken by n, depend on
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whether the particles are fermions or bosons. Evaluation of the summa-
tions for these cases is dealt with in Chapter 12. In the next section, we
shall see that mean values of physical quantities may be obtained from
InZ. For the ideal gas, we have from Equation 11.13 the useful result

InZ = E [lnz e‘b"’(e"m)}, (11.14)

hy

The quantum distribution functions are obtained in Chapter 12 with use
of Equation 11.14.

11.5 MEAN VALUES

To calculate mean values from InZ, we use the general form
Equation 11.11

InZ = In[Z, y,e®m™ 5],

The mean number of particles in system 1 is

(Ny) = ZNIP(El,Nl) = ;(aan)‘ (11.15)

Jm

The form for InZ given in Equation 11.14 for an ideal gas leads to the
same result (N) = 1/b(dInZ/dm) = X, (n,) where we can identify (N)
with (N).

Exercise 11.1: Use the expression for Z in Equation 11.11 to obtain the differ-
ence between the mean energy and the mean particle number multiplied by
the chemical potential.

From Equation 11.11, we have InZ = In[Z; ye®™ '], where the subscripts on
N and E have been omitted to simplify expressions. On differentiation of InZ
with respect to g and with a change in sign, we obtain the required result

dlnZ
_ = - . 11.16
% )= IN 116

In Chapter 10, we have shown that the mean energy may be obtained from
Z using Equation 10.34 (E) = - 9In Z/db. It is clearly desirable to establish
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a relationship between InZ and InZ, and this is done in the following
section.

11.6 RELATIONSHIP BETWEEN THE PARTITION
FUNCTION AND THE GRAND SUM

In the case of the canonical ensemble, energy fluctuations were shown to
be of order 1/4/N. For the grand canonical ensemble, the fractional devia-
tions in E, and N, for system 1 are expected to be

Sg 1

(E) JNi

(11.17)

and

(11.18)

where o; and oy, are the standard deviations from the mean in energy
and particle number, respectively. A detailed discussion of fluctuations is
given in Chapter 12 for the quantum distribution functions. Because the
fluctuations are very small, of the order of parts in 10" for large N X N,,
the canonical ensemble and the grand canonical ensemble are, to an
excellent approximation, equivalent, as pointed out in Section 10.8. This
means that, even if the number of particles in a system is kept constant,
it is permissible to use the grand canonical ensemble and grand sum in
the calculation of quantities of interest. This is of considerable assistance,
for example, in the derivation of the quantum distribution functions.
Replacement of N, by N, in Equation 11.11 with allowance for a sharply
peaked distribution in N, gives, to a good approximation,

bmﬁl -bE;
Z=ANe Ee ’ (11.19)

where AN, is the width of the distribution. Figure 11.3 depicts the prob-
ability distribution in N;, and the approximation we make in Equation
11.19 replaces the sharply peaked Gaussian distribution by a narrow rect-
angular distribution.

Taking logarithms of both sides of Equation 11.19 leads to

InZ = bmN, +InZ + In AN,. (11.20)
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N, N,

FIGURE 11.3  Probability distribution P(N)) in the grand canonical ensemble
showing the sharp peak at N,. The width of the distribution in the figure has
been greatly exaggerated for clarity.

The term In AN, is found to be much smaller than the other terms in
Equation 11.20 and, as an excellent approximation, may be neglected.
Equation 11.20 becomes

InZ=InZ- bmN, (11.21)

where N has been replaced by N, the fixed number of particles in the sys-
tem of interest. Equation 11.21 shows that In Z may be obtained from InZ
by subtraction of fuN. Z is calculated without any constraint on particle
number, which is an advantage that we make use of in the derivation of the
quantum distribution functions. The mean energy may be obtained from
either In Z or In Z as follows:

dlnZ dlnZ
ob b

(E) = +mN. (11.22)

11.7 THE GRAND POTENTIAL

Two bridge relations have been established between the microscopic and
macroscopic description of many particle systems. For the microcanoni-
cal ensemble, we have S = k;InQ (Equation 5.12) and, for the canonical
ensemble, F = Mk,T InZ (Equation 10.48). It is natural to ask whether a
similar relation exists between the grand sum Z and a thermodynamic




230 m Statistical and Thermal Physics: An Introduction

Q(E,N)e’mE’”N)
A

FIGURE 11.4 The product Q (E, N)e¥#%N) ag a function of E and N shows a very
sharp peak at E, N.

potential? The following relationship is found to hold:
Qs = -kyT In Z, (11.23)

where Q is defined as the grand potential and is not to be confused with the
number of accessible states Q. To establish Equation 11.23, it is convenient
to adopt an approach similar to that used in the derivation of Equation
10.48 in Section 10.6. We write Z in the form Z = 3y Q(E, N)e 2~
where Q(E, N) is the number of accessible states for the system in the joint
energy-particle number range E to E + §E and N to N + 6N. The product
Q(E, N)e® (B:N) is sharply peaked around the most probable values E and
N, as shown in Figure 11.4.

The number of accessible states increases rapidly as a function of both
E and N, whereas e® ®#N) decreases rapidly as a function of these quan-
tities. (In examination of the exponential factor, it is helpful to bear in
mind that g = ¥1/§ (dln ©/0N);, and in the classical limit 4 is negative.)
To a good approximation, the grand sum may be written as

Zzg(g,ﬁ)e—b(f—nﬂ?) (AE\ (AN , (11.24)
\dg/\aN)/
where AE and AN represent the half-height dimensions of the sharply
peaked function.
Taking logarithms of both sides of Equation 11.24 gives

InZ =InQ(E,N) - bE + me+ln(%) +ln(3—z) . (11.25)
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On the basis of arguments similar to those used in Section 10.6, we
neglect the last two terms in Equation 11.25 because they are very small
compared with the other terms. For N large, it may be expected that fluc-
tuations in particle number and energy will be very small, as shown in
Equations 11.17 and 11.18. The most probable values Eand N are replaced
by E and N because these values are effectively fixed. From Equation 11.25,
with § = kg InQ, we get

—kyTInZ = E~TS - mN. (11.26)

The grand potential is defined as

Q; =E-TS-mN =F-mnN, (11.27)

and this, with Equation 11.26, gives
QG = —kBTan. (1128)

This is the third important bridge relationship between microscopic and
macroscopic descriptions. The Gibbs potential is defined in Equation 7.3
as G=EN TS+ PV, and in terms of the chemical potential for a single com-
ponent system G = uN, as shown in Section 7.5. This result, with Equations
11.26 and 7.3, leads to Q;= FX G =X PV and, from Equation 11.28,

kgT'InZ = PV. (11.29)

Equation 11.29 is particularly useful in the determination of equations of
state for single component systems for which Z can be calculated. Examples
are given in later chapters.

Exercise 11.2: Show that the expression ksTInZ = PV in Equation 11.29 can be
derived from the Boltzmann definition of entropy, given in Equation 10.56 as
S = -ks=.p, Inp,, together with the grand canonical distribution.

The probability of finding the system in state r, with energy E
and particle number N, is p, = P(E,N) = e®*#*N/7Z, and this gives
S = — (kg /Z) e nl-bIE = uN) =In ZJe™®E#Y 1t follows that the entropy
becomes

S = VT Z)EeNE - pN)e ™™ Y+ (kg/Z)(INn Z) Zp e 2N,

and this expression can be rewritten as

5= (E)-pN) + ke nZ, (11.30)
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where (E£) and (N) are, respectively, the mean energy and the mean particle
number for the system. From Equation 11.30, with replacement of (£) and (N )
by fixed values E and N, because fluctuations are extremely small, we obtain

—ksTINZ = E-TS - uN = Qg, (11.31)

as required. Note that Q, like the other thermodynamic potentials, is an exten-
sive quantity.

Exercise 11.3: Show that the entropy S, the pressure P, and the particle number
N may be obtained as partial derivatives of Q.
The differential of Q. is

dQc = dE-T dS-SdT -y dN =N dp. (11.32)

The fundamental relation in the form given by Equation 3.26 for a single
component system is TdS=dE+PdV-pdN that, when combined with
Equation 11.32, gives

dQc =-PdV -5dT -N dp. (11.33)

It follows that

P=_(696) /N=_/390\ . and 5=_(8976) '
v ), | o )w T )y,

These relationships show that thermodynamic quantities of interest
may be obtained once an explicit form for Q.(V, T, u) has been obtained
from the grand sum Z. The procedure is analogous to obtaining thermo-
dynamic quantities from F (T, V) in the canonical ensemble approach, as
mentioned in Chapter 10.

The discussion of the grand canonical distribution and the grand sum
given in this chapter is rather formal, but the results obtained will prove
extremely useful, for example, in deriving the quantum distributions. As
pointed out previously in application of these expressions to systems of
delocalized particles, care must be taken to allow for the quantum statis-
tics that the indistinguishable particles obey. In the next chapter, we allow
for the fermion or boson nature of the particles.

We now have the basic expressions of equilibrium statistical mechan-
ics that will permit us to obtain useful descriptions for a wide variety of
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systems. The microcanonical ensemble (€2, S) and canonical ensemble
(Z, F) approaches have allowed us to obtain results for an ideal spin sys-
tem of localized, distinguishable spins. In Chapter 5, the microcanoni-
cal ensemble approach was used to treat the case of an ideal gas. In the
calculation of Q (S), and hence S, for an ideal gas of indistinguishable par-
ticles, we introduced a factor 1/N! to correct for overcounting of states. In
Section 10.10, it is pointed out that the partition function obtained in the
classical limit of both the Fermi-Dirac and the Bose-Einstein quantum
distributions leads to the correct expression for the Helmholtz potential
and hence the entropy without any need for a correction factor, as we shall
find in Chapter 12.

PROBLEMS CHAPTER 11

11.1 Consider a system in thermal and diffusive contact with a
reservoir at temperature T and with chemical potential p.
Show that the mean energy (E) and mean particle num-
ber (N) are related to the grand partition function Z by the
expression (E)—{N)m = - 9InZ/db. If particle exchange
with the reservoir were prevented, how would this expres-
sion change?

11.2  Use the Boltzmann definition of the entropy S to show that
S=WUTE)-m(N)] + kgInZ.

11.3 Obtain an expression for the Helmholtz potential and hence
the chemical potential of a localized ideal spin system at
temperature T in a magnetic field of induction B. Obtain
the form of the chemical potential in the high B/T and low
B/T limits. Sketch the behavior of the chemical potential for
the system as a function of B/T.

11.4 In Chapter 16, the following expression is obtained
for the partition function for a classical monatomic
ideal gas Z = ZV/N! with the single particle parti-
tion function, z given by z = V(mkT/2ph*)=(V/Vy).
In Chapter 5, it is shown that the chemical poten-
tial for a monatomic ideal gas in the classical limit is
m=kyT[In(N/V) - 3In(4pmE/3Nh*)] = kgTIn(V,/V4).Use
the approximate relationship between InZ and In Z to show
that InZ = N in the classical limit.

11.5 Use the result for the grand partition function obtained
in Question 11.4 together with the grand potential
Q. = —kgT'InZ to obtain the ideal gas equation of state.
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11.6

11.7

11.9

A classical gas of N particles is contained in a volume V.
Show that the probability of n particles being in a small
subvolume v of the gas is given by the Poisson distribution
P(n) = " &/n!, where n = Np = N(v/V) is the mean num-
ber of particles in the subvolume v.

For the situation in Question 11.6, give an expression for
the fractional deviation in the number of particles in the
subvolume v from the mean value. If the volume V=2 L
and N = 6 x 102 molecules, give an estimate of the volume
ratio v/V and the linear dimensions of the subvolume for the
fluctuations to be of the order of one part per million.

Two equal volumes designated 1 and 2, each of which con-
tains a quantity of a classical monatomic gas at the same
temperature, are connected by a valve that is closed. If the
pressures are initially unequal with P, = 2 P,, establish a
relationship between the chemical potentials 1, and u,. Give
a qualitative description of the approach to equilibrium, in
terms of changes in pressure and chemical potential, when
the valve is opened.

For the situation described in Question 11.8, obtain expres-
sions for the grand sum of the composite system before and
after the valve is opened.
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cHAPTER 12

The Quantum
Distribution Functions

12.1 INTRODUCTION: FERMIONS AND BOSONS

In nature, two different classes of particles are found, called fermi par-
ticles, or fermions, and bose particles, or bosons, respectively. Fermions
have half-integral spin angular momentum (3} 7,3 7, ...) and obey the Pauli
exclusion principle. Examples are electrons, protons, neutrons, and *He
atoms. Bosons have integral spin angular momentum (0,%,27,...) and
do not obey the Pauli exclusion principle. Examples are photons, pions,
deuterons, and *He atoms. It is extremely important in the development
of theoretical expressions for many particle delocalized systems that the
indistinguishability of particles, be they fermions or bosons, is properly
taken into account.

Consider a pair of particles that may be either two fermions or two
bosons. The Schrédinger equation for the system is written in terms of the
Hamiltonian operator for the system as

H(1,2)e(1,2) = Ec(1,2), (12.1)

where 1 represents the coordinates of particle 1 and 2 the coordinates of
particle 2. The Hamiltonian H(1,2) must be symmetric under particle
interchange because of the indistinguishability of the particles, giving

H(,2) = H(2,1). (12.2)

237
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The pair wave function X(1, 2) may be either symmetric or antisym-
metric. This can be seen by introducing the permutation operator P,,,
which permutes the coordinates of the particles.

Application of P, in succession to the pair wave function gives P,,
X(1,2) =M (1,2) and P2 X(1,2) = 1% (1, 2) =X (1, 2).

It follows that A° = 1 and P,, has eigenvalues A = 1. Properly normal-
ized symmetric and antisymmetric pair wave functions are

c, - jz[0(1,2)+ c(2,1)] 12.3)
and
C, = \15[0(1,2)— c(2,1)]. (12.4)

For N particles, the generalized symmetric and antisymmetric wave func-
tions are given in terms of the permutation operator P,, which permutes the
coordinatorof vparticlessimultaneouslyas €; = (1/ JNH[EN P e, 2,...,N)]
and €, = (1/~/N)[2X, (-1)" B,€(1,2,...,N)]. These general results are not
required in our treatment of quantum statistics and are given here for
completeness.

The Hamiltonian for two noninteracting particles may be separated as
follows, H(1, 2) = H(1) + H(2). The particles have energy eigenvalues given
by H(Dh,(D) = E,, $,,(1) and HQ2) $,Q) = E, ¢, (2), where (1) and ¢,(2)
are single particle wave functions. The symmetric and antisymmetric pair
wave function may be written in terms of the products of single particle
functions as

(£,(1)£,(2) = £, (1) £, (2)]. (12.5)

Operation on Xnm with the Hamiltonian H(1, 2) gives the eigenvalues
E, + E,. In Equation 12.5, the plus sign applies to bosons and the minus
sign to fermions. For fermions, X».m vanishes for m = n, which is an expres-
sion of the Pauli principle that no two fermions can have identical quan-
tum numbers.

For N noninteracting particles, the symmetric and antisym-
metric wave functions are given in terms of single particle wave
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functions by €, =[1/\/N!m,!m,!]1Z,B, £, (1)£,(2) -+ £p(N) where n,, n,,...
are the numbers of particles associated with a particular eigenvalue and
S, =[1/NZ(-1)" R.£,(D£,(2) -+ £(N).

Before the development of quantum mechanics, the question of indis-
tinguishability of particles was not properly taken into account. Classical
ideas were used in what is called the Maxwell-Boltzmann (MB) statis-
tics. In contrast to the symmetry requirements for systems of fermions
and bosons, as outlined above, MB statistics ignores these requirements.
At high temperatures and low densities, classical statistics works well
because of the sparse occupation of accessible states, as discussed in
Section 4.3.

The MB statistics is therefore an approximation to the true particle sta-
tistics and is applicable only in situations when most states are empty with
some states occupied by a single particle and very few states, in the case
of bosons, occupied by more than one particle. It follows that for systems
in the classical limit, the statistics that the particles obey are no longer of
crucial importance in our calculations.

Exercise 12.1: Two noninteracting particles have four accessible quantum states
in which they may be found. Give the wave functions, assuming the particles
obey (a) Fermi-Dirac (FD) statistics, (b) Bose—Einstein (BE) statistics, and (c) MB
statistics.

(@) For fermions obeying FD statistics, the wave functions are antisymmet-
ric. €, = (1/2)[£,(W£,(2) - £NE£, ()], with m = n. Indistinguishable
states are counted only once. Distinct states are (m =1, n=2,3,4),
(m=2; n=3,4), (m=3; n=4), giving a total of six wave functions
for the six distinct states.

=

For bosons obeying BE statistics, the wave functions are symmetric.
C = AN2)E,(ME,Q2) + £ME,(2)]. The distinct states are (m = 1;
n=12,3,4),m=2,n=2,3,4,(m=3;n=3,4),and (m=4; n=4),
giving a total of 10 wave functions.

g

For particles obeying MB statistics, the wave functions are € = £,,(1)£,(2),
withm=1,2,3,4andn=1, 2, 3, 4, giving a total of 16 wave functions.
The indistinguishability of particles is not taken into account.

It is of interest to consider the following ratio for the three cases,
r = (number of states with m = n) number of states with m = n). Calculation of
the ratios gives (@) ryp = 0/6 = 0 (b) rg; = 4/6 = 0.66 and (0) rys =4/12 = 0.33.
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The ratio for BE statistics is enhanced compared with the MB ratio, whereas
for the FD statistics, the ratio is zero because of the exclusion principle. The
tendency of bosons to clump together in the same state is important particu-
larly when the energy of the system is very low.

12.2 QUANTUM DISTRIBUTIONS

Consider a system of N noninteracting particles, which may be either fer-
mions or bosons, in a container of fixed volume V and in thermal con-
tact with a reservoir at temperature T. The particles possess single particle
states labeled r. To calculate quantities of interest, such as the mean num-
ber of particles in a given quantum state, we require the partition function

evaluated in the canonical ensemble. From Equation 10.30,

7= Ze-” - 2 g blrermer] (12.6)

ny,N2,...

where the 7, are subject to the constraint N =K, »,. This constraint intro-
duces a complication in the evaluation of Z. Previously, it has been noted
that, for large systems, it does not matter which ensemble is chosen in the
calculation of mean values because fluctuations in observable quantities
are extremely small.

In the derivation of the quantum distribution functions, it is advanta-
geous to work in the grand canonical ensemble and to calculate the grand
sum Z because this avoids the constraints on N. From Equation 11.14,

InZ=%,In%, e %], where 4 is the chemical potential. Evaluation
of In Z may be carried out immediately for FD statistics, where n, =0 or 1
only for all r, giving

InZygp = E In[1+ eb(’""s’)]. (12.7)

For BE statistics, n, = 0, 1,..,00 for all r giving InZg; =
2, [Inx?_ e o),

The sum may be evaluated as a geometric series, as discussed in
Appendix A, with the ratio of successive terms simply e™>™™, so that
3= eblemm) g emblemm) y p2blamm) (/1 - e Py,

n,=0

This gives for the BE case
InZgg = —Eln [1-e?lme)), (12.8)
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The grand sum may therefore be written inclusively as

InZ = iE In[l + 2™y, (12.9)

where the plus signs apply for the FD statistics and minus signs for
the BE statistics. The mean number of particles in state r is given by

(n)y=QU/7)Z, n,e” (™ %) With the values of p and u fixed by the reser-
voirs with which the systems in the ensemble are in contact, we obtain the
convenient form,

190InZ

<nr> =T

b de

(12.10)

Equation 12.10 with In Z from Equation 12.9 gives the important result for
fermions and bosons

1
()= amm (12.11)

where the plus sign again applies to FD statistics and the minus sign to BE
statistics. The change of sign in the denominator provides a crucial dis-
tinction between the two distribution functions. A further very important
difference involves the behavior of the chemical potential 4 for the differ-
ent particle statistics.

12.3 THE FD DISTRIBUTION
For the FD statistics, Equation 12.11 gives the FD distribution

1
(n,)= m’ (12.12)

where the chemical potential y is a function of temperature. At low tem-
peratures, as we shall see, u is positive and large compared with1/ b = kgT.
From Equation 12.12, a number of special values for ( #,) apply, dependent
on the value of ¢, in relation to u. For €, < u, we see that (n,) ~ 1, whereas
for e,=u, (n,) = 0.5 and for &, > p, (n,) = 0. Figure 12.1 shows the form
of the FD distribution for T=0 K and for T'> 0 K, with k,T <« u.
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FIGURE 12.1 The FD distribution function for T = 0 K (dashed line) and for
T> 0K (full line). At 0 K, (#,) drops abruptly from 1 to 0 for &, = u = e, whereas
for T> 0K, the distribution decreases from 1 to 0 smoothly over a range of energy
~kT. The Fermi energy & is the value of pat T'= 0 K.

The distribution shows that, at zero temperature all states up to a maxi-
mum energy, called the Fermi energy ¢, which is the special name given
to u at 0K, are filled with a single fermion and all higher states are empty.
This distribution is required by the Pauli exclusion principle. At finite tem-
peratures, states near £, are only partly occupied on average because ther-
mal excitation transfers some fermions with ¢ < ¢, to states with € > ;.
Figure 12.2 shows an energy level diagram depicting the finite tempera-
ture situation.

At high temperatures, the chemical potential decreases and the dis-
tribution changes its form dramatically. This behavior is discussed in
Chapter 13.

12.4 THE BE DISTRIBUTION
The BE distribution obtained from Equation 12.11 has the form
(n,y=1/[e"*™™ -1],

In contrast to the FD case, where y is large and positive at low tem-

peratures, the chemical potential is always negative or at best close to zero
(i.e., u<0) for boson systems. u is, in general, a function of T and becomes
very small as T'— 0 K. This has important consequences that are dis-
cussed in Chapter 14. In particular, the BE condensation phenomenon
is examined. As discussed above, for bosons more than one particle may
occupy the same single particle state r, with (#,) > 1. Figure 12.3 gives a
representation of the BE distribution for some finite temperature.
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FIGURE 12.2 The diagram shows the energy level occupation diagram for a sys-
tem of noninteracting fermions at a finite temperature. Full occupation of the
low energy states occurs with partial occupation of states for energies close to the
Fermi energy. For T > 0 K, thermal excitation leads to the transfer of fermions to
states above 5.

T>0K

FIGURE 12.3  The BE distribution function representation for two temperatures
T > 0 K. The ground state (¢ = 0) is excluded.

In discussing the quantum distribution functions, we have for con-
venience chosen the lowest state to have energy zero. Introducing a small
finite energy K for the ground state simply changes the values taken by the
chemical potential slightly. For the BE case, for example, we would have
1 — N rather than g — 0 as the temperature tends to 0 K.

12.5 FLUCTUATIONS

In Section 11.5, it is argued that fluctuations in energy and particle num-

ber are extremely small in the grand canonical ensemble. We now examine
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particle number fluctuations for ideal Fermiand Bose gases. For a noninter-
acting gas of fermions or bosons, it is sufficient to obtain an expression for
the fluctuations in the mean particle number (#,) because (E) = 2,(n, )&,
and energy fluctuations are linked to particle fluctuations. As discussed in
Chapter 10, the dispersion in n,is given by 5,2 = (17 ) = (1, )*, where in the
grand canonical ensemble the mean values are given by

dlnZ
< nr > = IE nrebnr(m_er) = _l = 1 5 (1213)
7 b de  ePlem g

and

9*InZ 9lnZ\’
+( ) (12.14)

de’ de

() (2

(Use has been made of the identity 92 InZ/9e. = (1/Z)(3*Z /e ) —(1/Z?)
dZ/deY)

The above expressions give s, =(1/b*)(0°InZ/d€’) and, with
Equation 12.10, we obtain

S = _(1) - (1) [b(l_am) eb(m_q)} bl L2 (12.15)

b} de b e

If it is assumed that dm/de =0, generally a good approximation, it fol-
lows with use of Equations 12.13 and 12.15 that

[eb(m—e,) + 1]

2 _ 1 _ —_ 2 Snr — L_
Sy = [e?(ne) L 1P + [eP(m2) L 1] =(n,)F(n,)" or n, Y = [<nr> +1

(12.16)

where the minus sign applies to fermions and the plus sign to bosons. For
fermion systems, we have seen that, for comparatively low T,(n,) = 1, except
for states with energies close to u. Equation 12.16 shows that, for fermions,
the fluctuations are vanishingly small for most states, as might be expected.
It is only for states near the Fermi energy that fluctuations are significant.
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For bosons at low temperatures, (n,) > 1 for the lowest energy states
and fluctuations become rather large, with the ratio in Equation 12.16
approaching unity. The large fluctuations in boson occupation of states
are associated with the tendency of bosons to clump in the same state as
mentioned in Section 12.1. At very high temperatures, when (n,) < 1
for both fermion and boson systems, the classical limit is obtained with
Si /[(n, Y’ =1/n,). Although fluctuations in the particle number, for a
particular state, can be very large for bosons, it is important to note that
fluctuations in the total number of particles in the system remain very
small. For a complete systems of particles, we have s} = (N*) —(N)?, with
(N)=2,(n,) and (N*) = X,(n}), because the probabilities of occupation
of different states are statistically independent. In the classical limit, it fol-
lows that s y*/{N)* =1/(N) and hence

SN 1

(N) ()

Equation 12.17 shows that, in the classical limit, fluctuations in the total

(12.17)

particle number are very small for large systems. For an FD system at
low temperatures, fluctuations in N will be extremely small because fluc-
tuations are vanishingly small for each state of the system as shown by
Equation 12.16, with (#n,) = 1. Fluctuations in N for the BE systems at low
temperatures are also small when averaging is carried out over a large
number of states. A case of interest arises for bosons when T — 0 K and
the ground state population becomes comparable to N. It is necessary to
allow for dm/de = 0 in a description of this behavior in the low T limit.
The BE condensation phenomenon, which occurs at very low tempera-
tures, is discussed in Chapter 14.

12.6 THE CLASSICAL LIMIT

As shown above, the FD and the BE distributions are given by

(n, )= 1/(eb(e’ ) 4 1) (Equation 12.11), with the plus sign for FD and the
minus sign for BE statistics. The chemical potential u has very different
values for the Bose and Fermi systems. For a fixed number of particles N,
the condition 2,{n,) = N is used to determine u. This is discussed in detail
in Chapters 13 and 14. Figure 12.4 gives a schematic representation of the
behavior of u with temperature for the BE and FD systems.

For the FD statistics, u is positive at low temperatures, decreases
with increase in temperature, and becomes negative at sufficiently high
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€F FD

BE

FIGURE 12.4 Schematic representation of the temperature dependence of the
chemical potential u for FD and BE statistics. At high T'in the classical limit, the
1 values converge.

temperatures. For the BE statistics, u is always negative but approaches
zero as T — 0 K. This behavior ensures that (n,) is positive for all values
of ¢, including ¢, = 0. The values of u for BE and FD statistics converge at
high temperatures. This is indicative of an approach to the classical limit
value given in Equation 5.17.

It is convenient to introduce an exponential function of u defined as
1 = ¢ and termed the fugacity. The quantum distributions may then con-
veniently be written as

1

U= gy

(12.18)

In the classical limit, when u is large and negative, 17! >1and (n, ) < 1.
It is reasonable to conclude that the +1 in the denominator is negligible
compared with 17" in this limit, and Equation 12.18 becomes

(n,)y=le ™. (12.19)

The condition £,(n, ) = N gives

N (12.20)
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and on insertion of A from Equation 12.20 into Equation 12.19, we recover
the familiar canonical distribution form discussed in Chapter 10,

(n.) = Eeba (12.21)

The probability of occupation of state r is

(n, _ e be
pr N E (12.22)

which is the canonical ensemble or Boltzmann probability given in
Equation 10.29.

It is a simple matter to obtain an expression for In Z in the classical limit
from Equation 11.21, In Z = InZ — fuN. On substitution for InZ, from
Equation 12.9, we obtain

InZ= :2 In[1+ Ie™]- bmN (12.23)

In the classical limit, I <«<1and the logarithm on the right hand side of
Equation 12.23 may be expanded to givelIn Z =%,1e** - NlIn 1.

Use of Equation 12.20 for A leads to InZ=N-NInN+NInZX,e ™
Taking antilogarithms and with Stirling’s approximation in inverse form
(NInN - N =InN'!), we obtain the partition function for N particles in an
ideal gas,

NI ==, (12.24)

with z the single particle partition function. In Chapter 10, it was shown
that for localized, distinguishable particles, Z = z¥. The additional factor
1/N! in Equation 12.24 takes account of the indistinguishability of parti-
cles in a gas and avoids overcounting of states. By taking the classical limit
of the quantum distributions, the factor 1/N! is introduced quite naturally
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and does not have to be inserted in an ad hoc fashion, as was done, for
example, in Section 4.5(b) in the (microcanonical ensemble) treatment of
the accessible states for an ideal gas.

12.7 THE EQUATION OF STATE

The relationship (Equation 11.29) that connects the logarithm of
the grand sum to the product PV, together with Equation 12.9, gives
PV =kyTInZ = ks TS, In[1 = 1e?*]. If the sum over states is converted
to an integral, by introducing the density of single particle states, we obtain
PV = il/bf: r(e)In[l+ Ie *]de, and with p(e) from Equation 4.14 this
leads to

3/2 o0

v 2m 1 _
PV = i(4p2b) (h—z) j; e In[l1+ le ™]de (12.25)

Integrationbypartswithf:[u dv= uv]:)o —f: v du,whereu = In[l = Ie™>]
and v = 2¢&™”, leads to

2V £ 3/2de

2m
e ()
34p° \ 1’ o 1P =1 (12.26)

It follows that

2

because the mean energy of a quantum gas is given by

> 2m\"? o ede
b ol iem ) [ S
(E) j; er(e \ 1%+ / i o 171 (1228)

Equation 12.27 is a very simple result and shows that the pressure P is
given by 3(E)/V, where (E)/V is the mean energy density in the quan-
tum gas. (E) is a function of temperature and may be determined using
Equation 12.28. Although the integral in Equation 12.28 is usually not
simple to evaluate, it is possible to obtain the form of the equation of state
in a fairly straightforward way for A < 1 at high T.
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Exercise 12.2: Show that for Fermi and Bose gases at high tem-
peratures and low densities the equation of state takes the form
PV = NkgTI15 (N /16V)(3/p)*'?(h* 3mksT)*'*1, where the minus sign is for
bosons and the plus sign for fermions.

We change the variable in Equation 12.28 to x = fle and rearrange,
with the use of Equation 12.27, to get P=(1/6p*)(2m/h*)** (1/b**) [, [x"*e
e"dx /(1= 1e7™)]. Expansion of the denominator with aid of the binomial
theorem for 2 < 1 leads to

3/2 w

1
0

The resultant integrals have the form

fw xe dx = L0+ (12.30)

0 an+1

where the gamma function is defined as
I“(n):fwx”']e'X dx (n>0). (12.31)
0

From a table of gamma functions that is given in Chapter 14, I‘(%) = (%)\/E
and F(%) = 3p. The integral in Equation 12.29 may be evaluated in terms of
I'(3), and we obtain

1 2m\?? 1
"t lw) b7

An expression for A in the classical limit may be obtained from Equation
12.20 by conversion of the sum to an integral, that is, 1f, r(€)e™de= N.
With the density of states from Equation 4.14 and change of variable to x = be,
this becomes UV/4p*(2m/k*)**1/b"* [, x"*e™dx] = N. Evaluation of the inte-

gral as T'(3) results in

ﬂo - 1 ” (12.32)

4 25/2

1= 2] (%)b”. (12.33)

Substitution for A in Equation 12.32 gives finally

3/2

PV = NkgT

p

3/2 2
N (3) ([ h ) , (12.34)

v 3mkeT |

where the minus sign is for BE statistics and the plus sign for FD statistics. This
is the required equation of state and has the form of the ideal gas equation,

1
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with correction terms due to quantum statistics. For fermions, the pressure
is higher than for a classical gas. This is linked to the exclusion principle for
fermions. For bosons, the pressure is reduced compared with that of classical
particles.

It is useful to write Equation 12.34 in terms of the quantum volume on
the basis of the thermal de Broglie wavelength 1; = h/\/3mkgT .introduced

in Chapter 4, with 1; = h/{p)and (p)=+/3mkyT from the equipartition

theorem. In terms of the quantum volume Vi, = 17 and the volume per
particle V4 = V/N, Equation 12.34 becomes

PV = Nk,T {1 +a (‘;Q) } (12.3)

A

where a is a coeflicient less than unity. The correction term becomes
unimportant when V, < V, as discussed in Chapter 4 in our estimate of
the condition for the classical approximation to hold. It is gratifying to
obtain this result using a detailed quantum statistics approach.

From Equation 12.33, we can obtain an expression for u in the
classical limit. We have 1=e™ and therefore u = k;Tln 2 = kT
(In(N/V)1; = 31In(2p/3)] = ke T [InVy/V, - 31In(2p/3)], where, as given
above, V, = V/N and the quantum volume is Vj, = (h/{p))*. This approximate
expression for y is almost the same as that obtained for the ideal gas in
Chapter 5, differing only slightly in the numerical constant. For V, < V,, the
chemical potential is negative as expected.

The quantum distribution functions derived in this chapter are
extremely useful in many areas of physics whenever what are called
degenerate Fermi or Bose fluids are considered. Degenerate in this context
means that the low-lying quantum states are heavily populated. Chapters
13 and 14 make use of the quantum distributions to predict the thermody-
namic properties of ideal Fermi and Bose gases, respectively. Chapter 15 is
concerned with photons in an electromagnetic cavity and phonons in sol-
ids. Photons and phonons obey the Planck distribution, which is similar
to the Bose-Einstein distribution but with the chemical potential x4 = 0.
Many of the results obtained in the following three chapters are compared
with experimental observations for a number of systems that obey quan-
tum statistics.
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PROBLEMS CHAPTER 12

12.1 Consider three noninteracting particles each of which
has three accessible quantum states. Determine the pos-
sible states for this system if the particles are (a) fermions,
(b) bosons, or (c) obey MB statistics.

12.2 A small system in contact with a heat bath at temperature T'
consists of two noninteracting particles, each of which has
three quantum states with energies 0, &, and 3¢. List the pos-
sible states of the small system and give expressions for the
partition function for the following situations: (a) the par-
ticles obey classical MB statistics, (b) the particles obey BE
statistics; and (c) the particles obey FD statistics.

12.3 Obtain the grand potential for both FD gas and BE gas with
the aid of the grand sum expression given in Equation 12.9.
Use the grand potential to derive expressions for the entropy
for the two quantum gases. Express your result in terms of
the mean occupancy of the quantum states.

12.4 Consider a system of N noninteracting particles at tempera-
ture T'in a container of volume V. If each particle has energy
states ¢, = ne, where n=0,1,2,3,..., obtain expressions for
the entropy per particle for distinguishable particles that
obey MB statistics.

12.5 Calculate the thermal de Broglie wavelengths for helium-4
(boson) and helium-3 (fermion) gases at T = 5 K. Find the
particle densities in these two cases for which quantum sta-
tistics must be used in considering properties of interest.
Compare the pressures of the two gases at these calculated
particle densities for equal volume containers at 2 K.

12.6 Consider a Fermi gas at a finite temperature and show that
the high energy tail of the distribution may be approximated
by the Boltzmann distribution.

12.7 Atwo-dimensional film of particles has an area A. Assuming
that the film can be treated as a two-dimensional quantum
gas, obtainan expression for the area A times the force per unit
length F exerted on a boundary. Make use of the two-dimen-
sional density of states expression r(e) de=(Am/2ph’)de.
Compare and contrast the two-dimensional result with the
three-dimensional expression Equation 12.27.






CHAPTER 13

ldeal Fermi Gas

13.1 INTRODUCTION

Armed with the Fermi distribution function and the density of states
expression for particles in a box from Chapter 4, we are now for a position
to give a detailed account of the properties of a noninteracting ideal Fermi
gas. In particular, we shall focus on the degenerate Fermi gas for which it
is predominantly the lowest energy levels that are occupied by fermions.
The Fermi energy is obtained in terms of fundamental constants and the
two thirds power of the fermion density. Expressions for the specific heat,
the magnetic susceptibility, and the pressure of a Fermi gas are obtained
and discussed. The results are used to explain the observed properties of a
number of systems that range from metals to stars.

13.2 THE FERMI ENERGY

Although an ideal Fermi gas made up of noninteracting fermions may
appear to be an extreme idealization, there are a number of systems to
which the theoretical results apply as a good approximation under certain
conditions. Examples are electrons in metals, white dwarf stars, and liq-
uid 3He. The main reasons why the theory provides useful predictions in
these cases is that the fermion energies at the top of the FD distribution
are very large compared with other energies, specifically compared with
the thermal energy kyT. A numerical estimate of the Fermi energy for a
representative fermion density is given below.

To obtain an expression for the Fermi energy ¢, defined in Section 12.3,
consider a system of N fermions of spin 1 and mass 1 in a container of vol-
ume Vat T = 0 K. In zero-applied magnetic field, the ms = = } spin states

253
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are degenerate, and it is convenient to introduce a degeneracy factor in
expressions that involve the density of single particle states. The fermions
fill the lowest energy states up to the energy ¢, = u. By equating the num-
ber of particles to the number of states in the range 0 to ¢, an expression
for &, is obtained. In general, for fermions, N =3, n, = 3,1/(e”™ +1).
Conversion of the sum to an integral gives

N = 2Jj (e) f(e)de (13.1)

where p(e) is the density of states and the factor 2 is the spin degeneracy
factor. f(e)=1/(e”*™ +1) is the Fermi function, which at T = 0 K has the
form f(e) = 1 for e” e: and f(¢) = 0 for €> & This may be seen in Figure
12.1. At T = 0 K, Equation 13.1 may therefore be written as

N= 2]? (e de 13.2)

From Equation 4.14, the density of single particle states for particles in a
box is r(e) = (V/4p?)(2m/h*)*"* €7 and substitution in Equation 13.2 gives

312 e 312
N=L2(27T) f R de=( V2)<27T> 32
2p°\h 0 3p*/ \ &
and hence
. 3p2N 2/3
ef=(2m)( v ) . (13.3)

The Fermi energy is seen to depend on the two-thirds power of the par-
ticle density per unit volume.

Exercise 13.1: Estimate the Fermi energy for a metal in which the electron num-
ber density is 10> cm= (10 m~3). Comment on the value obtained.

With use of Equation 13.3, we obtain the Fermi energy as
& =1.26x107"*) = 7.9eV. This energy is comparable with the binding energy
of electrons in atoms and much higher than typical thermal energies.
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Atatemperature T=100K, the thermal energyis kg7 = 1.38 x 107" ) = 8.6meV.
This is a thousand times smaller than the Fermi energy of the electron gas
considered above. If we define the Fermi temperature as Tr = &/ ks, then for
& =7.9eV, the Fermi temperature is Tr = 9.2 x 1 0*K.

Although it may seem extremely difficult to achieve electron densities
of the order of 10?* cm™, nature has provided systems where such densities
are found. Examples are metals where the ion cores give rise to screening
effects and electron—-electron interactions are comparatively small on the
scale of the Fermi energy. It will be seen later that the ideal Fermi gas model
provides a reasonably good prediction of the electronic contributions to
the thermal properties of metals. Because the Fermi energy is so high, the
Fermi distribution in metals is not greatly changed at ambient temperatures
of 300 K compared with the distribution at 7= 0 K. A few electrons at the
top of the distribution are excited to higher states, as shown in Figure 12.2.

13.3 FERMI SPHERE IN MOMENTUM SPACE

It is instructive to use a momentum space, or k-space, representation in
discussing a Fermi gas. In the derivation of the expression for the density
of states p(e) given in Equation 4.14, use was made of quantum number

space for the particle in a box situation. There is a correspondence between
quantum number space and k-space, although it must be borne in mind
that quantum numbers take positive values only, whereas k can take posi-
tive or negative values. The momentum p of a particle may be written in
terms of its wave vector k as p = hik. For a particle in a three-dimensional
box, the wave function has the form

c(x, ¥, Z) A ei(kxx+kyy+kzz). (134)

Imposing boundary conditions such that the wave function has nodes,
or, more generally, the same amplitude at the walls of the box, it is easily
seen that

2
k; = (Lp) n, withi=x,y,z; n=123,... (13.5)

i

Consider a small volume in quantum number space dn, dn, dn,, as
shown in Figure 13.1.
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-

FIGURE 13.1  Volume element dn,, dn, and dn, in quantum number space. The
quantum numbers n,, n,, and n, take integer values as shown.

From Equation 13.5, dn; =(L;/2p) dk; (i = x, y,z) and the volume dn,
dn, dn,, which is equal to the number of quantum states in this volume
element, is given by:

dn, dn, dn, = (V) dk, dk, dk.. (13.6)

(2p)’

where V = L,L L,. It follows that the density of states in k space is simply

v
2p)"

£ = (13.7)

The energy density of states p(¢) = (V/4n2) 2m/ #*)’ 12 g2 given by Equation
4.14 follows from Equation 13.7 with use of the identity p,d*k = p(¢) de , or
p(e) = pAnk? dk/de, where dk/de = (de/dk)™ = m/(i’k) = m/(h2me). It
is often convenient to use a spherical shell in k space as a volume element.

Exercise 13.2: Obtain an expression for the radius of the Fermi sphere for an
ideal Fermi gas at O K. Discuss the physical significance of the Fermi sphere
representation.

We define the Fermi momentum as pr = 7iki, with pr = \[2me:, provided
we assume the fermions to be nonrelativistic. It follows from Equation 13.3 that
the radius of the Fermi sphere is

/3

(3p°NY _ (13.8)

“v)
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FIGURE 13.2  Fermi sphere for a system of fermions as represented in k-space.
At T=0K, all states inside the Fermi sphere of radius k; are occupied, and states
outside the sphere are empty. As the temperature of the system is raised, some
fermions near the Fermi surface are excited to higher energy states.

In momentum space, the Fermi sphere, or Fermi surface, of radius k; as
shown in Figure 13.2 is the boundary between occupied and empty states.

The number of discrete states in the Fermi sphere is equal to the number
of states in the corresponding octant in quantum number space. Because
the number of states is extremely large, they form a quasi-continuum, and
this is why the sum over states may be replaced by an integral. At T=0K,
the Fermi sphere is sharply defined, with all states inside the surface filled
and all states outside the surface empty. As the temperature is raised, the
surface of the sphere becomes less and less well defined as fermions are
thermally excited from states just below the surface to states just above it.
For electrons in solids, the Fermi surface is, in general, no longer spheri-
cal because of the effects the periodic lattice has on the dynamics of the
charge carriers. Considerable effort has been devoted to determining the
shape of the Fermi surface for metallic systems.

13.4 MEAN ENERGY OF IDEAL FERMI GAS AT T=0 K

The mean energy of a Fermi gas is given by the integral

B)-2f " er(e) f(e)de, (13.9)

where p(¢) is the energy density of states and f(¢) is the Fermi distribution
function. The factor 2 is the spin degeneracy factor for spin 1 fermions.
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At T = 0 K, the Fermi function has the rectangular form shown in Figure
12.1. In calculation of the average energy (E,) at T = 0 K, the integral in
Equation 13.9 may again be simplified in the same way as was done in
Equation 13.2:

* 1% o
(Eo) = 2f er(e)lde= (ﬁ) emy? [ ¥ de,
0 p 0
and carrying out the integral gives
V 2m 3/2
(Fo) = (Sﬁ) (;TZ) a’’. (13.10)

With use of Equation 13.3, the volume and other constants can be elimi-
nated from Equation 13.10, and this simplification leads to the expression

(Ey) = %Nep. (13.11)
It is instructive to consider the density of occupied states shown in

Figure 13.3.
The product p(e) f(¢) may be written as

Vo 32 &2
(e) f(e) = W(W) [eb(e"ef)-l-l] , (13.12)
S
J /

(& &
ol

FIGURE 13.3  The density of occupied states for an ideal Fermi gas, plotted as a
function of energy, at some finite temperature. The shaded region shows occu-
pied states for T'> 0 K. ¢ is the Fermi energy, and (¢ ) is the mean energy.
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where it is convenient, for T < T;, to take u = & For T'=0 K, the function
increases as €2 and drops abruptly to zero for & = &;. At finite tempera-
tures, the density of occupied states develops a tail above ¢, and a decrease
in the density just below & From Equation 13.11, the mean energy per
particle is (e) = 2 e There are more high-energy occupied states than low-
energy occupied states, and this imbalance results in (&) having the com-
paratively high value of 0.6 &;.

13.5 APPROXIMATE EXPRESSIONS FOR THE HEAT

CAPACITY AND MAGNETIC SUSCEPTIBILITY

OF AN IDEAL FERMI GAS
To obtain an expression for the heat capacity of a Fermi gas, it is neces-
sary to obtain an expression for the mean energy ( E(T)) of the system and
then to use Cy =(9(E)/dT)y. Equation 13.9 gives a general expression for
(E) in terms of T, but the integral with the Fermi function is not simple
to evaluate and is considered later in this chapter. It is possible to obtain
an expression for C,, by making a fairly crude approximation based on the
equipartition theorem. For a classical ideal gas, the equipartition theorem
gives (E) = 2 NksT and hence Cy = 3Nkg. For a Fermi gas, only particles in
states near the Fermi energy ¢, are thermally excited to higher energy states.
This suggests that only a small fraction of particles contribute to the specific
heat. If we denote the small number of high-energy fermions by N,, where

N, =N(kBT) - N(T), (13.13)
€ Tr

it follows that the heat capacity is approximately given by

3 3 T
Cy =—N,kg = —Nkz| —1. 13.14
P B(TF) 1314

Equation 13.14 predicts that, for a Fermi gas, the heat capacity should be
proportional to T'and that the value should be comparatively small because
T islarge, as discussed in Section 13.2. Experiments made at temperatures
T < Ty on systems that approximate an ideal Fermi gas confirm the linear
T dependence predicted by Equation 13.14 and give values in reasonable
agreement with this result.
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Exercise 13.3: Obtain an approximate expression for the magnetic susceptibil-
ity X of a Fermi gas in terms of the effective number of spins N, that make a
contribution to X.

For an ideal paramagnet, the isothermal magnetic susceptibility
c =(IM/3H)r has the form X = C/T, with Curie’s constant given by Equation
10.41 as C = (Np’pio) /(Vks). If we replace N by N, from Equation 13.13, this gives
an approximate expression for the susceptibility of a Fermi gas

Nm'm ) (13.15)
V

(N
L vien

Equation 13.15 predicts that the magnetic susceptibility for a Fermi gas
should be temperature independent and rather small because of the fac-
tor T; in the denomination. These predictions have again been verified by
experiment.

The temperature-independent susceptibility Equation 13.15 contrasts
with the Curie law susceptibility for localized spins. The susceptibility of a
Fermi gas is called the Pauli susceptibility after Wolfgang Pauli, who first
applied Fermi-Dirac statistics to calculate this quantity. A more detailed
discussion of the Pauli susceptibility is given later in this chapter. As the
temperature of the gas is raised, the chemical potential y decreases, and the
approximate expressions given in Equations 13.14 and 13.15 will no longer
apply. Eventually, at sufficiently high temperatures, classical expressions
should be used. It is impractical to attain such temperatures in normal
metals but in some systems, such as heavily doped semiconductor materi-
als with delocalized carriers, €, can be quite low (~100 K). The classical
limit can be easily reached in these systems.

13.6 SPECIFIC HEAT OF A FERMI GAS

It is possible to improve on the rather crude approximation to the specific
heat given in Section 13.5 by evaluation of the integral in Equation 13.9
to a good approximation at low T. To simplify expressions, it is conve-

nient to write the density of states in terms of the Fermi energy ¢, given
in Equation 13.3. With allowance for spin degeneracy, this gives for the
mean energy

(E) =2j:°er(e) f(e)de=(23e?,72)ﬁw & f(e)de= (21?,2) L (1316
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Evaluation of the integral, designated, I by parts leads to

f & f(e)de= f(e )f; & ﬁwieS/Z(‘Vd(j)de. (13.17)

The first term vanishes at both limits. The derivative df (e)/de is given by

df(e) beb(e—m)
de (ePe™ 4 1) -

1 2 [1
—stech [2b(e—m)]- (13.18)

Figure 13.4 shows a plot of the Fermi function f (&) and its first deriva-
tive df (e)/defor T < T;.

Because the Fermi function f(e) is approximately constant except in
the vicinity of = m, the first derivative is zero everywhere except near y,
where it is sharply peaked, as shown in Figure 13.4, with the form given
by the hyperbolic function in Equation 13.18. For T' < T, the function
df /9€ is very sharply peaked. The factor € in the integral I expressed
in Equation 13.17 is slowly varying over the small range where df/de= 0.
Expansion of € in a Taylor series about u gives

e’ =m"’?+im*(e-m)+ L m"*(e-m) + (13.19)

Inserting this expansion of €'* into Equation 13.17 and changing the vari-
able to x = b(e— m) leads to

3 m1/2 x2 e~

I="m"? f 24 A=
2 2 2 x 2 ’
5 —pm (€" +1) b J_mm(e* +1) 4 b® (e*+1)
15
S
l'O-ﬁ
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H e
df(e)/de
-0.5

FIGURE 13.4 The Fermi function f(e) and its first derivative df(e)/d(e). At low
temperatures, the first derivative is sharply peaked and negative at & = .
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which may be written as

2 m3/2 m3/2 3 ml/Z
R 3 63 EEi =y CR N CE

The integrand in each integral has a sharp maximum at x = 0, and the lower
limit in the integrals may be extended to —oo with negligible error because
bm>>1. Now the function e*/(e* +1)* = 1/(e*"* +e™*'*)* = Lsech®(x/2) is
an even function of x and integrals in an odd power of x, such as I,, vanish.
With standard integrals from Appendix A, we obtain,

2

0 x 0 2 x
Io=f 672 dx=1 and Iz=f Lz dx=2.
| (" +1) | (" +1) 3

Substitution for I, and I, in Equation 13.20 gives

2 1 1/2
PP ST (13.21)
vy

The higher-order terms are negligible for sufficiently large . Insertion of
Equation 13.21 into Equation 13.16 results in

3 Nm5/2 3 Np2m1/2
<E>=g ( eFa/z ) +16( bzer/z )"'

At the temperatures of interest where the approximations made are valid,
m= &, and it follows that

(13.22)

-2nafuns 2]

— +
12 (bey)’

The heat capacity is obtained immediately.

Cy = (6<E(T)>) = ENkB (pz) 1+ (13.23)
oT ), 2 3 )T
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This expression for C, differs only by a factor #2/3 from the crude
approximation given in Equation 13.14. It is customary to write

Cy=gT (13.24)

with

) e

Using Equation 13.3 to eliminate er gives the following alternative
expression for y

g=%Nk§ (2—’") (B (13.26)

y involves the number of fermions, the fermion mass, and the —2 power
of the fermion number density.

For electrons in metals, Ty is typically in the range 10*—10° K. This implies
that the electron contribution to the specific heat of metals is extremely
small and can be measured only at low temperatures when other contribu-
tions become unimportant. The specific heat of liquid helium-3, which is
not an ideal Fermi gas but a Fermi liquid in which interactions between
fermions cannot be assumed to be small, is shown as a function of tem-
perature in Figure 13.5. Below 0.06 K (60 mK), the specific heat exhibits a
linear dependence on T.

The weak interactions between helium-3 atoms are taken into account
in what is called Fermi liquid theory. The heat capacity is predicted to vary
linearly with temperature, as given by Equation 13.24 but with a modi-
fied value for y. In Equation 13.26, which gives y in terms of N, V, and m,
it is necessary to introduce an effective mass m* to allow for interactions
between particles. With this modification, Fermiliquid theory can account
not only for the specific heat, but also for other thermodynamic properties
of liquid helium-3. The experimentally deduced Fermi temperature T} for
liquid helium-3 is around 50 mK, which is lower than would be obtained
from the Fermi gas expression Equation 13.3.
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FIGURE 13.5 Specific heat, in units of the gas constant, as a function of temper-
ature for liquid helium-3. For T < 60 mK, the specific heat shows a linear depen-
denceon T.

13.7 PAULI PARAMAGNETISM

Consider an ideal Fermi gas located in a magnetic field B. The fermions
have spin § = 1 and an associated magnetic dipole moment pg = guBS.

(For negatively charged electrons, pg is antiparallel to S, and a minus sign
is included in the expression for pg.) The magnetic energy gu;B is of the
order of 1 meV in a field of 10 T, whereas the Fermi energy is of the order
of an electron volt. The magnetic interaction may therefore be viewed as
a small perturbation. We choose T = 0 K to simplify integrals that have
to be evaluated. Spin degeneracy is lifted by the applied magnetic field
and each single particle state splits into a doublet with energy separation
2u4B. Figure 13.6 shows the modified Fermi distribution for the two clas-
ses of electron spins, moments up (i.e. ug parallel to B with low energy) and
moments down.

The Fermi distributions are energy shifted by small amounts compared
with the zero field distribution as shown. Figure 13.7 depicts the corre-
sponding density of states curves.

The Fermi energy m= & remains fixed because fermions in higher
energy states, with their moments antiparallel to the applied field, spin flip
to lower energy unoccupied up states. This process results in a slight excess
of up (+) moments compared with down (-) moments.

The magnetization of the system is given by

oM

o=y NN, (13.27)
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FIGURE 13.6 Fermi function for magnetic moment “up” and “down” fermions
at T=0Kin a magnetic field B. The up and down energy levels are slightly shifted
with respect to each other as shown. The higher energy down moments flip orien-
tation so that they can occupy the lower energy states. The Fermi level remains
fixed.

Moments up Moments down

FIGURE 13.7 The density of states curves for moment up (spin down) and moment
down electrons in a magnetic field B. A small field-induced relative displacement
of the two curves is shown. Spin flip processes transfer electrons from the higher
energy states above the Fermi energy ¢; to lower energy states just below ;.

In the applied field B, the Fermi function may be written as

1
exmB)=———F——,
f( ) eb[(e:msB)—m] +1 (1328)

where in the exponent in the denominator, the + sign applies to up
moments and the - sign to down moments. With Equation 13.1 and the
density of states Equation 4.14, the numbers of up and down moments are
readily obtained.

N. =ﬂ r(e= mB) f(e)de. (13.29)
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AtT=0K, fe) =1 for ¢ < e and f(e) = 0 for € > & At 0 K, Equation
13.29 is therefore written as

3/2
Lz(zh—’f) (& =mB)?  (13.30)

EF
N. =f r(e+ mB)d(ex mB) = 2
+mgB 3 p

or

2 2 3/2 B
Nir%(%”) eﬁ”(li”’s )
3p \h 2 &
Finally, to a good approximation,

N. = (%) (li;m:) (13.31)

because N = N, + N_ and mB <« .. Use of Equation 13.31 in Equation
13.27 gives for the magnetization

-0}

With B = u,H, the Pauli susceptibility follows immediately:

L R B e A

(13.32)

This agrees with the crude estimate given in Equation 13.15 to within a
factor 3. The expression for X is similar to the Curie law expression except
that T'is replaced by T}. For T < T, the Pauli susceptibility is temperature
independent as discussed in Section 13.5. It is possible to obtain a better
approximation for Xp at finite temperatures by evaluation of the integral
in Equation 13.29 by parts, in an approach similar to that adopted in
Section 13.5. The calculation is fairly lengthy and we simply quote the

result:
2 2
p (T
c,(T)=c,(0)[1-—| —]| |.
L(T)= ¢, (0) IZ(TF)

(13.34)
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The finite temperature correction term is indeed very small for
T< T

13.8 THE PRESSURE OF A FERMI GAS

Equation 12.27 gives a general expression for the equation of state of a
quantum gas in terms of the mean energy (E), PV = 2(E). For a Fermi gas
at low temperatures, where T < T;, Equation 13.11 can be used to give an
approximate expression for ( E).

3 3 () (3p*N\"
(E)zSNeF=5N(2m)(pV) . (13.35)

From Equation 12.27, it follows that

5/3

_2( 1\ (3p°N)" _2(N)
P S(Zm)( v ) s &r. (13.36)

The Fermi pressure depends on the fermion density and the Fermi
energy. P can be extremely large in typical Fermi gas systems, and this can
be understood as a manifestation of the Pauli exclusion principle.

Exercise 13.4: Calculate the Fermi pressure for the electron system considered
in Exercise: 13.1. Explain how a metal remains a solid in spite of the large Fermi
pressure.

We have from Exercise 13.1 N/V = 10* m= and & = 1.26 x 1078 .
Substitution in Equation 13.36 gives for the Fermi pressure P =5 x 10* MPa =5
x 10% atm. This is a very large pressure, and in metals the lattice of positive ion
cores effectively acts as a confining box for the conduction electrons.

13.9 STARS AND GRAVITATIONAL COLLAPSE

Stars gradually burn up their light element nuclear fuel, which is the
source of energy generation, through fusion processes. At the end of
a star’s life, various events, such as supernova formation, may occur.
Gravitational collapse is an important process and can lead to white
dwarf stars, neutron stars, or black holes dependent on the mass of stellar
material involved.

A simple calculation on the basis of Newton’s universal gravitation law
provides an estimate of the gravitational pressure involved in gravitational
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collapse. The gravitational potential energy of a sphere of material of mass
M and radius R is

2
Ug = oM , (13.37)

"5 R

where G is the gravitational constant. Equation 13.37 is obtained from the
change in energy, which occurs when a spherical shell of material of mass
47 1 p dr is added to a core of mass 4 pr’ r with integration over r from 0
to R to obtain the total potential energy involved. The total mass of the star
is M = 4 p R’ r, where p is the average density of stellar material.

The change in gravitational energy with volume is

dUg = -P;dV, (13.38)

where P is the gravitational pressure. Use of Equation 13.37 gives

dUg (
P.=——2G6__
CT o av

dUg\dR 3 (GM’
) ( ) : (13.39)

dr }dv 20\ pR*
White dwarf stars have high densities of the order of 10*- 107 kg m~ and
radii approximately 102 times that of the sun. The temperature in the inte-
rior of these stars is of the order of 107 K, and the constituent atoms are
ionized into nuclei and free electrons. The electrons form a degenerate
electron gas.

The Fermi energy is estimated using Equation 13.3, with N/V given by

N M 1
v~ (o) (o) (1340

where M is the mass of the star and m, the mass of a nucleon. The num-
ber of electrons is roughly half the number of nucleons. Typical values
for a star similar to the sun are R =7 X 10° m, M = 2 X 10** kg, and with
m, = 1.67 X 1027 kg, these values give N/V =4 X 10¥* m~3 and e; =3 X 10°eV.
The Fermi temperature for the electron gas is T; = 3.5 X 10° K. T;; is much
higher than the temperature in the interior of a star, quoted above, and
this confirms that the electrons may be regarded as a degenerate Fermi gas
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with a well-defined Fermi surface. For the present discussion, we ignore
relativistic effects, although a simple calculation shows that the Fermi
energy is of the order of m,? and relativistic effects should strictly be
taken into account.

The Fermi pressure due to the degenerate electron gas balances the
gravitational pressure. When the two pressures given in Equations 13.36
and 13.39 are equated, the following mass-radius relation is obtained for
white dwarf stars

5/3

)( 3) C14x107kg"m.  (13.41)

h2
Gm 8m,

Ml/3R — 2(3p)2/3 (
Gm

The relationship is confirmed for white dwarfs with masses up to 1.4
solar masses. For larger masses, the Fermi pressure due to the electron gas
is not great enough to prevent gravitational collapse.

Neutron stars are much smaller in radius than white dwarfs and are com-
posed of a degenerate Fermi gas of neutrons. Protons and electrons no longer
exist as distinct particles at the very high pressures that exist in the interior of
these massive bodies. A very similar argument to that used for white dwarf
stars can be applied to neutron stars, with the electron mass replaced by the
neutron mass m, ~ 1000,. The mass radius relation for neutron stars is

M" R ~10" kg'’ m. (13.42)

Neutron stars have high rotational frequencies, and a number have
been identified as pulsars.

When the gravitational pressure is sufficiently large so that the radius
of the star becomes less than the Schwarzchild or horizon radius 2GM/c?,
a black hole is formed. All massive stars eventually form black holes as
a result of gravitational collapse once nuclear fusion processes have run
their course. Black holes vary in size depending on their mass and are
typically extremely cold. A black hole of mass 5 solar masses has a temper-
ature of 10 nK inside the event horizon.

PROBLEMS CHAPTER 13

13.1 Fora Fermi gas, we may define a temperature T; at which the
chemical potential of the gas is zero. Express T, in terms of
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13.2

13.3

13.4

13.5

13.6

13.7

13.8

the Fermi temperature T} of the gas. Allow for spin degen-
eracy of the spin 1 particles.

Use the two-dimensional density of states expression
r(e)=(Am/2ph*) to obtain the chemical potential y of
a noninteracting two-dimensional Fermi gas of N fer-
mions occupying an area A at temperature T = 0 K. For
T > 0 K, show that y is given to a good approximation by
m=e —kyTIln(1+e /7).

Obtain expressions for the mean energy and the specific heat
of the two-dimensional Fermi gas described in Question
13.2. Show that the specific heat depends linearly on T.
Consider an ideal Fermi gas in a fixed container at 7= 0 K
and find expressions for the mean velocity ( v, ) and the mean
square velocity (v2) of the fermions along the x direction.
Express your answers in terms of y the chemical potential.
Assume that relativistic effects may be ignored.

A doped semiconductor contains N donor levels with energy,
&, with respect to the bottom of the conduction band. The
donor levels may be either unoccupied as a result of thermal
excitation of electrons into the conduction band or occupied
by a single electron with spin up or down. Give an expression
for the grand partition function for the donor system. Show
that the mean number of electrons in donor sites at a given
temperature is given by n = N/[1 + (1/2)exp{-f(u + €)}].

For relativistic electrons in a white dwarf star, the disper-
sion relation is given by ¢ = cp. Use the dispersion rela-
tion to obtain the density of states for this relativistic gas
as p(e) =[V/2n?][e?/(ch)’], where V is the volume of the star.
Derive expressions for the Fermi energy and the mean
energy of the gas as a function of temperature. Make use of
the integral formulae in Section 13.5.

An extreme relativistic electron gas similar to that described
in Question 13.6 is contained in a volume V. Obtain an
expression for the grand potential Q (defined in Chapter
11) for the electron gas at temperature T. Use your result to
obtain the entropy as a function of temperature for the rela-
tivistic gas.

By analogy with the spin § case, derive expressions for the
mean energy and the specific heat C,, of a hypothetical spin
3 Fermi gas for T < T. Give a qualitative discussion of the
magnetic susceptibility for this system.
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13.9 Consider electrons emitted by a hot metal filament at temper-
ature T into an evacuated space above the metal. Assuming
that the electron density in the space close to the filament
is low, show that the electron current density is given by
(4pemkiT?/h*)e™ D) where ¢ is the work function of the
metal. The work function is the minimum energy in excess
of the chemical potential that electrons in the high-energy
tail of the FD distribution must have to escape from the
metal.






CHAPTER 14

ldeal Bose Gas

14.1 INTRODUCTION

The properties of the ideal Bose gas are quite different to those of the ideal
Fermi gas discussed in Chapter 13. At sufficiently low temperatures, bosons
predominantly occupy the ground state with zero energy and momen-
tum. We shall see that below a particular temperature, known as the Bose-
Einstein condensation temperature, the ground state occupancy becomes
comparable with the number of bosons in the system. In this range, the de
Broglie wavelength becomes macroscopically large of the order of the size

of the container. Our discussion is based on the Bose-Einstein distribution
together with the density of states expression for an ideal gas. The expres-
sions that we obtain are useful in gaining insight into the superfluid transi-
tion in liquid helium-4. In addition, both superconductivity in metals and
superfluidity in liquid helium-3, at sufficiently low temperatures, are associ-
ated with pairing interactions of fermions that leads to bosonic behavior.

14.2 LOW-TEMPERATURE BEHAVIOR OF THE CHEMICAL
POTENTIAL

The chemical potential plays a key role in the behavior with temperature of

the Bose-Einstein distribution given in Equation 12.11 {n,) = 1/(e/ ™ K1).

For a macroscopic system, the states r are very closely spaced in energy,

and it is advantageous to rewrite Equation 12.11 as

1 1
n(e) = hem ]~ , (14.1)

273
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where the energies ¢ form a quasi continuum and 1 = e/, as defined
in Chapter 12. The chemical potential y is determined by use of the
constraint,

N= En(e) - J; r(e)n(e)de. (14.2)

At low temperatures, the number of particles in the ground state,
with € = 0, becomes large, and care must be exercised in the evaluation
of the integral. The density of states given by Equation 4.14 has the form
ple) o< €2, which gives p(e) = 0 for € = 0. The ground state is therefore
excluded in the integral. For fermions, this introduces a negligible error
because the exclusion principle prevents multiple occupancy of a particu-
lar state but for bosons this is not the case. At very low temperatures, the
number of bosons in the ground state may be expected to become macro-
scopically large.

Exercise 14.1: Use Equation 14.1 to obtain an approximate expression for the
chemical potential of an ideal Bose gas close to T = 0 K. Assume that the major-
ity of bosons are in the ground state at the temperatures of interest.

If we consider just the ground state with ¢ = 0 in Equation 14.1 and take
n(0) = N, to allow for the large ground state occupancy at low temperatures,
we obtain N, = 1/(A*' K 1), or to a fair approximation

S I T (14.3)

0

For large N,, it is clear that g must be very small (close to zero) and
the exponential function may be expanded to give the simple and useful
approximation

No (14.4)

If we assume that Ny— N as T — 0 K, Equation 14.4 predicts that, at suf-
ficiently low temperatures, p will tend to zero linearly with T from the negative
side. This behavior is represented schematically in Figure 14.1.

The above discussion of the chemical potential and the ground state occu-
pancy raises the question of how low the temperature must be for macro-
scopic occupation of the ground state to occur? This question is addressed
below.
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T

FIGURE 14.1 The curved line in the plot shows the behavior of the chemical
potential y for an ideal Bose gas as a function of temperature T near absolute
zero. y is always negative and approaches zero as T tends to zero.

14.3 THE BOSE-EINSTEIN CONDENSATION TEMPERATURE

The integral in Equation 14.2 is used to obtain the number of bosons in
states other than the ground state for which € =0 (i.e., excluding € = 0). We
denote the number of bosons in excited states by N,(T) and obtain

N = f 1% o1

With the density of single particle states for particles in a box given by
Equation 4.14 and x = ¢, Equation 14.5 becomes

e) de (14.5)

vV o2m\? 1 4 xMdx
ND= ) o)) e 146

At low temperatures, for fu < 1, as discussed in Section 14.2, it is per-
missible to take A¥! = 1 to simplify the integral, which may be evaluated
in terms of Riemann zeta functions and the gamma functions used in
Chapter 12. We have the general form for the integrals of interest:

x" dx

0 e’ -1

=T'(n)z(n), (14.7)
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where

(14.8)

z(n)= E ni”'

m=1,2,...

Values of the ¢ and T functions are available in tables. For n =3 and 3,
the values of the two functions are given in Table 14.1.

With the aid of Equation 14.7 and Table 14.1, the integral in Equation
14.6 is evaluated to give

3/2

N.(T) = 2.612V(I:k1;§) (14.9)
p
or
N Y (14.10)
Ir

where I = h/\/3mk;T is the thermal de Broglie wavelength introduced in
Chapter 4.

At low T, A; becomes macroscopically large, comparable with the size
of the container, and the number of bosons in excited states decreases in
dramatic fashion. Equation 14.9 may be written as

1/2

N.(T) = N(T) , (14.11)
Ty
where
2 2/3
T, = (ZM) (Lﬁ) (14.12)
mks )\ 2.612 V

is called the Bose-Einstein condensation temperature. N is the total num-
ber of bosons in the system. This expression is very similar in form to that

TABLE 14.1 Values of zeta function &(n)
and gamma function ['(n) for n =3 and §

n & (n) I (n)
3

2 2,612 b
5 3

2 1341 1Vp
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obtained for the Fermi temperature T} on the basis of Equation 13.3 in
Chapter 13, Ty = e/ ks = (7*/2mky)(3p°N/V)*?

Exercise 14.2: Compare the Fermi temperature for an ideal Fermi gas of electrons
with the Bose—Einstein condensation temperature for a high-density ideal Bose
gas of helium-4 atoms. Approximate the Bose gas by liquid helium-4 with dens-
ity pye = 0.125 g cm=. The mass of a helium-4 atom is m,, = 6.65 x 10" g.
From Equation 14.12 and the expression for T; given above, we find the
ratio To/Ty = 31.7 (mJ/myy.) (ny/n)?>, where ny,, and n, are the number densi-
ties for liquid helium and for electrons in a metal, respectively. The number
density ratio is estimated as ny,./n, ~ 0.2. In the evaluation of T for a Fermi gas
of electrons, we use the electron mass and number density n, ~ 102> cm=. As
shown in Section 13.2, these values give T; = 7.9 eV = 9.16 x 10* K. With use
of the density of liquid helium, we obtain T, = 2.8 K. T, is much smaller than T;
because the atomic mass of helium is so much larger than the electron mass.

At temperatures well below Tj, bosons in an ideal Bose gas heavily popu-
late the ground state. In contrast, fermions in a Fermi gas at low T populate
the lowest states up to the Fermi level as a result of the Pauli exclusion prin-
ciple. It follows from Equation 14.11 that the ground state population for a
Bose gas is given by

3/2

()

Breakdown of Equation 14.13 occurs for T ~ T because the approxima-
tion A% =1 is no longer valid. We have for the ground state population
No(T) =1/(17" -1) = 1/(e”” -1), and with Equation 14.13 this gives

No(T)=N-N,(T)=N (14.13)

32171

m=—-kgTlnll+— (14.14)

o[l
N To
For T — 0 K, the log function may be expanded, and this results in
-z
T

Equation 14.15 has form similar to Equation 14.4 and again shows that
u — 0as T — 0 K. As mentioned above for T'— T, the approximation

372171

_ksT
N

(14.15)
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FIGURE 14.2 Population ratios for bosons in the excited states N,(T)/N and in
the ground state N (T)/N for an ideal Bose gas as a function of T/T. The ground
state population increases dramatically with decreasing T below T;,.

A = 0 is no longer valid, and Equation 14.15 is not reliable. Figure 14.2
shows a schematic plot of the ratios N,(T)/N and N,(T)/N as a function of
T/T, in the range T < T;. The ground state population grows dramatically
as T/T, decreases.

14.4 HEAT CAPACITY OF AN IDEAL BOSE GAS

The mean energy of a Bose gas is (E(T)) = ) :gp(s)n(e) de. Let be = x, as before,
and, with the density of states expression Equation 4.14, this leads to

3/2 3/2

V ([ 2m 1 0~ x
E(T))= = S dx 14.16
(E(T)) 4p2(bh2) bJo 17" -1 (14.16)

In the low-temperature limit, the integral is evaluated with the aid of
Equation 14.7 and values of the gamma function and the Riemann zeta
function from Table 14.1 to give

3/2

(E(T)) = (1.341(?1\/5)) 4;2 (z;”z) %. (14.17)

With T, from the definition Equation 14.12, we obtain

3/2

(E(T)) = 0.77NkBT(;:) , (14.18)

0
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FIGURE 14.3 C/Nk; plotted as a function of T/T, for an ideal Bose gas. The
approximations made in the derivation of Equation 14.19 break down as T/T,
approaches 1.0. The classical monatomic ideal gas value C,/Nky = 3/2 is shown
for T > T,.

and the heat capacity follows immediately:

Cy =(‘9<§(TT)>) = 1.93Nk3(;{;)

3/2
(14.19)

Figure 14.3 shows C /Nkj as a function of T/T;,

It must be emphasized that the approximation A = 1 fails for T/T, — 1.0
and, in this temperature range, the integral in Equation 14.16 must be
evaluated using a better approximation for A. Nevertheless, the main fea-
tures shown in Figure 14.3 are qualitatively correct.

14.5 THE PRESSURE AND ENTROPY OF A

BOSE GAS AT LOW TEMPERATURES
We can easily obtain an expression for the pressure of an ideal Bose gas
at low temperatures where B-E condensation occurs. For T < T, it is con-
venient to use the general form of the equation of state for quantum gases
given in Equation 12.27 PV = 2(E(T)), and with Equation 14.18, we get

3/2

PV = O.SlNkBT(;) . (14.20)

0
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Equation 14.20 shows that, for T < T, the pressure tends to zero as T>/2.
Particles in the ground state have zero momentum and therefore exert no
pressure on the walls of the container. This behavior contrasts with that of
a Fermi gas at low temperatures where, as we have seen in Chapter 13, very
large pressures are found.

Exercise 14.3: Obtain an expression for the entropy of an ideal Bose gas at low
temperatures where the condition T < T, is satisfied. Discuss the temperature
dependence of the entropy in this limit.

At sufficiently low temperatures, the entropy of an ideal Bose gas is obtained
with the use of the heat capacity expression (Equation 14.19). This gives the
straightforward integral

3/2

TdQ "' C,dT Nkg 4 172 T
S= — = ———=1.931 7" dT =1.3Nkg| — . 14.21)
fo T ﬁ) T ﬁ B(T) (

3/2
To 0

Equation 14.21 shows that below T, the entropy of the gas tends to zero as T°2.
This is because the entropy is associated with particles in excited states. Near
T =0 K, almost all of the particles are in the ground state, and the system is
highly ordered. The entropy expression (Equation 14.21) is valid only for T < T
because of the approximation 2 = 1 made in the derivation of Equation 14.19.

14.6 THE BOSE-EINSTEIN CONDENSATION
PHENOMENA IN VARIOUS SYSTEMS

(a) Liquid Helium-4. Atoms of “He are bosons, and because of the weak
interactions between helium atoms, the properties of liquid helium-4
may be expected to have some resemblance to those of an ideal Bose gas.
Using Equation 14.12 with the atomic mass of *He and the density of lig-
uid helium gives T; = 3.13 K. Liquid helium exhibits a phase transition
at 2.17 K, with a lambda-shaped peak in the specific heat curve. Figure
14.4 shows the specific heat at constant volume and under saturated vapor

pressure for liquid helium-4 as a function of temperature.

The phase transition temperature in liquid helium-4 is denoted by T,
because of the shape of the specific heat curve. Below T'~ 0.6 K, the specific
heat follows a T law, which suggests that phonon excitations are import-
ant. Phonon contributions to the specific heat of substances are discussed
in Chapter 16. At temperatures below T, liquid helium-4 exhibits super-
fluid properties, such as nonviscous flow through very small channels that
prevent the flow of a normal fluid. The properties of the superfluid phase
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FIGURE 14.4 The specific heat of liquid helium-4 (measured under the vapor
pressure) shown as a function of temperature with the lambda transition at
2.17 K. The theoretically predicted curve for an ideal Bose gas on the basis of
Figure 14.3 is included for comparison.

are accounted for phenomenologically by means of a two-fluid model in
which normal and superfluid components coexist. Although it is neces-
sary to allow for weak interatomic interactions, the model is consistent
with the Bose-Einstein condensation phenomenon, with a significant
number of atoms in the ground state and the remainder in excited states,
as shown in Figure 14.2. A detailed theory of the superfluid transition in
liquid helium-4 requires allowance for the interparticle interactions.

(b) Superconductors, Liquid Helium-3, and Alkali Atom Systems in Traps. 'The
phenomenon of superconductivity in metals is related to Bose-Einstein
condensation, although the electron gas consists of fermions. At suffi-
ciently low temperatures, interaction of the electrons with the lattice that
involve a phonon mechanism or some other electron coupling mechan-
ism leads to the formation of what are called Cooper pairs of electrons.
The pairs have net spin zero, or in some cases integral spin, and behave as
bosons. Although superconductivity in many conventional metals is well
understood, high-temperature superconductors, specifically the cuprates
and recently discovered iron-based pnictides, are less well understood and
are the subject of ongoing research.

Liquid helium-3, which as pointed out in Chapter 13 is a good example
of a Fermi liquid below 60 mK, is found to exhibit superfluid properties at
sufficiently low temperatures with a magnetic field dependent transition
below 2 mK. Pairing interactions of the helium-3 atoms are important
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and the Cooper pairs obey Bose-Einstein statistics. The detailed theory of
the superfluid phases in helium-3 is not simple, but we can qualitatively
understand the transition as a Bose-Einstein condensation phenomenon.

In recent years, very beautiful experiments have been carried out on
vapors of alkali atoms such as rubidium-87 that are cooled to very low
temperatures by means of sophisticated experimental techniques that
involve laser cooling followed by evaporative cooling. Several thousand
atoms can be cooled and magnetically confined at temperatures below
1 uK. Coupling of the electron and nuclear spins through the hyperfine
interaction can lead to bosonic properties of the alkali atoms, and Bose-
Einstein condensation phenomena have been observed in these weakly
interacting Bose gas systems.

PROBLEMS CHAPTER 14

14.1 Calculate the predicted Bose-Einstein condensation tem-
perature for liquid helium-4 in the ideal Bose gas limit. The
molar volume of liquid helium is 27.6 cm?® mol-.

14.2  Use the expression for the mean energy of a Bose gas near
the Bose-Einstein condensation temperature T, to obtain
a value for the average de Broglie wavelength A, at T, for
helium-4 (~3 K). Describe the behavior of 11 below the con-
densation temperature emphasizing the role of the ground
state and the excited states in determining ;. Compare A,
with the interparticle spacing obtained from the molar vol-
ume given in Question 14.1.

14.3 By what factor should the temperature of an ideal Bose gas
be lowered below the condensation temperature for the
ground state to be populated by one tenth of the bosons?

14.4 The Bose-Einstein (BE) condensation was first observed
in an atomic system in 1995.* Rb atoms were confined in
a magneto-optical trap and using special techniques were
cooled to below 1 uK. Evidence for BE condensation was
obtained at a temperature of 100 nK with the atoms con-
fined to a volume of 10-'* m?. Estimate the required number
of #Rb atoms in the trap for condensation to be observed.
The confining potential used in the experiments was a three-
dimensional harmonic potential but simplify the problem
by assuming a box potential.

*Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E.,
and Cornell, E.A. (1995). Science, 269, 198-202.
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14.5 The BE condensation in atomic hydrogen gas was found in
1998 at a temperature of roughly 50 uK. The atomic hydro-
gen was produced in a cryogenic discharge process and
confined in a magnetic trap. Estimate the hydrogen atom
density required to observe BE condensation.

14.6 A Bose gas in a monolayer two-dimensional film has area A.
Obtain an expression for the mean energy of the gas at low
temperatures. Assume that the chemical potential u ~ 0.
Show that the specific heats for two-dimensional Fermi and
Bose gases are identical and depend linearly on T. You may
make use of the integral f:x/(e" K1) = 7%/6.

14.7 Anideal two-dimensional Bose gas as described in Question
14.6 should not undergo Bose-Einstein condensation. Justify
this statement with use of the two-dimensional density of
states.

14.8 Obtain an approximate expression for the Helmholtz poten-
tial of an ideal Bose gas with use of the relationship between
the grand partition function and the partition function
given in Chapter 11. Explain why this expression is of lim-
ited use below the condensation temperature.

14.9 A Bose gas consists of particles with internal degrees of free-
dom. Obtain an expression for the BE condensation tem-
perature of the gas.

14.10 Obtain an expression for the grand potential of an ideal
Bose gas. Use the grand potential to obtain forms for the
entropy and the pressure of the gas. Show that the expres-
sion for the pressure reduces to the form PV = 2(E) given in
Equation 12.27.

*Fried, D.G., Killian, T.C., Willmann, L., Landhuis, D., Moss, S.C., Kleppner,
D., and Greytak, T. (1998), Physical Review Letters, 81, 3811-3814.






CHAPTER 15

Photons and Phonons—
The “Planck Gas”

15.1 INTRODUCTION

In 1900, Max Planck introduced the concept of the quantum of elec-
tromagnetic radiation, later called the photon, into physics. He did this
to explain the spectral properties of electromagnetic radiation emitted

through a small aperture by a constant-temperature “black body” enclos-
ure. This marked the start of quantum physics, which led to the devel-
opment of quantum mechanics in the 1920s. The energy e of a photon of
frequency v is given by Planck’s famous expression, € = hv, or alternatively
€ = hw, where  is the angular frequency.

Inside a constant-temperature enclosure, photons are continually
absorbed and emitted by the walls. The number of photons in the enclo-
sure is not fixed but fluctuates around some average number for any cho-
sen frequency. This fluctuation in the number of photons represents an
important difference from the situation in the fermion and boson sys-
tems considered in Chapters 13 and 14, where the number of particles N
is fixed. The chemical potential for photons is not defined because there
is no constraint on N. It follows that u should be omitted in the photon
distribution, and this is shown in Section 15.3. Photons have spin 1 and
are bosons. Because they travel at the speed of light, there are two and
not three allowed spin orientations. Classically, electromagnetic radiation
is considered to be a transverse wave with two polarization directions.

285
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Putting u = 0 in the Bose-Einstein distribution given in Equation 14.1
leads to the Planck distribution for photons,

1

1
<n7’> = ebe, _1 = ebhwr _1’ (15.1)

where €, is the energy of photons in state . For fle, < 1,the average number
of photons found in state r becomes very large because the denominator in
Equation 15.1 becomes very small.

Because the chemical potential is zero, it follows that the grand par-
tition function Z and the partition function Z are identical for a photon
gas. This can be seen from the approximate relationship given in Equation
11.21, InZ =InZ - bmN Putting u = 0 shows that Z = Z. The exact iden-
tity can, of course, be shown using the definitions for Z and Z. The Planck
distribution applies also to quanta linked with other types of fields. For
example, the number of elementary excitations, called phonons, associ-
ated with lattice vibrations of a particular frequency in a solid, is given by
Equation 15.1. This result permits an expression for the specific heat of an
insulating solid to be derived in a straightforward way. Other excitations,
such as magnons, which are associated with spin waves in magnetic mate-
rials, also obey the Planck distribution.

15.2 ELECTROMAGNETIC RADIATION IN A CAVITY

Consider an evacuated enclosure of volume V with walls that conduct
electrically and with no free charges or currents present. Classically, elec-
tromagnetic radiation inside the enclosure is governed by the wave equa-
tion that, for the associated electric field E, has the form,

2
E

€,and u, are the permittivity and permeability of free space, respectively, with
€,y = 1/c2, where c is the speed of light in free space. The solution of Equation
15.2 may be written in terms of spatial and time-dependent functions as

E(r,t)= E(r)e™™". (15.3)
Substitution of E from Equation 15.3 into Equation 15.2 gives

V’E(r) + @myw E(r) = 0. (15.4)
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Because the walls of the container are conducting, allowed solutions
are standing waves with nodes at the walls. To simplify the situation, let
the container be cubical with edges of length L. The solution of Equation
15.4 is analogous to the solution of the Schrédinger equation for particles
in a box discussed in Section 4.2. A possible solution to Equation 15.4 is

E = Eysin(q.x+q,y +q.2), (15.5)

with wave numbers q, = 27/4,, q, = 27/A,, q, = 27/A,, and q* = q} + q; +
q2 = w?/c?. To satisfy the boundary conditions, the following relationships
must apply: q, = 2z/L)n,, q, = 2z/L)n,, and q, = 2z/L)n,. The n,, n,
and n, take integral values and are closely related to particle in a box quan-
tum numbers. A three-dimensional standing wave of angular frequency
o and with wave vector q is called a cavity mode. The number of modes in
the range q to q + dq is
3

L
pq63q =6n,6n,on, = @ 649,64, 64,

or, infinitesimally,

r,d’q= ( ) d’q. (15.6)

\%4
(2p)’

The density of modes p,, is identical to the density of quantum states for
a particle in a box.

It is useful to obtain an expression for the number of modes p, dw in
the range w to ® + dw. For d*q = 474> dg, which corresponds to a shell of
radius g and thickness dq in g-space, and with allowance for two polariza-
tion directions, we obtain

r, dw =2r,4pq’ (::q) dw. (15.7)
w

With @ = cq, it follows that

r, dw = ( v ) w’dw. (15.8)

2
p’c

Equation 15.8 together with the Planck distribution permits the laws for
black body radiation to be derived directly.
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15.3 THE PLANCK DISTRIBUTION

In Section 15.1, the Planck distribution was obtained simply by letting
u =0 in the Bose-Einstein distribution. It is straightforward to derive the
Planck distribution from the partition function. For a system of photons
in a cavity at temperature T, the partition function Z is given by

7 = § : e—bnlhwle—bnzhwze—bnghW3 — Hr § :e—bnrhw, , (159)

1,73 00 1y

where 1, is the number of photons of energy ¢, = fiw, associated with a
mode of frequency w,. In contrast to the situation of a fixed number of
particles in a container, there is no constraint on the n, values. This means
that, in evaluating the sum =, _, ™" the upper limit on n, can be
allowed to be very large, tending to infinity. The summation is easily eval-
uated as an infinite geometric series (see Appendix A),

1

E I T P e LI = (15.10)

nr

Equation 15.10 together with the expression for Z in Equation 15.9 gives

1nZ=—21n(1—e'bhw’). (15.11)

The mean number of photons in mode r is given by

(n)=— 1 8an=_ 1 81nZ= bhl ’ (15.12)
b} de bh) ow, (e”" -1)

which is the Planck distribution, as noted previously in Equation
15.1. The mean energy associated with photons in mode r is
(&)=(n)hw, = hw,/(e"™" -1). Fluctuations in the number of photons in
mode r may be obtained with use of the expression for bosons given in
Equation 12.16,

sw” _ (1 N 1) _ obhv (15.13)
()

(n,)’
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Note that fluctuations in n, become very large when (n,) becomes small.
This result is important, for example, when dealing with low-intensity
radiation.

15.4 THE RADIATION LAWS

With the results obtained in Sections 15.2 and 15.3, specifically Equations
15.8 and 15.12, we can write down an expression for the total energy U, dw
associated with cavity radiation in the frequency range o to w + dw, in a
cavity at temperature T,

(15.14)

3
d
U,dw = (n,)hwr, dw = ( vh ) (W v

p2C3 ebhw _ 1) :
Planck’s equation for black body radiation is obtained immediately as
u, dw, the energy per unit volume in the range @ to @ + dew:

h w’
U, dw = (pzc3) @D dw. (15.15)
In terms of frequency, this becomes
8ph n3
dn=|—|———d (15.16)
wodn= (55 o

and, in terms of wavelength, using \dn\ =(c/1*)d1, we get

dIl. (15.17)

8ph
uldl=( P C) 1

15 (ebhcll _1)

By allowing radiation to escape through a small hole in the side of the
cavity, it is possible to measure the spectral properties of black body radia-
tion. The curves shown in Figure 15.1 are based on Equation 15.16 and
agree well with experiment.

It is convenient to rewrite Equation 15.15 in terms of the variable
x = bhw =hw /[ kT,

(15.18)

4 3
uwdw=uxdx=( ks ) s X dx

p’cn’ e -1

oru,dx = CT*[x’ /(e* -1)]dx where C = ki /p*c’h’.
Figure 15.2 shows a plot of the function x’ /(e* —1) versus x.
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Spectral energy density as a function of frequency for black body

radiation obtained using Planck’s equation at three temperatures. The visible
region of the spectrum is shown as a band.
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FIGURE 15.2  The plot shows the universal function x%/(¢* — 1) versus x. The max-
imum occurs near x = 2.8. Wien’s displacement law for black body radiation fol-

lows from this plot.

A maximum in the function shown in Figure 15.2 is observed at
Xmax = 2.8. It follows that w,,,/T is a constant for black body radiation, or,
for two different cavity temperatures,

W1 max W2 max

- ) (15.19)
T T,
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This is Wien’s displacement law for the frequency at which the maxi-
mum energy density occurs as a function of temperature. The total radia-
tion energy per unit volume in the cavity is given by

=] ) . 3
m d
o =f u, dw =f , d"=CT4f Xy

0 o 0o e =1

From Appendix A, the integral is given by |, x* dx/(e*K 1) = #4/15, and
we obtain for the energy density

4
C
T = 2T (15.20)
15

Equation 15.20 is an expression of the Stefan-Boltzmann law. The related
Stefan-Boltzmann law for the intensity of radiation emitted through a
small hole in the wall of a cavity may be derived from Equation 15.20 and
is set as a problem at the end of this chapter.

An important and beautiful illustration of black body radiation is the
cosmic background microwave radiation that resulted from the Big Bang
formation of the universe billions of years ago. The radiation has cooled to
a temperature of 2.725 K with a peak in the spectral distribution at 160.2
GHz. Figure 15.3 shows a log-log plot of the spectral density as a function
of frequency for the cosmic background radiation. The observations made

105,

104,

103 £

102+

Energy density (10722 W/m?’sr Hz)

10! : :
1 10 100 1000
Frequency (GHz)

FIGURE 15.3  Spectral density as a function of frequency for microwave cosmic
background radiation at 2.725 K calculated with Planck’s equation. Experimental
values from precise satellite measurements lie exactly on the curve. The peak in
the spectrum corresponds to a wavelength of 1.9 mm.
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with far infrared instruments on the COBE satellites starting in the 1990s,
together with various other observations, are fitted to high precision over
several orders of magnitude in frequency using the Planck distribution. The
plotted experimental points are found to lie perfectly on the curve shown.

Roughly 370,000 years after the Big Bang, the hot plasma had expanded
and cooled to 3000 K so that neutral atoms could form. This allowed radi-
ation to propagate freely in space, and over the subsequent 14.4 billion
years the radiation has cooled adiabatically with the expansion of the uni-
verse to reach the present temperature below 3 K.

15.5 RADIATION PRESSURE AND THE EQUATION OF

STATE FOR RADIATION IN AN ENCLOSURE
Electromagnetic radiation in equilibrium in a cavity exerts a pressure (P )
on the walls. From the expression for In Z given in Equation 15.11, (P) is
obtained with the aid of the relation, (P) = (1/f) 0 In Z/dV. To simplify the
notation, we put (P) = P and find

—bhw,
P=— l i Eln(l_ebhw,) — _Ehe_bhaWr
b)av|L 2 (1-e7P) 9V
_ _E<n,>ai , (15.21)
r IV

e = hw, is the photon energy in mode r. Because 1, « V'°  from the

boundary conditions, it follows that de./dV = -4 /V. and the pressure is

therefore

] 1
P=— Nnde =i, (15.22)
3V25<>a 3

where U a1 is the energy density of the radiation given by Equation 15.20.

Exercise 15.1: The expression P = 1 U, given in Equation 15.22 for photons in
a cavity is similar to the result Equation 12.27 P = 2(E)/V, obtained for boson
and fermion quantum gases in Chapter 12. Account for the difference in the
numerical coefficient in these two expressions.

For the particles in a quantum gas, e « V™" rather than V™'” as used above
for photons. The change in the exponent leads to a different numerical coef-
ficient in the expression for the pressure of a gas of particles compared with
that for photons.
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Exercise 15.2: Obtain the pressure exerted by black body radiation on the walls
of an enclosure at a temperature of 1000 K.
Substitution from Equation 15.20 into Equation 15.22 leads to
( p2k34 \ 4 1

=\1scw) T=3 aT’. (15.23)

The coefficient a involves fundamental constants and in SI units has the
value a = 2.5 x 107 Nm™® K®. At a temperature of 1000 K, the mean pressure
on the walls of an enclosure because of electromagnetic radiation is 2.5 x 10%
Pa or 2.5 x 10% atm. This is a very small pressure compared with the pressure
exerted by gas molecules on the walls of an enclosure at ambient temperature.

The equation of state for a photon gas given in alternative forms in
Equations 15.22 and 15.23 is rather simple and has some interesting con-
sequences. The first T'dS equation given by Equation 7.66is TdS=C, dT+
T (dP/JT),, dV. For photons, we have (dP/dT), = dP/AT = +aT’ and C,
(E/JT),, = 4aVT?, where we have taken E = U,y = V Uy - Substituting
for (0P/dT)y and Cy, in Equation 7.66, we obtain

TdS=4a VT’ dT+§aT4 dv. (15.24)

Exercise 15.3: Consider a reversible adiabatic change of volume of a cavity in
which no entropy change occurs. This may be accomplished using an ideal-
ized piston—cylinder-type cavity that has perfectly reflecting walls. Obtain an
expression for the final temperature of radiation in the cavity in terms of the
initial temperature and the initial and final volumes of the cavity.

For this process, Equation 15.24 becomes 0=4aVT’dT+4aT*dV or
d7/m=-1dv/v

Integration gives In(T:/T;) = - +In(V;/V)) and hence

13

T =(ﬁ) T. (15.25)
Vi

The ratio of the final to the initial temperature is given by the cube root of
the inverse volume expansion factor. The temperature inside the cavity may be
measured by having a small perfectly absorbing thermometer inside the cavity
that reaches equilibrium with the radiation.

Equation 15.25 helps us understand how the cosmic background radia-
tion has cooled to below 3 K as a result of the enormous expansion of the
universe.

15.6 PHONONS IN CRYSTALLINE SOLIDS

In Section 8.2, the law of Dulong and Petit for the specific heat of sol-
ids in the classical high-temperature limit was obtained with use of the
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equipartition of energy theorem. A simple model for solids was intro-
duced in which the atoms are considered to be joined together by springs
which obey Hooke’s law. We now outline the theoretical treatment of this
model and show that it can account for the specific heats of solids over a
wide range of temperature.

Formally, the total potential energy U of a solid containing N ions or
atoms that can oscillate with temperature-dependent amplitude about
their low-temperature equilibrium positions may be written as a Taylor
expansion about the low-temperature value U,

oU 1 o*U
U= U+ E () Uig +— ) Uis (7\ Ujp + > (15.26)
iz /, 2 L Ui U, J

1a ib 0
where u,, is the displacement of atom i from equilibrium along direction a.
The total potential energy U is the sum of pair potentials when all atoms
are in their equilibrium positions. The linear term in Equation 15.26 van-
ishes because the potential energy is a minimum in equilibrium and, to a
good approximation, only the zero- and second-order terms in Equation
15.26 need be retained. This is known as the harmonic approximation,

2
U = UO +l2uiaDiau]‘b WithDia = {&\ .
2 ia e i Lauiaau}'bJo
jb

Classical mechanics shows that for a system of particles, it is possible
to choose a set of independent, generalized coordinates g; to specify the
positions of all particles in the system, with the number of generalized
coordinates giving the number of degrees of freedom of the system. We
transform from the set of 3N displacements u,, to a set of generalized

coordinates g, using a linear transformation,

3a

Uiy = Z A, q.. (15.27)

With a proper choice of the coefficient A
system of particles may be written as

the Hamiltonian for the

ia>

3N

1 .
H=U,+ 22 m(q,” +w;q,’). (15.28)
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Equation 15.28 has no cross terms between different coordinates and
the transformed Hamiltonian corresponds to 3N independent harmonic
oscillators. The frequencies w, are called the normal mode frequencies.
From quantum mechanics (see Appendix C), the energy eigenvalues for
the harmonic oscillators are & = (1, + 3)iw,, where n, =0, 1, 2, ..., is the
set of quantum numbers for oscillator r. The total lattice energy in the har-
monic approximation may be written in the simple form,

3N

E=U,+ 2 (nr N %) hw,. (15.29)

r=1

In calculating the normal mode frequencies for a set of 3N oscillators,
various approximations may be used in obtaining expressions for E, and
hence the specific heat. Two famous models, the Einstein and the Debye
models, which were briefly introduced in Chapter 8, are discussed in detail
in Sections 15.8 and 15.9. In Equation 15.29, the quantum number #, is iden-
tified with the number of elementary excitations called phonons, of energy
fiw,, associated with lattice vibrational mode . Phonons in condensed mat-
ter are analogous to photons in electromagnetic radiation in a number of
ways. Like photons, phonons are bosons and obey the Planck distribution.
Phonons travel with the velocity of sound and can have three polarization
directions, two transverse and one longitudinal. We distinguish below
between optic and acoustic phonons. Expressions for the energy and specific
heat of a solid are obtained from the partition function for the set of lattice
oscillators.

15.7 THE SPECIFIC HEAT OF A SOLID

From Equation 15.29, the partition function associated with lattice vibra-

tions in a solid is
3N
Z - e—on Ee—b(”r"‘%)hwr
LI ~
o~V bhw;
Z=e"" | | [lebhw} (15.30)

r

This gives

where the geometric series sum result from Appendix A has been used
to carry out the summation. The mean energy of the solid is obtained
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directly with use of the general canonical distribution expression
Equation 10.34

dlnZz - 1 1
E)=- U+ N hw, |4 — (15.31)
(By=-"25 - U, E AE
and the heat capacity follows immediately
3N
Cy = (6<E>) = —ky b’ i b?Wr . (15.32)
aT }, 0b Ly |e™ -1

To obtain an explicit expression for C,, it is necessary to evaluate
the summation in Equation 15.32. Various approximations and models
may be used to do this. In the high-temperature limit, where e « 1
for all r, the denominator may, to a good approximation, be written as
(€™ —1) = bhw, . In this limit, Equation 15.32 becomes

= 3Nk, (15.33)

and for N = N,, we obtain for the molar-specific heat ¢, = 3R, which is the
familiar Dulong-Petit law discussed in Chapter 8. More generally, the sum
in Equation 15.32 may be replaced by an integral over all wave vectors q.

0 hw g
- E f bwqf_ dq, (15.34)

where w, s the frequency of a lattice mode with wave vector q in branchs.
The upper limit g,,, is discussed below for the Debye model. For monatomic
solids, we consider two transverse acoustic modes and one longitudinal
mode, and the sum over s will introduce a factor 3. For ionic and other
solids consisting of two different types of ions, or different atoms, it is
necessary to consider both optic and acoustic modes. For acoustic modes,
neighbor atoms tend to vibrate in phase, whereas in optic modes neighbor
atoms are out of phase. Further details may be found in books on solid
state physics. The integral in Equation 15.34 is in principle carried out over
the first Brillouin zone, with the zone boundary along a given direction in
g-space determined by the condition that the wavelength of a lattice mode
becomes equal to the spacing between lattice planes along this direction in
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the solid. The relatively simple Einstein and Debye models lead to specific
heat expressions that can be compared with experiment. Although the
assumptions that are made simplify the situation, the predictions are in
fair agreement with experiment. Details of the Einstein and Debye models
are presented in Sections 15.8 and 15.9, respectively.

15.8 THE EINSTEIN MODEL FOR THE SPECIFIC
HEAT OF SOLIDS

In the integral over ,, Einstein made the very simple assumption that
all 3N lattice modes have the same frequency w; regardless of wave vector.
Figure 15.4 shows the w-q dispersion curve for an Einstein solid.

The form shown in Figure 15.4 is actually better suited to high-
frequency optic modes than acoustic modes. From Equation 15.32 with
®, = wy for all r, the heat capacity is readily shown to be

(15.35)

h w 2 bhwE
CV=3NkB( E) I
ksT } (e -1)
If we define the Einstein temperature as gz = fiwy / kg, then for N=N,,
Equation 15.35 gives the specific heat as

_ap(@)
Cy 3R\ T} (qu/T _1)2 . (1536)

Figure 15.5 shows the predicted form for the specific heat as a function
of the reduced temperature 6,/T. With 6, as an adjustable parameter, it is
possible to obtain fairly good agreement with measured specific heats for

W

»
>

Am q

FIGURE 15.4 Dispersion curve w versus q for the Einstein solid. All 3N oscillators
have the same Einstein frequency for wave vectors in the accessible range 0 to g,,,.
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FIGURE 15.5 The Einstein molar-specific heat, plotted in the scaled form ¢y /3R,
as a function of the reduced temperature T/6;. The Einstein temperature 6y is used
to obtain the best fit to the measured specific heat curve for a particular solid.

many solids. In the high-temperature limit, where 6,/T < 1, the law of
Dulong and Petit ¢, = 3R is obtained, as expected.
At low temperatures, where /T >> 1, the specific heat becomes

cy = 3R(q?E) e T (15.37)

It follows that cy is predicted to go to zero exponentially as T — 0 K.
This prediction is not in good agreement with experimental results for
solids. The reason for the failure of the Einstein model in the low T limit
is that the model does not allow for low-frequency modes, which become
of dominant importance at low temperatures. The Debye model is much
more successful in this respect and correctly predicts the form of the spe-
cific heat at low temperatures. For many solids, 6, in the range 200 K
to 500 K is found to provide reasonable agreement between theory and
experiment at temperatures that are not too low. For hard solids such as
diamond, which have high effective “spring constants,” the Einstein tem-
perature is much higher than for more ductile solids. The Einstein fre-
quency is defined as wg = kzqg /71, and for 6, ~ 300 K, this expression
gives wy = 6 X 10'2 sec®, which is in the infrared. At high temperature, we
recover the Dulong—Petit law, as noted previously.
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15.9 THE DEBYE MODEL FOR THE SPECIFIC

HEAT OF SOLIDS
Debye suggested the use of a continuum model in calculating the specific
heat of a solid. The wave equation for the propagation of elastic waves in a
continuous medium is similar in form to Equation 15.2,

_{ L\L
()5, (15.38)

u is the displacement of an element in the solid, and v is the phase velocity
of the wave. We again allow for the elastic waves to have three directions
of polarization, two transverse and one longitudinal. The velocities of the
transverse and longitudinal waves are, in general, not the same. When the
dimensions of the solid are much larger than the wavelength, the expres-
sion for the density of modes for elastic waves will be the same as that
for electromagnetic waves given by Equation 15.7. Both expressions are
equivalent to the particle in a box density of states.

Debye introduced the assumption that the dispersion relation for
acoustic waves is of the form @ = vq. This is a good approximation for
long wavelength acoustic modes but does not apply very well to modes
where the wavelength is comparable with the lattice spacing. Figure 15.6
illustrates the form of the Debye linear dispersion relation.

The form of the dispersion relation shown in Figure 15.6 is to be con-
trasted with the form shown in Figure 15.4 for the Einstein model. Debye
introduced an upper cutoff wave vector g, and equivalently a cutoff fre-
quency @y, for each polarization on the basis of the condition § pgp’ r; = N,

Debye
dispersion
relation

>
»>

b 9

FIGURE 15.6 Linear dispersion relation @ = vq used in the Debye model. The
high-frequency cutoft has wave vector q, and frequency wy,.
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with the density of states p, = V/(27)’ from Equation 15.6 and V as the vol-
ume of the solid. In the Debye model, the Brillouin zone is approximated
by a sphere of radius q,. This procedure gives g, = (62>N/V)'°. The heat
capacity expression follows from Equation 15.34:

a 3V b hivg
Cy = —kgb®> — (4pq*) dg,
v B ob (zp)3ﬂ ebva _1\ Pq ) q

where the volume element in g-space is taken to be a spherical shell of
radius g and thickness dg. A factor 3 is introduced to allow for the three
branches s corresponding to the three polarization directions. Performing
the differentiation with respect to # and with introduction of the variable
x = blivq, we obtain

3kgV o xte®

(15.39)
20?0’ Jo (e* -1)*

v =
The Debye temperature is defined as gp = Aiwp / kg = ivgp / kg, and
Equation 15.39 may be written as

4

(e" - 1)2

Cy = 9Nk; ( ) dx (15.40)
adb

At high temperatures when T > 6,,, the exponential factors in the inte-
gral in Equation 15.40 may be expanded and to a good approximation

3 @

Cy = 9Nk; (T) f " x? dx =3Nk. (15.41)
adb 0

This is once again the Dulong-Petit law. At low temperatures where
T < 6, the upper limit in the integral in Equation 15.40 may, to a good
approximation, be extended to infinity. Integration by parts results in
the same integral that was encountered in the derivation of the Stefan-
Boltzmann law Equation 15.20,

dx =4 = .
(e —1) o (=1 15
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In the low-temperature limit for N = N,, the specific heat therefore
becomes

3 3

4
. ,~,9R(4p )(T) =12p4R(T) . (15.42)
15 A ap S o

This predicts that ¢, o< T? at low temperatures, which is in very good
agreement with experiment for insulating solids. For metals, allowance must
be made for the conduction electron contribution ¢, =X T that becomes of
dominant importance at sufficiently low temperatures (T < 10 K).

The importance of the Planck distribution has been shown in this chap-
ter in treating two important applications: black body radiation and the
specific heats of solids. Photons and phonons along with other excitations
such as magnons in magnetic materials are governed by the Planck dis-
tribution. Together with the Fermi-Dirac and Bose-Einstein quantum
distributions, considered in Chapters 13 and 14, respectively, the Planck
distribution plays a vital role in explaining phenomena in many body
physics.

PROBLEMS CHAPTER 15

15.1 Black body radiation exists in an enclosure of volume V at
temperature T. Use the partition function to obtain expres-
sions for the Helmholtz potential F and the entropy S of the
radiation.

15.2 Find the pressure exerted on the walls of the enclosure for
the black body radiation of Question 1. Give a numerical
estimate of the radiation pressure for T'= 1000 K.

15.3 Fluctuations in the number of photons in cavity mode
r for black body radiation in an enclosure are given by
s, /{n,)=[1/(n)+1]"? Describe the behavior of these
fluctuations for mode 7, of frequency w,, as a function of
temperature.

15.4 The energy density in the range @ to w + dw for black
body radiation is given by the Planck expression
CT* (x*dx/(e* - 1)), where C = ks /p’°c’h’ and x = hw /kgT.
Show that this distribution has a maximum for x = 2.82.
(Use numerical or graphical methods to solve the equation
that you obtain.) If the temperature of the cavity is increased
from 1000 to 1200 K, find the shift in frequency of the maxi-
mum in the energy density.



302 = Statistical and Thermal Physics: An Introduction

15.5

15.6

15.7

15.8

15.9

Derive the Stefan-Boltzmann law I(T) = ¢ T* for the total
intensity of radiation emitted through a small hole in the
wall of a black body enclosure at temperature T. Show that
the constant o is given by s = p’kii/60c’#’. Start your cal-
culation with the expression for the energy density given in
Equation 15.18, and consider radiation striking an area A in
time £.

The cosmic background microwave radiation spectrum is
well fit by the Planck equation for black body radiation with
a temperature close to 3 K. Models for the evolution of the
universe predict that, following the Big Bang, condensation
of particles occurred as the universe expanded and cooled.
After 300 million years, the temperature had dropped suf-
ficiently that electrons became bound in atoms and the
universe became transparent to electromagnetic radiation.
Estimate the radiation temperature at this time, assuming
the average ionization energy is close to that of hydrogen
13.6 eV. Use this temperature and the present radiation
temperature to estimate by how much the universe has
expanded in the past 14 billion years.

Obtain expressions for the phonon contribution to the spe-
cific heat of a two-dimensional lattice of atoms of mass m
in the low T and high T limits by making use of both the
Einstein and Debye models.

Evaluate the partition function for a solid in the Einstein
approximation and use your result to obtain an expression
for the entropy of the solid as a function of temperature.
The spins in a ferromagnetic solid are coupled by an exchange
interaction. At low temperatures, elementary excitations
called spin waves are important, and for a cubic lattice, the
dispersion relation may to a good approximation be written
as w = Kg?, where w is the frequency, g is the wave vector,
and K is a constant. Use this form to obtain an expression
giving the temperature dependence of the spin wave contri-
bution to the low-temperature specific heat of the solid. Spin
waves have a single polarization for each g value. In integra-
tion over g-space, you may assume that the temperature is
sufficiently low that the upper limit in the integral may be
put equal to infinity.
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CHAPTER 16

The Classical Ideal Gas

16.1 INTRODUCTION

Following our discussion of the quantum gas cases in Chapters 13 and 14,

we are now in a position to consider the classical ideal gas in some detail.
For simplicity, we shall initially consider systems of particles without
internal degrees of freedom, such as monatomic gases, but this restriction
will be lifted later in the chapter. In Chapter 12, we considered the classical
limit of the Bose-Einstein and Fermi-Dirac distributions. In the classical
limit, the partition function for a system of N particles in a gas is given by
Equation 12.24, Z = (1/N!) [, é¥#r]¥ = (1/N!) zV, with z the single particle
partition function. The factor 1/N! allows for the indistinguishability of
particles, as discussed in Chapters 4 and 12. Because internal energy con-
tributions are not considered, the states r, with energy eigenvalues ¢,, cor-
respond to the particle in a box states considered in Chapter 4. Equation
4.5givestheenergyeigenvaluesase = (p*#* /2m)(1/V*"?)(n,* + n,’ +n?),
where the quantum numbers n,, n, and n, take integral values.

As noted in Chapter 4, in the classical limit, a large number of eigen-
states are populated, albeit in a sparse way, with the mean number of par-
ticles in a given state (n,) < 1. It is instructive to make use of the familiar
classical limit inequality V,, < V,, where V|, = h*/(3mkyT)** is the quan-
tum volume and V, = (V/N) is the volume per particle. The inequality may
be rewritten in the following form

(N (hz) < kT (16.1)
\v) 3m
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ky T

FIGURE 16.1 Schematic representation of a range of energy levels for a particle
in a box. For gases in the classical limit, the thermal energy per degree of freedom
~kT is much larger than the spacing between single particle levels.

which is convenient for the comparison that is made below. From Equation
4.5, the spacing between adjacent energy levels with quantum numbers
(n,, n,n,)and (n,+1,n,n,) is to a good approximation

Ae ~ (”Z) (mi’;m) (16.2)

Comparison of Equations 16.1 and 16.2 suggests that k;T>> Ae,, so that
the thermal energy per degree of freedom is very much larger than the
spacing of the energy levels, as depicted in Figure 16.1.

The energy states are so closely spaced that they form a quasi-continuum.
Because the factor e¥r in Equation 12.24 varies slowly with ¢,, it is per-
missible to replace the sum by an integral in evaluation of the partition
function Z. This approach is made use of in Section 16.2. Once the parti-
tion function has been determined, we use the bridge relationship F=Mk,T
InZ to obtain the Helmholtz potential and from F the entropy of the ideal
monatomic gas. For polyatomic molecules, allowance must be made for
internal degrees of freedom, and this topic is discussed in Section 16.5.
The chapter concludes with a proof of the equipartition theorem and a
brief discussion of the Maxwell velocity distribution for a classical gas.

16.2 THE PARTITION FUNCTION FOR
AN IDEAL CLASSICAL GAS

If the gas particles do not possess internal energies, the single particle
partition function for an ideal gas may be written as
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_ -be _ —b(pzhz/ZmVZ/s)[nx2+n},z+nzz]
= Y sy
T

Ny, My, Nz

To simplify the expression, introduce K = (p*#* /2mV?*?) so that the
partition function may be written as

[ o o

z = ze‘bK’“z Ee_bK”yz Ee'bK”"z.

nyx=1 ny=1 ny;=1

Each of the identical summations may, to a good approximation, be
replaced by an integral over n, 3., e™* "= [, e dn, with the lower
limit taken as zero, with negligible error, because so many states contrib-
ute to the integral. The integral is given in Appendix A, | & dx=p /2,
and, with x = (bK)"?n, it follows that ﬁ; e K" gy = 3\/p/bK . The single
particle partition function is therefore given by

3/2 3/2

=(P) =V( m ) ) (16.4)
4bK 2ph’*b

The partition function for a gas of N molecules follows from Equation
12.24:

N 3N/2
_ (V) (mz) (16.5)
N 2p?b

and hence

InZ = N[an—Inb+ln l NInN +N, (16.6)

\2pn?)

where use has been made of Stirling’s formula for In N!

Exercise 16.1: Show that the single particle partition function z may, to a good
approximation, be written in terms of the quantum volume V,, = (h?/3mkgT)*?
as z = V/V,,. Obtain an expression for the partition function for N particles in
terms of the quantum volume and the atomic volume.

From Equation 16.4, the single particle partition function is given by

3/2 3/2

) s

_(v)
LVQ).
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For N particles, we write the N particle partition function as

(Vi)

{1

An advantage of the simple form for In Z in terms of V, = V/N and V,,
is that it is memorable and easy to write down. Furthermore, the form
emphasizes the importance of the classical limit condition V, > V.

|nZ~N|n(L\ -NInN+N =N
|V

16.3 THERMODYNAMICS OF AN IDEAL GAS

From Equations 10.49 and 16.6, an expression for the Helmholtz potential
for an ideal gas is immediately obtained,

3 3
F=—kTInZ = ~NkT 1nV+21nkBT+zln(Z;lZHJrNkBT(lnN—l).

(16.7)
The entropy follows as
S = -(ap) — Nk, 1n(V)+31n(kaf)+5 . (68)
aT}, N/ 2 \opn? ) 2

This is the Sackur-Tetrode equation, given previously in equivalent
form in Equation 5.15. The entropy is obtained correctly as an extensive
quality because the factor 1/N!, which takes account of the indistinguish-
ability of particles, is introduced in a natural way in taking the classical
limit of the quantum distributions. For constant particle density (i.e., V/IN
constant) and T constant, Equation 16.8 shows that S is proportional to N.
The entropy expression does not allow for possible spin states of the ideal
gas particles. If the particles have angular momentum specified by quan-
tum number J, then an additional term Nk In(2] + 1) must be added to the
entropy, corresponding to the (2] + 1) possible spin states.

Exercise 16.2: Use the expression for the Helmholtz potential F to obtain
expressions for thermodynamic quantities of interest including pressure, spe-
cific heat, and chemical potential. (Several of these results have been discussed
previously in Section 5.4.)

The pressure is given by P = K (dF/0V); = NkgT/V, which is the ideal gas
equation of state.

The mean energy is (E)=-0InZ/3db=3NksT or, per particle,
(e) = (E)/N =3kgT, in agreement with the equipartition of energy theorem,
with three translational degrees of freedom for each particle.
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The heat capacity of the gas follows directly: C, = (3(E)/aT), = 3 Nk, or
for 1 mol ¢y = 3R, which is the familiar result for the specific heat of a mona-
tomic ideal gas.

Finally, the chemical potential is given by

2
,L/=—T(£) = kgT ln(ﬁ)+iln{2ph \—i
N v) T2 U mket) "2

As noted in Chapter 11, u is proportional to T and depends on the parti-
cle concentration N/V. We have seen that i < 0 in the classical limit of the
quantum distributions. # may again be written in a simple form by mak-
ing use of the quantum volume V|, and the atomic volume V,. To a good
approximation, we obtain m=ksT[In(Vy/Vy)-3[In(2p/3)+1]], with
Vo <V, in the classical limit, as emphasized previously. Representative
values for a classical gas at standard temperature and pressure lead to
V!V, 10% so that y < 0. In general, for given T, large values for V,,
which correspond to a low-particle density, lead to relatively large negative
values for . For systems not in equilibrium, where there is a gradient in 4,
particles will tend to move from regions of high concentration to regions
of low concentration. When V;, and V, become comparable, the classical
limit no longer applies and the appropriate quantum statistics expressions
must be used.

Exercise 16.3: Use the expression for p derived above to obtain a simple clas-
sical limit form for the fugacity 1= €™, which was defined in Chapter 11 in our
discussion of the quantum distributions.

From the expression for i/ given above, we obtain 4= 0.2(V/V,). Itis clear that
A < 1 for a classical gas, as expected from the discussion given in Chapter 12.

16.4 CLASSICAL MECHANICS DESCRIPTION
OF THE IDEAL GAS

In dealing with an ideal gas in the classical limit, it is appropriate to
attempt a description of the system using classical mechanics rather than
quantum mechanics. The concept of classical phase space was introduced
in Chapter 4. There the microcanonical ensemble approach was used with
the energy of the system held constant. In the canonical ensemble case,
energy is exchanged with a heat bath at temperature T.

The energy of a gas particle of mass m and momentum p may be written
classically as e ='H = K+ U= p?/2m because the potential energy U= 0 for
particles in an ideal gas. Making use of phase space ideas and converting
the sum over states into an integral, the partition function for a particle
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FIGURE 16.2 Phase space representation of the accessible states for a single par-
ticle in a one-dimensional box in the canonical ensemble. Not all microstates are
equally probable.

may be written as
z :13f fm e_b(Pz/Z’”)d3qd3p, (16.9)
h() VJ -

where (1/hy*) d’qd’ p is the number of cells in phase space, with q in the
range q to g+ dqand p in the range p to p+ dp. h,’ is the volume of an ele-
mentary cell in 6D phase space and is written as hy” = dp,dp,dp,dxdydz
in Cartesian coordinates. Figure 16.2 shows the phase space representa-
tion for a single particle in a one-dimensional box of length L.

For N particles in a three-dimensional container, it is necessary to use
the 6N-dimensional phase space representation introduced in Chapter 4.
As noted there, it is impossible for us to visualize such a space, but this
does not prevent us from using the representation. From our single par-
ticle expression, we can see that the integral over the spatial coordinates
in Equation 16.9 is straightforward because the integral is independent of
these coordinates. It follows that

0 o0 0 0 3

7= V3fJJ e—b[(pi+p§+p§>/2m1 dp, dp, dp, = Ks f o~ bpx/am) dp. |
hO — — -0 ho —00

(16.10)

where use has been made of the equivalence of x, y, and z. With
u=(p/2m)"? p_and a standard integral from Appendix A, [y e®* du = J/p,
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wegetz = (V/ hy)(2pm/ b)**.Fora system of N particles, using Equation
12.24, the partition function is

N

3/2
V(ZP’“) l , (16.11)

Z = 1/N!
hi\ b

This agrees with the expression given in Equation 16.5 for Z, obtained
using the quantum mechanical description, provided we put h, = h. The
arbitrariness of the size of a cell in classical phase space is replaced by a fixed
value involving Planck’s constant in the quantum mechanical description.
The thermodynamic results derived previously may be obtained from the
partition function given in Equation 16.11, and the classical and quantum
mechanical descriptions are equivalent in the classical limit. The classical
phase space approach was used by pioneers in the field before the develop-
ment of quantum mechanics in the 1920s.

16.5 IDEAL GAS OF PARTICLES WITH INTERNAL ENERGIES

The discussion given above for a classical gas of particles may readily be
extended to include particles, such as polyatomic molecules, with inter-
nal degrees of freedom. The total energy of such a particle with indepen-
dent energy contributions may, to a good approximation, be written in the
additive form,

e=e"+&"+ e+ &l (16.12)

where ", & €™, and & represent the translational, rotational, vibra-
tional, and electronic energy contributions, respectively. We shall assume
that at temperatures of interest molecules will be found in their electronic
ground states, with probabilities close to unity. This is because the thermal
energy per degree of freedom ~kzT ~25 meV for T' = 300 K, whereas elec-
tronic excitation energies are typically much higher than this on the order
of electron volts. The single particle partition function is given by

IR
_ E ebe" E o 2 ebe™ 2 e_bed, (16.13)
tr ot Vil el
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where the summations are over all translational, rotational, vibrational,
and electronic energy states. Because of the properties of the exponential
function, factorization of the partition function occurs. It follows that

t b

Inz = Inz" + Inz™ + Inz"™ + Inz. (16.14)

For a system of N such particles, the partition function is given, as
before,byInZ=NInz-NInN +N

To proceed, consider a system of diatomic molecules, each with moment
of inertia I = 1 myr,” about an axis passing through the center of mass and
perpendicular to the bond joining the atoms. The reduced mass y is given
by pr=m,m,/(m, + m,), with m, and m, the atomic masses and r, the equi-
librium internuclear separation. The interatomic potential has the famil-
iar form shown in Figure 16.3.

We now consider in some detail the vibrational, rotational, and translational
energy states that occur in the partition function as given in Equation 16.13.

(@) Thevibrational motion may be treated in a way similar to that used in
Section 15.6 in dealing with lattice vibrations. Expanding the poten-
tial function in a Taylor series about the minimum at , and omitting
the first order term which vanishes at the potential minimum gives

2

"o

For small amplitude vibrations, as an approximation, we retain
terms up to second order in the expansion. This corresponds to the

u(r)

FIGURE 16.3 The plot shows the form of the interatomic potential as a function
of separation of the atoms in a diatomic molecule. The distance r, corresponds to
the equilibrium separation of the two atoms.
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harmonic approximation introduced for vibrational modes in solids
in Chapter 15. With g, = (r ¥ r,), the energy associated with vibra-
tional motion is classically given by

e™ = lmg? + L mw?ql, (16.16)

where w = \/k/my, with k = (0*u/or?), , the effective spring constant.

The electronic energy ¢ corresponds to Mu, in Equation 16.15.

From Equation 16.16, it is seen that the vibrational motion may be

treated as simple harmonic motion. Quantum mechanically, the
energy eigenvalues for a simple harmonic oscillator are

e® =m+L)hw, with n=0,1,2,... (16.17)

The translational motion of the molecule gives rise to particle in a
box energy eigenvalues as before but now involving the total mass
(m, + m,) of the molecule,

p2h2
e’ = (2V2/3( )(nx2 +n +n?), (16.18)
m + mz)

with n,, n,n,=1,2,3, ...
Finally, we consider the rotational motion with the rotational energy
given by

(16.19)

1 I’
e =—Iwl="",
2 I

1
2
where I is the moment of inertia and L = Iw, is the angular momen-
tum about an axis of rotation. For a diatomic molecule, two axes per-

pendicular to the internuclear axis must be considered. The quantum
mechanical expression for the energy eigenvalues is

rot 1 h2
e = E T L(L+1), (16-20)

where the operator L? has eigenvalues #°L (L +1) with L =0, 1, 2,....
Allowance must be made for a degeneracy factor (2L + 1) for each eigen-
state corresponding to the (2L + 1) values of the quantum number M.

We are now in a position to evaluate all of the molecular partition
function factors in Equation 16.14.
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Translational motion: Equation 16.5 gives for the translational single
particle partition function,

\%4 m+m, 1"
2= s (16.21)
b 2ph
and
tr
(E") = _Nalnz = 3N - ENkBT. (16.22)
db 2b 2

Rotational motion: From Equation 16.19 with allowance for degeneracy,
the single particle rotational partition function is given by

_ hz _p2 _ 2
Z°t = (2L+1)e( bi* 2D L(L+1) _ 1+ 36( bi* /1) + 5e 3b(h*/21) +
L=0,1,2,...

(16.23)

At high temperatures for (b#*/2I) L(L +1) < 1, the sum over L may be
replaced by an integral. With x = L (L + 1), we obtain

p =f e(—bhzlzf)xdx _ 212, (16.24)
0 bh
and hence
(B = % - NkiT. (16.25)

This result is correct if the molecule is heteronuclear, such as HCI. For
homonuclear molecules, such as O,, where the two atoms are indistin-
guishable, it is necessary to introduce a factor 1/2 in the expression for z™t
to avoid overcounting of states.

Vibrational motion: From Equation 16.17, we obtain for the vibrational
partition function

et -1/2bhw

vib —b[n+(1/2)]hw e
2 = 26 - (16.26)
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where use has been made of the geometric series summation formula in
Appendix A. The mean vibrational energy for the system is

dlnz"™®
b

(™) = N(e®) = -N

= %th [1 + 2 ] (16.27)

Note that 1/2 (Niw) is the sum of the ground state vibrational energies
of the N molecules.

Electronic contribution: For temperatures that are not too high, almost
all the molecules in the gas are in their electronic ground states with energy
Mu, as, given in Equation 16.15, and, to a good approximation, we have

z9 = P, (16.28)
It follows that

(E*) = - Nu,. (16.29)

In general, for diatomic molecules, the various energy contributions
are ranked as follows: (") > (&™) > (&) > (&), with energies cov-
ering the range from electron volts to milli-electron volts . The fact that
(€"™) > (&) allows us to treat the vibrational and the rotational motions
as uncoupled from each other. Consequently, at temperatures below 300
K, only the translational and rotational energy contributions are strongly
temperature dependent for diatomic gases. It is convenient to character-
ize vibrational and rotational energies by characteristic temperatures
g™ = hw /ky and g = #*/ 2k, respectively. As an example, for nitrogen
these temperatures are @™ = 3 x 10’ K and ¢** = 3 K. The total energy of
a diatomic gas at normal temperatures may therefore be written, to a good
approximation, as

(E) =§NkBT + NkgT + %th — Nu,. (16.30)

The heat capacity is Cy = 5/2 Nkg. or per mole ¢v = 5/2 R.

This is a result that can be written down immediately using the equipar-
tition of energy theorem, assuming five degrees of freedom, three transla-
tions and two rotational. As noted in Chapter 1, the reason that classically
there are only two rotational degrees of freedom is that the moment of
inertia about the long axis of the molecule is extremely small and the
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FIGURE 16.4 The rotational degrees of freedom are shown for a diatomic mol-
ecule. Rotations occur about two orthogonal axes through the center of mass.
Rotational motion about the bond axis does not need to be considered because
the moment of inertia about this axis is very small and the corresponding rota-
tional levels are therefore very widely spaced.

characteristic temperature 8™t for this motion is therefore extremely high.
Figure 16.4 illustrates the situation.

16.6 PROOF OF THE EQUIPARTITION OF ENERGY THEOREM

We have stated the equipartition of energy theorem and have used it in

a number of situations. The theorem states that in the classical limit, the
mean energy associated with each independent quadratic energy term or
degree of freedom as introduced in Section 16.5 is given by 1/2 (ksT).

The proof of the theorem, using the canonical ensemble expres-
sions in the classical limit, is straightforward. Consider a system of N
particles that may be described using position and momentum coor-
dinates (qi...qn; p1--Pn)- Let the energy of the system take the form
E = =N e(q;,p:), where g(q;, p;) is the energy of particle i. We focus
on the mean energy contribution (& (p;)) of particle i. The classical phase
space approach of Section 16.4 gives

Jee™dg - dp -+ fee ™ dp fe "> dg - dpy -

(a(p)) =

b<E>dq1dpl ee - fe—badpife_bzejdql...dpl... ’
and this reduces to
fee™ Jee™dp, 9 i}
L= — |1 Padp, ||. (16.31)
(e) = e dp, ab[n(fe P)]

(To simplify the notation, we have put ¢; (p,) = ¢; in the integrals.) The result
given in Equation 16.31 is perfectly general for the independent energy
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contribution ¢, We now choose ¢; to have a quadratic dependence on p,.
This is important in evaluating the integral. Inserting ¢; = a p? for ¢; in
Equation 16.31 leads to () = —d/abIn[f . e™"") dp;]. With a change
of variable in the integral to x = (ba)"? p; and use of a standard integral
from Appendix A, we obtain

L e dx __9 (ln P\ i
Jpa ) ). ab | \ba ] 2b
Thisgives(g) = (1/2) ksT asrequired to prove the theorem. Application
to a given system involves counting the number of independent quadratic

degrees of freedom in the system. The total mean energy is obtained
directly by multiplying this number by (1/2 ) kpT.

9
-- 2
(e) 5

16.7 THE MAXWELL VELOCITY DISTRIBUTION

In our discussion of ideal gas systems, attention has largely been focused
on average values and, in particular, on the mean energy of particles. The
molecules in a gas have a distribution of velocities, and we now deter-
mine the form of this distribution. The probability for a particle to have
translational energy € is given in the canonical ensemble by p(e) = e™*z,
where z is the translational single particle partition function. The transla-
tional energy levels form a quasi-continuum, as shown in Figure 16.1, with
density given by the particle in a box density of states p(¢) in Equation
4.14. For a gas at temperature T', the probability P(e) for a particle to have
energy in the range € to de is

P(9de = p(9r(de = (e:e) ( 4p‘2/h3) @my?d%de.  (1632)

For e = 1 mv?, where v* = (v,.> + v,> + v.%), it follows that the prob-
ability of particles having speeds in the range vtov + dv is

3 2
Y e

or in compact form,

P(v)dv = Cy e g, (16.33)

with Cy = 1/z (Vm’/2p*h*). From Equation 16.4, z = V(m/2pbh*)*",
and this gives Cy = +/2/ p(bm)**. The constant C,; may alternatively be
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obtained using the normalization condition, f, P(v)dv = 1. Equation 16.33
with the expression for Cy; gives the Maxwell speed distribution in terms
of the temperature T as

3/2

P(v)dv=4p( m ) plel-mI2ksT) gy, (16.34)
2pksT

Exercise 16.4: Obtain expressions for the most probable speed, the mean
square speed, the root mean square speed, and the mean speed for particles
that obey the Maxwellian speed distribution. Compare the values obtained and
comment on the ratios. Obtain the root mean square speed for molecules in
nitrogen gas at 300 K.

The condition dP(v)/dv = 0 gives the most probable speed v at the max-
imum in the distribution, Vv = /2kgT /m .

With use of a standard integral from Appendix A, the mean square speed is
evaluated as (v?) = fo v?P (v) dv = 3ksT/m.

The root mean square speed vgys is immediately given by
VRms = M =.3kg T/m.

Finally, the mean speed is obtained as (v) = o vP(v)dv = J3ksT / pm .

Itis readily seen that vgms > (v) > v, with vgys :(v):v given by\/§ 8/ p:2.
This trend in the various average speed values is a result of the long tail at high
speeds in the Maxwell distribution, as shown in Figure 16.5.

For nitrogen at a temperature of 300 K, substitution in vgyus = /3ks7/m
gIVES vpus ~5x 102 ms™.

The Maxwell velocity distribution is readily obtained from the speed
distribution. Figure 16.6 shows a representation of velocity space with
Cartesian coordinates.

Pw)

Vimp
—

Vrms

14

FIGURE 16.5 The Maxwell speed distribution showing the most probable speed
Vmp =V, the mean speed (v) and the root mean square speed vys. The long tail of
the distribution at high speeds accounts for the trend vrys > (V) > V.
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FIGURE 16.6  Velocity space representation that uses the three orthogonal veloc-
ity components, denoted by v,, v, and v, for particles in a gas. Particles whose
velocity vectors end on the spherical surface shown all have the same speed.

The speed distribution includes all velocities, independent of direction,
which have magnitudes in the range v to v + dv, and this corresponds
to velocity vectors with their tips in a spherical shell of volume 4py? dv
in Figure 16.6. The velocity distribution corresponds to velocities in the
range v to v + dv, and a volume element d*v = dv,dv,dv.. It follows from
Equation 16.34 that

3/2

\P(v)d3v=( m ) e T g3y, (16.35)
2pkyT

The magnitude of the root mean square velocity is ypyg = (kgT/m)"?.
This follows immediately from the equipartition theorem or can be
obtained by evaluating the mean square velocity with use of the distri-
bution in Equation 16.35. Figure 16.7 shows the velocity distribution for
velocities in the xX direction.

Elegant experiments using molecular beams have verified the Maxwell
velocity distribution. Figure 16.8 illustrates schematically the time of flight
methods used to determine molecular velocities. Particles from the source
chamber, which is maintained at a fixed temperature, escape through a
small nozzle and enter the vacuum chamber as a collimated beam. The
high vacuum region contains a rotating slotted wheel assembly, as depicted
in Figure 16.8. For particles to be detected, they must pass through slots on
the successive rotating wheels. The magnitude of the velocity of detected
molecules is given by v = L/t, where t = O/w. 6 is the angular offset of
the slots on the two rotating wheels, and @ is the angular velocity of the
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P(v,)

FIGURE 16.7 The plot shows the Maxwell velocity distribution function for a
classical gas. The maximum in the distribution occurs for <v,> = 0, and the dis-
tribution is symmetrical about this value.

Detector

Source

FIGURE 16.8 Time-of-flight method used to measure molecular velocities in a
high vacuum apparatus. The slotted rotating disks are used to select a particular
small range of speeds that can reach the detector. The arrangement can be used
to scan over a range of speeds. The distribution that is obtained is determined by
the temperature of the source from which the molecules escape through a small
aperture.

coupled wheels. Agreement between experimental measurements and the
theoretical predictions on the basis of the Maxwell distribution is found
to be excellent.

Up to this point in the book, we have used ideal systems in develop-
ing and applying statistical and thermal physics concepts and expres-
sions. In Chapter 17, nonideal gases and spin systems are considered. For
nonideal gases, allowance is made for both potential energy and kinetic
energy contributions. As we shall see, this leads to considerable compli-
cation in evaluating the partition function, and approximations are intro-
duced to simplify the discussion. For nonideal spin systems, we again use
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approximate methods or alternatively simplified model systems. As might
be expected, the quantum fluids require more elaborate treatments, and
we shall simply outline approaches used for weakly interacting Fermi and
Bose systems.

PROBLEMS CHAPTER 16

16.1 Monatomic molecules adsorbed on a surface of area A move
freely and may be treated as a classical two-dimensional
ideal gas. Obtain an expression for the partition function
and hence the specific heat per mole for this system.

16.2 Helium-4 vapor is in equilibrium with liquid helium at its
normal boiling point of 4.2 K. Treating the vapor as an ideal
gas obtain an expression for the entropy and the chemical
potential for this phase.

16.3 Obtain the rotational molar specific heat for carbon mon-
oxide gas in the low- and high-temperature limits. Does the
high temperature limit apply at 300 K? The moment of iner-
tia of the CO molecule for rotation about its center of mass
is 1.3 x 107 g cm?.

16.4 The linear CO, molecule has four vibrational modes with
associated vibrational temperatures gy, = hw,y/ks Of
3498 K, 1908 K and two degenerate modes at 954 K. Obtain
the molar specific heat for this gas at a temperature of 400 K.
Assume that the rotational and translational degrees of free-
dom can be treated in the high-temperature limit.

16.5 One mole of nitrogen gas is heated to 800°C. Make use of
the measured vibrational energy level spacing of 0.3 eV to
determine the vibrational contribution to the specific heat
for N, at this temperature.

16.6 Compare the rotational and vibrational contributions to
the specific heat for chlorine gas at 300 and 1200 K. For Cl,
AW,/ ks = 810 K and 7% /2Ikg = 0.35 K.

16.7 Obtain expressions for the entropy and chemical potential
of a classical diatomic gas at temperatures for which the
molecules are in their vibrational ground state. Compare
with expressions for a classical monatomic gas.

16.8 Give expressions for the most probable kinetic energy and
the mean kinetic energy for a monatomic gas obeying the
Maxwell speed distribution. Compare your expressions
with the equipartition theorem kinetic energy value.
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16.9 A gas is contained in a vessel with a small hole in the side
through which molecules can escape into an evacuated
space. This process is called effusion and is used in molecu-
lar beam experiments. Obtain an expression for the number
of molecules with speeds in the range v to v + dv, emerging
from the hole of area A in a solid angle d€2.



chapter 17

Nonideal Systems

171 INTRODUCTION

Most of the systems considered in the development of the subject so far
have been ideal systems, specifically ideal gases and ideal paramagnets. A
notable exception is the harmonic solid, introduced in Chapter 15 in treat-
ing lattice dynamics, phonons, and specific heats of solids. In that discus-

sion, the Einstein and Debye models are used in evaluating the partition
function for the lattice dynamic modes of a solid. A number of nonideal
systems may be described in the classical approximation. Examples con-
sidered in this chapter are nonideal gases and nonideal spin systems. The
results obtained are useful in describing a variety of systems.

Nonideal Bose fluids, such as liquid helium-4, and Fermi fluids, such
as liquid helium-3, require quantum statistics for a description of their
properties. Powerful approaches such as Fermi liquid theory have been
developed for treating quantum fluids, but a detailed discussion of these
topics is beyond the scope of this book. The discussion of quantum fluids
is therefore fairly brief and classical systems are considered first.

17.2 NONIDEAL GASES

Consider a real gas of N molecules. The classical Hamiltonian for N par-
ticles, allowing for interparticle interactions, is given by Equation 4.2,
H=K+U = 3Iip’2m + 31 u(r;), where u(r;) is the pair potential for
particles i and j. As pointed out in Section 7.8, the intermolecular poten-
tial is often represented by the empirical 6-12, or Lennard-Jones, poten-
tial, with form given by Equation 7.63, u(r) = uo[(r, /7)"* = 2(r, /7)°]- The
attractive part of the potential is due to fluctuating electric dipole-dipole

323
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interactions between molecules. The short-range repulsive interaction is a
result of the Pauli exclusion principle, which opposes interpenetration of
the molecular electron distributions.

The partition function for a system for which the Hamiltonian has the
form given in Equation 4.2 is

h3NN'f f

Adopting the approach used in Section 16.4, this may be written as
a product of factors involving momentum and position coordinates
separately:

1 0 0 b Ni . N
= f_w.‘.f_we 2iiom &pr-d’py U:/"'ﬁ,e X0 oy diry .

(17.1)

N Pr
112m x>]l

u(r;j)
" [d’r--dry; d3P1'“d3 Nl

The limits in the momentum integrals are +oc0 and spatial integration
is over the container volume. Equation 17.1 becomes

(Zldeal) QN (1’72)

Z.4ea 18 the familiar ideal gas partition function given by Equations 16.5
and 16.11, Zige = (VYN )(2pm/bh?)™"?, whereas Qy depends on the par-
ticle coordinates and is called the configurational partition function. It is
not a simple matter to evaluate Qy because the potential function involves
the interparticle separation r; = r; — r; and not the particle coordinates r;,
r; separately. It is therefore necessary to use approximations in obtaining
an expression for Q. The properties of the exponential function allow Q

to be written in the form,

N
Qu = f f He-wvdsn--.d%, (17.3)
14 Vz>j=

where we put u; = u(r;) to simplify the notation. The condition i > j
ensures that each pair of interacting particles is considered only once. At
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low-particle densities, where the r; are on average large, u; — 0 so that
e™™ —1and Qy— VV. In the low-density limit, we recover the ideal gas
partition function. It is convenient, for reasons that will become clear, to
consider the exponential function (¢~ =1), As the density of the gas is
increased, the function (e_b”"f —1) will increase from zero as a result of the
decrease in r;/r, before tending to the value -1, as shown in Figure 17.1.

If we put W =(e”™ -1) and insert this form in Equation 17.3, we
obtain

Qv =ff 1+ W;)d’n - d’ry. (17.4)

1>]

It is advantageous to deal with integrals that involve W;; because they
converge for r; — oo, whereas integrals of e ™ do not. The product in
Equation 17.4 may be written as

=7 =7 > >] >l m>n

1>]

The summations are over all molecules in the container, with the condi-
tion that identical clusters be counted once only. It should be remembered
that the molecules are indistinguishable and the labels used are simply a

24
S
ePuij_q
0
-2 } t
2 4
ri/Ty

FIGURE 171 The functions ™" and ™" -1, that involve the interparticle
potential u, plotted versus r;/r,. The function ™ tends to unity for large rilto
whereas e ™ -1 tends to zero.
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convenience. The resultant overcount of states is taken care of by the factor
1/N! in Equation 17.1. Insertion of Equation 17.5 into Equation 17.4 gives

Qy=VV +JJ( ij)d3n... d’r, +JJ( szjwkl) &Ird’ry +o

(17.6)

Because the W;; — 0 in the dilute gas limit, it is appropriate to regard
the various terms in W;; as correction terms of decreasing importance as
the order increases. It is helpful to give a pictorial representation of terms
that involve Wi,
in Figure 17.2.

It is readily shown that the number of ways in which n mole-

Wy, ...> 0. Examples of such cluster diagrams are shown

cules in a cluster can be chosen from a total number of molecules N is
N(N =1)-+(N = (n-1))/n!. For example, for two molecule clusters, the first
molecule may be chosen in N ways, the second in (N — 1) ways, and a factor 1/2
must be inserted to avoid counting the same cluster twice. Extension of this
approach to n molecules leads to the general result given above. Consider the
leading correction term in Equation 17.6 involving W;.. This may be sim-
plified by writing the integral as [ [W;; &’ --d’ry = VN'foW,-j d’r, d’r;.

First order Wij \@ ]
]
ol o k
Second order  W;Wj, \ \ /
o/ 0]
ol
W Wi \ )
o——o!
o T k Tm
Third order WiWit Won \c]) ol On
i
O

wow, N\

WL, W ol o,

FIGURE 17.2  Cluster diagrams which represent first-, second-, and third-order

terms in the function W, which occurs in integrals for the configurational parti-

tion function as given in Equation 17.6.
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Now W;; depends on r; independent of orientation and Figure 17.3 illus-
trates that, for a given separation , molecule j must lie in a spherical shell
of volume 4pr°dr, provided wall effects can be ignored. This is a good
assumption for a container whose dimensions are typically very large

compared with molecular dimensions.
From the definition of W;; in Equation 17.4, it follows that

f (w,-jd%,- &r, =V [4p f (e _1)r? er.
0

The configurational partition function is therefore written as

N(N -1 *
Qy=V" +(2)VN'1f 4p(e” ™) — 1) dr + s (17.7)
0

and if the form of u(r) is chosen, the definite integral in Equation 17.7 can
be evaluated. Specific cases are dealt with later. For the moment, we put

4pf (e —1)r* dr = 2y, (17.8)
0

with v, a volume of the order of the molecular volume. Note that for fu(r)
< 1, which is a good approximation in many real gases at temperatures of
interest, expansion of the exponential function in Equation 17.8 gives

ZVR = 4pf (e—bu(") _ l)rzdrz —4pbf u(T)T2 d?’. (179)
0 0

|

FIGURE 17.3  Spherical volume element that is available to molecule j for a given
separation of a pair of molecules i and j in a gas, provided they are not near the

walls of the container.
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This form for 2v, leads to simple integrals provided u(r) remains finite
as r — oo. Examples are considered in Section 17.3. In terms of the volume
Vg Equation 17.7 takes the form

2
N7ve , (17.10)

Qy=V" [1+ 4o

where the approximation N(N —1) = N” has been used because N is very
large. The quantity Nv,/V is of the order of the ratio of a molecular vol-
ume to that of the volume per molecule in the container and we expect
Nvr/V <1, provided departures from ideal gas conditions are not too
large. With use of the binomial theorem, Equation 17.10 becomes

QN“[V(1+N‘1;R)}N

From Equations 17.2 and 16.5, the partition function for the gas is

LT 3/2 [ Nvg) N
bm VR
= Vil+ 17.11
( bh? ) Vv 71D
This gives the Helmholtz potential F = k3T In Z as
—NkgT [an + ln(l + N‘;R ) 3 =In ( 252”1) + NkgT = NksTInN.  (17.12)

As a good approximation, we take In(1+ Nvy /V)= Nvi/V, and the
pressure is given by

oF Nk;T [ Nv
P=—() === (17.13)
Wiy oV %

Equation 17.13 is similar in form to the leading terms in the virial expan-
sion introduced in Chapter 1 and given in Equation 1.3,

UNKT [Ny o (NY s
P="5 [l \y) BO+() <D }
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B(T) is called the second virial coefficient, C(T) the third virial coef-
ficient, and so on. Careful experiments have yielded values for the coef-
ficients for a large number of gases. Comparison of Equation 17.13 with
Equation 1.3 shows that v, = —=B(T) if higher-order terms in the expan-
sions are ignored. Explicit comparisons of theory and experiment involve
the intermolecular potential for a particular gas. From the expression for
the Helmholtz potential given in Equation 17.12, various thermodynamic
quantities, such as the entropy, can be obtained.

17.3 EQUATIONS OF STATE FOR NONIDEAL GASES

Equation 17.13 together with Equation 17.8 provides the basis for deter-
mination of the equation of state for a given intermolecular potential

function. It is necessary to choose a specific form for the intermolecular
potential to evaluate the integral for vj.

Exercise 17.1: Obtain the equation of state for a gas with a hard core potential
of the form shown in Figure 17.4. Give a physical interpretation of the equation
of state for this gas.

From Equation 17.8, 2vg = =4p[§ r’dr = ~(4p/3)’ = -vo. Insertion of this
value for v into Equation 17.13 gives

P (17.14)

Vv A%

If we assume that Nv/RV < 1 and use the binomial theorem, Equation 17.14
may be written as

po_ NI (17.15)
V -1 Nvy)

FIGURE 17.4 Hard-core intermolecular pair potential with u(r) = oo for r < ryand
u(r) =0 for r > r,.
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Equation 17.15 is of the form of the ideal gas equation of state with the
volume reduced by 1 Nv,, which is just the sum of the hard-core volumes
divided by two. The volume reduction effect leads to a pressure increase com-
pared with the pressure of an ideal gas at the same volume and temperature.
(Note that it is implicitly assumed that an ideal gas has a negligible hard-core
radius.)

Exercise 17.2: Show that the van der Waals equation of state introduced in
Section 1.4 and used in Section 7.8(b) can be derived using the intermolecular
potential in Figure 7.5, which is represented by u(r) = = uo(ry /r)° (r > ry); u(r) =
oo (r < ry).

The potential has a hard-core combined with a long-range attractive
potential that is similar to the Lennard—Jones long-range form. Insertion of the
potential into Equation 17.8 and use of the high-temperature expansion for the
long-range part give

0 (1o ’ 2 4\ s (4P s
2vg = —4pf redr+ 4pbu0f (—) redr= —(—) I + (—) Iy’ bug
0 n r 3 3

or
2vg = = V(1= buy),

where vy = (4/3)pr’. With this value for 2vy, Equation 17.13 becomes

P

- NksT 1+(NVO)(1—buo) :
% 2V
If the temperature-dependent terms are grouped together and we use the
binomial expansion in exactly the same way as for the simple hard-core poten-
tial considered above, then
(

I

2
1N UoVo) (v —%NVO) - NksT. (17.16)

Equation 17.16 is of the form of the van der Waals equation (P + a/V*)(V = b) = NkgT,
with a = (1/2)NugVy and b = (1/2)NV,. The long-range attractive part of the
intermolecular potential increases the effective pressure, whereas the hard-
core volume reduces the total volume available to molecules.

Other intermolecular pair potentials will lead to somewhat different
equations of state. The examples given above show that the small cluster
approach that involves the leading correction term in the expression for
the configurational partition function, given in Equation 17.6, provides
useful results for real gases at moderate densities. For high densities, it is
necessary to consider higher-order correction terms in Equation 17.6 and
the calculations become more complicated.
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17.4 NONIDEAL SPIN SYSTEMS: MEAN FIELD THEORY

Ideal spin systems have been considered in Chapters 4 and 5. For a system
of noninteracting electron spins j in a magnetic field B along the z direc-
tion, the Hamiltonian may be written as

M= —Eyj-B - gmBBE S (17.17)
] J

where g = —gmgS$ is the magnetic dipole operator with § the spin opera-
tor. (As noted in Chapter 4 for negatively charged particles, g and S are
antiparallel.) The energy eigenvalues are depicted in Figure 4.6 for N iden-
tical spins S =1/2, and the partition function obtained from Equation
10.37 is Z = [2cosh 1 b gmy B]". Interactions between spins in a ferromag-
net or antiferromagnet are dominated by what is termed the exchange
interaction. The exchange Hamiltonian for spins is called the Heisenberg
Hamiltonian and has the form

H = Efijs--s, (17.18)

y

where J; is the exchange interaction between spins i and j. The exchange
interaction is quantum mechanical in origin, with 2J; as the energy dif-
ference for spins i and j in parallel and antiparallel spin orientations.
Ferromagnetism (J;; < 0) corresponds to parallel spin orientations for inter-
acting spins having a lower energy than antiparallel orientations, whereas
for antiferromagnetism (J;; > 0), the situation is reversed.

With the exchange interaction present, the Hamiltonian becomes

M= E Ji S-S + gmBBE S;e. (17.19)
1,] J

Because the exchange coupling is nonlinear in the spin operators, it is
not possible to obtain general solutions for the eigenvalues and approxi-
mation methods must be used.

The Weiss mean field approach considers a single representative spin
situated in a field made up of the external magnetic field and an internal
effective field produced by all the other spins. The exchange interaction is
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strongest between nearest-neighbor spins and, as a simplifying approxima-
tion, we neglect interactions with more distant spin neighbors. Let there be
n nearest neighbors of the representative spin, as shown in Figure 17.5.

If we assume that the nearest-neighbor exchange interactions are equal
and given by J, the Hamiltonian for a single representative spin in the
mean field approximation is

H =[gmzB+nJ(S.)S. = gmy[B+B,]S., (17.20)

where B, = (n]/gmg)(S.) is defined as the mean field. (S,) is the average z
component of a single spin in the system. To simplify the analysis, we con-
sider the special case of spin 1 particles although for many ferromagnets
§>1/2 . The mean field single particle partition function for a spin § = 1/2,
with g = 2, is obtained from Equation 10.36,

z=2cosh[bmy(B+ B,,)]. (17.21)

The magnetic moment of the complete system is given by

dlnz

N{m)= (M) = (ZZ) = Nmg tanh [bmg (B + B,,)]. (17.22)

Consider the special case B = 0 for which Equation 17.22, with
(m) = —gmy(S,) , may be rewritten as

(5.)= - Ltanh [ b (S.)]. (17.23)

FIGURE 17.5 Nearest-neighbor spin sites for a simple cubic lattice for which the
number of nearest neighbors # = 6. Interacting spins are located at the sites indi-
cated by dark circles.
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(S,) is present on both sides of Equation 17.23, which is solved in a self-
consistent way. For a ferromagnet with ] < 0, we put x = —(1/2) bn|J|{S,),
and this gives

( 2 ) x =tanhx (17.24)
bnl]| ' '

For a particular value of f, the solution to Equation 17.24 is obtained
graphically, as shown in Figure 17.6, from the intersection of plots versus
x of the two functions of x that occur in the equation.

From Figure 17.6, it is clear that, in the high-temperature limit, x = 0,
which corresponds to (S,) =0, always being a solution. The intersection for
nonzero x is of greater interest because this solution implies (S,) # 0 for
B = 0. The condition for nonzero solutions to occur in Equation 17.24 is
that the initial slope of the function on the right-hand side must be greater
than that of the function on the left-hand side. For small x, we expand the
hyperbolic function in the form

1 2
tanhx =x -~ x>+ — Xx* +0 (17.25)
3 15

and obtain for the initial slope of the right-hand side of Equation 17.24
[d/dx (tanh)],—o =1. The initial slope of the left-hand side of Equation

20+ y = 2x/Pn]
1.5+
y =tanh x
y Lo+
0.5
0.0 t t t t
0 2 4 6 8 10

FIGURE 17.6 Graphical method used in the solution of equation Equation
17.24. The point of intersection of the two curves shown as a function of
x=(1/2)pn|J|(S,) gives the required solution.
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17.24 is [d/dx(2x/ bn|]|)],—o = 2/ bn|J|. The condition for finite solutions is
therefore (2/ bnl|J|)" 1or

_)

(17.26)
2kg

Equation 17.26 implies that there is a critical transition temperature for
the system

TC =M.

17.27
2%y (17.27)

Below T, there is a finite magnetic moment in the mean field approx-
imation. For ferromagnetic systems, we identify T, with the Curie tem-
perature. For small x, the use of Equation 17.25 in Equation 17.24 leads
to 2/(bn|J|)=1- (1/3) x> +--, and with the definitions of x and T, this
reduces to

1/2

(S.)=3 5(1-;1) , (17.28)
C

C

or in terms of the magnetization
<Af>=2v§;?(l—]”) , (17.29)

where (My) = Nmg /V for our spin 1 particles. Equation 17.29 predicts
that the magnetization decreases to zero as T — T, with critical expo-
nent b =1/2, in agreement with the Landau theory predictions discussed
in Chapter 9. As noted in Chapter 9, this exponent prediction is not con-
firmed by careful magnetization measurements on 3D ferromagnets at
temperatures just below T, which yield an exponent b =1/3. It is not
unexpected that the mean field theory should break down near T because
in this temperature range fluctuations in the order parameter become
large and the mean field model assumptions are no longer valid. In spite

of being a fairly crude model, the mean field approach provides physical
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insight into ferromagnetic and antiferromagnetic transitions. Note that
in antiferromagnetic systems, there are two ordered sublattices that inter-
penetrate. It is necessary to consider the sublattice magnetization rather
than the total magnetization in antiferromagnets.

Exercise 17.3: Generalize the mean field discussion given above to allow for
a nonzero external magnetic field. Obtain an expression for the magnetic sus-
ceptibility for T > T and show that this has the Curie-Weiss form.

For T > T, and B small, expansion of the tanh function, with retention of
the lowest-order term, and use of Equation 17.27 allow Equation 17.23 to be
written as

nlJ|\

(M) = N o) >) =Nm32bB+(T7C)(M). (17.30)

meL L

With (M) = (M)/V, this is rearranged to give

2
(M) = (Nw'B) 1 (17.31)

("2vks J7-T0)
For T > T.taking B @poH, the magnetic susceptibility per unit volume is

_ N pops®
€ Vi T-To)" (17.32)

This is the familiar Curie-Weiss law introduced in Chapter 1.

17.5 INTRODUCTION TO THE ISING MODEL

The Ising model uses a simplified Hamiltonian to treat spin systems in
which interactions are important. The approach may be extended to other
order-disorder phenomena. Instead of the Heisenberg Hamiltonian given
by Equation 17.19, involving the scalar product of 3D operators §;and §;and
the resultant terms such as S,,, S, , the Ising model introduces 1D operators

ix> Vjx >

S;and S, with eigenvalues +1. The Ising Hamiltonian is written as

- E 15S:S;, (17.33)

<i,]>

where the summation is over all pairs i and j. For simplicity, it is usual
to consider only nearest-neighbor interactions with a single coupling
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constant J. The sign of ] determines whether parallel alignment (J < 0) or
antiparallel alignment (J > 0) of neighbor spins is favored, and we shall
consider the parallel alignment case. If only nearest-neighbor interactions
are considered, Equation 17.33 becomes H =] Y- S; S;. In spite of the
simplified nature of the Ising model Hamiltonian, it has not been possible
to obtain an exact (analytical) expression for the partition function in 3D.
Expressions for Z have, however, been obtained in 1D and 2D. Numerical
methods that permit exponents to be calculated to high precision have
provided information for the 3D Ising model.

With an applied magnetic field present, the Ising Hamiltonian takes
the form

H=IE Si S; +gmBBE S, (17.34)

<1]>

with g typically taken as the free electron g factor. For simplicity, we shall
deal with the zero field case. The partition function for the 1D Ising model,
withJ<0and B=0, is

HIS Y sisie
Z=2e Dt (17.35)

where the summation over {S;} covers the 2¥ spin configurations.
Using the properties of the exponential function, it follows that Equation
17.35 may be written as Z =TIL;(}s) PV Si+) 1t is convenient to intro-
duce a new variable x; defined as follows: x; =1for S; = S,,, (parallel)
and x; = -1 for §; = -§;,; (antiparallel). In terms of x, the partition
function is

[2 Pl ‘ - [2coshb\]\]N. (17.36)

xp==%1

The number of spins N may be considered to be so large that the Ising
chain end effects may be ignored. Alternatively, the chain can be chosen to
form a closed loop with spin 1 and spin N as neighbors. This is illustrated
in Figure 17.7.
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FIGURE 17.7 Representation of a 1D Ising chain of N spins in (a) open topology
and (b) closed ring topology.

Exercise 17.4: Use the partition function for a 1D Ising spin system to obtain the
Helmholtz potential F and hence an expression for the entropy S.
The results are obtained immediately from Equation 17.36:

F = ~ksTInZ = ~NksT In[2cosh b]/] (17.37)
and
aF
S=—ﬁ=NkB[ln2coshbM—b]tanhb\/\]. (17.38)

The behavior of the entropy with T is shown in Figure 17.8, plotted in terms
of dimensionless quantities.

We see that the entropy increases smoothly from zero at low ksT/|J| to a
plateau value at high kT /|/| that corresponds to a disordered chain, with (1/2)N
spins up and (1/2)N down, and no long-range correlation of spin orientations.
Complete order exists only at T = 0 K, and there is no phase transition at a finite
temperature.

In higher dimensions (2D and 3D), the Ising model predicts a phase
transition from an ordered state to a disordered state at finite temperature.
Values for the critical exponents may be obtained using analytical solu-
tions (2D) or numerical solutions (3D) for the Ising model. The modern
theory of critical phenomena, involving scaling ideas and critical expo-
nents, developed to a large extent from considerations of model systems
such as the Ising model.
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S/Nkg

kgT/]

FIGURE 17.8 Predicted behavior of the scaled entropy S/Nk; plotted versus the
reduced temperature k,T/|]| for the N spin 1D Ising model. At high tempera-

tures, the chain is completely disordered with half the spins up and the other
half down.

17.6 FERMI LIQUIDS

Chapter 13 deals with ideal Fermi gas systems, in which interactions
between fermions are considered negligible. The states of such systems are
single particle in a box states, and spin degeneracy allows two particles
per state. Predicted properties of quantities such as the heat capacity are
in reasonable agreement with experiment for a number of Fermi systems,
as discussed in Chapter 13. For situations in which interactions between
fermions are not negligible, the approach must be modified to allow each
fermion to move in the field of the other fermions. An important approach
known as Fermi liquid theory provides considerable physical insight into
the nonideal Fermi fluid. The spirit of the theory is due to Landau. We
briefly outline the basic ideas involved.

In Fermi liquid theory, the fermions are replaced by quasi-particles
with an effective mass m*. It is assumed that the single-particle states are
shifted by interaction effects but that the perturbed states can be labeled
using the wave vector k, just as for the noninteracting case. In the cal-
culation of properties of interest, such as the specific heat or the mag-
netic susceptibility, it is states with k near k; at the Fermi surface that
are important. Quasi-particles may be thermally excited from occupied to
unoccupied states within a range k,T of the Fermi energy. In general, the
dependence of € on k for a Fermi liquid is not known. Formally, the shift
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in energy of a state labeled by k may be written as

de(k) = e(k) - & (k) = Z Fh,k")dh(k 9, (17.39)

where g (k) is the energy at T = 0 K and f(k,k') is a function which gives
the change in energy of the system caused by a change in the quasi-par-
ticle distribution function du(k’). At temperatures T < Ty, only partially
unoccupied states near the Fermi level need be considered in scattering
processes and k = k¢= k. Landau reasoned that the function f(k,k¢
must depend onlyon the angle @between kand k’so that f(k,k§= f(g).
If we define a new function F(g) = N(e:) f(g) and expand the function in
terms of the set of Legendre polynomials, with retention of terms up to
second order, we obtain

F(q)= E E,P,(cosq) = Ry + E[cosqg]+ F, [; (3cos’g- l)}. (17.40)

The coeflicients F, are called Landau parameters, and for many pur-
poses only a few are needed. If spin interactions are allowed for in the con-
sideration of magnetic properties, an analogous function G(@) is needed
with Landau parameters G,.

An important Fermi liquid is helium-3 in the temperature range 3-70
mK. Many of the properties of this system can be accounted for using
three Landau parameters, F,, F;, and G,.

Detailed calculations for the effective mass give

(17.41)
The specific heat of a Fermi liquid becomes
¢ = ( m ) c (17.42)
m

where m is the free particle mass and ¢ = (N4 p’ky’ /2€:)T is the Fermi gas
specific heat.
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The magnetic susceptibility of a Fermi liquid is given by

* -1

c’ = (m) {1 + 1Go] CPauli - (17.43)
m 4

For liquid helium-3, the Landau parameters are determined empiri-
cally as fits to experiment. A consistent description of various properties
is obtained in this way. Figure 17.9 shows the specific heat as a function of
temperature at pressures close to zero.

The effective mass for liquid helium-3 is given by m*/m = 3.01 at fairly
low pressures close to atmospheric. The Landau parameters are found to
be pressure-sensitive, as might be expected. The molar entropy of a Fermi
liquid, such as helium-3, is given by S = [§ (c*/T) dT = g*T, usingc* = g°T,
with g" = (N, p’ks’ /2&:"). We have treated the Landau parameters as
phenomenological quantities but many body calculations that give esti-
mates of these parameters for Fermi fluids have been carried out. Details
may be found in advanced texts on the subject.

Figure 17.10 shows the phase diagram for helium-3, which, as shown
by the specific heat plot in Figure 17.9, is a good example of a Fermi liquid
over the temperature range 3-70 mK.

It is of interest to consider the unusual thermodynamic features of the
phase diagram, specifically the minimum in the melting curve. Below
320 mK, the melting curve exhibits a region of negative slope. Use of the
Clausius-Clapeyron equation, (dP/dT),, = AS,,/AV,,, with (dP/dT),, <0

0.25

*He
0.20

0.15+

¢/R

0.10+

0.05+

0.00 T T T T
0 20 40 60 80 100

T (mK)

FIGURE 17.9 The plot shows the linear T dependence of the molar specific heat
of liquid helium-3 in the range below 70 mK. Transitions to superfluid phases
occur below 2 mK.
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FIGURE 1710 Phase diagram for helium-3 showing the melting curve. At the
lowest temperatures below 2 mK, superfluid liquid phases are found. The melting
curve shows a minimum with a region of negative slope below 320 mK.
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FIGURE 17.11  Molar entropy S divided by the gas constant R as a function of
temperature for solid and liquid helium-3 on the melting curve. Note that below
300 mK, the liquid has lower entropy than the solid.

and AV, >0, shows that AS,, <0 in the negative slope region. The entropy
decreases on melting, which means that, in the region of negative slope, the
liquid is more ordered than the solid. This may be understood as follows.
In the solid phase the atoms are fairly well localized on lattice sites. The
entropy is determined by the nuclear spin entropy, which, in low applied
fields, is to a good approximation, given by S = N kg In2. For T < 320mK,
this entropy value is greater than that of the delocalized liquid phase.
Figure 17.11 shows a plot of the entropy of the coexisting solid and liquid
phases for helium-3 as a function of temperature on the melting curve.
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The roughly linear T dependence of the entropy of liquid helium-3
over the range 3-70 mK is consistent with the predictions of Fermi liquid
theory. In low-temperature research, the interesting and unusual proper-
ties of helium-3, which result in the negative slope of the melting curve
below 320 mK, have been exploited to achieve cooling by means of adia-
batic (isentropic) compression in Pomeranchuk cells. The rapid decrease
in the entropy of solid helium-3 at the lowest temperatures shown is due to
nuclear antiferromagnetic ordering, with a T, ~ 1 mK. The ordering is due
to exchange interactions between helium-3 atoms mediated by coupled
exchange motion of several neighboring atoms in the solid.

17.7 NONIDEAL BOSE SYSTEMS—BOSE LIQUIDS

The most extensively studied system of interacting bosons is liquid heli-

um-4. Figure 14.4 shows the specific heat for liquid helium-4 in the vicinity
of the superfluid transition T; = 2.17K, together with the predicted spe-
cific heat curve for an ideal Bose gas of the same particle mass and particle
density. The difference in the shapes of the curves is marked. Interatomic
forces in helium-4 are of the van der Waals type. Figure 17.12 gives the
phase diagram for helium-4, which shows that there are two liquid phases
He I and He II separated by what is termed the 4 line.

For pressures less than ~ 30 atm, helium-4 remains a liquid down to
T = 0 K. This is a result of the large zero point vibrational motion of the
atoms. Below 0.6 K, the heat capacity of liquid helium-4 (designated He II

P(atm)
30
20 Hel
10 Liquid
0 ., V;lpor

0 10 20 30 40 50 T(K

FIGURE 17.12  Phase diagram for helium-4. He I is the normal liquid phase and
He II the superfluid phase with extremely interesting transport and other prop-
erties as described in the text. The A line separates the two liquid phases. A solid
phase exists at pressures above 25 atm. The liquid-vapor coexistence curve ends
in a critical point as shown.
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in the temperature range below T)) follows the T* law, which is found for
the low-temperature heat capacity of solids. This suggests that phonons
are important excitations in liquid helium-4. Neutron scattering methods
have been used to investigate the excitation spectrum for liquid helium,
and the results are shown in Figure 17.13.

At low energies, the dispersion relation has the Debye form, as dis-
cussed in Section 15.9,

e(q) =vhg, (17.44)

which is consistent with longitudinal phonons with wave-vector g.
(Transverse phonons do not exist in a liquid.)

At higher energies, a new type of excitation becomes important. These
excitations are called rotons. Experiment shows that vortices are formed
in superfluid helium when the container of the fluid rotates about a ver-
tical axis. Rotons are the corresponding excitation quanta. A minimum
in the dispersion curve occurs for g = g,. In the vicinity of the minimum,
the spectrum may be represented, approximately, by the shifted parabolic
form

eq) = A+ 1’ (qz_,:,lf)' (17.45)

with A as the energy at the minimum in the dispersion curve and m*
as the effective mass of a helium atom in the superfluid. Experiment

90

FIGURE 17.13 Dispersion curve for excitations in superfluid liquid helium-4
determined by neutron scattering. The dashed line shows a quadratic dispersion
curve for comparison. Phonon and roton excitations are important in this system
as discussed in the text.
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yields the following values for the various quantities in Equation 17.45:
Alky =8.65K, gy =0.192nm™, and m*/m =0.16.

Exercise 17.5: Use the approach developed in the discussion of the specific heats
of solids in Chapter 15 with the Debye-type dispersion relation given in Equation
17.44 to obtain an expression for the specific heat of helium-4 at low T.

The low-temperature specific heat is given by

2p%kgV 5
keT)’. 17.46
15¢ (ksT) ( )

!
" liseny)

This gives the observed T3 dependence for c,.

Exercise 17.6: Use the Planck distribution to estimate the number of phonons
and rotons present in liquid He Il at a given temperature below T;.

For phonons, we have from Chapter 15 Ny = (V/2p?) f(g°dg /("™ - 1)).
Assume that the temperature is sufficiently low that the upper limit in the inte-
gral may be extended to infinity. With the variable x = bAvq, we get

7 x dx
j;ex—1

I'(3) is a gamma function and ¢(3) is a Riemann zeta function with I'(3)
€(3) = 2.4. We see that N, follows the T law.
The roton number is given by

Vv
2p2(bhv)’

Vv
2p2(bhv)’

p=

(kT)'T3)zB). (1747

w bi(q-qo)’

_ v ” qz dg v —pA om* 2
N, = (2p2)j; eb[A+h2(q—qo)2/2m*] 1 ~(2pz) e j; e q dq

For x = (b/2m")"*h(q - qo) and, with recognition that the region near x = 0
is of dominant importance, this results in

N, = (L) (4pm"\ oo (17.48)

where use has been made of the definite integral J5edx = V2p, and as
an approximation, we put g = qo[(2m’/b)""*(x/ hqo) + 1l = q¢ . The number of
rotons decreases almost exponentially as the temperature is lowered consis-
tent with the decrease in the roton contribution to the excitation spectrum in
Figure 17.13.
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The properties of liquid He II have proved to be of great interest and the
reader is referred to specialized texts on the subject for further details.

The present chapter has provided an introduction to some of the
approaches that are used in classical and quantum systems made up of
large numbers of interacting particles. Many areas in this field are the sub-
ject of continuing research activity. The final three chapters of the book
deal with special topics in statistical and thermal physics.

PROBLEMS CHAPTER 17

17.1 Make use of the approximate expression for the partition
function for a real gas of N particles in a volume V at tem-
perature T obtained in Chapter 17 to show that the molar
entropy of a monatomic classical real gas may be written
as S = Sigeal + Scorrection. Obtain an expression for Seyyection 1N
terms of a definite integral involving the intermolecular
potential and N, V, and T. Show that the correction term is
negative and give a physical explanation for this result.

17.2  Consider an adsorbed layer of N molecules on a surface of
area A. The layer may be regarded as a 2D nonideal gas with
an intermolecular potential u(r) dependent on the molecular
separation r. Following similar procedures to those used for
a 3D gas, derive the virial expansion for the film pressure, or
force per unit length, at the boundary of this system.

17.3  Use the expression for the real gas partition function given
in Section 17.2 to obtain an expression for the energy of a
real gas as a function of temperature. Give your result in
terms of the intermolecular potential u(r) and the particle
density. Compare your expression with that for the energy
of an ideal gas.

17.4 A nonideal gas has an intermolecular potential that is approx-
imated by a square well with a hard core of the form u(r)=
w0=r=a),ulr)=-g(a<rs=b),and u(r) = 0(r > b). Obtain
an expression for the second virial coefficient in terms of the
square well potential parameters. Compare your result with
that for the pure hard core potential discussed in Section 17.2.

17.5 Obtain the equation of state for a nonideal gas in whiclzl
the intermolecular potential has the form u(r) = ue™
Take o < kT, which permits expansion of the exponential
function ¢ ®“" in the configurational partition function
expression.
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17.6

17.7

17.8

17.9

Obtain expressions for the mean energy of a Heisenberg spin
1 system in the mean field approximation, in zero applied
field, for the following temperature cases: T <« T¢,T @T¢
and T > T, where T is the critical temperature. Hence,
obtain the specific heat for the system at the same tempera-
tures. Sketch the form of the specific heat curve as a func-
tion of T.

Obtain a mean field expression for the way in which the mag-
netization of the ferromagnet described in Question 17.6
tends toward its maximum value in zero applied field for
T> T.. Give your result in terms of the ratio T,/T.

Use the partition function expression for the N'spin 1D Ising
model to obtain the heat capacity C. Plot C/Nk, versus J/k;T,
where ] is the coupling constant. Qualitatively account for
the form obtained.

The nearest-neighbor spin-spin correlation function
for the 1D Ising model is given by the general expres-
sion G(r=1)=(§S;.1) = 9InZ/3];, where J, is the coupling
between spins i and i + 1. Use the nearest-neighbor correla-
tion function expression to show that the # spin correlation
function is given by G(r = n) = Il [tanh bJ;] = [tanh b]]"
assuming a uniform interaction J between spins.
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CHAPTER 18

The Density Matrix

18.1 INTRODUCTION

In dealing with systems whose eigenstates are known, such as ideal spin
systems in a magnetic field, it is sometimes useful to introduce a formal-
ism involving the density matrix. Knowledge of the density matrix oper-
ator permits the expectation values of other operators to be determined in
a way that is straightforward in principle. We show below that the ensem-
ble average expectation value for an operator A of a system is given by
m = Tr(rA), where p is the density matrix and Tr is the trace or diagonal
sum of the product matrix. The density matrix contains statistical infor-
mation about the system.

The density matrix is the quantum mechanical analogue of the classical
phase space density of representative points description of an ensemble of
systems introduced in Chapter 4. For systems consisting of large numbers
of particles, the density matrix will, in general, be very large. To simplify
matters, systems for which the density matrix can be written in compact

form are used to introduce the subject. Generalization to other systems
follows directly. The basic ideas are developed with application to an ideal
spin system. The form of the density matrix for the ideal gas case is briefly
considered. The density matrix approach is extremely powerful and can,
for example, provide insight into how systems that are perturbed in some
controlled way tend toward equilibrium. Simple examples involving par-
ticle beams are used to illustrate the method.

349
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18.2 THE DENSITY MATRIX FORMALISM

The density matrix formalism emerges from basic quantum mechanical
ideas that are briefly reviewed here. Consider a large system with energy in
the range E to E + dE. Let a particular eigenstate of the system be |¢). This
state may be written in terms of the complete set of eigenstates |i) of the
Hamiltonian of the system as |¢) = Y, C,|i), where the coeflicients C, are,
in general, time dependent and complex. The expectation value of some
operator A is given by (A) = [¢p* A¢ dr or, in Dirac notation,

(a) = Y cicdjlal a8.)

1,]

It is convenient to consider the products C;/C; as forming a matrix
representation of an operator P, with matrix elements (i|P|j)=C;C,;.
Substitution for C;C; in Equation 18.1 gives

(A) = E (i|P|j)}(j|Ali) = E (i[PAJi) =Tr(PA) =Tr(AP). (15
i,] !

Tr denotes the diagonal sum of the matrix elements. Equations 18.1 and
18.2 serve as our starting point for the introduction of the density matrix
operator.

In statistical physics, we are generally interested in ensemble averages,
which for the operators we consider are denoted as (A). From Equation
18.1, we obtain

@=2@(]’\A\i>- (18.3)

1,]

The ensemble average of the products ﬁ gives the matrix represen-
tation of the density matrix operator p, with elements (i ‘ r‘ j)y=CCj.pis
the ensemble average of the operator P that is introduced in Equation
18.2. Examples of the form of the density matrix in the various statistical
ensembles are given in Section 18.3. Equation 18.3 becomes

(A) = 2 (| 7i)(j|Ali) = 2 (i| rAli) = Tr(rA). (18.4)
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Note that p is an Hermitian operator with (i|r{ j) = {j| ]i)". If |¢¢ ) is nor-
malized so that (¢ |¢) =1, then Tr(r) = 3{i| z]i) = 1, which shows that for
this case the diagonal elements of p sum to unity. Equation 18.4 provides
the basis for density matrix calculations.

For systems that are not in equilibrium, the density matrix is time depend-
ent, and it is therefore useful to allow for this possibility in our discus-
sion. The time-dependent Schrédinger equation is ihd/dt|£) = H(t) |£),
with H(t) the Hamiltonian of the system. For the present, we allow
the Hamiltonian to be time dependent. Substitution for |¢) results in
ihy;d/0t(C;|j))=>;C;H(t)|j) Multiplying by (i|and making use of the
orthonormality property gives

. 0 . .
i G =2cj ([H () j). (18.5)

Now

Jd Jd Jd . JC;
ildiy=—C,Cr =C,—C;+ —C; (18.6)
at<‘ﬁj> ot 7 ot t

and with Equation 18.5 substituted in Equation 18.6, we obtain

51 G112 0 [GERRH) = G )] = =

In operator form, the evolution of the density matrix with time is
described by the equation

Ll (18.7)
ot h

where [ r, H] is the commutator of the two operators.
When the Hamiltonian 74 is time independent, the solution to
Equation 18.7 is

r(t) - e—(i/h)Ht r(o)e(i/h)Ht’ (188)

where p(0) is the density matrix at time ¢ = 0.
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Exercise 18.1: Show by expanding the exponential operators that Equation 18.8
is a solution to Equation 18.7.

The  exponential operators  are  expanded as  follows:
e MM = (i RHE+ 1/ 20/ B HC £ Differentiation of p() with
respect to time gives

—r(t)—— [ Ht+ )r(O)(H(%)HH---)
é ( ()HH )r(O)(H(%)HH---)
+(1 Ht+ )r(O)(1+(%)Ht+"') (éH)

Returning to exponential form, we obtain a/dt r(t) = i/ [r, H], as required.

From Equation 18.8, the matrix elements of p are <i\r(t)‘ j>=
(i|e"M™ r(0)e" h)Hti‘ J?Z or in terms of the wave functions, we have
Ju r(t)u; dt Je" My, r(O)e(i/h)Htujdt. With use of the series expan-
sion of the exponential operator it follows that

(] 70)] ) =BG | 2(0)] 5 (18.9)

Equation 18.9 shows that the diagonal elements of the density matrix
are time independent, provided H is time independent, whereas the off-
diagonal elements oscillate with frequencies w;; = (E; — E;)/h.

For a system in equilibrium, no time dependence of observable prop-
erties is expected. This implies that for a system in equilibrium, all off-
diagonal elements of p(0) are zero, that is, {i|r(0) j) = 0 for all i # j and
consequently (i| r(t)| j)=0 for all times t. By separating the real and
imaginary parts, the coefficients C; in Equation 18.3 may be written as
\C \e’a* where q; is a phase factor. The ensemble average of the product of
coefficients is C; C; = ¢'®7 If the phases are assumed to be sta-
tistically 1ndependent, Ci Cj = (i| r| j) = 0 Vanishing of the off-diagonal
elements of the density matrix is a consequence of what is called the ran-

dom phase hypothesis, according to which there is no phase correlation
between different members of the large ensemble.

Following the introduction to the density matrix given in this sec-
tion, which is based on fundamental quantum mechanical concepts and
relationships, we are in a position to apply the formalism to various sys-
tems such as the ideal gas and the ideal spin system. Before we do this, we
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consider the form that the density matrix takes for the three statistical
ensembles introduced in Chapter 10.

18.3 FORM OF THE DENSITY MATRIX IN THE

THREE STATISTICAL ENSEMBLES
For a system in equilibrium, the diagonal elements of the density matrix
clearly correspond to the probability of finding the system in a particular
eigenstate because

(i|diy=C. C =|G/[. (18.10)

Furthermore, in equilibrium, the off-diagonal elements are all zero, as
shown in Section 18.2 above. We now consider the three ensembles in turn.

(@) Microcanonical ensemble: In Chapter 4, the number of accessible
microstates €(E) for a system with energy in the range E to E + 6E
is evaluated for ideal systems of spins and particles. According to
the fundamental postulate of statistical physics, all accessible micro-
states are equally probable. It follows directly that in the microca-
nonical ensemble, the density matrix elements are given by

(ilnj) = (Q(IE)) dj, (18.11)

where the set of states |j[ corresponds to the accessible microstates
and 6 is the Kronecker delta. In this ensemble, the density matrix is
constant with all diagonal elements equal to each other. For a system
of N spins in a magnetic field B, with # spins up and (N ¥ #) spins
down, the number of accessible microstates is given by Equation
4.23 as Q(E) = () dE/2mB. The form of the density matrix given
by Equation 18.11, although simple, is not particularly useful, and we
now consider the canonical ensemble form.

(b) Canonical ensemble: Most calculations make use of the density
matrix in the canonical ensemble case with a temperature parameter
p determined by the heat baths with which members of the ensemble
are in contact. The matrix elements are given by

(il el)= () e, (15.12
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where Z is the partition function for the system considered and J; is
the Kronecker delta. The density matrix operator may be written as

ro _€ (18.13)

with H the Hamiltonian of the system. The following expression for
the expectation value of a quantity of interest that corresponds to a
particular operator A is obtained from Equation 18.4:

(A)= %Tre'bHA. (18.14)

This is a useful relationship, particularly for systems such as spin
systems.

(c) Grand canonical ensemble: Finally, and for completeness, the density
matrix operator in the grand canonical ensemble has the form

r= ie-b‘H-"'") (18.15)
Z

where y is the chemical potential and » the particle number opera-
tor. Z is the grand partition function. We shall not make use of this
form of the density matrix in the present discussion.

18.4  DENSITY MATRIX CALCULATIONS

(a) Spin Systems Spin systems provide instructive examples of applica-
tions of the density matrix formalism. Because of the upper and lower
energy bounds for spin systems, the density matrix has a finite number
of elements. For ideal systems of identical spins, the density matrix can
be broken up into identical submatrices. Consider an ideal noninteract-
ing system of N electron spins with operator J in a magnetic field B. Each
spin has a magnetic dipole moment g = —-g p;J. The energy eigenvalues for
representative spin i are § = gmy Bmy;;, where My takes values in the range
J to —J. The energy (E) of the system is given by the sum of the energies of
the individual spins. Each spin has (2] + 1) energy levels, and the density
matrix for the whole system is made up of (2] + 1)V x (2] + 1)N elements,
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most of which are zero for a system in equilibrium. Along the diagonal,
there are groups of (2] + 1) elements that are repeated N times. The density
matrix for each spin has the form

(e 0 \

(18.16)

Note that for an ideal system, we need consider only one of the subma-
trices in calculating the mean value of some quantity for a single spin, for
example, the mean energy (¢). We then multiply this value by N to obtain
the mean value (E) = N (¢) for the entire system. The ensemble average
energy (¢) of a single spin is () = Tr r'H, with

(LY e (L Loy ... (18.17)
r \, e Z(l bH+2(bH) + )

We have again made use of the expansion of the exponential operator.
For paramagnetic systems, it is often permissible to work in the high-
temperature approximation, where only the first order term in the expansion
of the operator need be retained. In this approximation, where k,T is much
larger than energy level spacing 2uB, we obtain the simplified expressions

(e ler(H-sz) (18.18)
z

and

z=Tr(1- bH). (18.19)

Exercise 18.2: Use Equation 18.18 to obtain (€} for a system of N spins / at
temperature T in a magnetic field B.
For each spin, TrH is readily evaluated as follows:

gmB /Z my | =0.
my=/,]=1,..~]

TrH =gmBTir/; =
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We have chosen the eigenstate basis so that the matrix corresponding to the
operator /, is diagonal with elements /, JK 1, . .., K/ and trace zero. From Equation
18.19, it follows immediately that, in the high-temperature approximation,

z=(2/+17), (18.20)

because there are (2/ + 1) identical terms, each with value close to unity, along
the diagonal of the density matrix. To obtain (E), it is necessary to evaluate
TrH?. Now Tr'H? = (gmg B)*Tr/,* and

Tr),2 = 2 m?. (18.21)
my=/,1=1,...-)

The sum in Equation 18.21 may be evaluated with the identity

Tr)?=Tr)2=Tr)’ = %Tr/z, (18.22)

where use is made of the theorem that the trace of a matrix is independent of
the choice of basis states. We obtain

Tr)?=2/+1)(J+D), (18.23)

because there are (2/ + 1) diagonal terms in the matrix representation, each
equal to J(/ + 1). It follows from Equations 18.22 and 18.23 that

Tr),2 =~ J(J+ D2/ +1. (18.24)

1
3

With Equations 18.19, 18.20, 18.21, and 18.24, we obtain, in the high-
temperature approximation,

_ 1 2
(e) = 3 (gmB) b JU+1). (18.25)

This is the mean energy of a single spin. For the ideal system of N spins, the
total mean energy in the high-temperature approximation is finally

Ng*ms® B*)(J +1)

(18.26)
3ksT

(6 = -
For the special case ] = 1/2 and g = 2, Equation 18.26 gives the mean
energy as (E) = —~Nm; B*/ky T, which agrees with the result Equation 10.37

obtained with direct use of the canonical distribution provided we make
the approximation tanh my B/kpT @myB/kgT .
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Although the results for the ideal spin system may be obtained in a
straightforward way with use of the canonical distribution, the density
matrix approach provides a more powerful means for carrying out a
number of calculations. In particular, the oftf-diagonal elements that we
have seen to be zero for systems in equilibrium will in general not be zero
for systems that are prepared in a particular way. Situations of this kind
arise in magnetic resonance and in laser optics for example. The instanta-
neous properties and the evolution of such systems with time are elegantly
treated within the density matrix formalism.

Exercise 18.3: Use the result in Equation 18.26 to obtain an expression for the
magnetization and magnetic susceptibility of the N spin system at temperature
T in a magnetic field B.

Because (E) =K (M,) B, it follows from Equation 18.26 that

Ng’ms® BJ(/ +1) (18.27)
3ksT '

M,) =
The magnetic susceptibility is given by

oo M.) _ Ng*moms U +1) (18.28)
VH 3VkgT

This is Curie’s law, as expected.

Exercise 18.4: Obtain an expression for the entropy S of an N spin system and
plot the behavior of S as a function of B/T.
The entropy of the spin system may be obtained with use of the expression

S = ky(InZ + b(EY), (18.29)

which follows directly from F = £-TS = -kgT InZ. For N spins Equation 18.20
gives the partition function as

Z=02)+). (18.30)

On substitution of Equations 18.26 and 18.30 into Equation 18.29, we find
the entropy is given by

S = NkB[ln(2/+1)—%g2mBZb2 B () +1)]. (18.31)
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For /=1/2, this expression reduces to S = Nkg [In2 - (gmsB/2kgT)?]. Figure 18.1
shows the entropy for this case in reduced form as S/Nk plotted versus B/T in
the high-temperature approximation. In the low-field-high-temperature limit,
S/Nkg tends to In 2. As B is raised and/or T is lowered, the entropy decreases
as shown. The high-temperature approximation will break down when kT
becomes comparable with the spacing of the energy levels.

For an isentropic process that corresponds to a reversible adiabatic
change of the magnetic field, the ratio (B/T)* remains constant so that
By/T; = B,/T,, as given previously in Chapters 2 and 6 in the discussion of
magnetic cooling processes. In Figure 18.1, an isentropic process is repre-
sented by a fixed point on the curve.

(b) Theldeal Gas and Other Systems ~ Although spin systems have been con-
sidered in carrying out density matrix calculations, the formalism is quite
general. We have (E) = Tr r'H, with r=1/Z ¢ ®"; in matrix representa-
tion, the mean energy is given by forming the product

E, \

\(
1 -bE; _ l -bE,
(Ey="| e J { E, - 2 Ee™,  (18.32)

0.8

In2
0.6 +

04+

S/Nk

02T

0.0

2 4
B/T

FIGURE 18.1 Entropy divided by Nk; for a system of N noninteracting spins
(J=1/2) in a magnetic field B, plotted versus B/T in the high-temperature approx-
imation. For B/T = 0, the scaled entropy is given by In2.
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with

7= 2 e b, (18.33)

These are familiar results for the canonical ensemble. Knowledge of the
energy eigenvalues is clearly necessary to perform density matrix calcula-
tions. The ratio of successive diagonal elements in the density matrix is
simple the Boltzmann factor for adjacent energy states.

For an ideal gas system, the energy eigenvalues are the particle in a
box eigenvalues and, in the classical limit, the eigenstates form a quasi-
continuum as described in Chapter 16. The summations in Equations
18.32 and 18.33 may again be converted to integrals. For the classical ideal
gas system, we see that the density matrix approach reduces to the integra-
tion procedure used in Chapter 16.

Note that

9T Hr- A, (18.34)
ob

and knowledge of the density matrix permits the mean energy to be
obtained by differentiation of p with respect to  followed by evaluation
of the trace of the resulting matrix. Generalization of this approach to
other mean values can clearly be made.

18.5 POLARIZED PARTICLE BEAMS

The density matrix formalism can be applied to a wide variety of systems.
It is instructive to consider beams of particles. Consider electrons emitted
by a hot filament in an evacuated enclosure. The energy of the electrons is
determined by factors such as the temperature of the filament, the work
function of the metal from which the filament is made, and any acceler-
ating potential that is present. The beam will normally be unpolarized.
We consider the electron’s spin degrees of freedom with the spin opera-
tors represented by the Pauli spin matrices, s, = (¢ ), s ,=i(7 3),and

S,= ((1) —?)) glvmg

Sx=Esx’ Sy=ﬁsy, and Sz=ﬁsz, (18.35)
2 2 2

with the axes x, y, and z chosen in some convenient way.
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If no applied magnetic field is present, the energy levels that correspond
to different spin orientations S, = £1/2 are degenerate, and the energy of
the degenerate spin states may be taken to be zero. The density matrix for
a single particle takes the form r = 1/2(} ?), and the expectation value
of the spin for particles in the beam is given by

) {1 0\/1 0\
(SZ)=TrrSZ=ZTrL0 IJLO —IJ =0.

Identical results are obtained for (S,) and (S,). In the presence of a
magnetic field or some other polarizing mechanism, the form of the den-
sity matrix will change, and the expectation value (S,), for example, may
be nonzero. Although the situation that has been considered involves an
electron beam, a related but somewhat more complicated approach is used
for polarized light beams.

Exercise 18.5: Find the direction of spin polarization for a beam of electrons
described by a density matrix of the form

Consider the mean values of the spin components along orthogonal directions
with use of the Pauli spin matrices.
Along the x direction, we obtain

o=} (0 92l )0

Similarly along y, (S,) = 0, and finally along x,
A (TH(0 1 ho (11 h

The electron beam is clearly polarized along the x direction.

18.6 CONNECTION OF THE DENSITY MATRIX TO THE
CLASSICAL PHASE SPACE REPRESENTATION

Classical phase space concepts are introduced and discussed in Chapter 4.

It is shown there that the state of a system of N particles in 3D is represented
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by a point in 6N dimensions phase space with 3N independent momen-
tum coordinates (p, ... p;y) and 3N independent position coordinates
(4, --- gsn)- The coordinates will change with time, and the representative
point will traverse the accessible regions of phase space.

An ensemble of identical systems may be represented by a set of repre-
sentative points that swarm through phase space. For a sufficiently large
ensemble, the representative points are regarded as constituting as incom-
pressible fluid with density p. Using classical methods developed for fluid
flow, it is possible to derive what is called Liouville’s theorem for the rate
of change of the phase space density with time:

dr odr

dr _or . a0 o, (18.36)
@~ oo HipH

where H is the classical Hamiltonian and [ r, H]is a Poisson bracket given by

3

\ r O _or 9H)

- ) (18.37)
&d q; Op;  Jr; g

[r’H] =

We simply state Liouville’s theorem without derivation. Our purpose here
is to show the connection between the classical phase space approach
and the approach given in this chapter. Note that the total time deriva-
tive dr/dt corresponds to the change in density with time as seen by an
observer moving with the fluid, whereas the partial derivative d.r/dtis the
change in density at a point whose coordinates are fixed in phase space.

For a stationary ensemble for which dr/dt = 0, it follows from Equation
18.36 that [, H] = 0.

From Equation 18.37, we obtain

= 7 7= (18.38)

because each term in the summation must be zero. It should be recalled
that Hamilton’s equations in analytical mechanics give g, = dH/dp; and

pi = —aH/Bq,

Equation 18.38 has a number of solutions. First, p may be constant over
the accessible regions of phase space, that is,

r(q, p) =constant. (18.39)
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This solution corresponds to the microcanonical ensemble case, with
all accessible microstates equally probable. An alternative solution corre-
sponds to the density being some function of the Hamiltonian,

r=r(H). (18.40)

It follows immediately that [, H] = 0, because in this case
I AVELAYELA (ar)(aH\(aH\
)H = oh D T A, DY o
== 3 Gl () ()

and each term in the summation vanishes.
The canonical ensemble corresponds to a particular choice of function
in Equation 18.40,

r(g, p) o e PED, (18.41)

Equation 18.39 is the classical analogue of Equation 18.11 involving the
density matrix, whereas Equation 18.41 corresponds to Equation 18.13.
The connection between the classical phase density of representative
points approach and the quantum mechanical ensemble probability den-
sity for various quantum states, as expressed in the density matrix, is
therefore apparent.

PROBLEMS CHAPTER 18

18.1 The entropy of a system is given in terms of the density
matrix p by S=-kgTrrlnr. Show that this expression is
equivalent to the entropy expression involving the partition
function S = kz[InZ + b(E)].

18.2 An electron beam has an isotropic spin distribution
(Sx)=(Sy)=(S,)=0. Make use of the Pauli spin matrices
to obtain the form of the density matrix that describes the
beam in a representation in which S, is diagonal. What is
the spin polarization of a beam of electrons described by the
density matrix r=1/2[} 1]?

18.3 Obtain the density matrix for a partially polarized electron
beam in which a fraction f of electrons are polarized along
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the beam direction and (1 ¥ f) are polarized in the opposite
direction.

18.4 Write down the form of the density operator for a 1D ideal
gas with temperature parameter . Use this operator to
obtain the density matrix for the gas. How would the expres-
sions be modified in the case of a 2D ideal gas?

18.5 Use the density matrix approach to obtain expressions for
the temperature dependence of the mean energy (E) and the
entropy S of an ideal system of N spins, with I = 1 situated
in a magnetic field B. Sketch the behavior of S as a func-
tion of B/T. Show that the magnetic susceptibility is given by
Curie’s law and obtain the Curie constant for this system.

18.6 Show that the entropy of a system may be written as
S = kg[InZ - (b?/ Z)TrH?] and use this expression to dis-
cuss adiabatic demagnetization of an ideal paramagnetic
spin system. Mention any approximations that are made.

18.7 For a nonideal spin system in which dipolar interactions
are important, the Hamiltonian has the form H = H; + Hp,
where H; is the Zeeman Hamiltonian and Hj, is the dipolar
Hamiltonian. Show that in an adiabatic demagnetization
process in which the applied field is reduced from H;to H;
the final temperature T; is related to the initial temperature
T, by the expression T; = T;[(H? + H{)"* /(H? + H{)'"?],
where H? = TrHz /Tr M2 defines a local field in the sys-
tem. The magnetization is denoted by M,, and you should
assume that Tr(M,Hp)=0. Comment on the role of the
local field in demagnetization experiments.

18.8 Consider the demagnetization of a paramagnetic spin system
in a process in which the applied magnetic field is suddenly
reduced from an initial value H; to a final value H;. What is
the form of the density matrix for the system immediately
following the sudden reduction in the field? Show that the
system proceeds to a new equilibrium condition character-
ized by an inverse temperature b; = b, H;H¢/H;.






CHAPTER 19

Reactions and
Related Processes

19.1 INTRODUCTION

This chapter deals with various chemical and physical processes that at
first sight appear unrelated but which have features in common. In par-
ticular, the chemical potential plays a key role in the discussion of all
the phenomena that are considered. In Section 7.6, the topic of chemical
equilibrium in gaseous systems containing molecular constituents that
react with one another is introduced and the law of mass action is stated.

The chemical potential y of the molecular species undergoing a reaction
is of great importance in treating processes of this kind. For reaction
processes taking place at constant volume, it is appropriate to make use
of the Helmholtz potential F which, in the classical high-temperature-
low-density limit, may be written down using expressions for the ideal
gas given in Chapter 16. It is then straightforward to obtain u for each
molecular species, and useful results that include the law of mass action
follow.

The adsorption of gas molecules on a surface has certain similarities
to chemical reaction processes, with u again playing an important role in
describing processes of this kind. It is important to distinguish between
what are termed chemical and physical adsorption processes, and both of
these processes are discussed in terms of simple models. Another exam-
ple of a process in which dynamic equilibrium is reached at a particular
temperature is the excitation of carriers into the conduction or valence

365
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bands of a semiconductor. It is shown that the law of mass action applies
in situations of this kind.

19.2 THE PARTITION FUNCTION FOR A GASEOUS
MIXTURE OF DIFFERENT MOLECULAR SPECIES

Consider a gaseous mixture of molecular species that interact to form a
reaction product. As discussed in Chapter 7, chemical reactions are con-
veniently written in the form Y X;X; = 0, where X; represents a molecu-
lar species i and x; the number of molecules of this species involved in
a single reaction process. We are interested in the concentrations of the
various molecules once equilibrium has been reached at a given tempera-
ture and pressure. In the calculation of the partition function for a par-
ticular constituent, we assume that the classical ideal gas approximation
holds. The fact that the molecules undergo a chemical reaction shows that
interactions between molecules are not weak. However, provided the ideal
gas equation of state applies to the system, the intermolecular potential is
important only for brief periods when molecules collide. The molecules
possess, on average, negligible potential energy.

Following the notation used in Section 7.6, the gaseous mixture consists
of molecular species i with equilibrium numbers N,. For each component
i, the partition function is Z; = z}'/N', where z is the single particle par-
tition function. As a result of the properties of the exponential function,
the partition function for the whole gaseous mixture is simply Z = [[; Z..
Taking logarithms and applying Stirling’s formula, given in Appendix A,
we obtain

InZ = EN,—[lnz,- ~InN; +1]. (19.1)

For a monatomic species, the single particle partition function is given
by Equation 16.4 as z = V(mkgT / 2ph*)*"? = (VIVy), with V,, the quantum
volume. For composite molecules such as diatomics and triatomics, it is
necessary to consider the internal degrees of freedom which include elec-
tronic, vibrational, rotational, and nuclear spin contributions as discussed
in Section 16.5. The partition function for polyatomic molecules is written
as z/°® = (V/Vq)z™, where z/™, the internal partition function for species
i, may be calculated from available information. The form for Z given in
Equation 19.1 together with z/°® for each molecular type gives the parti-
tion function for the gas mixture.
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19.3 THE LAW OF MASS ACTION

As noted above, chemical reactions are conveniently written in the com-

pact form as ),;x; X; = 0, with x; the number of molecules that participate
in an individual reaction and X; the chemical symbol. In equilibrium, we
minimize the Gibbs potential (constant P) or the Helmholtz potential
(constant V) and obtain Equation 7.33, Y, x;m; = 0. For constant volume
conditions, the chemical potential is given by m; = (0F/ aNi)T,V,Nj. With
use of Equation 19.1, the Helmholtz potential follows immediately

F=-kTInZ= —kBTE Nillnz, -InN, +1] (19.2)

and the chemical potential is obtained as

JF Z;
m = () _ —kBTln(’). (19.3)
IN; T,V,N; N;

Combining Equations 7.33 and 19.3, we find that chemical equilibrium
is governed by the equation Y; x;m; = =kyT Y, x; In(z; /N;) = 0, and it fol-
lows that

E (x;Inz; —x;InN;) = 0. (19.4)

1

From Equation 19.4, we obtain the law of mass action in the form

HNf" =Hzi"'. (19.5)

1 1

The equilibrium constant for a given reaction is defined as
Kn(T,V)=1I;z". By obtaining an explicit expression for the equilibrium
constant in terms of the partition functions, we have significantly extended
the treatment of chemical reactions given in Section 7.6. Knowledge of the
molecular partition functions for each species permits K (T, V) to be cal-
culated and inserted in the law of mass action. This procedure establishes
a relationship between the numbers of reactant and product molecules, for
a specific reaction, under given conditions of volume and temperature.
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As an illustrative example, consider the chemical reaction introduced
in Section 7.6 in the form of Equation 7.32, —1H, —1Cl, + 2HCI = 0. From
the law of mass action, we have NjqNi, N, = Ky, and this relates the
equilibrium numbers of molecules of each species, under given condi-
tions, in terms of the equilibrium constant. To obtain K}, the molecular
partition functions z, for the diatomic molecules must be evaluated using
expressions given in Chapter 16 together with information on the moment
of inertia and the vibrational frequencies for each type of molecule. If we
choose the numbers of reactant H, and Cl, molecules to be the same, that
is, Nqi, = Ny, it follows that Ny, = /Ky NI; . Measured equilibrium con-
stants, obtained by analysis of equilibrium molecular compositions, are
found to be in good agreement with the calculated values that make use
of molecular partition functions. The approach outlined above provides a
powerful theoretical method for dealing with chemical reactions and may
be adapted to deal with other situations, such as ionization processes in
gases at very high temperatures. Evaluation of the partition function for
monatomic gases and for systems of particles such as electrons in a vapor
is simple with use of Equation 16.7, z; = (V /V{,), where V{ is the quantum
volume for species i.

An alternative form of the law of mass action is obtained using the par-
ticle concentration ¢; = N; /V and has the form

HC"}Q - H(f,) T KeD), (19.6)

with K¢ (T) the equilibrium constant in terms of concentrations. When
reactions are carried out at constant pressure instead of at constant volume,
it is necessary to minimize the Gibb’s potential rather than the Helmholtz
potential. Similar expressions to those given above are obtained.

Exercise 19.1: Dissociation of hydrogen molecules is induced at high tempera-
tures. Give the reaction equation for this process and obtain an expression for
the equilibrium constant under constant volume conditions.

The dissociation reaction is given by H, - 2H = 0.

From Equation 19.5 and the definition of the equilibrium constant, we
obtain

[NH]2 [ZH]2
Kn(T,V)= ——=——.
N( ’ ) NHZ ZHZ
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For molecular hydrogen, the partition function is z,,, = z"™z"'z"*z¢, as dis-
cussed in Chapter 16.

Expressions for the various partition function contributions are given in
Section 16.5, and with the use of these expressions for homonuclear hydrogen,
we obtain

The factor gy, allows for spin degeneracy, and we put gy, = 4 for the ground
state of the hydrogen molecule to allow for the four nuclear spin states. The
spin state of the electrons is fixed in the molecular ground state. Note that a
factor 1/2 has been introduced in the expression for zt to allow for the indis-
tinguishability of the H atoms in the H, molecule, as pointed out for homo-
nuclear diatomics in Section 16.5. The partition function for the hydrogen atom
is zy = gn(V/b*?)my/2ph? P2, where the atomic degeneracy factor is g, = 4,
with allowance for the electron and nuclear spin states. We choose the zero
of energy of the system to be the energy when the two H atoms are infinitely
far apart. This simplifies the expression for z,; because, with this choice, the
energy of a single H atom in its ground is zero. Care must be taken to allow for
zero point vibrational energy in the value of the ground state energy —g, for the
hydrogen molecule.

The equilibrium constant Ky (T, V) can be calculated, for given T and V, with
use of molecular constants for hydrogen in the above partition function expres-
sions. The numbers of reactant and product molecules under given tempera-
ture and volume conditions can then be calculated.

19.4 ADSORPTION ON SURFACES

The adsorption of molecules on a surface in contact with a gas can take
place either via a process called chemical adsorption or through a dif-

ferent process termed physical adsorption. Chemical adsorption involves
the formation of chemical bonds at the surface giving rise to a relatively
immobile layer that cannot be removed simply by lowering the gas pres-
sure. In contrast, physical adsorption involves weaker surface interactions
and the number of physically adsorbed molecules, at a given temperature,
does depend on the gas pressure. Physically adsorbed molecules may be
relatively mobile on the surface. In some systems, both types of adsorp-
tion may be important with formation of physically adsorbed layers above
a chemically adsorbed layer.

We consider two adsorption models. Model 1 allows for translational
mobility of molecules on a surface and corresponds to a 2D gas, whereas
model 2 assumes that the molecules stick or are bonded to particular sites
on the surface and possess no translational mobility.
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Model 1

Let the surface have area A and be in contact with a gas at pressure P
and temperature T in a container of volume V. In equilibrium, the chemi-
cal potentials of the surface layer and the gas will be equal, with p, = ..
For the gas phase, we have from Equation 19.3, with omission of the sub-
script i for our single component system, m, = —kyT'In(z/N,), where N,
is the number of molecules in the gas phase. To simplify the discussion,
we shall consider a monatomic gas for which, from Section 16.2, we have
z@®(V/Vy)and

m, = —kBTln( (19.7)

)
NgVQ).

Molecules adsorbed on the surface have a binding energy —e,. If the
molecules are highly mobile on the surface, the surface layer may be
treated as a 2D gas and the single particle partition function, obtained by
adaptation of the 3D expression (Equation 16.4), is

kB bey
_ A(’:pf;) b = (2}) e (19.8)

Aq = (2ph*/ mkyT) is the quantum area for a 2D system (analogous to the
quantum volume for a 3D system), and the exponential factor allows for
the potential energy because of binding of molecules to the surface. With
inclusion of the binding energy, the chemical potential of the surface gas
of N, molecules is

A
N;Aq

m = —kBTln( ) -g. (19.9)

In equilibrium, we can equate the expressions for x, (Equation 19.7)
and y, (Equation 19.9). With antilogs, we obtain

Ay
\v)

ba, (19.10)

o

N, (VoA .q (kaT)
=|——1e =
N, | VAq) 2p7?
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From the ideal gas equation of state for the gas phase, we rewrite
Equation 19.10 in terms of the pressure P as

1
me=- = P(T) e (19.11)

The number of adsorbed molecules per unit area at constant T is
proportional to the pressure. At high pressures the adsorption pro-
cess will saturate as all the available sites become occupied. Layers of
adsorbed molecules may form above the primary layer, but we neglect
such processes. As the temperature is increased, n, decreases rapidly at
a given pressure because of the exponential dependence on reciprocal
temperature.

Model 2

In this model, it is assumed that there are specific surface sites at which
adsorbed molecules are localized, as shown in Figure 19.1. In contrast to
Model 1, the adsorbed molecules do not form a mobile surface layer.

We again let the binding energy be —¢, and equate the chemical poten-
tials of the adsorbed surface layer and the gas phase y, = u, with u, given
by Equation 19.7. If we ignore vibrational degrees of freedom, the partition
function for a single molecule bound to a surface site is given, to a good
approximation, by the simple expression

z,=e™. (19.12)

FIGURE 19.1 Adsorption sites on a solid surface showing partial occupation of
sites by adsorbed molecules (black circles). The adsorbed layer is in equilibrium
with the gas phase.
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If there are N, surface sites, and n, of these are occupied, the partition
function for the adsorbed layer is

7z, = [j) (P (19.13)

The binomial coeflicient allows for the adsorbed molecules to be distrib-
uted in various ways among the surface sites. With m; = —(1/ b) d1n Z;/dn,
and use of Stirling’s formula from Appendix A, we obtain

1 N
1m=(b)m(N;_m)—%. (19.14)

In equilibrium, we equate y, from Equation 19.14 and y, from Equation
19.7 to give

NV,
8 Q=( s )e*ﬁ‘ (19.15)
\% N, —n,

From the ideal gas equation of state for the gas phase, we have N,/V = P
and, on substitution in Equation 19.15 with rearrangement, we get

ns P
N, P+e™™/(bVy)

(19.16)

Equation 19.16 gives the fraction, f, of surface sites that are occupied for a
given Pand T.

If, at a given temperature, we define Py = e””®/ bV, then Equation 19.16
may be rewritten as

P

f=P+%’

(19.17)

which is the Langmuir adsorption isotherm expression. Equation 19.17 is
in agreement with experiment for many adsorption processes. The form of
the isotherm is shown in Figure 19.2.
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1.0

0.0

P/P,

FIGURE 19.2 The Langmuir adsorption isotherm showing the change in the
fraction of occupied sites as a function of the reduced gas pressure P/P, with P,
defined following Equation 19.16.

For P < P,, Figure 19.2 shows that fincreases roughly linearly with pres-
sure, whereas for P > P, saturation effects occur.

In the derivation of the Langmuir adsorption isotherm expression, we
have treated the adsorbed molecules as a system in equilibrium with the
gas reservoir in volume V. A somewhat different approach treats a single
site as a system in equilibrium with the gas reservoir. The grand partition
function for the single site system is

7=\ ePtma) (19.18)

n=0,1

The mean occupancy of the site (n) is given by

bn( )
E —01ne e gbima) 1
(n) =S — - - O (19.19)
E ebn(m+a)) 1+ eb(m+a)) e—b(m+a]) 1
n=0,1

With y, from Equation 19.7 together with the ideal gas equation of state
N,/V = P, it follows that (n) = f = (P/P + e "%/bVj,), in agreement with
Equation 19.16.
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19.5 CHARGE CARRIERS IN SEMICONDUCTORS

Although it may seem that the thermal excitation of carriers in semicon-

ductors has little to do with chemical reactions discussed in Section 19.3,
there are some common features. Consider an intrinsic semiconductor
(e.g., Ge, Si, or GaAs) with a very low concentration of donor or acceptor
impurities. There is a band gap E, between the valence and conduction
bands, as depicted for an intrinsic semiconductor in Figure 19.3.

At low temperatures, states in the valence band are filled while the con-
duction band is empty. As the temperature is raised, thermal excitation
of carriers takes place, producing electrons in the conduction band and
holes in the valence band. Semiconductors such as Ge and Si have band
gaps of the order of 1 eV, which is much greater than the thermal energy
kyT® 25 meV at 300 K. An important question that arises for semiconduc-
tors concerns the position of the chemical potential 4 on the energy scale.
For a metal in which the conduction band is not filled, u at low tempera-
tures coincides with the Fermi level for the conduction band carriers. In
semiconductors at low T, there are very few carriers in the conduction
band, and it may be expected that ; will lie somewhere in the band gap.
This is confirmed by calculation, as shown below.

The number of electrons in the conduction band at some temperature
T is given by

N, = oof(e)r(e)de, (19.20)

Conduction band

Valence band

FIGURE 19.3  Schematic representation of the valence and conduction bands for
a direct or indirect gap semiconductor. The band gap is E,, and zero energy is
chosen to coincide with the top of the valence band.
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where f(¢) is the Fermi function and p(e) is the density of states in the
conduction band. If u does not lie close to the conduction band edge but
is somewhat lower in energy, it follows that the Fermi function may be
approximated by f(€)=¢e”™® if we assume b(m-e)>> 1. Effectively,
we are approximating the tail of the Fermi function by the Maxwell-
Boltzmann distribution. The density of states for electrons with energies
slightly greater than the band gap may be approximated by the familiar
particle in a box expression, and with allowance for spin degeneracy, we
have p(k)d*k = 2(V /(2p)*)4pk*dk. For a parabolic band, the €k) disper-
sion relation has the form e= E, + Kk*/2m}, with m* the effective mass of
an electron near the bottom of the conduction band. We obtain a modified
expression for the density of states,

3/2

g) (e-E,)"*de (19.21)

(V2
wtte (o)

Equation 19.21 is similar to the particle in a box density of states with &!/2
replaced by (e- E,)""? and with the electron mass replaced by the effective
mass. Equation 19.21, together with use of the modified Fermi function in
Equation 19.20 gives

1 ) (2me) obm . e—be(e_Eg)l/Z de (19.22)

Eg

If the variable is changed to x = b(e- E, ), the number of electrons per
unit volume in the conduction band is

3/2 . )32

27’}’[5 eb(m—Eg)fme_x xl/z dx = i m, . eb(m—Eg)'
bh 0 2 \ pbh

The integral is evaluated using I'(3/2) given in Table 14.1.
It follows that the number of holes in the valence band is

0

n, =f_w[1—f(e)] r(e)de
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With similar procedures to those used for electrons in the conduction
band, the hole density in the valence band is

3/2

1 my, —bm
=— . 19.24
" 2 (pbhz) ¢ ( )

my, is the effective hole mass in the valence band. The product of the elec-
tron and hole densities, obtained with use of Equations 19.23 and 19.24,
is given by

3

1 1 *  *\3/2 —bEg
N, =—| ——| (m,m;)"*e = Ky(T). (19.25)
) 2(pbh2) (i) (T)

K\(T) is a constant at a given temperature for a particular semiconductor
and from Equation 19.25 may be written in the alternative form

) (Vl J e Pr, (19.26)

with Vi and Vi, the quantum volumes for electrons and holes, respec-
tively, in the semiconductor. Equation 19.25 is simply the law of mass
action used for chemical reactions in Chapter 7 and in Section 19.3.
The thermally induced production of conduction band electrons and
valence band holes may be viewed as an electron transfer reaction pro-
cess with an activation energy E,. For an intrinsic semiconductor with
equal numbers of electrons and holes, we put n, = n, in Equation 19.25
and obtain

32

1 1 . wN3/4 -bEg )2
Ne=Np=—=| —— m,m, e . 19.27
, ﬁ(pbhz) (i) (19.27)

If we equate the expressions for 7, in Equations 19.24 and 19.27 and
assume m, @mj, then m= E,/2. The chemical potential is seen to lie in the
middle of the band gap when the electron and hole effective masses are
equal. This is an important result in semiconductor science.
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For semiconductors doped with donor or acceptor centers with energy
levels that lie close to the band edges, the chemical potential will shift
from the middle of the band. Further details are given in books on solid
state physics.

PROBLEMS CHAPTER 19

19.1 The dissociation of iodine molecules into two iodine atoms
occurs at high temperatures and is described by the chemi-
cal equation I, = 2I. Give the form of the equilibrium con-
stant for this reaction and find the partial pressure of the
iodine atom component at temperature T in a container of
volume V.

19.2 At very high temperatures, atomic hydrogen dissociates into
a proton and an electron in a process represented by the
reaction H = p + e. Derive an expression for the equilib-
rium constant for this reaction assuming that the states of
all the particles involved are effectively ideal gases. Allow for
spin degeneracy and assume as an approximation that only
the ground state of the hydrogen atom with energy —e, need
be considered in calculating the internal partition function
for this particle.

19.3 A mixture of hydrogen and deuterium undergoes the fol-
lowing reaction in the gas phase H, + D, = 2HD. Obtain
the equilibrium constant for this reaction at some tem-
perature T by assuming that the rotational motion can be
described in the classical limit, whereas only the ground
states are important for both the electronic and vibrational
degrees of freedom. Give your result in terms of the vibra-
tional frequency W, = (k/mg) for the hydrogen molecule,
where k is the effective vibrational spring constant and
mg = (my)*/2my is the reduced mass for H,. Take k and
the electronic ground state energy —¢, to be the same for
all three molecular species and the deuterium molecular
mass to be twice that of hydrogen. The deuteron has spin 1,
whereas the proton has spin L

19.4 The Langmuir adsorption isotherm holds for large myoglo-
bin molecules in solution in water. One oxygen molecule
can be bound or adsorbed on each myoglobin molecule in
a process described by Mb + O, = MbO,. Show that the
Langmuir adsorption isotherm form can be obtained for
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19.5

this system with use of the law of mass action and replacing
pressures by concentrations ¢y, ¢o,, and cywo,

In doped semiconductors, the electron and hole densities
in the conduction and valence bands, respectively, are not
equal. For an n-type semiconductor containing donors,
the chemical potential moves toward the conduction band.
Show that the law of mass action holds for doped semi-
conductors in which transitions occur between the donor
level the bottom of the conduction band and the top of the
valence band.



CHAPTER 20

Introduction
to Irreversible
Thermodynamics

20.1 INTRODUCTION

Situations dealt with in the previous chapters in this book have involved

systems in equilibrium or very close to equilibrium. We now consider
phenomena that occur in systems that are not in equilibrium. The second
law of thermodynamics states that in any process the entropy of the local
universe either remains constant or increases. Many processes in nature
are irreversible and are accompanied by a net increase in entropy. There
is a corresponding asymmetry with respect to time in the equations gov-
erning irreversible processes. In nature, living organisms that maintain a
high degree of order are far from equilibrium. Life on earth relies on ther-
mal energy from the sun that is captured and stored as chemical energy
in plants through photosynthesis. The stored chemical energy is used by
other organisms to sustain life in processes thatlead to entropy production.
Devising a detailed description of living systems that are far from equilib-
rium is an extremely difficult and challenging task. New approaches to the
study of complex systems, including living systems, are currently being
developed.

In this chapter, we consider irreversible processes in systems not
too far from equilibrium. Examples of situations of this kind are

379
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phenomena associated with thermoelectric effects and with thermo-
osmosis. Thermoelectric effects that involve coupled electrical transport
and heat transport were discovered in the nineteenth century. The effects
that we discuss bear the names of the discoverers. In particular, we ana-
lyze the Seebeck and Peltier effects that involve contacts between two
different electrical conductors, which may be metals or semiconductors,
that are maintained at different temperatures. In practical applications,
the Seebeck effect is used for thermometry, in the form of thermocouple
devices, whereas the Peltier effect provides the basis for heat pumps in
small refrigerator systems. Thermo-osmosis with the related thermome-
chanical effect involves the flow of energy and particles between reservoirs
at different temperatures and pressures. One of the most dramatic exam-
ples of the thermomechanical effect is the fountain effect that is found in
superfluid helium.

20.2 ENTROPY PRODUCTION IN HEAT FLOW PROCESSES

As a starting point for the discussions of irreversible thermodynamics,
consider heat energy transmission along a thermally conducting bar con-
necting two heat baths, as shown in Figure 20.1.

If the heat flow is constant, entropy is produced in this composite sys-
tem at a rate

das _ IQ(l_l), (20.1)
dt T, T,
1
Tl
o)
2
T2

FIGURE 20.1 A conducting bar connects two heat baths at temperatures T, and
T,, with T, > T,. Heat flow along the bar results in entropy production at a steady
rate if the temperatures of the baths are held constant.
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where I, = dQ/dt is the heat current with the unit joules per second.
As an approximation, if T} = T,, we introduce an average temperature
T = (T, + T,)/2 and with the system not far from equilibrium, Equation
20.1 becomes

ds IAT

ds _, AT (20.2)
a1

b

where AT = T, ¥ T,. For convenience, an entropy current I, = I,/T may be
defined in terms of the heat current, giving

ds_ AT (20.3)

dt T

Provided the heat baths have sufficiently large heat capacities so that AT
remains approximately constant, entropy will continuously be produced at
the rate given by Equation 20.3. The form of Equation 20.3, which applies
to thermal energy flow, may be generalized to allow for coupled flows that
involve, for example, energy and particles. This development is dealt with
in the next section, first for the cases of discrete systems that consist of
distinct parts and second for continuous systems such as a bar through
which both heat and charge flow.

Exercise 20.1: A copper rod of diameter 5 mm and length 20 cm is connected
to two heat baths at slightly different temperatures of 300 and 290 K, respec-
tively. Find the rate of entropy production due to heat flow along the rod.

From Equation 20.2, dS/dt = (I5 AT/T?), and we calculate I, from the given
dimensions of the copper rod and the thermal conductivity coefficient of cop-
per k = 4.0 x 102 Wm~" K-'. We obtain /, =0.4 J sec” and, with T =295 K this
gives dS/dt = 46 pWK-".

20.3 ENTROPY PRODUCTION IN
COUPLED FLOW PROCESSES
(a) Discrete Systems. Consider two reservoirs that are connected to allow
energy and particles to flow between them, as shown in Figure 20.2.
The total energy and the total number of particles are held fixed
so that

E=FE +E, (20.4)
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£, Ny Vy, Ey Ny, Vs,

Ty, iy, Py Ty, iy, Py

FIGURE 20.2 Two connected reservoirs 1 and 2 with gradients in pressure,
temperature, and chemical potential across the connecting aperture. Coupled
energy and particle transport processes take place provided the gradients are
maintained.

and

To simplify matters, the volumes V, and V, are kept fixed. If at some
instant the two reservoirs are not in equilibrium with each other, then
energy and particles are transferred from one reservoir to the other because
of differences in the temperature and the chemical potential. The total
entropy of the two reservoirs is S(E,N,V) = S,(E;, N, V1) +S,(E,, N5, V3).
If energy and particles flow from reservoir 1 to reservoir 2, the rate of
change of entropy for the composite system is

as _ ( 05 _ 05, ) N, +(951_352)aﬁ, (20.6)
dt ~ \aN,  aN,) ar \oE ~oE,) ot

where use has been made of Equations 20.4 and 20.5. With use of the general
form of the fundamental relation in Chapter 3, we have dS/dN = -m/T
and dS/dE = 1/T.1In considering Equation 20.6, it is helpful to introduce
the thermodynamic forces X, and X that drive particle flow and energy
flow, respectively. For particle flow, we define

Xy = -(’;11-’7’322) - -A(%) (20.7)

and for energy flow

X, =-(]{1-£) =-A(i). (20.8)
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The corresponding currents are defined as I, = dN,/0dt and I, = JE,/ ot.
Equation 20.6 is rewritten in terms of these forces and currents as

%:XNIN +XEIE' (209)

For coupled flow processes, the currents are functions of the thermody-
namic forces: Iy = Iy (X, X;) and I = I(Xy, Xp). Expanding both Iyand I,
in Taylor series about X, = 0, X, = 0 and retaining first order terms as an
approximation gives

aly aly
Iy = Xy +| Y| Xp = LywXn + Lae X 20.10
N (aXN) N (aXE) E NN AN NE 4AE ( )
and
ol ol
Iy = Xy +| —2| X = Len Xy + Lge X (20.11)
E (aXN) N (aXE) E EN AN EE <AE

The linear forms imply that conditions are not far from equilibrium with
fairly small differences in T and y between the reservoirs.
For arbitrary coupled flows I, and I,, we write in general

L =L, X, +L,)X, (20.12)
and
I = L[ X) + Ly Xs. (20.13)
In matrix form, Equations 20.12 and 20.13 are combined as follows:

(I (Lu L\ [ X1\

(1) "\ 1))

Importantly, the oft-diagonal coefficients L,, and L,, are equal, as was
shown by Onsager from microscopic considerations that involve the
reversibility of dynamical processes on the microscopic scale. The general
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equality L,, = L,,, which is known as the Onsager reciprocal relation, is
extremely helpful in simplifying the treatment of coupled flows.

(b) Continuous Systems. Many situations of interest, particularly in
thermoelectricity, involve continuous rather than discrete systems. For
systems of this kind in situations involving transport of energy and/or
particles, there is a gradient in temperature and/or chemical potential. The
results we obtain are similar to those given above for discrete systems. For
continuous systems, it is convenient to introduce current densities per unit
area ] rather than currents I. In most cases we consider, transport occurs
along a chosen direction in a material. For flow processes that involve just
a single current density J, we can write J=LX, where X is a thermodynamic
force expressed as a gradient function and L is a phenomenological coeffi-
cient. Examples are as follows:

(i) Thermal conductivity (Fourier’s equation),
Jo =k VT, (20.14)

with «k as the thermal conductivity coefficient;
(ii) Electrical conductivity (Ohm’s law),

]e =-s5Vf, (2015)

with o as the electrical conduction and ¢ as the electric potential; and
(iii) Diffusion (Fick’s law),
Jy =-DVm, (20.16)

with D as the diffusion coeflicient.

In Cartesian coordinates the del operator used in the above equations
hasthe formV =id/dx+ jo/dy +kd/dz, where i, j, and k are unit vectors.
For many situations that we consider, the flows are parallel to a particular
axis that may be chosen as the z axis.

From the general fundamental relation introduced in Chapter 3, with
the volume held constant, we have in terms of the entropy density s, energy
density e, and particle density »,

ds=< )de ( )dn Ex dx, . (20.17)
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Equation 20.17 defines Z;X; dx;, and it follows that the thermodynamic
forces are given by X; = ds/0x;.

In the presence of gradients in the temperature or the chemical poten-
tial, we introduce J as the entropy current associated with a volume elem-
ent dV, and VJ, gives the net flux of entropy from the volume element. For
each variable x;,, there is an equation of continuity on the basis of conser-
vation considerations. It follows that the rate of increase of the entropy
density because of gradients in the X; has the form

ds_ v, (2018)
dt~ 2

Equation 20.18 is an important relation in irreversible thermodynamics
and gives the rate of production of entropy per unit volume in a region
of interest in terms of thermodynamic forces and currents. If we consider
coupled energy and particle flow situations, Equation 20.18 becomes

R R

Equation 20.19 is similar in form to Equation 20.9. If we again expand J,
and Jy and retain first order terms, the coupled flows are similar to those
given in Equations 20.12 and 20.13:

Ji=Je=LuXi+L, X, (20.20)
and
Jo=Jn =L Xi + L X5, (20.21)

with X, =WV(1/T) and X, =XV(u/T). Equations 20.20 and 20.21 can again be
combined in matrix form. In the following sections, the formalism devel-
oped for both discrete and continuous systems is applied to a number of
different flow situations.

20.4 THERMO-OSMOSIS, THERMOMOLECULAR PRESSURE
DIFFERENCE, AND THERMOMECHANICAL EFFECT

Consider the flow of a fluid through a membrane, across which there is
both a temperature and a pressure gradient. Using the equations derived
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in Section 20.3, we obtain a relationship between the temperature differ-
ence and the pressure difference. The arrangement for thermo-osmosis is
shown in Figure 20.3.

The two chambers on either side of the membrane are each maintained
at constant temperatures by means of large heat baths with which the res-
ervoirs are in thermal contact. To relate the coeflicients in Equations 20.20
and 20.21, we consider two special cases.

(i) Ifthe pistons are stationary, there is energy transport but no net par-
ticle transport. Equation 20.21 becomes

1 m
0=1L V(—) L V(—), 2022
21 T 22 T ( )

and we obtain

Ly _ V(m/T) _ m—T(ém) ; (20.23)
L, VQU/T) oT

with use made of the partial derivative identities given in Section 7.7.

The expression Equation 20.23 establishes a useful relationship

between L,, and L,,.

(ii) If there is no temperature gradient V(1/T) = 0. Equations 20.20
and 20.21 become, under isothermal conditions, J, =XL,,V(u/T) and

P P+dP
T T+dT
i L
Permeable
membrane

FIGURE 20.3 The figure depicts thermo-osmosis through a permeable mem-
brane. Pressure and temperature gradients are maintained across the membrane.
Both energy and particle flow can occur.
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Jy=KL,,V(1/T), and the ratio gives

Ly _ (JE) , (20.24)
L22 ]N AT=0

The ratios of the coefficients in Equations 20.23 and 20.24 together with
the Onsager reciprocal relation L,, = L,, lead to the important relation for
coupled flows under isothermal conditions

(ﬁ) o m_T(am) ' (20.25)

In general for a single component system, the Gibbs potential is
G=mN = E-TS+ PV. The differential of G, combined with the fun-
damental relation, gives the useful thermodynamic relationship
SdT -V dP + N dm = 0, which we rearrange with v= V/N and s = S/N as

dm _ (Vdp_s) , (20.26)
dar —\'dr

If dm/dT @0, Equation 20.26 takes the simple form

a_s (20.27)

If we write the entropy density as s = q/T per particle, Equation 20.27
gives the ratio of the pressure difference to the temperature difference
across the membrane in terms of the heat transfer per particle, g, and the
volume change per particle, v.

It is necessary to consider microscopic effects to understand the
origins of the heat transfer g. We assume that the energies of particles
transported across the membrane are, on average, greater than the mean
energy of the particles on the side from which they come. This effect will
tend to lower the temperature on one side of the membrane and to raise
the temperature on the other side. Heat transfer occurs to the heat baths,
which maintain the temperatures at T and T + dT, respectively, to com-
pensate for this effect. The heat transfers to and from the heat baths that
occur to maintain the temperatures constant results in entropy transfer
between the two reservoirs. The nature of the membrane determines the
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sign of dP for a given dT. Note that the ratio of energy flow to particle
flow under isothermal conditions in Equation 20.25 can be written as

(]E) _Le eiprig), (20.28)
AT=0

]N 22

where the terms inside the brackets on the right-hand side represent the
various contributions to the energy that are involved in the transfer of
a particle through the membrane. For each particle transferred, e is the
internal energy component, Pv is the work done by the piston, and g is the
heat that is effectively transferred between the heat baths, which maintain
the temperatures of the two chambers.

By considering various special cases, such as thermal transport, an
expression for all of the coefficients L; may be obtained in terms of mea-
surable quantities. With this information, the dynamical equations may
be used to describe any coupled flow situation. In particular, we shall
adapt the results obtained in this section to thermoelectric effects in
Section 20.6.

Exercise 20.2: The liquid helium-II phase below the 2 transition in helium-4
exhibits fascinating transport effects of which the most dramatic is the fountain
effect discovered in the 1930s. Assume that the membrane in Figure 20.3 con-
tains very narrow channels that, in terms of the two-fluid model introduced in
Chapter 14, allow the passage of only the superfluid helium component but not
the normal component. The superfluid helium-4 atoms transport no entropy.
Show that the fountain effect, which is a special case of thermo-osmosis, can
be described by Equation 20.27. Explain the origin of the entropy changes in
this system.

As a simplification, we approximate the behavior of the chemical potential
of liquid helium at low temperatures as similar to that of a Bose gas below
the Bose-Einstein condensation temperature. We have from Equation 14.15
u = —kgT /N[1=(T /To)**1"' Clearly, du/dT is, to a good approximation, close to
zero, and Equation 20.27 is valid for superfluid helium. A temperature differ-
ence across the membrane gives rise to a pressure difference with an increase
in temperature accompanied by an increase in pressure.

If the piston on the left-hand side (reservoir 1) is moved in slowly, superfluid
atoms are transferred to the vessel on the right side (reservoir 2). Although the
superfluid atoms transport no entropy, a decrease in the fraction of superfluid
atoms in reservoir 1 would lead to a rise in temperature and heat is given up
to the heat bath to keep T, constant. For a decrease of n superfluid atoms in
1 heat Q, = nT;s, is reversibly transferred to the heat bath, and this corresponds
to a loss in entropy for 1. Similarly, the increase in superfluid concentration in
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reservoir 2 leads to the reversible absorption of heat Q, = nT,s, from the heat
bath and an increase in entropy of reservoir 2. If we apply the first law to the
coupled reservoir system for a process that involves the transfer of n superfluid
atoms, we get n(e; =€) = n(Ts; = Tis1) = n(Pva = Av), and it follows that g, = g,
where g is the Gibbs potential per particle. This shows that the chemical poten-
tials in the two reservoirs are the same, that is, p; = p,. Because g = e = Ts + Pv,
if we combine the differential dg with the fundamental relation, we find that
-sdT+vdP = CordP/dT =s/v in agreement with Equation 20.27.

The thermomechanical effect in liquid helium is related to the fountain
effect and arises when the two coupled reservoirs are kept at the same tem-
perature, but a pressure difference is maintained between them. From Equation
20.28, we have (Je//n)ar=0 = Li2/Lay = e + Pv + g = h + g where h is the enthalpy
per particle and g is the heat transferred per particle. Use of Equation 20.27 to
obtain g gives for the ratio of the flows (Je / Jx)ar-o = h+vT(dP/dT).

20.5 THERMOELECTRICITY

The Seebeck and Peltier thermoelectric effects mentioned in Section 20.1
involve coupled thermal energy and electric charge flow. We make use
of the results obtained in Section 20.3 to discuss these effects. Consider
a long thin conducting bar connecting two heat baths at temperature T;
and T, as shown in Figure 20.4.

The particles that transport charge are electrons or holes, depending on
the nature of the conducting bar, which may be metallic or semiconduct-

ing. Particle flow gives rise to an electric current density J. = e Jy, where
the sign depends on whether the particles are negative electrons or posi-
tive holes. For the present discussion, we shall assume metallic conduc-
tors with electrons as the charge carriers. For energy flow, there are two

FIGURE 20.4 Coupled energy and particle flows along a conducting rod that
connects heat baths at temperatures T, and T,, respectively.
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contributions, J; = Jo + mJy, where ], is the thermal current. It follows
that Equation 20.19 may be written as

a T U= "0) 9 (D)%) oo () () e
(20.29)

The coupled heat and charge flow equations are similar in form to
Equations 20.20 and 20.21,

Jo=LuXi+L X5 (20.30)

and

Je = LnXi + Ly X,, (20.31)

with the thermodynamic forces in the present case given by X; = V(1/T) and
X, = (1/eT)Vu. The chemical potential must be modified in the presence of
an electric field and is written as y = u_ + p,, where u_ is the concentration-
dependent contribution and y, = e¢ is the potential energy of a charged par-
ticle in the electric potential ¢. Just as in the thermo-osmosis case described
in Section 20.4, the coefficients L,, and L,, are determined by considering
special flow situations and use of the Onsager reciprocal relation, L,, = L,,.

(i) Choose T, =T, =T, giving VT'= 0. From Equation 20.31, we obtain

= (7) L, Vm, (20.32)

where Vi = V. + Vu,. For a homogeneous system with no temperature
gradient, we expect Vi, = 0, and this gives Vi, = eVip. Equation 20.32,
with use of Ohm’s law (Equation 20.15), becomes ], = —(1/eT)Ly, (e]./s),
which leads to

Ly, =-sT. (20.33)

(ii) Asa second special flow case, put J, =0 in Equation 20.31, which cor-
responds to zero electric current, to obtain the following expression

for Vu:
Ly 1 e\ ( Ly
Vm=—eT| | V(] =| )| | VT.
e (Lzz) (7) (T)(Lzz) (20.34)
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Insertion of Vu from Equation 20.34 into Equation 20.30 leads to

Jo = _<L2) (Lll —L12L21) VT. (20.35)

With use of Equation 20.14, we obtain

kodo 1 (L“ _ LwLu) ’ (20.36)
vr T Ly

with « the thermal conductivity coefficient. Remembering that L,, = L,,,
Equation 20.36 provides a relationship between L,;, L,,, and L,,.

Finally, for temperature gradients along the conducting rod that are
not too large, we again take Vu = eVgp. With Equations 20.33 and 20.34,
this gives

df Ly
dr  sT?*

(20.37)

The quantity d¢/dT is defined as the thermoelectric or Seebeck coef-
ficient € and is of fundamental importance in our discussion. The value
of € is a characteristic of a particular conductor. Measured values of ¢ for
metals, semimetals, and semiconductors range from tens to hundreds of
microvolts per kelvin. From Equation 20.37, we obtain

L, =s eT?. (20.38)

All of the coefficients are now determined, and the coupled flow
Equations 20.30 and 20.31 may be written as

Jo =1k +se2T]VT+ﬂVm (20.39)
e
and
J.=-seVT->Vm (20.40)
e

Combining Equations 20.39 and 20.40 gives

Jo=-eTJ, +kVT. (20.41)
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This is a useful equation that relates the heat current density to the elec-
tric current density in a conductor along which there is both an electric
potential gradient and a temperature gradient. For application to a par-
ticular material, it is necessary to insert values for the two coefficients: the
thermoelectric coefficient € and the thermal conductivity x. We are now in
a position to discuss the Seebeck and Peltier effects.

20.6 THE SEEBECK AND PELTIER EFFECTS

The discovery of thermoelectric effects was made by Seebeck in the nine-

teenth century, who found that a current was produced in an electric circuit
made of two different metals joined to make a loop and whose junctions
were kept at different temperatures. This effect bears his name. Roughly
10 years later, Peltier showed that when a current was passed through a
junction of two metals, heat was either absorbed or given out dependent
on the direction of the current. In the mid-nineteenth century, William
Thomson (later Lord Kelvin) unified the description of thermoelectric
effects. He predicted and then showed that heat should be either absorbed
or emitted from a current carrying conductor along which a temperature
gradient is maintained. With the formalism that has been established in
the preceding sections, we give a brief account of these effects.

Consider a composite electrical conductor consisting of two different
materials a and b carrying an electric current I,, as shown in Figure 20.5.

Because of the isothermal conditions at the junction of the conductors,
application of Equation 20.41 to the two materials with v T = o gives

Jo-Jo=(e-€)T].. (20.42)

1

]

Heat bath T

FIGURE 20.5 The figure shows a long rod-shaped conductor, made of two mate-
rials a and b, which are joined as shown, and through which an electric current is
passed. The junction is in contact with a heat bath at temperature T.
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This shows that the heat current is not constant across the junction and
that heat is exchanged with the reservoir at the junction. The Peltier coef-
ficient 7 (with SI unit joules per coulomb (JC™) or volts (V)) is defined as
the heat current supplied to the junction per unit electric current through
the junction:

a b
p? = (]Q]_]Q) =T[e" - '] = TAE™. (20.43)

We see that the heat absorbed or given out at the junction is propor-
tional to the difference in the thermoelectric coefficients of the two mate-
rials making up the composite conductor and to the absolute temperature.
With a suitable choice of materials, Ae * can be made sufficiently large and
negative to provide useful refrigeration at the junction. The Peltier effect
is used in compact specialized commercial refrigeration units. These typi-
cally involve a series of p- and n-type semiconductor junctions, a and b,
for which the thermoelectric coefficient difference Ae “ is large. The junc-
tions are arranged to have heat absorbing junctions in a plane on one side
and heat rejecting junctions on the opposite side.

We turn to the Seebeck effect and consider two electrically conduct-
ing materials a and b connected as shown in Figure 20.6, with junctions
1 and 2 at different temperatures T, and T,, respectively.

Voltmeter
1
1 || a
Metal a Insulator Metal b
2 | 3
T,

FIGURE 20.6 A thermocouple arrangement that consists of two conductors
joined to form a loop with junctions at different temperatures T, and T,. The
electrical insulator at the upper junction is maintained at T, and a voltmeter is
connected between points 1 and 4 as shown.
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For convenience in our discussion, the conductors at the upper junction
are separated by an insulator that prevents charge flow in the circuit. The
voltmeter that measures the potential difference across the upper junction
has a very high electrical resistance. Application of Equation 20.40 to the
Seebeck circuit, with J, =0, gives

0=-s&VT->Vm (20.44)
e

If we assume that the approximation Vu = eVip is valid, we get eVT =
XV¢, and integration around the circuit leads to

T
Af,=-[ (&"-€")dT =-Ae®AT. (20.45)

T

This is the thermoelectric emf. Note that the connections to the voltmeter
are at the same temperature and any contact potential difference which
arises at these points is cancelled out. If one of the two junctions is main-
tained at a fixed known temperature T, the Seebeck effect may be used for
thermometry, with the temperature of the other junction given in terms
of the measured emf. Calibration tables exist for various metal junctions.
For selected metal pairs, Ae ¥ 10% V K!, and the emfs are of the order of
millivolts for temperature differences of 100 K between metal junctions.
Note that both the Seebeck and the Peltier coeflicients involve Ae ** and do
not give values for £® and e separately. However, with use of the Thomson
effect and the relationships that link the various thermoelectric effects, it
is possible to determine all of the coefficients for a particular conductor,
which can then be used as a reference for other conductors.

Exercise 20.3: Show that the thermoelectric coefficient ¢° of a superconductor
is zero and that the thermoelectric coefficient of a normal metal can be mea-
sured with use of a contact between the metal and a superconductor.

We first note that the Cooper pairs in a superconductor transport no entropy,
which distinguishes superconductors from normal metals in an important way.
From Equation 20.37 with the electrical conductivity ¢ = e, we obtain ¢° =
0. For a thermocouple made of a normal metal in contact with a supercon-
ductor and with the junctions at different but sufficiently low temperatures,
Equation 20.45 shows that the Peltier emf is Afy, = - T?(ea - &) dT = —&'AT,
which gives a direct measure of e°.
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Microscopically, the origin of the Peltier emf may be understood by
considering the Fermi levels in two conductors that are placed in contact.
In general, the Fermi levels will be different in the two conductors, and
transfer of charge carriers will occur to equalize the levels. As a result,
a contact potential difference is established between the conductors that
gives rise to the Seebeck effect. When charge is transported across the
contact between two different metals, heat is either absorbed or emitted,
dependent on the current direction, to conserve energy. This gives rise to
the Peltier effect.

20.7 THE THOMSON EFFECT

As noted above, the Thomson effect involves heat evolution because of

an electric current in a conductor along which there is a temperature
gradient. Charge carriers from high-temperature regions of the con-
ductor have a higher average energy than carriers in cooler regions.
To maintain the temperature gradient, heat is rejected from the con-
ductor surface as carriers from the high-temperature region move to
cooler regions. The Thomson coefficient 7 is defined as the heat transfer
because of this process per unit current for unit temperature gradient.
We do not consider this process in detail and simply quote the expres-
sion for the Thomson coeflicient 7 = -T(de/dT), where ¢ is again the
thermoelectric coeflicient of the conductor and de/dT gives the varia-
tion of € with T. If we consider a short length of the conductor with a
temperature difference AT between the two ends, the Thomson heat per
unit area is given by

T
Jo=J.t dT = -] tAT. (20.46)

T+AT

We assume that 7 is approximately constant for the small temperature
difference involved. The sign of ], depends on the direction of current
flow with respect to the direction of the temperature gradient. In addi-
tion to the Thomson heat, there is of course the Joule heat that must be
allowed for. The Joule heat depends on both the electrical resistance of the
conductor and on J2. Note that measurements of the Thomson heat for
a given material as a function of temperature provide values of 7, which
can be used in an integral to give values for the corresponding Seebeck
coeflicient.
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PROBLEMS CHAPTER 20

20.1

20.2

20.3

20.4

Liquid helium-4 under reduced pressure at a temperature
of 1.2 K (below the A transition) is contained in two vessels
connected by a superleak that allows the passage of only the
superfluid helium component. By means of a heater, a small
temperature difference of 1.5 mK is maintained between
liquid in the two vessels. Calculate the pressure difference
that is established between the two helium baths as a result
of the temperature difference. The density of helium-4
below 2 K is p = 0.145 g cm™, and the entropy per gram is
s=5x102Jg K.

A conducting bar carries an electric current of density J,
and has a temperature gradient maintained along its length.
Consider a short region of the bar with the upper and lower
endsat T+ AT and T, respectively. Derive the Thomson effect
result for the heat per unit area absorbed from, or emitted
to, the surroundings by this small region of the bar in terms
of the Thomson coefficient 7 defined in Section 20.7.

A thermocouple is made of two different metals with Seebeck
coeflicients of 35 uV K-'and -6.5 uV K. What is the emf for
this thermocouple when the hot and cold junctions are at
300 and 77 K, respectively?

Design a small Peltier effect refrigerator that provides cool-
ing power of 10 W. Base your design on a stack of selected
semiconducting materials that have large Seebeck coeffi-
cients of +320 and -280 UV K, respectively. Give the design
details. The refrigerator should operate with a current sup-
ply of a few amperes. Will cooling of some of the contacts be
necessary?



Appendix A: Useful
Mathematical
Relationships

FINITE SERIES SUMMATIONS

(1) Arithmetic progression S, = (a+2a +3a +-+na) = sn(n+1)a.

a(l—r"))

(2) Geometric progression S, = (a+ra+ria+-+r""a)= ( I
—-r

forr# 1.
Snzli forO<r<l.

(3) Riemann zeta function

This function is defined by z(p)= Y,..,(1/nf) for p>1. Values are
€(3/2) = 2.612, {(2) = n%/6, {(3) = 1.202, {(4)= 7*/90. A general expression
may be given in terms of Bernoulli numbers, but the values quoted are
sufficient for the material covered in this book.

STIRLING’'S FORMULA FOR THE LOGARITHM OF N!

InN!=NInN -N +In(2pN)"> ~NInN-N forlarge N.
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DEFINITE INTEGRALS INVOLVING
EXPONENTIAL FUNCTIONS

—ax _
fxe dx=— fe“xdx=
0 a 0

f xe—uxzdx — i f x2e—ax2dx - \/E
0

0 2a

N | —

f e dx = L f xie ™ dx = 3Vp
0 0

2612 8 5/2

General expressions for these integrals may be given in terms of the
gamma function

I'(n) =f x"'e*dx formn>0.
0

For integral », the values of the gamma function are obtained using
I'(n+1)=n!forn=0,1,2,... and the recursion formula I'(n+1) =ul'(n).

For fractional values of n=m+3, where m is an integer, we have
T(m+1)=@1-3-5--2m—-1)/2")Jp form=1,2,.... This gives, for exam-
ple,I(3)=4p.

For the case m =0, (1) =/p.

In terms of the gamma function, the following expressions are obtained
for integrals of interest:

[ vea DRl g T

0 2a[(m+1)/2] 0 am+1

These expressions may be used to confirm the values for the integrals
listed above.

In Chapter 15, the following integral is used in the derivation of the
Stefan-Boltzmann law and in the discussion of the Debye model for the
specific heat of solids,

"xdx _p?
fo e“-1 15



Appendix B: The
Binomial Distribution

Consider a random process with two possible outcomes or events labeled
X and Y governed by probabilities p and g, respectively, with p + g = 1. The
probability that in N trials n outcomes X will be obtained is given by the
binomial distribution

P(n) = (g)p”qw_”). (B1)

The binomial coefficient (%] ) = N!/(n!(N -n)!) occurs in the binomial
expansion (p+q)" = 3, (%] ) p"g"™", and the probability distribution
derives its name from this identification. The probability distribution is
normalized for p + g = 1 because it follows immediately from the binomial
expansion that in this case X, P(n) = 1.

For large N, the mean number of events of type 1 is (n) = Np. This result
is obtained with use of the binomial expansion as follows.

The mean value of # is given by

N N n _N-n N a N n _N-n
=SS (1)
n=0 n=0
:P;i(ﬁ)ﬂq“” =p§;(p+q)N = Np. (8)
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Summation and partial differentiation have been interchanged in the
third step, and it is assumed that p + g = 1.

The dispersion s P =(An) = (n*) - (n)’ may be obtained using a similar
approach by calculating ( #*) and making use of the above expression for ().

(an’) = lin(ﬁ’ ) p”q’”] -N°p =[i(paap)2(ﬁ’ )p"qN”]—szz. (B3)

n=0 n=0

Interchanging the order of summation and integration leads to

(an*) = (pai)i(if )p”qN‘”}—szz

n=0

= (pai)) (p+q)N]—N2p2=Npq. (B4)

The ratio s /(n) = [Npq /Np = (1/~/N)(\Jq/ p) shows that for large N,
the root mean square width of the distribution, expressed as a fraction of
the mean value, decreases as 1/</N . Note that the factor \/W is often of
order unity.

We expect the probability distribution given in Equation Bl to exhibit
a maximum at (n). For very large N, it is permissible to replace the discrete
variable n by a continuous variable. In this limit, the probability of an
outcome in the range n to n+ dn is P(n)dn, with the interval dn spanning
a range of values of n.

The probability density P(n) is expected to peak at (n) = [nP(n) dn = Np.
We can confirm this peak value by differentiating P(n) to obtain the value
of n at the extremum, which we designate for the moment as 7. It is conve-
nient to use the function In P(n) in performing the differentiation because
this avoids the factorials. Applying Stirling’s formula, we obtain

= (;(NlnN—N—nlnn+n—(N—1’I)ln(N—n)
n

),

+(N—n)+n1np+(N—n)lnq))7

=(—lnn+ln(N—n)+lnp—lnq)ﬁ=0 (B5)

Rearranging it follows that # = Np = (n) as expected.
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GAUSSIAN APPROXIMATION TO THE

BINOMIAL DISTRIBUTION

For large N, we now show that the binomial distribution can be well
approximated by the Gaussian function for values of n not too far from the
peak. We use a Taylor expansion to approximate the probability distribu-
tion and again find it convenient to consider In P(n) because this is a more
slowly varying function than P(n) and the expansion may be expected to
converge rapidly. Retaining terms up to second order, the expansion has
the form

dln P(n)
dn

d?*1lnP(n)
dn®

In P(n) = In P({n)) + ( ) (n—(n))+ ;( ) (n—(n))* +-
(n (n)

(B6)

The first derivative of In P({n)) evaluated at (n) is zero, and the second
derivative is given by

e BER - (B

(dzlnP(n)) 1 1 N _ 1
w ) (N=(m)  (m(N-(m))  Npq

Substituting in the Taylor expansion and then taking antilogarithms
give the Gaussian distribution form P(n) = P((n))e™ "2\ The coef-
ficient P({(n)) may be obtained from the normalization condition by inte-
grating over the range 0 to N. For sufficiently large N, the upper limit
may be extended to infinity because the integral will converge. With the
standard integral form given in Appendix A, we obtain finally in this
approximation,

1 2
P(n) - e—(n—Np) /2Npq .

\J2PNpq (B8)

This has the Gaussian distribution form P(x)=1/2ps Pl 252,
and we identify the dispersion as s> = Npq in agreement with the value
obtained directly from the binomial distribution.

For large N, the Gaussian approximation is very close in form to
the exact binomial distribution. Figure Bl for N = 30 shows the exact
binomial distribution P(n) versus n as the plotted points and the
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FIGURE B1  The binomial distribution for N = 30 and p = g = 0.5 shown as plot-
ted points and the Gaussian approximation as the full curve.

Gaussian approximation as the curve. The agreement is seen to be very
good, showing that the Gaussian approximation works well even for fairly
small N.

It is clear that for very large values of N, comparable with Avogadro’s
number, the Gaussian approximation gives an excellent fit to the binomial
distribution.



Appendix C: Elements
of Quantum Mechanics

The time-dependent Schrodinger equation for a particle of mass m moving
in a fixed potential V(r) is

72 , ., 0W(r,t)
_%v W(r,t) + V(E)P(r,t) =ih : (C1)

The wave function ¥(r, ) gives the probability amplitude of finding
the particle at position r at time t. For the purposes of this book, we are
generally interested in time-independent or stationary states. Writing the
wave function as a product of a spatial part and a time-dependent part
as ¥(r, t) =y (r)e®" and substituting into Equation C1 lead to the time-
independent Schrodinger equation

)+ V() = By (). )
2m

In more compact form, we have Hy (r) = Ey (r), with the Hamiltonian
operator defined as H =- (h* 12m)V* + V(r). The energy eigenvalues
E = hw are obtained by solving this equation for a given potential function
V(r). Note that |®¥(r,t)]" = |y (r)e”™ ] =|y(r)[’, showing that the eigen-
states are stationary states with a time-independent probability density
for finding the particle at any given point.
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PARTICLE IN A BOX EIGENSTATES AND EIGENVALUES
Consider a particle moving in one dimension in a potential well V(x) =0
with infinite walls at x = 0 and x = L. This is the one-dimensional box situ-
ation, and the corresponding time-independent Schrédinger equation is

d’y (x) _ 2mE
dx*  #?

y (x) = -k’y (x), (C3)

with ~/2mE/h = |k|. The general solution to Equation C3 may be written as
v (x) = Cie™ + Cre ™.

Using the boundary conditions y(0) = 0 gives C, = —C,, and it follows
that y (x) = C; sinkx.

At the other boundary of the well, we require (L) = 0, which implies
sinkL =0, and thisleadstokL=np ork, =np/L,withn=1,2,3,.... The
boundary conditions lead to quantization of x and E. The situation is sim-
ilar to the case of vibrational standing waves on a string stretched between
two fixed points or nodes. The energy eigenvalues for the particle are

s

. = . C4
2m  8mlI’ (€9

The probability of finding the particle in the box is given by
[y ()P dx =1 and inserting y (x) = C;sinkx = C; sin(npx/L) in the
integral gives the constant C, = /2/L.

For a particle in a three-dimensional box with infinite potential barri-
ers at the sides, the energy eigenvalues may be obtained in similar fashion
to the one-dimensional box case, and we obtain

R )

8mLL2x+L2y+L—2ZJ, (C5)

n

with n,,n,,n, =1,2,3,... For a cubical box L, = L=L=L and putting
V = L3, Equation C5 becomes

hZ

En = va2/3

(n2 + nf, +12). (Ce6)



Appendix C = 405

THE HARMONIC OSCILLATOR

The potential function for a one-dimensional harmonic oscillator is
V(x) = 1kx*, with k the effective spring constant for a particular system
such as a diatomic molecule. The displacement x from the origin can
take positive or negative values, and the potential has the form of a para-
bolic well with a minimum at x = 0. The energy levels for a particle of
mass m moving in this static potential are given by the time-independent
Schrodinger equation

2
Finding solutions to the harmonic oscillator Equation C7 is not
straightforward, and we simply outline the procedure. Further details can
be found in texts on quantum mechanics.
For a given energy, the wave function will fall off rapidly with increas-
ing x because of the strong dependence of V(x) on x. It is convenient to
rearrange Equation C7 in the following form:

2 2
(zh;z+E—kx)y(x)=0. (C8)
m

In the asymptotic large x limit, Equation C8 can be written to a good
approximation as

wod& ) )
(zdxz—zkx) (x)=0. (9)

This is similar in form to the differential equation [(d*/dx*)- (x* -1)]
f(x) = 0, which has the following solution f(x)= Ae™">*, where A is a
constant. We expect the solution to Equation C9 to have the Gaussian form
y (x) = Ce™V 2)‘”2: with C and a constants to be determined. Substituting
w(x) in Equation C9, cancelling the common exponential factor and the
constant C lead to (a> —mk/#*)x* —a = 0. In the large x limit, the first
term is dominant, and we require that the coeflicient of x? is zero, giving

a =mk/h.
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For small x, a solution to the Schrodinger equation may be obtained
by multiplying the Gaussian function by a polynomial in x of the form
H,(x)=(ap + a1x + a,x* + -+ a,x"), with the order # to be determined for
each eigenstate. Note that successive terms in the polynomial have even and
odd parity, and because the Gaussian function has even parity under a sign
change of x, the parity of the wave function is determined by the parity of
the nonzero terms in the polynomial. The polynomials H,(x) are known
as Hermite polynomials. The simplest solution is obtained by retaining
only the zeroth-order term in the polynomial, giving y (x) = aoCe™"/ Dax’,
Substituting in Equation C8 and usinga = </mk/#, we obtain the eigenvalue

1 1
E() = Eh\/ kim = EhWO (ClO)

We have put w, = </k/m , which is the angular frequency of the classical
harmonic oscillator. Equation C10 gives the ground state energy for the
quantum mechanical harmonic oscillator. Following a similar procedure
to the above, we obtain the next eigenvalue using the first-order term in

the polynomial, corresponding to odd parity, so that y (x) = aGCe_(m)ax2
and find
3
E, = Ehwo. (C11)

This shows that the first excited state is at an energy %iw, above the ground
state.

Proceeding in this fashion, we can obtain successive eigenvalues by
choosing alternating even and odd parity terms in the polynomial func-
tion. The next eigenvalue is found using the zeroth- and second-order terms
(ao +a,x*),and thisleads to E, = 3 iw,. We find that the energy eigenvalues
are given in terms of the quantum number 7 by the expression

1
E, = (n+5> hAiwy, wheren=0,1,2,3,... (C12)

The eigenfunctions are obtained using the normalization condition

f:b/(x)zdxﬂ.
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For the ground state wave function, we obtain, for example, the Gaussian
function

1/2

Yo (x)= (\/%) g (122 (C13)

This form may be readily verified using the integral for the Gaussian func-
tion given in Appendix A. Wave functions for the excited states are usually
expressed in terms of the appropriate Hermite polynomial and are given
in texts on quantum mechanics.

STATE VECTORS AND DIRAC NOTATION

The quantum state of a system is specified by a state vector, which is inde-
pendent of the basis states used to describe the system. Projections of the
state vector onto the basis states give the components of the state vector in
a particular basis or representation much like the components of classical
vector with respect to a particular set of axes. The Dirac “bra-ket” notation
provides a convenient and compact way for specifying the quantum state

of a system. In general, we specify a state vector in this notation by means
of the ket |#), where ¢ specifies the particular eigenstate for the system
considered. For the one-dimensional particle in a box case, for example,
we can specify a given state as |n) using the single quantum number ». For
three-dimensional N particles, we require 3N quantum numbers to specify
the state vector, which is written as ‘nlx,nly,nlz; Moy y 25 e AN s iy > Mz >






Appendix D: The
Legendre Transform
iIn Thermodynamics

INTRODUCTION TO THE LEGENDRE TRANSFORM

The three thermodynamic potentials H, F, and G that are introduced in
Chapter 7 can be shown to take their particular forms by making use of
the Legendre transform. For a function F(x) of a single variable x, Legendre
transforms allow us to represent the function F(x) by another function
L(s), where s is a variable given by s = dF(x)/dx, which is the slope of the
original function at a given point. The Legendre transform L(s) of F(x) is
defined by the relation

L(s) = F(x(s)) = s(x)x(s), (D1)

with x(s) the value of x for which the slope s is obtained. This unusual
form can be understood by making use of the geometrical representation
shown in Figure D1 in which s(x) is the slope of the tangent to the curve at
a point x(s) and L(s) is the intercept for this tangent.

Legendre transforms are applied to functions which are convex (with
0°F/dx* > 0) for which the slope increases with increase in x. Note that the
Legendre transform may be defined with a change in sign for mathemati-
cal reasons and the definition given above is chosen for our applications
in thermodynamics. Before considering the thermodynamic potentials,
we examine the Legendre transform for a function of two variables. The
procedure can of course be extended to any number of variables, but two
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FIGURE D1 Graphical illustration of the Legendre transform of a function F(x)
of a single variable x. The relationship L(s) = F(x(s)) — s(x)x(s), which is given in
the text, is readily established from this plot. The set of slopes s and intercepts L(s)
specifies the function completely.

variables are often sufficient for our purposes. Consider a function F(x, y)
of the variables x and y. The function can be represented as a surface in a
three-dimensional plot. If one of the variables is held fixed, the situation is
similar to that discussed above and as depicted in Figure D1. More gener-
ally, the function can be represented as the envelope of the set of tangent
planes to the surface. For a given point (x, y), we have the slopes s, = dF/dx
and s, = dF/dy, and it follows that

L(sysy) = F(x,y) = sxx =5, y. (D2)

THE LEGENDRE TRANSFORM AND
THERMODYNAMIC POTENTIALS

In applying the Legendre transformation to thermodynamic relationships

for a fluid system, we choose as our function the internal energy E(S, V)
expressed in terms of the entropy S and the volume V. As discussed in
Section 3.12, this choice corresponds to the energy representation for a
system with a fixed number of particles N. If § is kept fixed, then we obtain
the partial Legendre transform as
L=E—(6E) V=E+PV=H. (D3)
oV /g

The identity P=—-(dE/dV)s follows from the fundamental relation
(Equation 3.18) TdS = dE + PdV, and we have made use of the definition
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of the enthalpy given in Section 7.1. We see that H is simply the partial
Legendre transform of E with S kept constant. In Equation D3, the extensive
state function S, which is in general not readily controlled, has been replaced
by the intensive variable P which is readily controlled as an independent
variable.

The Helmbholtz potential F=E-TS as defined in Equation 7.2 is
obtained as the partial Legendre transform of E with V held constant. We
find in this case

F=E-(8E) S=E-TS. (D4)
as ),

Processes in which E can change at constant V correspond to the canon-
ical ensemble case in statistical physics as introduced in Chapter 10. The
bridge relation between F and the partition function Z can be seen to fol-
low in a natural way.

The Gibbs potential G defined in Equation 7.3 is the complete Legendre
transform of E corresponding to both S and V being allowed to change

G=E-(8E) s-(aE) V =E-TS+PV. (D5)
as),” \av),

The three thermodynamic potentials given above are of great importance
in the development of thermal physics as discussed in Chapters 3, 7 and
elsewhere in the book.

Finally, to obtain the grand potential Q; = -PV, that is used in
Chapter 11 in connection with the grand canonical distribution, we allow
the internal energy E to be a function not only of S and V and but in
addition of particle number N so that E = E(S,V, N). The grand canon-
ical ensemble corresponds to a set of systems each in thermal and diftu-
sive contact with a reservoir at temperature T and with chemical potential
p. We therefore allow S and N to vary but keep V fixed. In this case the
Legendre transform of E is given by

JE

Q. =E-
¢ (as

) s-(aE) N =E-TS-mN. (D6)
V,N aN V,S

From the expressions for F and G it follows that Q; =F-G=-PV as
shown in Chapter 11.
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