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Preface 

This edition incorporates recent ‘A’ level syllabus 

revisions; it meets the requirements of Boards who 

examine the topics covered, as core material or as 

options. 

Changes have been made throughout the text, and 

two new chapters added. The first, chapter 1, deals with 

Materials and their uses (especially in structures such 

as bridges) and provides a practically orientated intro- 

duction to chapters 2 and 3 on the structure and mecha- 

nical properties of materials. The second new chapter 10, 

is concerned with Energy and its uses, a topic of con- 

siderable current and future importance, and discusses 

sources of energy (finite and renewable), energy conver- 

sion, energy consumption and losses, and pollution. 

As in the previous edition, the treatment permits 

considerable flexibility in the order in which the chapters 

are followed. On the assumption that the book will be 

used selectively, certain topics (e.g. aspects of geometri- 

cal optics, surface tension) which are no longer exam- 

ined at this level by most Boards, are retained for those 

students who require them. 

The influence of the Nuffield Advanced Physics 

Course will be evident and is again acknowledged. 

It has been ensured for this printing that full account 

is taken of the Hong Kong Advanced Level Physics 

1992/93 syllabus. Questions taken from _ the 
H.K.A.L.E. 1986-1991 appear at ends of chapters and 

in the banks of objective-type revision questions. 

This book and its companion, Volume II: Fields, 

Waves and Atoms, offer a complete ‘A’ level course. 

The two volumes are also available in a combined 

edition, Physics: A Textbook for Advanced Level Stu- 

dents (currently in its second edition). 
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4 Materials and their uses 

Mankind’s use of materials 
Materials in tension and compression 
Metals and alloys 
Timber 

Stone, bricks and concrete 

Polymers 
Other materials 
Beams 
Bridges 
Some other structures 

Mankind’s use of materials 

It has been said that a scientific discovery is incomplete 

and immature until the technologist has found a prac- 

tical application for it and improved mankind’s lot. One 

of the essential requirements for any technological 

advance is the availability of the right materials. The 

importance of this is shown by the use of names such 

as Stone Age, Bronze Age and Iron Age for successive 

cultures in ancient times. 

(a) Stone Age. In this period, dating from the earliest 

times recorded up to about 2500 Bc, tools and weapons 

were made of stone. Clay was fired to make pottery, 

while the weaving of plant and animal fibres provided 

cloth, fishing nets and baskets. 

When agriculture was developed, the settled exis- 
tence required for tending crops and animals all the 
year round encouraged the building of permanent 

houses of wood and stone. Villages and towns grew up, 

requiring roads, drains, bridges and aqueducts. The 

resulting wealth of some communities led to envy among 

others and the need for town dwellers to construct forti- 

fications for protection and to develop weapons tech- 

nology. 

(b) Bronze Age. This era began with the discovery 

around 2500 Bc in eastern Europe that copper became 

harder and tougher when alloyed with tin to make 

bronze. The consequent advances in technology were, 
however, small compared with those of the Iron Age. 

(c) Iron Age. Although iron farm implements were 

used in China for centuries before, it was not until about 

1000 Bc or so that iron came into widespread use in other 
countries. Iron is one of the commonest metals in the 

earth’s crust. It is extracted from its ore (iron-bearing 

rock) by smelting. 
More recently, in the nineteenth century, steel (an 

iron alloy) became the dominant material for making 

tools, utensils, machinery, bridges, ships, weapons, cars 

and many other items. 

(d) Modern era. The twentieth century has seen the 
arrival of plastics (p. 5) and composite materials (p. 
36) which have opened up a whole range of possibilities. 

Materials in tension and compression 

Different materials are used for different jobs, the 

choice depending, among other things, on the properties 

of the material. There are good reasons why concrete 

is used for constructing large buildings, wood for furni- 

ture, glass for windows, aluminium for saucepans, plas- 

tics for washing-up bowls, cotton and nylon for clothes, 

and rubber for elastic bands. 

We shall be concerned in particular with the use of 
materials in structures such as buildings and bridges, 
and in these cases it is their mechanical properties that 
are important. For example, it is essential to know how 

they behave under tension and compression. Stretching 

a material puts it in tension, Fig. 1.la, while squeezing 

it puts it in compression, Fig. 1.1b. A material which 
is strong in tension can be weak in compression, and 
vice versa. 

Bar of material 

pie 

=} - 
(b) Pushes cause 

compression 
(a) Pulls cause tension 

Fig. 1.1 

The properties of some common types of material 

will now be considered. The mechanical properties are 

discussed in detail in chapter 3. 

Metals and alloys 

(a) Iron and steel. Pure iron is seldom used; it is 

usually alloyed with other substances to form steel. Mild 

steel is iron containing a very small proportion of carbon. 

3 
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It is strong in both tension and compression and, being 

cheap, is used in large quantities for mass-produced 
goods like cars, cookers and refrigerators. In the con- 

struction industry scaffolding, girders, bridges, power 

pylons and the reinforcing for concrete are made of it. 

Two disadvantages of mild steel are first that it is 
a heavy metal and second that it rusts. To counter rust- 

ing, an alternative to painting is to coat it with another 

metal which resists corrosion, such as tin, forming tin- 

plate. Galvanized steel is covered by a thin layer of zinc; 

corrugated sheets of this are used as roofing for sheds. 

Chromium-plated steel is protected chiefly by a layer 

of nickel, on top of which a very thin layer of chromium 

(a hard, shiny metal) is added by electroplating. 
Stainless steel contains large proportions of chromium 

and nickel. It is more expensive and difficult to work 
than mild steel but it is much stronger and harder and 

very resistant to corrosion. 
Titanium steel has a very high melting-point and is 

used to make parts of jet engines, rockets, supersonic 

aircraft and space-shuttle nose-cones. 

(b) Aluminium and duralumin. Aluminium is the 

most widely used metal after iron but is much more 

expensive to extract from its ore (bauxite). Its density 
is one-third that of iron and the thin, tough layer of 

oxide which forms on the surface when exposed to the 

air makes it very resistant to atmospheric corrosion. 

The pure metal tends to be weak and brittle. 

Duralumin is made by alloying aluminium with small 

amounts of copper, manganese and magnesium. The 

tensile strength is then as great as that of mild steel 

and this, combined with its low density, makes it highly 

suitable for aircraft bodies. 

Timber 

There are two main types of wood. Softwoods like pine, 

besides being soft, are usually light in both weight and 

colour. They are used for general carpentry to make 

doors, window frames, floors and roof trusses in house- 

building. Hardwoods like oak and teak are stiff (see 

p. 27) and strong and are suitable for making furniture. 
A tree grows from the centre outwards, a ring of wood 

being produced in the trunk each year, Fig. 1.2a. These 
annual rings are the grain marks that are seen when 

the trunk is cut into long planks, Fig. 1.2b. In hardwoods 
these marks are closer than in softwoods, which explains 

why the former are stiffer and stronger. In tension, the 

strength along the grain is greater than across it because 

wood consists of long tube-like fibres running up and 

down the tree trunk. Wood is less strong in compression. 

Plank of wood 

New wood contains a great deal of moisture, most 

of which must be removed by seasoning before it is used. 

This is generally done naturally by stacking the freshly 

cut planks with spacers between, to allow air to circulate 

and dry them out slowly. The operation may take any- 

thing from a few weeks to several years. If a piece of 

wood is not properly seasoned it will gain or lose water 

unevenly when it is very damp or very dry. Gain of 

water produces expansion, loss of water causes shrink- 

ing and the result is warping. 

(a) Plywood. Thin sheets of wood need less time to 

season than thick planks. Plywood is made by glueing 

thin, seasoned sheets together with the grains of alter- 

nate sheets at right angles to each other, Fig. 1.34. An 

odd number of sheets is always used (to give, for exam- 

ple, 3-ply or 5-ply) so that if a crack passes between 

the grains of one sheet it meets the next sheet across 

the grain, Fig. 1.3b, and does not spread. For this rea- 

son, plywood is stronger than a piece of solid wood 

of the same thickness. Since it consists of sheets it is 
called a laminate. 

(a) (b) 

(b) Blockboard is a sandwich made by filling the 
space between two thin sheets of wood with strips of 
solid wood, as in Fig. 1.4. The grain on the outside 
sheets goes the same way. Like plywood, blockboard 
should not warp and can be fixed down firmly (e.g. as 
a worktop) with no fear of it moving. 



Thin sheet 

ae of wood 

Solid wood 
strip 

Thin sheet 

of wood 

Fig. 1.4 

(c) Chipboard is made from wood particles and resin, 

Fig. 1.5a. It can be sawn like wood and, being reason- 

ably strong though heavier than solid wood, it can be 

used as floor boards or in other situations where appear- 
ance does not matter. 

Veneer 

(a) Wood particles (b) 
and resin 

Fig. 1.5 

For making furniture, shelves, etc., it is sold with 

a thin, more attractive sheet (a veneer) already on one 

or both surfaces, Fig. 1.5b. Veneers of white plastic, 
of plastic with wood grain or colour effects, or of wood 

itself are used. 

Stone, bricks and concrete 

A variety of materials is used to construct houses, build- 

ings, bridges, roads and dams. Cost, climate and availa- 

bility are often factors that have to be considered when 

deciding which to use. 

(a) Stone. Deposits of stone are found in many parts 

of the world. They occur as granite which is hard and 

long-lasting, marble which is hard and attractive but 
does not last as long, and sandstone which is soft, easy 

to work and fairly long-lasting. 

Stone is strong in compression but weak in tension. 

In cities where there is atmospheric pollution, stone 

buildings need cleaning periodically if they are to retain 

their appearance. 

(b) Bricks are a cheap alternative to stone and have 
a convenient size. They are made by mixing clay with 

water and are then moulded into shape before being 

baked in ovens at a high temperature. The colour and 
hardness of the brick produced depends on the clay used 
and the baking temperature. Bricks, like stone, are 

weak in tension and strong in compression. 

MATERIALS AND THEIR USES 5 

(c) Cement and mortar. Cement is a cream-coloured 

powder, made by heating a mixture of clay and lime 

to a high temperature. If mixed with sand and water, 
cement becomes a thick paste called mortar. Mortar 
is used to hold bricks or stones together since it becomes 
a hard, stone-like material when it dries. 

(d) Concrete is now used more than any other mater- 
ial for building and construction work. It is made by 

mixing cement, sand and gravel (called ‘aggregate’) with 
water. A typical mix is 1 part cement, 2 parts sand and 

4 parts aggregate, but this is varied for different pur- 

poses. If allowed to dry in a mould, any shape can be 

obtained and it sets as a hard, white stone. 

Concrete weathers well and is strong in compression 

but weak in tension due to the large number of small 

cracks it inevitably contains. As a result, it is brittle 

and unsuitable when large tensile strength is required. 

In reinforced concrete the strength of concrete in ten- 

sion is improved by inserting wires or rods of steel 

through the wet concrete, Fig. 1.6. As the concrete dries 

it sticks to the steel, giving a combination which is strong 
in both compression and tension. 

Reinforcing 

steel rod 

Concrete 

Fig. 1.6 

In prestressed concrete even greater tensile strength 

is obtained, as explained in chapter 3 (p. 35). In light- 
weight concrete cinders are used as the aggregate. 

Polymers 

The properties of some of the commoner man-made 

polymers are outlined here; (a) to (f) are thermoplastics, 

(g) and (h) are thermosets (see chapter 2, pp. 24-5, 
where the molecular structure of polymers is discussed). 

The mechanical properties of rubber, a natural polymer, 
are considered in detail in chapter 3 (p. 41). 

(a) Polythene is tough (i.e. not brittle) but flexible, 

and resistant to water and most solvents. It can be rolled 

into thin sheets and moulded into complicated shapes. 
It is a very good electrical insulator. 

(b) Polystyrene is more brittle than some plastics but 
its stiffness is taken advantage of for making small con- 

tainers and toys. Expanded polystyrene is a solid foam 

containing a large number of air bubbles. Its very low 
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density and ease of moulding to almost any shape make 

it a good packaging material. It is also a good heat insula- 

tor. 

(c) PVC (polyvinyl chloride) is strong, tough, flexible 

and waterproof, which makes it suitable for protective 

sheeting and floor coverings. Being a good electrical 

insulator it is used to cover electric cables. 

(d) Perspex is stiff and transparent but not so hard 

and brittle as glass for which it is sometimes used as 
a substitute. It is easily cut and drilled, but scratches. 

(e) PTFE (polytetrafluorethylene) or Teflon has a 

much higher melting-point than most plastics and also 

has ‘non-stick’ properties. These make it useful for coat- 

ing the insides of saucepans and other cooking con- 
tainers and for making bearings that do not need 

lubricating. 

(f) Nylon fibres are used to make strong ropes and 
hard-wearing fabrics. Being water-resistant, clothing 

made from it dries quickly and requires no ironing. 
However, nylon shirts and blouses often feel damp to 

wear in hot weather because they do not absorb sweat. 

Terylene is another fibre used in the textile industry. 

(g) Bakelite is hard and brittle, but is much streng- 

thened by the addition of, for example, sawdust. Its 

cheapness, low density and resistance to corrosion have 

made it popular for electrical fittings. 

(h) Formica and melamine are two other thermosets 

with hard, smooth surfaces which make them suitable 

veneers for table tops and other surfaces. 

Other materials 

(a) Fibre-reinforced materials. The properties of 

composite materials using fibres of glass or carbon in 

a plastic resin (GRP and CFRP) will be considered in 

chapter 3 (pp. 36-9). 

(b) Laminated glass, often called ‘bullet-proof’ glass, 

is even stronger than toughened (prestressed) glass (p. 
35). It is made by fixing together layers of toughened 

glass with a transparent adhesive. More layers give 

greater strength. It is used for aircraft as well as car 

windscreens. If a crack gets through one layer of glass, 

it gets ‘blunted’ on meeting a layer of adhesive and is 

unable to penetrate the next layer, Fig. 1.7a. So when 

struck, it cracks but does not break into lots of small 

fragments; Fig. 1.7b shows the effect. 

(c) Ceramics are made by mixing clay, fine sand and 

water into a paste which is shaped as required and fired 

at a high temperature. Very fine clay (e.g. china clay 

or kaolin) when fired at a sufficiently high temperature 

forms porcelain. Ordinary clay is unable to withstand 

such high temperatures and is used to make earthenware 

or pottery. Porcelain is usually ‘glazed’ by adding a layer 
of glass. 

Crack ‘blunted’ 
| 

| 
Glass V 

Adhesive == at NS a aia 

Glass 

(a) 

Fig. 1.7 



Beams 

Beams or ‘girders’ form parts of larger structures such 
as bridges. 

(a) Simple beams. You can see what happens when 
a beam is loaded by drawing lines on a piece of foam 
rubber, Fig. 1.8a, and then pushing down on its top 
surface. The lines at the top become shorter while those 
at the bottom become longer. The length of the central 
line is unchanged, Fig. 1.85. Therefore, when a beam 
is loaded and bends, 

the top is in compression (squeezed), 
the bottom is in tension (stretched), and 

the centre, called the neutral layer, is neither squeezed 
nor Stretched. 

iv 
ia Compression 

Neutral 

— A 

Foam rubber Tension 

(a) 

Fig. 1.8 

In a solid beam, most of the material in the central 

region (the neutral layer) is not needed. It is wasted 

material whose weight simply acts as an extra load that 

has to be supported. If this material is removed, the 
much used I-beam is obtained, Fig. 1.9, which is as 

strong as a solid beam but much lighter. The top and 

bottom flanges withstand the compression and tension 

forces produced when the beam is loaded. Other com- 

mon types of girder are L- and T-shaped. 

L-beam Circular 

tube 
I-beam T-beam 

Fig. 1.9 

Tubes use the same idea, the removal of unstressed 

material giving similar advantages. Circular tubes are 

most common, being equally strong in all directions at 

right angles to the surface. 

MATERIALS. AND THEIR USES 7 

(b) Lrussed beams. A simple beam can be streng- 
thened if a truss is joined to it as in Fig. 1.10. If, for 
example, the structure is a bridge, the weight of a car 

on it makes CBD bend down. AB moves down too, 

but AC and AD hold it back so CBD does not bend 

so much. Loading the trussed beam therefore tends to 
stretch AB and puts it under tension. A beam in tension 

is called a tie. 

Struts (in compression) 

Fig. 1.10 

On the other hand, AC and AD are under compres- 

sion and are called struts. They are put in this state 

by AB pushing down on them at A and by the bridge 

supports pushing up on them at C and D. The latter 

forces arise because the truss transfers the load to the 

supports. 

Bridges 

In its simplest form a bridge consists of a beam, called 

the bridge-deck, supported at the ends, Fig. 1.11. 

Compression Bridge-deck 

Tension 

Fig. 1.11 

As we have seen, when a beam is loaded it bends 

and, since bending involves compression and tension, 

bridge-decks must be made of materials which can with- 

stand both compressive and tensile stresses. They must 

also be fire- and water-resistant. Other important factors 

are cost and the amount of maintenance required. 

Early bridges were built of stone, then came steel, 
and today reinforced, prestressed and lightweight con- 

crete are most common. Where steel and concrete or 

stone are used, the design is often such that steel bars 

are in parts under tension, while the stone or concrete 

is arranged to experience compression. Cables (of steel) 
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are only used for parts in tension. If steel is to be under 
compression it is usually in the form of I- or T-shaped 

girders. There are many different types of bridge. 

(a) Beam and pier. As well as having supports at both 
ends, this type has one or more pillars or piers in the 

middle, Fig. 1.12. The piers stop the bridge-deck from 

bending too much and make the bridge much stronger. 

Opin O == OS ORD. 

Bridge-deck 

Pier in 
compression 

Fig. 1.12 

A load on the bridge puts the piers under compression 

but, being made of stone, brick or concrete, they can 

withstand this. 

(b) Arch. In an arch bridge the bridge-deck is sup- 
ported by an arch either from above, as in Fig. 1.13a, 

Arch in compression 

Bridge-deck 

(a) 

Bridge-deck 

Arch 4 

compression 

(b) 

Stone arch in 
compression 

or from below as in Fig. 1.136. The arch may be of 

reinforced concrete or of steel girders. 
A load on the bridge-deck causes slight compression 

of the arch, whether it is above or below the deck. The 

material of the arch should therefore be strong in com- 

pression. Stone or brick bridges often have arches below 

the bridge-deck, Fig. 1.13c. 

(c) Suspension. Most of the world’s largest bridges 
use this construction, Fig. 1.14. They are in effect beams 
supported by steel cables, all of which are in tension. 

The main cables hang from tall towers (pylons) at each 

end, which must be built on rocks that can withstand 

the large downward forces exerted by the towers. 

Pylon Steel cables in 

Fig. 1.14 

The Forth road bridge in Scotland, Fig. 1.16, is of 
this type. 

(d) Cantilever. A cantilever is a beam which is sup- 
ported only at one end, Fig. 1.15. The top is in tension 
while the bottom is in compression. 

Tension Load 

Cantilever Compression 

Fig. 1.15 

The Forth railway bridge, built in 1890, part of which 

is visible in the background of Fig. 1.16, uses the canti- 
lever principle. 

(e) Girder. Larger bridges made from steel girders 

are of several types. They are designed so that there 

is no material in the neutral layer. The top of the bridge 

is under compression and the bottom is in tension. Fig. 

1.17a shows a truss girder bridge and Fig. 1.17b a lattice 

girder type. Fig. 1.17c shows how a modern box girder 
bridge is built from steel boxes. 
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Fig. 1.16 

-Compression ~ Some other structures 

(a) Roof truss of a house. The walls of a house with 

a tiled or slated roof would be pushed outwards, Fig. 

1.18a, if the roof were not supported by a truss and 

tie beam, Fig. 1.185. The walls are in compression, the 

‘Tension tie beam is in tension. 

_Tiled roof ~ 
/ SS 

ee 
Fig. 1.17 (c Fig. 1.18 

oe Truss 

Tie beam 

(b) 
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(b) Balconies. The floor of a flat and its adjoining 

balcony are shown in Fig. 1.19. The prestressed concrete 
beam supports both. The steel reinforcing bar is at the 

bottom of the beam in the floor of the flat, because 

it is in tension (like a bridge-deck). However, the rein- 

forcing steel bar is in the top of the beam forming the 

balcony because it is a cantilever and is in tension at 

the top. 

Floor of flat = Balcony 

2 Steel rod 8 Steel rod 

Fig. 1.19 

QUESTIONS 

1. (a) A metal is softened or annealed if it is heated to a dull 

red heat and cooled slowly. If after heating it is plunged into 

cold water instead, it is hardened or tempered and becomes 

brittle. Which of the following articles have been (i) annealed, 
(ii) tempered: a paper clip, a needle, a knife blade, a pin, 
a file? 

(b) Why does wood split more easily along the grain than 
across it? 

(c) List some of the advantages of concrete over stone. 

(d) Why are fabrics used for clothing often combinations 

of plastics like Terylene and natural fibres such as cotton? 

(e) Why do cracks not spread so readily through laminated 

glass? 

2. (a) Which of AB, AC and AD in Fig. 1.10 (p. 7) could 

be replaced by a cable? 

(b) A beam can also be strengthened by a truss underneath 

it, as in Fig. 1.20. Which of AB, AC and AD are in (i) tension, 

i.e. ties, (ii) compression, i.e. struts? 

al 
Fig. 1.20 

3. (a) What are (i) the advantages, (ii) the disadvantages, of 

wood as a material for building a bridge? 

(b) Why do reinforced concrete bridge-decks have steel rods 

at the bottom, Fig. 1.21? 

Concrete 

Fig. 1.21 

4. (a) Why does a dome not fall down? 

(b) What property of stone did some cathedral builders 
employ when they used flying buttresses to prevent the roof 

pushing the top of the walls outwards? 

5. The crane in Fig. 1.22 is mounted on a wall and supports 

a load. 

(a) Is ABatie or a strut? 
(b) Is BCa tie or a strut? 

Fig. 1.22 

6. In the girder bridge shown in Fig. 1.23 which girders are 
(a) ties, (b) struts? 

Fig. 1.23 
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Materials science 

Advances in technology depend increasingly on the 

development of better materials. This is especially true 

of those industries engaged in aircraft production, space 

projects, telecommunications, computer manufacture 
and nuclear power engineering. Structural materials are 

required to be stronger, stiffer and lighter than existing 

ones. In some cases they may have to withstand high 

temperatures or exposure to intense radioactivity. 

Materials with very precise electrical, magnetic, ther- 

mal, optical or chemical properties are also demanded. 

A great deal has been known for many years about 

materials that are useful in everyday life and industry. 

For example, the metallurgist has long appreciated that 
alloys can be made by adding one metal to another, 

and that heating, cooling or hammering metals changes 
their mechanical behaviour. Materials technology is a 

long-established subject. The comparatively new sub- 

ject of materials science is concerned with the study of 

materials as a whole and not just with their physical, 

chemical or engineering properties. As well as asking 

how materials behave, the materials scientist also wants 

to know why they behave as they do. Why is steel strong, 

glass brittle and rubber extensible? To begin to find 
answers to such questions has required the drawing 

together of ideas from physics, chemistry, metallurgy 

and other disciplines. 
The deeper understanding of materials which we now 

have has come from realizing that the properties of 

matter in bulk depend largely on the way the atoms 

are arranged when they are close together. Progress 

has been possible because of the invention of instru- 

ments for ‘seeing’ finer and finer details. The electron 

microscope, which uses beams of electrons instead of 

beams of light as in the optical microscope, reveals struc- 

ture just above the atomic level. The field ion micro- 

scope and X-ray apparatus allow investigation at that 

level. 
The scanning electron microscope, Fig. 2.la, is a 

development from the electron microscope and ‘scans’ 

a surface with electrons in the way that a television 

screen is scanned. It gives higher magnifications and 

much greater depth of focus than optical microscopes 
using reflected light. It is useful for examining the sur- 

faces of semiconductors, the hairlike fibres and 

‘whiskers’ that are so important in the manufacture of 
the new generation of composite materials, man-made 

fibres, and corroded and fractured surfaces. A view of 

the end of a torn wire (X75) is shown in Fig. 2.1b and 
of lead-tin telluride crystals (x30) in Fig. 2.1c. 

Materials science is a rapidly advancing subject with 

exciting prospects for the future. Its importance lies in 

the help it can give with the selection of materials for 

particular applications, with the design of new materials 

and with the improvement of existing ones. The strength 
of even a tea cup has been improved by research into 
ceramics, as Fig. 2.1d shows. 

Atoms, molecules and Brownian motion 

The modern atomic theory was proposed in 1803 by 
John Dalton, an English schoolmaster. He thought of 

atoms as tiny, indivisible particles, all the atoms of a 

given element being exactly alike and different from 

those of other elements in behaviour and mass. By mak- 
ing simple assumptions he explained the gravimetric 

(i.e. by weight) laws of chemical combination but failed 

to account satisfactorily for the volume relationships 
which exist between combining gases. This required the 

introduction in 1811 by the Italian scientist, Amedeo 

Avogadro, of the molecule as the smallest particle of 

an element or compound capable of existing indepen- 

dently and consisting of two or more atoms, not neces- 

sarily identical. Thus, whilst we could only have atoms 
of elements, molecules of both elements and compounds 

were possible. 

At the end of the nineteenth century some scientists 

felt that evidence, more direct than that provided by 

11 
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ATERBOBCAN BSO, 

Fig. 2.1 

the chemist, was needed to justify the basic assumption 

that atoms and molecules exist. In 1827 the Scottish 

botanist, Robert Brown, discovered that fine pollen 

grains suspended in water were in a state of constant 

movement, describing small, irregular paths but never 

stopping. The effect, which has been observed with 

many kinds of small particles suspended in both liquids 

and gases, is called Brownian motion. It is now con- 

sidered to be due to the unequal bombardment of the 

suspended particles by the molecules of the surrounding 
medium. 

Very small particles are essential. If the particle is 



very large compared with the size of a molecule, the 

impacts, occurring on every side and irregularly, will 

cancel out and there will be no average resultant force 

on the particle. However, if the particle is small enough 

to suffer impacts with only a few hundred molecules 

at any instant, the chances of these cancelling out are 

proportionately less. It is then likely that for a short 

time most of the impacts will be in one direction; shortly 

afterwards the direction will have changed. The pheno- 

menon can be observed in smoke in a small glass cell 

which is illuminated strongly from one side and viewed 
from above with a low-power microscope, Fig. 2.2. How 

would the random motion be affected by (i) cooling 

the air to a low temperature, (ii) using smaller smoke 
particles? 

—Microscope 

Glass rod Window 

(as lens) 

cis Glass cell 

Smoke 

Fig. 2.2 

The effect, on its own, does not offer conclusive proof 

for molecules but it clearly reveals that on the micro- 

scopic scale there is great activity in matter which mac- 

roscopically (on a large scale) appears to be at rest. 

The theory of the motion was worked out by Einstein 
and found to correspond closely with observation. His 

basic assumption was that the suspended particles have 
the same mean kinetic energy as the molecules of the 

fluid and so behave just like very large molecules. Their 
motions should therefore be similar to those of the fluid 

molecules. 

The Avogadro constant: mole 

Atomic and molecular masses (previously called atomic 

and molecular weights) give the masses of atoms and 

molecules compared with the mass of another kind of 

atom. Originally the hydrogen atom was taken as the 
standard, with atomic mass 1, since it has the smallest 

mass. In 1960 it was agreed internationally, for various 

reasons, to base atomic and molecular masses on the 

STRUCTURE OF MATERIALS 13 

atom of carbon (more precisely, on the carbon-12 iso- 

tope '%C). On the carbon scale the atomic mass of car- 
bon-12 is taken as exactly 12, making that of hydrogen 

1.008 and of oxygen 16.00. Nowadays atomic masses 

are found very accurately using a mass spectrometer. 

It follows from the definition of atomic mass that any 
number of atoms of carbon will have, near enough, 12 

times the mass of the same number of atoms of hydro- 

gen. Therefore any mass of hydrogen, say 1 g, will con- 

tain the same number of atoms as 12g of carbon. In 

general, the atomic mass of any element expressed in 

grams, contains the same number of atoms as 12g of 

carbon. This number is thus, by definition, a constant. 
It is called the Avogadro constant and is denoted by 
L. Its accepted experimental value is 6.02 x 10”. 

The number of molecules in the molecular mass ‘in 

grams of a substance is also (because of the way molecu- 

lar masses are defined) the same for all substances and 
equal to the Avogadro constant. There are, therefore, 

6.02 x 1073 molecules in 2 g of hydrogen (molecular mass 
2) and in 18g of water (molecular mass 18). In fact, 
the Avogadro constant is useful when dealing with other 

particles besides atoms and molecules and a quantity 

which contains 6.02 x 10” particles is called, especially 
by chemists, a mole. We can thus have a mole of atoms, 

a mole of molecules, a mole of ions, a mole of electrons, 

etc.—all contain 6.02 x 10” particles. We must always 

have a mole of some kind of particle and so 

L =6.02 x 10” particles per mole 

It should be noted that the mole (abbreviation mol) 
is based on the gram and not the kilogram, which makes 
it an anomaly in the SI system of units. Sometimes, 

however, it is expressed in terms of the number of parti- 

cles per kilogram-mole and its value then is 6.02 x 107°. 

The Avogadro constant has been measured in various 

ways. In an early method alpha particles emitted by 
a radioactive source were counted by allowing those 

within a small known angle to strike a fluorescent screen. 

Each particle produced one scintillation on the screen 
and if it is assumed that one particle is emitted by each 
radioactive atom an approximate value for L can be 

obtained (see question 6, p. 26). Other methods give 
more reliable results—one involves X-ray crystallo- 

graphy. 

Size of a molecule 

(a) Monolayer experiments. An experimental deter- 
mination of the size of a molecule was made by Lord 

Rayleigh in 1899. He used the fact that certain organic 
substances, such as olive oil, spread out over a clean 

water surface to form very thin films. 
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Card 

Loop of wire 

Transparent 

4mm scale 
(a) 

Fig. 2.3 

A simple procedure for performing the experiment 

is to obtain a drop of olive oil by dipping the end of 

a loop of thin wire, mounted on a card, into olive oil, 

quickly withdrawing it and then estimating the diameter 

of the drop by holding it against a mm scale and viewing 

the drop and scale through a lens, Fig. 2.3a. If the drop 

is then transferred to the centre of a waxed tray over- 

brimming with water, the surface of which has been 

previously cleaned by drawing two waxed booms across 

it and then lightly dusted with lycopodium powder, Fig. 

2.3b, it spreads out into a circular film pushing the 

powder before it. Assuming the drop is spherical, the 

thickness of the film can be calculated if its diameter 

is measured. It is found to be about 2 x 10° metre, 
i.e. 2 nanometres (2 nm). 

Oil-film experiments do not necessarily prove that 

matter is particulate but from them we can infer that 

if molecules exist and if the film is one molecule thick, 

i.e. amonolayer, then in the case of olive oil one dimen- 

sion of its molecule is 2nm. 

(b) Predictions from kinetic theory of gases. Informa- 
tion about the molecular world can sometimes be 
obtained from observations of the behaviour of matter 

in bulk, i.e. from macroscopic observations. Thus with 

the help of the kinetic theory of gases, expressions can 

be derived relating such properties as rate of diffusion 

with the size of the gas molecules involved. 

(c) Using the Avogadro constant. Consider copper 

which has atomic mass 64 and density 9.0gcm7~*. One 
mole of copper atoms, therefore, has mass 64g and 
volume 64/9cm?; it contains 6.0 x 107? atoms. The 
volume available to each atom is 64/(9 x 6 x 1075) cm? 
and the radius r of a sphere having this volume is given 

by 

pieces feds x 
3 9x6~x 102 

r=0.14 x 10-’cem = 0.14 x 10°°m = 0.14nm 

Lycopodium powder 

Waxed tray 
overbrimming 
\" water 

\ 
s) 
\\ 

ENN Waxed booms 

Rubber wedge 
for levelling 

(b) 

If copper atoms are spherical, would their radius be 

larger or smaller than this even if they were packed 

tightly? Why? A more accurate way of calculating the 

size of a copper atom is indicated in questions 10 to 

13 on p. 26. 
A word of caution is necessary regarding atomic 

dimensions. Nowadays atoms and molecules are no 
longer pictured as having hard, definite surfaces like 

a ball and there is, therefore, little point in trying to 

give their diameters too exact values; most are within 

the range 0.1 to 0.5nm. Also, although we shall usually 

treat atoms and molecules as spheres, it is necessary 

on occasion to consider them as having other shapes. 

Periodic Table 

With the passage of time the early nineteenth-century 
picture of an indivisible atom came to be doubted in 

the light of fresh information. During the 1860s chemical 
knowledge increased sufficiently for it to be clear that 

there were elements with similar chemical properties. 

Moreover, atomic masses were being established with 

greater certainty and attempts were made to relate 

properties and atomic masses. 

It was found that if the elements were arranged in 

order of increasing atomic masses then, at certain 

repeating intervals, elements occurred with similar 

chemical properties. Sometimes it was necessary to 

place an element of larger atomic mass before one of 
slightly smaller atomic mass to preserve the pattern. 

The first eighteen elements of this arrangement, called 

the Periodic Table, are shown in Table 2.1. The third 

and eleventh (3 + 8) elements are the alkali metals lith- 

ium and sodium; the ninth and seventeenth (9 + 8) are 
the halogens fluorine and chlorine—here the repeating 

interval is eight. The serial number of an element in 
the table is called its atomic number. 

The Periodic Table suggests that the atoms of the 
elements may not be simple entities but are somehow 
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Table 2.1 

3 

Beryllium 
11 12 

Sodium Magnesium 

related. There must be similarities between the atoms 

of similar elements and it would seem that the similarity 
might be due to the way they are built up. 

We now believe that atoms are composed of three 
types of particle—protons, neutrons and electrons. 

(Many other subatomic particles, such as positrons, 

mesons and antiprotons, are known but most are short- 

lived and are not primary components.) Protons and 

neutrons are packed together into a very small nucleus 

which is surrounded by a cloud of electrons, the dia- 

meter of the atom as a whole being at least 10000 times 

greater than that of the nucleus. The comparative 

masses and charges of the three basic particles are given 

in Table 2.2. The nucleus is positively charged and the 

electron cloud negatively charged but the number of 

protons equals the number of electrons so that the atom 
is electrically neutral. 

The number of protons in the nucleus of an atom 

has been found to be the same as its atomic number 
which therefore means that each element in the Periodic 
Table has one more proton and one more electron in 

its atom than the previous element. Hydrogen, the first 

element, has one proton and one electron. Helium, the 

second element, has two protons and two electrons. 
Lithium, with atomic number three, has three protons 

and three electrons. Neutrons are present in all nuclei 

except that of hydrogen. 

14 
Aluminium 

Table 2.2 

Mas 

e = electronic charge 

Interatomic bonds 

Materials consist of atoms held together by the attractive 

forces they exert on each other. These forces are electri- 
cal in nature and create interatomic bonds of various 

Group Group Group Group Group Group Group Group 
1 Ps al 4 5 6 ie 0 

1 2 
Hydrogen Helium 

4 6 if 8 
i Carbon Nitrogen Oxygen 

16 
Silicon 

10 
Neon 

1 18 
Chlorine Argon 

types. The type formed in any case depends on the outer 
electrons in the electron clouds of the atoms involved. 

Phosphorus Sulphur 

(a) Ionic bond. This is formed between the atoms 
of elements at opposite sides of the Periodic Table, for 
example between sodium (Group 1) and chlorine 
(Group 7) when they are brought together to form com- 
mon salt. A sodium atom has a loosely held outer elec- 

tron which is readily accepted by a chlorine atom. The 

sodium atom becomes a positive ion, i.e. an atom defi- 

cient of an electron, and the chlorine atom becomes 

a negative ion, i.e. an atom with a surplus electron. 
The two ions are then bonded by the electrostatic attrac- 

tion between their unlike charges. 

A sodium ion attracts all neighbouring chloride ions 

in other pairs of bonded ions and vice versa. Each ion 

becomes surrounded by ions of opposite sign and the 

resulting structure depends among other things on the 

relative sizes of the two kinds of ion. 

The ionic bond is strong. Ionic compounds are usually 

solid at room temperature and have high melting-points. 

They are good electrical insulators in the solid state since 

the electrons are nearly all firmly bound to particular 
ions and few are available for conduction. 

(b) Covalent bond. In ionic bonding electron transfer 
occurs from one atom to another. In covalent bonding 

electron sharing occurs between two or more atoms. 

Thus the atoms of carbon can form covalent bonds with 

other carbon atoms. Each carbon atom has four outer 

electrons, Fig. 2.4a, and all can be shared with four 

other carbon atoms to make four bonds, Fig. 2.4b, each 

consisting of two interlocking electron clouds. 

Carbon atom 

¢ Outer electron 

(a) (b) 

Fig. 2.4 
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Covalent bonds are also strong and many covalent 

compounds have similar mechanical properties to ionic 

compounds. However, unlike the latter, they do not 

conduct electricity when molten. 

(c) Metallic bond. Metal atoms have one or two outer 
electrons that are in general loosely held and are readily 

lost. In a metal we picture many free electrons drifting 

around randomly, not attached to any particular atom 

as they are in covalent bonding. All atoms share all 

the free electrons. The atoms thus exist as positive ions 

in a ‘sea’ of free electrons, Fig. 2.5; the strong attraction 

between the ions and electrons constitutes the metallic 

bond. 

Electron sea 

Positive metal ion 

(nucleus plus inne 
electrons) 

¢ Electron 

Fig. 2.5 

The nature of the metallic bond has a profound 

influence on the various properties of metals, as we shall 

see later. 

(d) Van der Waals bond. Van der Waals forces are 

very weak and are present in all atoms and molecules. 
They arise because, although the centres of negative 

and positive charges in an atom coincide over a period 

of time, they do not coincide at any instant—for reasons 

too advanced to be considered here. There is a little 

more of the electron cloud on one side of the nucleus 

than the other. A weak electric ‘dipole’ is produced 
giving rise to an attractive force between opposite ends 

of such dipoles in neighbouring atoms. 

The condensation and solidification at low tempera- 

tures of oxygen, hydrogen and other gases is caused 

by van der Waals forces binding their molecules 
together. (In the molecules of such gases the atoms are 

held together covalently.) Van der Waals forces are also 

important when considering polymers (p. 25). 

Two further points: first, sometimes more than one 

of the previous four types of bonding is involved in a 
given case; second, information about the strength of 

interatomic bonds in solids is obtained from heat of sub- 
limation measurements in which solid is converted 

directly to vapour and all atoms separated from their 

neighbours (see question 8, p. 26) and for liquids latent 
heat of vaporization measurements provide the informa- 

tion (see p. 81). 

States of matter 

The existence of three states or phases of matter is due 

to a struggle between interatomic (intermolecular) 

forces and the motion which atoms (molecules) have 

because of their internal energy (see p. 76). 

(a) Solids. In the above discussion of the four types 

of interatomic force only attractions were considered 

but there must also be interatomic repulsions, otherwise 

matter would collapse. Evidence, both theoretical and 

experimental, suggests that at distances greater than one 

atomic diameter the attractive force exceeds the repul- 

sive one, whilst for small distances, i.e. less than one 

atomic diameter, the reverse is true. In Fig. 2.6a the 
dotted graphs show how the short-range attractive force 
and the very short-range repulsive force between two 

atoms vary with the separation of the atoms; the total 

or resultant force is shown by the continuous graph. 

It can be seen that for one value of the separation, 

ro, the resultant interatomic force is zero. This is the 

situation that normally exists in a solid, but if the atoms 

come closer together—for example, when the solid is 
compressed—they repel each other; they attract when 

they are pulled farther apart. We have only considered 

two atoms whereas in a solid each atom has interactions 
with many of its close neighbours. The conclusion about 

the existence of an equilibrium separation, however, 
will still hold good. 

In an ionic bond the short-range attractive part of 

the interatomic force arises from the attraction between 

positive and negative ions which pulls them together 

until their electron clouds start to overlap, thus creating 
a very short-range repulsive force. The attractive and 

repulsive forces in the other types of bond also arise 

from the electric charges in atoms. 

Now consider the motion of the atoms, the other con- 

testant. In a solid the atoms vibrate about their equili- 
brium positions, alternately attracting and repelling one 

another, but the interatomic forces have the upper hand. 

The atoms are more or less locked in position and so 

solids have shape and appreciable stiffness. 

The corresponding potential energy-separation curve 

for two atoms (or molecules) is shown in Fig. 2.6b. At 

the equilibrium separation ry when the resultant force 

is zero, the p.e. must have its minimum value Ep. This 

is so because any attempt to change the separation 

involves overcoming an opposing force—an attractive 

one if the separation increases and a repulsive one if 

it decreases. Ep is called the bonding energy; it is the 

energy needed to pull the atoms apart so that their p.e. 

increases to zero. They are then quite free from one 
another’s influence. 
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Fig. 2.6 

Bonding energy will be considered later in connection 
with latent heat (p. 81) and surface energy (p. 230). 

(b) Liquids. As the temperature is increased the 

atoms have larger amplitudes of vibration and even- 

tually they are able partly to overcome the interatomic 

forces of their immediate neighbours. For short spells 

they are within range of the forces exerted by other 

atoms not quite so near. There is less order and the 

solid melts. The atoms or molecules of a liquid are not 

much farther apart than in a solid but they have greater 

speeds, due to the increased temperature, and move 

randomly in the liquid while continuing to vibrate. The 

difference between solids and liquids involves a differ- 

ence of structure rather than a difference of distance 

between atoms or molecules. 

Although the forces between the molecules in a liquid 
do not enable it to have a definite shape, they must 

still exist otherwise the liquid would not hold together 
or exhibit surface tension (i.e. behave as if it had a 

skin on its surface) and viscosity, nor would it have latent 

heat of vaporization. 

(c) Gases. Ina gas or vapour the atoms and molecules 

move randomly with high speeds through all the space 

available and are now comparatively far apart. On aver- 

age their spacing at s.t.p. is about 10 molecular dia- 

meters and their mean free path (i.e. the distance 

travelled between collisions) is roughly 300 molecular 

diameters. Molecular interaction only occurs for those 

brief spells when molecules collide and large repulsive 

forces operate between them. 

Conditions in gases and solids are, by comparison, 

simpler than those in liquids and in general their beha- 

viour is better understood. 
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Types of solid 

There are two main types of solid. 

(a) Crystalline. Most solids, including all metals and 
many minerals, are crystalline. In substances such as 

sugar the crystal form is evident but less so in the case 

of metals, although large crystals of zinc are often visible 

on a freshly galvanized iron surface. 

The crystalline structure of a metal can be revealed 

by polishing the surface, treating it with an etching 

chemical, sometimes a dilute acid, and then viewing 

it under an optical microscope. The metal is seen to 

consist of a mass of tiny crystals, called ‘grains’, at var- 

ious angles to one another; it is said to be polycrystalline. 
Grain sizes are generally small, often about 0.25mm 

across. Fig. 2.7 shows crystal grains in a cross-section 

of an aluminium-—copper casting. The grains show up 
on the surface after etching because ‘steps’ are formed 

on each grain due to the rate of chemical action differing 

with different grain orientations. Light is then reflected 

in various directions by the different grains so that some 
appear light and others dark, Fig. 2.8. 

Grain boundaries are revealed at the atomic level by 

the field ion microscope, Fig. 2.9, which uses beams 

of helium ions to ‘illuminate’ the object rather than elec- 

trons or light. The field ion micrograph in Fig. 2.10 

shows the tip of an iridium needle, viewed from the 

point and magnified 2500000 times. Each bright spot 

represents an iridium atom and the abrupt pattern 

change is clearly visible at the grain boundary. 

The essence of the structure of a crystal, whether it 

be a large single crystal or a tiny grain in a polycrystalline 

specimen, is that the arrangement of atoms, ions or 

molecules repeats itself regularly many times, i.e. there 

is a long-range order. 
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(b) Amorphous or glassy. Here the particles are 

assembled in a more disordered way and only show 

order over short distances; there is no long-range order. 

The structure of an amorphous solid has been likened 

to that of an instantaneous photograph of a liquid. It 

is much more difficult to unravel but is the subject of 

considerable research. The many types of glass are the 

commonest of the amorphous solids; we can think of 

them as having a structure of groups of atoms (e.g. of 

silicon and oxygen) that would have been crystalline 

had it not been distorted. 

Crystal structures 

The structure adopted by a crystalline solid depends 

on various factors including the kind of bond(s) formed 

and the size and shape of the particles involved. For 

example, in metals where all the positive ions attract 

all electrons (p. 16), the bonding pulls equally in all 

directions, i.e. is non-directional, and every ion tends 

to surround itself by as many other ions as is geometri- 

cally possible. A close-packed structure results. On the 

other hand, in covalent solids the bonding is directional, 

i.e. every shared electron is localized between only two 
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atoms. This does not encourage close-packing since the 

number of atoms immediately surrounding each atom 

is limited to the number of covalent bonds it forms. 

Would you describe the ionic bond as directional or 
non-directional? 

Some common crystal structures will now be des- 
cribed. 

(a) Face-centred cubic (FCC) packing is shown in Fig. 

2.1la; there is a particle at the centre of each of the 

six faces of the cube in addition to the eight at the 

corners. Copper and aluminium have this structure. The 

sodium chloride crystal can be regarded as two interpe- 

netrating FCC structures, one of sodium ions and the 

other of chloride ions, Fig. 2.11b; each sodium ion is 

surrounded by six chloride ions and vice versa. 

(b) Hexagonal close-packing (HCP) is represented in 

Fig. 2.12; it is built up from layers of hexagons. Zinc 
and magnesium form HCP crystals. 

These two structures give the closest possible packing 

and account for 60% of all metals. They are not very 

dissimilar if we consider how they can be assembled 

from successive layers. Fig. 2.13 shows a layer A of 

hexagonal close-packed spheres in which each sphere 
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Fig. 2.13 

touches six others—this is the closest packing possible 

for spheres. A second hexagonal close-packed layer B 

can be placed on top and the packing of these two layers 

will be closest when the spheres of B sit in the hollows 
formed by three neighbouring spheres of A. A third 

hexagonal close-packed layer can be placed on top of 

B in two ways. If it rests in the hollows of B so that 

its spheres are directly above the spheres in A, then 
an HCP crystal results, Fig. 2.13 (bottom), and the layer 

stacking is ABAB. However, if the third layer rests in 
other hollows in B, its spheres can be above hollows 

in A and the structure is FCC with layer stacking 

ABCABC. 

(c) Body-centred cubic (BCC) packing has a particle 
at the centre of the cube and one at each corner, Fig. 

2.14. Alkali metals have this less closely packed struc- 

ture. 

(d) Tetrahedral structures have a particle at the 
centre of a regular tetrahedron and one at each of the 

eo) st) 

Chloride ion Sodium ion 

(b) 

(a) (b) 

Fig. 2.15 Tetrahedral structure 

four corners, Fig. 2.15a. This more open arrangement 
is found in carbon (as diamond), silicon and germanium 

—all substances which form covalent bonds. The hard- 

ness of diamond is partly due to the fact that its atoms 

are not in layers and so cannot slide over each other 

as they can in graphite, the other crystalline form of 

carbon. Graphite forms layers of six-membered rings 

of carbon atoms that are about two-and-a-half times 

farther apart than are the carbon atoms in the layers, 

Fig. 2.15b. The forces between the layers are weak, 
thus explaining why graphite flakes easily and is soft 

and suitable for use in pencils and as a lubricant. 

Graphite and diamond provide a good example of the 

importance of structure in determining properties. 

Two further points: first, there is in every crystal struc- 

ture a typical cell, called the unit cell, which is repeated 

over and over again—Figs. 2.1la, 2.12 and 2.14 are 

examples of unit cells; second, the structures described 

are those of perfect crystals. In practice there are imper- 



fections in crystals and these are important in determin- 

ing the properties of a material, as we shall see later. 

Bubble raft 

Soap bubbles pack together in an orderly manner and 

provide a good representation, in two dimensions, of 

how atoms are packed in a crystal. 

A bubble raft is made by attaching a glass jet (about 

1mm bore) or a 25 gauge hypodermic needle on a 1 cm* 

syringe barrel, to the gas tap, via a length of rubber 

tubing and a screw clip. The jet is held below the surface 

of a ‘soap’ solution (1 Teepol, 8 glycerol and 32 water 

is satisfactory) in a shallow glass dish, at a constant depth 

~—- From gas tap 

Tubing 

Barrel of 1cm? syringe 

Hypodermic needle (25 gauge) 
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Fig. 2.16 

‘Soap solution 
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which gives bubbles of about 2 mm diameter, Fig. 2.16a. 
If the dish is placed on an overhead projector a magni- 

fied image of the raft can be viewed. What pulls the 

bubbles together and what keeps them from getting too 

close? 

A perfect, hexagonally close-packed array is shown 
in Fig. 2.16b. Grain boundaries are readily seen in Fig. 

2.16c, ‘vacancies’ in Fig. 2.16d and a bubble of a differ- 
ent size in Fig. 2.16e. What might (d) and (e) represent 

in a real crystal and what effect do they have on the 

structure? ; 
Screw clip 



22 VOLUME I Materials and Mechanics 

X-ray crystallography 

Before the discovery which enabled the arrangement 
of atoms in a crystal to be determined experimentally, 

crystallographers had simply assumed that the regular 

external shapes of crystals were due to the atoms being 

arranged in regular, repeating patterns. 

In 1912 three German physicists, Max von Laue, W. 

Friedrich and P. Knipping, found that a beam of X-rays, 

on passing through a crystal, formed a pattern of spots 
on a photographic plate (see Fig. 2.19b). Shortly after- 
wards W. L. (later Sir Lawrence) Bragg and his father 
Sir William Bragg showed how the pattern could be 

used to reveal the positions of the atoms in a crystal. 

Together they proceeded to unravel the atomic struc- 

tures of many substances and started the science of X- 

ray crystallography. In recent years the structures of 

many complex organic molecules, including some like 

DNA (deoxyribonucleic acid) that play a vital part in 
the life process, have been discovered by this technique. 

The analysis of crystal structures by X-rays depends 

on the fact that X-rays, like light, have a wave-like 

nature and when they fall on a crystal they are scattered 

by the atoms so that in some directions the scattered 

beams reinforce each other while in others they cancel 

each other. X-rays are used because their wavelengths 
are of the same order as the atomic spacings in crystals— 

about 10000 times less than those of light. 

The simplest way of regarding what occurs when X- 

rays fall on a crystal is to consider the crystal as made 

up of regularly spaced layers of atoms, each of which 

produces a weak ‘reflected’ beam such that the angle 

of incidence equals the angle of reflection, as for the 

reflection of light by a mirror. In Fig. 2.17a reflection 

by a single layer of atoms is shown: most of the beam 

passes through. Fig. 2.17b shows a beam of X-rays fall- 

ing on a set of parallel layers of atoms. If all the reflected 
waves are to combine to produce a strong reflected beam 

(and give an intense spot on a photograph) then they 

must all emerge in step. For this to happen the path 

difference between successive layers must be a whole 

number of wavelengths of the X-rays—as they are in 
this case. Otherwise crests of one wave may coincide 

with troughs from another and the two tend to cancel 
out. 

The atoms in a crystal can be considered as arranged 

in several different sets of parallel planes, from all of 
which strong reflections may be obtained to give a pat- 

tern of spots characteristic of the particular structure. 

Two other possible sets of planes are shown for the 

array in Fig. 2.18. In a polycrystalline sample many 

planes are involved at once and thousands of spots are 

produced resulting in circles or circular arcs on the 

Beam of 

Single Weak 

plane of 2 beam 
atoms 

Strong 

beam 

(a) 

Incident beam Reflected beam 

os, (all waves in step) 

Fig. 2.17 

Fig. 2.18 

photograph. Fig. 2.19a is due to a polycrystalline sample 

of gold and Fig. 2.19b to a single crystal of the same 
material. 

Microwave analogue 

Microwaves are very short radio waves with wavelengths 

extending from lcm or so to about 1m and are used 
for radar and satellite communication. A large-scale 

demonstration with microwaves shows that regularly 

spaced polystyrene tiles or layers of spheres give strong 
reflections at certain angles, depending on the tile or 

layer separation, and that this can be explained as being 

due to interference between waves reflected from suc- 
cessive layers—as it can with X-rays and layers of atoms. 

The apparatus is shown in Fig. 2.20a; wax lens A 
produces a parallel beam from the 3cm microwave 

transmitter and B focuses it on the detector. First it 

should be shown, with the transmitter and detector in 
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Fig. 2.19 
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line, that microwaves can largely penetrate a polysty- 

rene ceiling tile but not a metal sheet. 

(a) One tile. A single tile held vertically on the turn- 

table reflects (partially) the beam at any angle. Through 
what angle from the straight-through position must the 
detector be turned when the glancing angle (i.e. the 

angle between the tile and the incident beam) is @ (see 

p. 93)? 

(b) Two tiles. When a second tile is brought up behind 

and parallel to the first (already positioned for the ref- 
lected beam to be detected), the intensity of the reflec- 
tion rises and falls as the extra path to the second tile 

varies between an even and an odd number of half- 
wavelengths. Interference is occurring between the 

waves reflected from each tile when they come together. 

Will this occur for all glancing angles? 

(c) Ten tiles at 3cm centre-to-centre spacing, Fig. 

2.20b. If the detector is swung round as the array of 

tiles revolves on the turntable, a strong reflection is 

obtained only when the detector makes an angle of 60° 
with the straight-through position. The tiles then bisect 

the angle between the detector and the straight-through 

position, i.e. they make an angle of 30° with the straight- 
through position, and give a glancing angle of 30°, Fig. 

2520: 

(d) Polystyrene ball ‘crystal’. This is made from seven 

hexagonal close-packed layers of 5cm diameter spheres 

glued together to give a face-centred cubic (FCC) struc- 

ture (see Appendix 6). As the crystal rotates on the 

turntable, Fig. 2.20d, two pairs of strong reflections are 
obtained per revolution when the detector is at 44° from 

the straight-through position (@=22°), the time 

between each pair being greater than that between the 

two signals in each. At 50° (@ = 25°) there are two single 

strong reflections per revolution and similarly at 74° 
(@= 37°). 

The first pair of 44° reflections is produced when two 

easily identifiable sets of vertical ‘hexagonal’ layers (i.e. 

with the packing of spheres in each layer the closest 

possible) bisect in turn the angle between the straight- 
through position and the detector; the second pair arises 

half a revolution later when the ‘backs’ of the two sets 

of the same layers are in the bisecting position. At 50°, 
a set of ‘square’ layers (i.e. with less closely packed 

spheres—see question 9, p. 26) is responsible for the 
strong signals when, twice in each revolution, it bisects 

the angle between the beam and the detector. 

Polymers 

Polymers are materials with giant molecules, each con- 

taining anything from 1000 to 100000 atoms, and are 

usually carbon (organic) compounds. An example of 
a natural polymer is cellulose whose long, tough fibres 

give strength and stiffness to the roots, stems and leaves 

of plants and trees. Rubber, wool, proteins, resins and 

silk are others. Man-made polymers include plastics 

such as polythene, Perspex and polystyrene, fibres like 
nylon and Terylene, synthetic rubbers and the epoxy 

resins which are well known for their strong bonding 

properties and toughness. 
The unravelling of the intricacies of nature’s polymers 

required X-ray apparatus, the electron microscope and 

other instruments. Their molecules were found to con- 
sist of a large number of repeating units, called 

monomers, arranged in a long flexible chain. Thus every 

molecule of cellulose comprises a long chain of from 

a few hundred to several thousand glucose sugar 

(C6H,20¢) molecules. 
Artificial polymers are made by a chemical reaction 

known as polymerization, in which large numbers of 

small molecules join together to form a large one. 

Polythene or polyethylene (to give it its full name) is 

made by polymerizing ethylene (C,H), a gas obtained 
when petroleum is ‘cracked’. In one process the ethylene 

molecules, heated to 100-300°C under a pressure 

several thousand times greater than atmospheric, link 
with one another to give the long chain molecules of 

polythene, Fig. 2.21. 

If the chains run parallel to each other, like wires 

in acable, the structure shows a certain amount of order 

and is said to be ‘crystalline’, Fig. 2.22a. This contrasts 

with the disorder of tangled chains in an ‘amorphous’ 

structure, Fig. 2.22b. Many polymers have both crystal- 

line and amorphous regions, Fig. 2.22c. If crystallinity 

predominates an X-ray photograph shows sharp spots 

(but the pattern is never as sharp as for wholly crystalline 

materials) and the polymer is fairly strong and rigid. 

A polymer with a largely amorphous structure is soft 

OO + OO + GO + OO —H— 66a s00n 
Ethylene Polythene 
molecule © Carbon atom molecule 
(CH,) 

¢ Hydrogen atom 

Fig. 2.21 



Long chain 
molecule 

Fig. 2.22 

and flexible and gives diffuse rings in an X-ray photo- 
graph. The proportion of crystalline to amorphous 

regions in a polymer depends on its chemical composi- 

tion, molecular arrangement and how it has been pro- 

cessed. The intermolecular forces between chains are 
of the weak van der Waals type, but in crystalline struc- 

tures the chains are close together over comparatively 

large distances and so the total effect of these forces 

is to produce a stiff material. 

When an amorphous (glassy) polymer is stretched the 

chains become less coiled and tangled. They line up 

giving a more ordered (‘crystalline’) structure, making 

the material stiffer and able to take strains of 100% 
or more. Rubber behaves similarly when stretched (p. 

41) and the polymer is said to change from the glassy 
to the rubbery state if stressed. 

Crystallization is one of two principles that have been 
used to produce strong, stiff polymers (e.g. polythene, 

nylon); the other is the formation of strong covalent 
bonds between chains—a process known as cross-link- 

ing. In vulcanizing raw rubber, i.e. heating it with a 

controlled amount of sulphur, a certain number of sul- 

phur atoms form cross-links between adjacent rubber 
molecules to give a more solid material than raw rubber 

which is too soft for use, Fig. 2.23. As more cross-links 

are added to rubber it stiffens and ultimately becomes 

the hard material called ebonite. 

Cross-links 

Pes 
Fig. 2.23 

Polymers such as ebonite and bakelite (the first plastic 
to be made) with many strong cross-links do not soften 

with increased temperature but set once and for all after 

their initial moulding. They are called thermosetting 

plastics or thermosets and remain comparatively strong 

until excessive heating leads to breakdown of the cross- 

links and chemical decomposition. By contrast, in ther- 

moplastic polymers only the weak van der Waals forces 
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hold the chains together and these materials can be sof- 
tened by heating and if necessary remoulded. On cool- 

ing they recover their original properties and retain any 

new shape. This treatment can be repeated almost inde- 
finitely so long as temperatures are below those causing 

decomposition, i.e. breakdown of the covalent bonds 

that hold together the atoms in the long chain. 

The possibility of using man-made polymers in the 

future as load-bearing structural materials for houses, 
buildings, cars, boats and aircraft depends largely on 
how far their strength and stiffness can be increased. 

As we have seen, two methods are used to do this at 

present. One is by having ‘crystallized’ long chains—a 

physical feature—and the other requires cross-links to 

be formed between chains—a chemical feature. Current 

research is directed towards producing molecular chains 
which are themselves stiff (most existing man-made 

polymer chains are inherently flexible) by polymerizing 

monomers which have a ring-shaped structure. It is then 

hoped to achieve the desired strength and stiffness by 

crystallizing and cross-linking those chains. 

QUESTIONS 

1. Experiment shows that 3g of carbon combine with 8 g of 

oxygen to form 11g of carbon dioxide. If 1 atom of carbon 

reacts with 2 atoms of oxygen to give 1 molecule of carbon 

dioxide (i.e. C + O, = CO,) 

(a) compare the mass of an oxygen atom with that of a car- 

bon atom. (Hint: start by supposing that 1g of C contains x 

atoms.) 

(b) what is the atomic mass of oxygen on the carbon-12 

scale? 

(c) what mass of oxygen contains the same number of atoms 

as 12 g of C? 

2. (a) If the atomic mass of nitrogen is 14, what mass of nitro- 

gen contains the same number of atoms as 12 g of carbon? 
(b) What mass of chlorine contains the same number of 

atoms as 32 g of oxygen? (Atomic masses of chlorine and oxy- 

gen are 35.5 and 16 respectively. ) 
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3. Taking the value of the Avogadro constant as 6.0 x 10” 
how many atoms are there in (a) 14g of iron (at. mass 56), 

(b) 81g of aluminium (at. mass 27), (c) 6.0g of carbon (at. 

mass 12)? 

4. What is the mass of (a) one atom of magnesium (at. mass 

24); (b) three atoms of uranium (at. mass 238), (c) one molecule 

of water (mol. mass 18)? Take the value of the Avogadro 

constant as 6.0 x 10”. 

5. (a) A mole is the name given to the quantity of substance 

which contains a certain number of particles. What is this 

number? 

(b) What is the mass of 1 mole of hydrogen molecules? 

(c) If the density of hydrogen at s.t.p. is 9.0 x 10->gcm~? 

what volume does 1 mole of hydrogen molecules occupy at 

Scupe? 

(d) How many molecules are there in 1cm? of hydrogen 

at s.t.p.? 

6. By counting scintillations it is found that 1.00 mg of polo- 

nium in decaying completely emits approximately 2.90 x 10'8 
alpha particles. If one particle is emitted by each atom and 

the atomic mass of polonium is 210, what is the Avogadro 

constant? ; 

7. Estimate (a) the mass and (b) the diameter of a water mole- 

cule (assumed spherical) if water has molecular mass 18 and 

the Avogadro constant is 6.0 x 10? per mole. 

8. (a) Suggest an approximate but reasonable value for the 

heat of sublimation of copper (in Jg~') from the following 
data. 

Specific latent heat of fusion = 2.0 x 10° J g™! 

Specific latent heat of vaporization = 4.8 x 10° J g™! 

What additional information would enable a better estimate 

to be made? 

(b) If the Avogadro constant is 6.0 x 1073 per mole and the 
atomic mass of copper is 64, what is the heat of sublimation 

of copper in J/atom? Why is a knowledge of this quantity 

useful? 

9. (a) ‘Square’ and ‘hexagonal’ methods of packing spheres 

are shown in Figs. 2.24a and b respectively. How many other 

Square packing Hexagonal packing Pyramid 

(a) (b) (c) 

Fig. 2.24 

spheres are touched by (i) A, (ii) B? In which arrangement 

is the packing closest? 

(b) Fig. 2.24c is a pyramid of spheres in which the second 

and successive layers are formed by placing balls in the hollows 

of the layer below it. How are the balls packed in (i) the sloping 

sides of the pyramid, (ii) the horizontal layers? 

10. One face of the unit cell of an FCC crystal is shown in 

Fig. 2.25, atoms being represented by spheres. Ifr is the atomic 

radius in cm, calculate (a) the length of a side of the unit cell, 

(b) the volume of a unit cell, (c) the number of unit cells in 

lcm’. 

Side of 
unit cell 

Fig. 2.25 

11. In a crystal built up from a large number of similar unit 

cells the atoms at the corners and on the faces of individual 

cells are shared with neighbouring cells. In an FCC unit cell 
(a) how many corner atoms are there? 

(b) how many neighbouring cells share each corner atom? 

(c) what is the effective number of corner atoms per cell? 

(d) how many face atoms are there? 

(e) how many neighbouring cells share each face atom? 

(f) what is the effective number of face atoms per cell? 

(g) what is the total effective number of atoms per cell? 

(A) what is the total effective number of atoms in 1 cm? of 

unit cells (use your answer from 10(c))? 

12. X-ray diffraction shows that copper, atomic mass 64 and 

density 9.0gcm~>, has an FCC structure. If the Avogadro con- 

stant is 6.0 x 10% per mole, how many atoms are there in 
1.0 cm? of copper? 

13, Using your answer to 11(h) and 12, calculate the atomic 
radius of copper. 

14. For crystalline sodium chloride, draw the unit cell which 

is repeated throughout the lattice. Label precisely the two kinds 

of particle at the lattice sites. What are the forces maintaining 
them in their relative positions? 

Calculate the distance between adjacent particles in crystal- 
line sodium chloride, given that its formula weight is 58.5 and 

its density is 2.16 gcm7> (2.16 x 10°kgm~4). (Avogadro con- 
stant = 6.03 x 107 mole~') 

Discuss the effect of a small stress on a crystalline lattice. 

(C. Phys. Se) 
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Stress and strain 
The Young modulus 
Stretching experiments 
Deformation and dislocations 
Strengthening metals 
Cracks and fracture 

Stress and strain 

The mechanical properties of a material are concerned 

with its behaviour under the action of external forces—a 

matter of importance to engineers when selecting a 

material for a particular job. Four important mechanical 

properties are strength, stiffness, ductility and tough- 

ness. 

Strength deals with how great an applied force a 

material can withstand before breaking. Stiffness tells 

us about the opposition a material sets up to being dis- 

torted by having its shape or size, or both, changed. 

A stiff material is not very flexible. There is no such 

thing as a perfectly stiff or rigid (unyielding) material; 

Fig. 3.1 

Fatigue and creep 
Composite materials 
Strain energy 

Rubber 
Elastic moduli 

all ‘give’ in some degree although the deformation may 

often be very small. Ductility or workability relates to 

the ability of the material to be hammered, pressed, 

bent, rolled, cut or stretched into useful shapes. A tough 
material is one which is not brittle, i.e. it does not crack 

readily. Steel has all four properties, putty has none of 

them. Glass is strong and stiff but not tough or ductile. 
Which properties would you ascribe to rubber, nylon 

and diamond? 
Information about mechanical properties may be 

obtained by observing the behaviour of a wire or strip 

of material when it is stretched. The stretching of short 

rods or ‘test-pieces’ is done using a machine like that 

in Figs. 3.1 and 3.2. 
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The extension produced in a sample of material 

depends on (i) the nature of the material, (ii) the stretch- 

ing force, (iii) the cross-section area of the sample and 
(iv) its original length. What effect would you expect 

(iii) and (iv) to have? To enable fair comparisons to 

be made between samples having different sizes the 

terms ‘stress’ and ‘strain’ are used when referring to 
the deforming force and the deformation it produces. 

Stress (a: pronounced ‘sigma’) is the force (in N) act- 

ing on unit cross-section area (1m?). For a force F and 

area A (Fig. 3.3) we can write 

force F 
stress = or g=— 

area A 

The unit of stress is the pascal (Pa) which equals one 

newton per square metre (Nm7’). 
Strain(e: pronounced ‘epsilon’) is the extension of unit 

length (1m). If e=extension and /= original length 

(Fig. 3.3) then 

: extension e 
strain = ———————_ of £€ = — 

- original length l 

Strain is a ratio and has no unit. 

Force exerted by 
support 

” (Force exerted by 
external agent) 

Fig. 3.3 

A stress which causes an increase of length puts the 

sample in tension, and so we talk about a tensile stress 

and a tensile strain. 

The shape of the stress-strain graph for the stretching 

of a sample (e.g. a wire) depends not only on the mater- 

ial but also on its previous treatment and method of 
manufacture. For a ductile material, i.e. a metal, it has 
the general form shown by OEPAD in Fig. 3.4. There 

are two main parts. 

(a) Elastic deformation. The first part of the graph 
from O to E is a straight line through the origin showing 
that strain is directly proportional to stress, i.e. doubling 

the stress doubles the strain. Over this range the mater- 

ial suffers elastic deformation, i.e. it returns to its origi- 

nal length when the stress is removed and none of the 

extension remains. 

(b) Plastic deformation. As the stress is increased the 
graph becomes non-linear but the deformation remains 

elastic until at a certain stress corresponding to point 

P, and called the yield point, permanent or plastic defor- 
mation starts. Henceforth the material behaves rather 
like Plasticine and retains some of its extension if the 
stress is removed. Recovery is no longer complete and 

on reducing the stress at A, for example, the specimen 

recovers along AO’ where AO’ is almost parallel to 
OE. OO’ is the permanent plastic extension produced. 
If the stress is reapplied, the curve O’AD is followed. 

At D the specimen develops one or more ‘waists’ and 
ductile fracture occurs at one of them. The stress at D 

is the greatest the material can bear and is called the 

breaking stress or ultimate tensile strength; it is a useful 

measure of the strength of a material. 

The specimen appears to ‘give’ at P, and over the 

plastic region a given stress increase produces a greater 

increase of strain than previously. None the less it still 

opposes deformation and any increase of strain requires 

increased stress. Beyond P the material is said to work- 

harden or strain-harden. 

Stress 

Strain 
Fig. 3.4 

Few ductile materials behave elastically for strains 

as great as }% (i.e. for an extension of }cm in a 100cm 
long wire) but they may bear large plastic strains, up 

to 50%, before fracture. The breaking stress for steels 

may occur at stresses half as great again as that at the 

yield point, while for very ductile metals with low yield 
points it may be several times greater than the stress 
at the yield point. It is desirable that metals used in 
engineering structures should carry loads which only 
deform them elastically. On the other hand the fabrica- 
tion of metals into objects of various shapes requires 



them to withstand considerable plastic deformation 
before fracture, i.e. be very ductile. The dominant posi- 
tion of metals in modern technology arises from their 
strength and ductility. 

A brittle material such as a glass may give a curve 

like OB in Fig. 3.4 and fractures almost immediately 

after the elastic stage; little or no plastic deformation 
occurs and the glass is non-ductile. 

The Young modulus 

The stress-strain curve for the stretching of metals and 
some other materials (e.g. glasses), over almost all the 
elastic region, is a straight line through the origin. That 

is, tensile strain is directly proportional to tensile stress 
during elastic deformation. This statement is known as 

Hooke’s law and in more elementary work it is often 

stated in the form: extension varies as the load. In 

mathematical terms it can be written 

tensile strain « tensile stress 

tensile stress 
or — a constant 

tensile strain 

This constant is called the Young modulus and is 
denoted by £. Its value is given by the slope of the 

straight part of the stress-strain graph and depends on 

the nature of the material and not on the dimensions 

of the sample. If a material has large E, it resists elastic 

deformation strongly and a large stress is required to 
produce a smali strain. E is thus a measure of the opposi- 

tion of a material to change of length strains such as 

occur when a wire or rod is stretched elastically, i.e. 

it measures elastic stiffness. 
The Young modulus is of great importance in engi- 

neering. In the early days of iron railway bridge con- 

struction, engineers relied heavily on ‘rule of thumb’ 

methods. It required a series of disasters like that of 

the Tay Bridge in Scotland in 1879 and a reputed col- 
lapse rate of twenty-five bridges per year at about the 

same time in the U.S.A. before it was accepted that 

reliable strength calculations were necessary for safety 

and the economical use of materials. The value of E 

is one of the pieces of information which must be known 

to calculate accurately the deformation (deflections) 

that will occur in a loaded structure and its parts. As 

we have seen in chapter 1, when a beam bends one 
surface is compressed and the other stretched, so that 
E is involved; ‘beam theory’ is one of the foundation 

stones of engineering. 
If a stretching force F acting on a wire of cross-section 
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area A and original length / causes an extension e we 
can write 

tensilestrain e/l Ae 

Like stress, E is expressed in pascals (Pa) since strain 

is a ratio. Suppose a load of 1.5kg attached to the end 

of a wire 3.0m long of diameter 0.46mm stretches it 

by 2.0mm then F = ma = mg = 1.5 X 9.8N 
(g =9.8ms~’) 

_ (1.5 x 9.8N)(3.0m) 

(a x 0.23? x 10-° m*)(2.0 x 10-7 m) 

LES <0 8310 Nm 

a X 0.232 x 107° x 2.0 x 1073 m2m 

13x 10" Pa 

Approximate values of E for some common materials 
are given in Table 3.1. 

Table 3.1 

Material The Young modulus 
E/10'°Pa 

steel 21 
copper 13 
glasses 7 
polythene about 0.5 
rubber about 0.005 

Glasses are surprisingly stiff (and strong). The high 

elasticity of rubber (i.e. its ability to regain its original 
shape after a very large deformation) is not to be con- 

fused with its low elastic modulus. For steel a large stress 
gives a small strain while the same stress applied to rub- 

ber will give a very much larger strain. This means that, 

by our scientific definition, steel has a greater modulus 
of elasticity than rubber. 

Stretching experiments 

1. Copper. Using an arrangement like that in Fig. 

3.5 the extensions produced in a 2 metre length of cop- 
per wire (SWG 32) are found as it is loaded to breaking 
with 100 gram slotted weights. 

A load-extension graph is plotted to see if Hooke’s 

law is obeyed and to find the percentage strain copper 

can withstand before its elastic limit is exceeded. 
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Sticky surface 

2 metres 
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Fig. 3.5 

The breaking stress of copper can be determined and, 

if wire of another gauge is used (say SWG 26), whether 

the breaking stress depends on wire thickness. The per- 

centage plastic strain borne by copper before it breaks 

may also be found. 

2. Steel. If 1 is repeated for 2 metres of steel wire 

(SWG 44) the same kind of information can be obtained. 

3. Rubber. A load-extension graph can be plotted 

for a strip of rubber (S cm long and 2 mm wide cut from 
a rubber band), suspended vertically and loaded with 

100g slotted weights and then unloaded. Information 
may be obtained about adherence to Hooke’s law, and 

also the number of times its original length that rubber 
can be extended. The breaking stress of rubber should 

be found. 

4. Polythene. A strip 15cm long and 1cm wide, cut 

cleanly from a piece of polythene, can be investigated 
as in 3. 

Vernier scale 

Fig. 3.6 

Gummed paper on 
wire to measure 
extension 

Slotted weight 
hanger 

5. Glass. The breaking stress of glass may be found 
by hanging weights from a glass thread which has been 

freshly drawn from a length of 3 mm diameter soda glass 

rod. If parts of the rod are left at the top and bottom, 

the thread can be supported by clamping one end and 

a hook made at the other end for the weights. 

6. The Young modulus for a wire. Using the appara- 

tus of Fig. 3.6a or b the extensions of a wire can be 

measured with greater accuracy. 

In Fig. 3.6a the right-hand wire is under test and car- 
ries a vernier scale (see Appendix 3) which, when the 
right-hand wire is loaded, moves over a millimetre scale 

attached to the left-hand wire and enables the extension 

to be measured. The alternative and more accurate 
arrangement in Fig. 3.65 is known as Searle’s apparatus. 

In this case the micrometer screw (see Appendix 3) is 
adjusted, after the addition of a load to the right-hand 

wire, so that the bubble of the spirit level is centralized. 

Spirit level 

Micrometer 

Fixed load 



The extension is then found from the scale readings. 

By having two wires of the same material suspended 

from the same support, errors are eliminated if there 

is a change of temperature or if the support yields, since 

both wires will be affected equally. 

Initially both wires should have loads that keep them 

taut and free from kinks. Readings are then taken as 

the load on the right-hand wire is increased by equal 

steps, without exceeding the elastic limit. The strain 

should therefore not be more than 0.1%, i.e. the wire 
should not be stretched much beyond 1/1000th of its 

original length. The length / of the wire to the top of 

the vernier or micrometer is measured with a metre 

rule and the diameter (2r) found at various points along 
its length with a micrometer screw gauge. 

From a graph of ‘load’ against ‘extension’, an average 
value of ‘load’/‘extension’ in kgmm7! is given by 

PQ/OQ, Fig. 3.7. The Young modulus can then be cal- 
culated from 

Fl 

Ae 

where F/e is expressed in Nm™!, i.e. F/e=PQ x g/ 
(OQ x 107-3), A(= ar) in m? and /in m. 

P 

Load/kg 

| 

| 
| 

| 
| 
| 

O Q 
Extension/mm 

Fig. 3.7 

Deformation and dislocations 

The deformation behaviour of materials can be 

explained at the atomic level. 

(a) Elastic strain. This is due to the stretching of the 
interatomic bonds that hold atoms together. The atoms 
are pulled apart very slightly; each is displaced a tiny 

distance from its equilibrium position and the material 
lengthens. Hooke’s law is a result of the fact that the 

‘interatomic force-separation’ graph, Fig. 3.8a, is a 

straight line for atomic separations close to the equili- 

brium separation ro, Fig. 3.85. 
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Fig. 3.8 

The Young modulus E£, the measure of elastic stiffness 

(i.e. resistance to elastic deformation), is high for mater- 

ials with strong interatomic bonds. Covalent and ionic 

solids, and to a lesser extent metals, are in this category. 

Diamond (pure carbon), the hardest known natural sub- 
stance, has a large number of very strong covalent bonds 
per unit volume and a very high value of E. 

As well as determining the stiffness of a material, 

the Young modulus also governs ultimately, in theory, 

its strength since this too depends on the forces between 

atoms. However, we shall see later (pp. 32-5) that there 

are other factors which prevent solids displaying their 

theoretical strengths. 

(b) Plastic strain. The ability to undergo plastic strain 

(and be ductile) is a property of crystalline materials. 
The yielding which occurs could therefore be attributed 
to the slipping of layers of atoms (or ions) over one 
another. With close-packed layers like those in Fig. 

3.9a, the atoms would have to be moved farther apart, 

Fig. 3.9b. This would be resisted by the interatomic 

bonds, many of which will have to be broken simultan- 

eously. 

CER =: SRE 
(a) (b) 

Fig. 3.9 

Calculations based on the known strength of bonds 

show that the stresses needed to produce slip in this 

way are many times greater than those which actually 

cause plastic strain. The problem is, therefore, not so 

much to explain the strength of metals as their weakness. 

This led to a search for defects in crystal structures and 

in 1934 G. I. Taylor of Cambridge University proposed 

the dislocation as one such defect. 
The idea is that occasionally, due perhaps to growth 

faults during crystallization, there is an incomplete plane 
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Fig. 3.10 

of atoms (or ions) in the crystal lattice, for example 

AB in Fig. 3.10a. We shall now see how the movement 

of the dislocation produces the same effect as a plane 
of atoms slipping over other planes, but much more 

easily. 
If a stress is applied as shown by the arrows, atom 

B, whose bonds have already been weakened by the 

distortion of the structure, moves a small distance to 

the right and forms a bond with atom C, Fig. 3.105. 

Plane of atoms DE is now incomplete. Then D flicks 

over and joins with F leaving GH as the incomplete 

plane, Fig. 3.10c. The result is just the same as if half- 

plane AB had slipped over the planes below BDG to 
the surface of the crystal. This process would have 

involved breaking a great many bonds at the same time. 

Instead, the dislocation, by moving a single line at a 

time, has broken many fewer bonds and required a much 

smaller stress to do it. No atom has in fact moved more 

than a small fraction of the atomic spacing. Plastic defor- 

mation by this mechanism is clearly only possible in 

the well-ordered structure of a crystalline material. 

The passage of a dislocation in a crystal is like the 

movement of a ruck in a carpet. A greater force is 

needed to drag one carpet over another by pulling one 

end of it, than to make a ruck in the carpet and kick 

it along, Fig. 3.11. Calculations confirm that the stresses 

to make dislocations move in metals are in good agree- 

ment with their measured plastic flow stresses. 

Fig. 3.11 

The first and most direct evidence for the existence 

of dislocations was obtained in 1956 by J. W. Menter, 

also of Cambridge University, using an electron micro- 

scope. An electron micrograph (an electron microscope 

photograph) is shown in Fig. 3.12 of an aluminium— 
copper alloy in which the planes of atoms are spaced 

about 0.20 nm apart. A dislocation can be seen; the extra 

plane of atoms ends in the white circle and distorts the 

arrangement of the surrounding planes. 

Dislocations can be obtained in a bubble raft (p. 21) 

and made to move if the raft is squeezed between two 

glass slides dipping into the ‘soap’ solution. There is 

one to be seen in Fig. 3.13. 

Strengthening metals 

Pure metals produced commercially are generally too 

weak or soft to be of much mechanical use—a rod of 

pure copper the thickness of a pencil is easily bent by 

hand. Their weakness can be attributed to the fact that 

they contain a moderate number of dislocations which 

can move about easily in the orderly crystal structure, 

thus allowing deformation under relatively small 

stresses. The traditional methods of making metals 

stronger and stiffer all involve obstructing dislocation 
movement by ‘barriers’, i.e. pockets of disorder in the 

lattice. Three barriers will be considered. 

(a) ‘Foreign’ atoms. In an alloy such as steel ‘foreign’ 

atoms (e.g. carbon) are introduced into the lattice of 
iron, disturbing its perfection and opposing dislocation 

motion. This makes for greater strength and stiffness. 

(b) Other dislocations. One problem with the disloca- 

tion model is that when the dislocations have slipped 
out of the crystal, as in Fig. 3.10c, the crystal is then 

perfect and should have its theoretical strength. In 

general this is not observed and it would seem that 

further dislocations are generated whilst slip is occur- 

ring. This view can be justified in a more advanced treat- 
ment but here it is sufficient to say that as the metal 

is submitted to further stress, dislocations are created, 
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move, meet and thereby obstruct each other’s progress. 

A ‘traffic jam’ of dislocations builds up. Such stress 

occurs when a metal is hammered, stretched, bent, etc. 

and work-hardens. 

On the other hand, in the process of annealing, in 

which a metal is heated and cooled slowly so that it 

is softer and easier to work, dislocations can disappear. 

This may be due either to dislocations reaching the sur- 

face of the metal and forming a ‘step’ there, or to differ- 

ent types of dislocation meeting, cancelling each other 

out to give a perfect lattice. 
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(c) Grain boundaries. In practice most metal samples 

are polycrystalline, i.e. consist of many small crystals 

or grains at different angles to each other (see Fig. 2.7, 

p. 18). The boundary between two grains is imperfect 

and can act as an obstacle to dislocation movement. 

In general, the smaller the grains the more difficult it 

isto deform the metal. Why? 

An obvious way of strengthening metals would be 

to eliminate dislocations altogether and produce in 

effect perfect crystals. So far this has only been possible 
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for tiny, hairlike single-crystal specimens called 

‘whiskers’ that are only a few micrometres thick and 

are seldom more than a few millimetres long. Their 

strength, however, approaches the theoretical value and 

they can withstand elastic strains of 4 or 5% (compared 

with 3% or less for most common engineering mater- 

ials). Unfortunately, perhaps due to surface oxidation, 
dislocations soon develop and the ‘whisker’ weakens. 

At present they are the subject of much research. Fig. 

3.14 shows ‘whiskers’ of pure iron magnified four times, 

each one virtually a perfect crystal, and having about 

fifty times the tensile strength of the same thickness 
of ordinary soft iron. 

Fig. 3.14 

Cracks and fracture 

Cracks, both external and internal and however small, 

play an important part in the fracture of a material and 

prevent it displaying its theoretical strength. Different 

types of fracture usually occur in brittle and ductile 
materials. 

(a) Brittle fracture. This happens after little or no 

plastic deformation (i.e. during elastic deformation) by 

the very rapid propagation of a crack. It takes place, 

for example, when a glass rod is cut by making a small 

but sharp notch on it with a glass knife or file and then 

Notch in glass 
opposite thumbs 

Fig. 3.15 

‘bending’ it, as in Fig. 3.15—with the notch on the far 

side of the rod. Why? 
Round a scratch, notch or crack there is a concen- 

tration of stress which in general is greater the smaller 

the radius of curvature of the tip of the crack (i.e. the 
sharper the crack). Such stress concentrations may be 

seen by viewing a lamp through two ‘crossed’ Polaroid 

squares (i.e. one square is rotated to cut off most of 

the light coming from the other to give a dark field 

of view) having a strip of polythene between them, Fig. 

3.16a. Pulling the strip causes colours to appear and 

is an indication that the polythene is under stress. (The 

phenomenon is called photoelasticity and is used to study 

stresses in plastic models of engineering structures. Fig. 

3.16b shows these round a triangular hole in a plastic 

block under pressure.) When the strip is cut halfway 

Projector 

= 

LD 
Crossed Polaroids 

\ 

Strip of stretched polythene 

(a) 

Fig. 3.16 



across and again pulled, colours are seen at the tip of 

the cut showing the stress is high there. If it is sufficiently 

high, interatomic bonds are broken, the cut spreads and 
breaks a few more bonds at the new tip. Eventually 

complete fracture occurs. 

Even tiny surface scratches, and they seem to arise 

inevitably on all materials, can lead to fracture. For 

example, a freshly-drawn 3-metre-long glass fibre can 
be bent into an arc but it fractures if ‘scratched’ at A, 

Fig. 3.17, by gently stroking a few times with another 

glass fibre. It is less likely to break if scratched at B. 
Why? 

Glass fibre 

Clam 
: Glass rod 

Fig. 3.17 

In brittle materials like concrete and glass, cracks 
spread more readily when the specimen is stretched or 

bent, i.e. is in tension. Crack propagation is much more 

difficult if such materials are used in compression (i.e. 

squeezed) so that any cracks close up, Fig. 3.18. Thus 

prestressed concrete contains steel rods that are in ten- 

sion because they were stretched whilst the concrete 

was poured on them and set. As well as providing extra 
tensile strength these keep the concrete in compression 

even if the whole prestressed structure is in tension. 

Crack 
Compression 

(oa Tension 

Brittlematerial | Crack 

Fig. 3.18 

Glass can also be prestressed and its surface com- 

pressed, making it more resistant to crack propagation. 

In thermal toughening, jets of air are used to cool the 
hot glass and cause the outside to harden and contract 

whilst the inside is still soft. Later the inside contracts, 

pulls on the now reluctant-to-yield surface which is thus 

compressed. As we saw previously stresses in transpar- 

ent materials are revealed by polarized light. The pat- 
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tern of the air jets used for cooling the prestressed glass 
of a car windscreen can be seen through polarizing spec- 

tacles or sometimes by sunlight that has been partially 

polarized by reflection from the car bonnet. Prestressing 

glass in this way can increase its toughness 3000 times. 

(b) Ductile fracture. In this case fracture follows 

appreciable plastic deformation, by slow crack propaga- 

tion. After thinning uniformly along its length during 

the plastic stage, the specimen develops a ‘waist’ or 
‘neck’ in which cavities form. These join up into a crack 

and this travels out to the surface of the specimen, Fig. 

3.19a, to give ‘cup and cone’ shaped, dull fracture sur- 

faces, like those in Fig. 3.19b for an aluminium rod. 

It is possible that the internal cavities are formed during 

the later stages of plastic strain when stress concen- _ 
trations arise in regions having a large number of inter- 
locking dislocations. 

open 
Ductile 

material 
Waist. 

oA) ee 

Fig. 3.19 

Cracks propagate with much greater difficulty in 

metals due to the action of dislocations. These can move 
to places of high stress such as the tip of a crack, thus 

reducing the effective stress by causing it to be shared 

among a greater number of interatomic bonds, Fig. 3.20. 
The crack tip is thereby deformed plastically, blunted 

by the dislocation and further cracking possibly stopped. 
For the same reason surface scratches on metals have 

practically no effect. In brittle materials dislocation 
movement is impossible (why?) and high local stresses 

can build up at cracks under an applied force. 



36 VOLUME I Materials and Mechanics 

High stress at tip of ' 

crack may break bond i Crack 

Dislocation 

Fig. 3.20 

Fatigue and creep 

These are two other important aspects of the mechanical 
behaviour of metals that are conveniently considered 

here. 

(a) Fatigue. This may cause fracture, often with little 
or no warning, and happens when a metal is subjected 

to a large number of cycles of varying stress, even if 

the maximum value of the stress could be applied stea- 

dily with complete safety. It is estimated that about 90% 

of all metal failures are due to fatigue; it occurs in air- 

craft parts, in engine connecting rods, axles, etc. 
A typical fatigue fracture in a steel shaft is shown 

in Fig. 3.21; starting as a fine crack, probably at a point 

of high stress, it has spread slowly, producing a smooth 

Fig. 3.21 
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surface (as on right of photograph), until it was halfway 

across the shaft which then broke suddenly. Stress con- 

centrations may be due to bad design (e.g. rapid changes 

of diameter), bad workmanship (e.g. a tool mark) and 

are common at holes—the Comet aircraft disasters of 

1954 were caused by fatigue failure started round small 

rivet holes. 

For many ferrous metals there is a safe stress variation 

below which failure will not occur even for an infinite 

number of cycles. With other materials ‘limited-life’ 

design only is possible. As yet no fully comprehensive 

theory of fatigue exists. 

(b) Creep. In general this occurs at high temperature 

and results in the metal continuing to deform as time 

passes, even under constant stress. The effect is thought 

to be associated with dislocation motion due to the 

vibratory motion of atoms, and in the creep-resistant 

alloys that have been developed this motion is restricted. 

Such alloys are used, for example, to make the turbine 

blades of jet engines where high stress at high tempera- 

ture has to be withstood without change of dimensions. 

Some low melting-point metals can creep at room 

temperature, thus unsupported lead pipes gradually sag 

and the lead sheeting on church roofs has to be replaced 
periodically. 

Composite materials 

Composites are produced by combining materials so 

that the combination has the most desirable features 

of the components. The idea is not new. Wattle and 

daub (interlaced twigs and mud) have been used to build 

homes for a long time; straw and clay are the ingredients 

of bricks; Eskimos freeze moss into ice to give a less 

brittle material for igloo construction; reinforced con- 

crete contains steel rods or steel mesh. In all cases the 

composite has better mechanical properties than any 
of its components. 



The production of composites is man’s attempt to 

copy nature. Wood is a composite of cellulose fibres 
cemented together with lignin. Bone is another compos- 

ite material. Many modern technological applications 

require materials that are strong and stiff but light and 

heat-resistant. The development of composites to meet 

these requirements is at present a major concern of 

materials scientists throughout the world and offers 

exciting possibilities to engineers in the future. 
The highest strength-to-weight and stiffness-to-weight 

ratios are possessed not by metals but by materials such 

as glass, carbon and boron whose atoms are linked by 

many strong covalent bonds. (The strength of covalent 

bonds and their number per unit volume in these cova- 
lent solids accounts for the high strength and stiffness; 

the directional nature of the bond explains the non- 

closed-packed structure and consequently small density, 

see p. 19.) Unfortunately these materials are brittle, 

partly because their structures make dislocation motion 

difficult under an applied stress and partly because they 

usually have small surface scratches that develop into 

cracks. 

In modern composite materials the desirable proper- 

ties of covalent solids are exploited by incorporating 

them as fibres in a weaker, yielding material called the 
matrix. Freshly drawn fibres are fairly scratch-free and 

are therefore strong. The matrix has three functions: 

first, it has to bond with and hold the fibres together 
so that the applied load is transmitted to them; second, 

it must protect the surface of the fibres from scratches; 

third, if cracks do appear it should prevent them from 

spreading from one fibre to another—it can do this by 

Fig. 3.23 
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acting as a barrier to the crack and deflecting it harm- 

lessly along the interface it forms with the fibre, Fig. 

3.22. A plastic resin or a ductile metal makes a suitable 

matrix. Fibre-reinforced composites are strong to 

stresses applied along the fibres. 

Fibre Crack deflected 
along interface 

ee ; 
\ Matrix 

Interface 

Fig. 3.22 

Fibreglass was the first of the successful modern com- 

posites. It consists of high-strength glass fibres in a plas- 

tic resin (called glass-reinforced plastic—GRP) and is 

used for making boat hulls, storage tanks, pipes, car 

components. Fig. 3.23 shows H.M.S. Bicester, one of 

the Hunt-class Mine Countermeasures Vessels, believed 

to be the largest ships built of GRP afloat. The main 
reason for using GRP for these vessels is that it is non- 

magnetic (unlike steel). Its other advantages are that 

it does not corrode, rot, warp, shrink or split, and is 

resistant to marine borers. Also, it is fire-resistant and 

needs three times less maintenance than steel or wooden 

hulls. Lightweight lift-jet engines for vertical take-off 

also use GRP extensively for low-temperature parts and 

produce a thrust sixteen times their own weight. The 

best engines in commercial service today produce a 

thrust less than five times their weight. 
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Carbon-fibre-reinforced plastics (CFRP) are similar 
but carbon fibres (about 6 x 10° per cm? of cross-section) 

of greater strength and stiffness replace glass fibres. 

These are stronger and stiffer than steel and much lighter 

(see question 7, p. 43). At present they are costly to 

produce; nevertheless CFRP are particularly attractive 

to the aircraft industry. They are not subject to fatigue 

failure or to high-stress concentrations round holes and 

cracks as metals are. They do not, however, flow plasti- 
cally like metals but are elastic until failure, when exten- 

sive damage may occur. Good design is therefore 

necessary to avoid overloading. Their resistance to cor- 



rosion is also poor and prohibits certain applications. 
Fig. 3.24a shows a bundle of carbon fibres; Fig. 3.24b 
shows a section of a piece of CFRP. 
Much research is taking place on composites. The 

interface between a fibre and its matrix holds the key 
to the formation of a successful composite; at present 
a great deal is not understood about the properties of 

the interface. If the fibres are not covered uniformly 
with the matrix, small holes form at the interface. In 

service these cause high-stress concentrations and pre- 
mature failure. They may also allow liquids and gases 
to penetrate the composite and attack the fibres. The 

effect of coating the fibre with some other material to 

protect its surface from scratches, corrosion, etc., before 
combining it with the matrix is being studied. Fig. 3.24c 
is a scanning electron microscope photograph of a tung- 
sten-coated carbon fibre (Xx 3000). 

The fibre-reinforcement of metals and concrete is also 
being investigated. 

Strain energy 

Energy has to be supplied to stretch a wire. If the stretch- 

ing force is provided by hanging weights, there is a loss 

of potential energy, some of which is stored in the 
stretched wire as strain energy. Provided the elastic limit 
is not exceeded this energy can usually be recovered 
completely (rubber is a notable exception as we shall 
see in the next section). If it is exceeded, the part of 
the energy used to cause crystal slip (i.e. plastic strain) 

is retained by the wire. 
We need to determine the strain energy stored in a 

wire stretched by a known amount. Consider a material 
with a force—extension graph like that in Fig. 3.25. (This 

is of the same form as its stress-strain graph.) 
Suppose the wire is already extended by e, and then 

suffers a further extension Se, which is so infinitesimally 

small that the shaded area is near enough a rectangle. 

If F, is the average but nearly constant value of the 
stretching force during the extension 5e,, then the 

energy transferred to the wire, i.e. the work done 6W,, 

is given by 

dW, = force X distance 

= F, X 8e, 

= area of shaded strip 

Total work done during whole extension e 

= area OAB 

i.e. Strain energy stored in wire = area OAB 
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If Hooke’s law is obeyed, OA is a straight line (as shown) 
and OAB is a triangle. 

Therefore the strain energy in the wire for the whole 

extension e and final stretching force F, is given by 

strain energy = area AOAB 

= 3AB X OB 

The expression 3Fe gives the strain energy in joules if 

Fis in newtons and e in metres. 

If / is the original length of the wire and A its cross- 
section area, then volume of wire = Al. 

Strain energy per unit volume = 3Fe/(A/) 

But F/A = stress and e// = strain. 

'. Strain energy per unit volume = 3(stress X strain) 

This is the area under the stress-strain graph. 

Force 

{ Extension 

Fig. 3.25 

If Hooke’s law is not obeyed so that OA is not a 

straight line, the value of the strain energy in the wire 

for extension e is still area OAB. If the wire suffers 
plastic deformation, e.g. an extension OD, the total 

strain energy stored is again the area under the force— 

extension graph, i.e. area OCD, and can be calculated 

by counting the squares on the graph paper, knowing 
the ‘energy value’ of one square. 

The term specific energy is also used and is the energy 
stored in the wire per unit mass. 
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Rubber 

The two most striking mechanical properties of rubber 
are (a) its range of elasticity is great—some rubbers 

can be stretched to more than ten times their original 

length (i.e. 1000% strain) before the elastic limit is 

reached and (b) its value of the Young modulus is about 
10* times smaller than most solids and increases as the 

temperature rises, an effect not shown by any other 
material. 

Rubber is a polymer consisting of up to 10* isoprene 

molecules (C;Hg) joined end-to-end into a long chain 
of carbon atoms, Fig. 3.26. The enormous extensibility 

and low value of E cannot be due to the stretching of 

the strong covalent bonds between atoms in the carbon 
chain. 

If a sample of stretched rubber is ‘photographed’ by 
a beam of high-energy electrons, sharp spots are 

obtained, Fig. 3.27a, like those produced by X-rays and 

a crystal. This suggests there is some order among the 

molecules in such a sample. Fig. 3.27b is a similar photo- 
graph of unstretched rubber. A plausible explanation 

of the behaviour of rubber might be that its long-chain 

molecules are intertwined and jumbled up like cooked 
spaghetti. Fig. 3.28 is a model of one rubber molecule. 

A stretching force would tend to make the chains uncoil 

and straighten out into more or less orderly lines along- 

side each other. When the force is removed they coil 

up again. There is also some cross-bonding between 

chains, achieved during manufacture by vulcanizing raw 

rubber (see p. 25); this cross-linking as well as causing 
stiffening also greatly increases the reversible strain pos- 
sible by anchoring together the long molecules. Fully 

extended rubber is strong because the bonds are then 

stretched directly. 
The rise in value of E with temperature can be attri- 

buted to the greater disorder among the chains when 
the material is heated; their resistance to alignment by 

a stretching force therefore increases. 
If a stress-strain curve is plotted for the loading and 

unloading of a piece of rubber the two parts do not 

coincide, Fig. 3.29. OABC is for stretching and CDEO 

for contracting. The strain for a given stress is greater 

when unloading than when loading. The unloading 

strain can be considered to ‘lag behind’ the loading 

strain; the effect is called elastic hysteresis. It occurs with 

other substances, noticeably with polythene and glasses 

and to a small extent with metals. 
We note that Hooke’s law is not obeyed. This is typi- 

cal of non-crystalline polymers and contrasts with the 

usually linear behaviour of crystalline materials, e.g. 

metals which obey the law during elastic strain. It is 
also evident that rubber stretches easily at first but is 
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stiffer at large extensions. It has been shown (p. 39) 

that the area enclosed by OABC and the strain axis 

represents the energy supplied to cause stretching; simi- 

larly the area under CDEO represents the energy given 

up by the rubber during contraction. The shaded area 

is called a hysteresis loop; it is a measure of the energy 

‘lost’ as heat during one expansion-contraction cycle. 

The changes in temperature can be felt by placing a 
wide rubber band on the lips; if it is stretched quickly 
the temperature rises due to the transfer of mechanical 

energy to the rubber. When released under control the 

temperature falls. (The temperature change on free con- 
traction is small.) 

Stress 

Strain 
Fig. 3.29 

Rubber with a hysteresis loop of small area is said 
to have resilience. This is an important property where 

the rubber undergoes continual compression and relaxa- 

tion as does each part of a car tyre when it touches 

the road and rotates on. If the rubber used in tyres 

does not have high resilience there is appreciable loss 

of energy resulting in increased petrol consumption or 

lower maximum speed. Should the heat build-up be 
large the tyre may disintegrate. 

When rubber is stretched and released there may be 

a small permanent set as shown by the dotted line EF 

in Fig. 3.29. 

Elastic moduli 

All deformations of a body whether stretches, compres- 

sions, bends or twists can be regarded as consisting of 

one or more of three basic types of strain. For many 

materials experiment shows that provided the elastic 
limit is not exceeded 

stress 
— =aconstant 

strain 

This is a more general statement of Hooke’s law. The 

constant is called an elastic modulus of the material for 

the type of strain under consideration. There are three 

moduli, one for each kind of strain. 
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(a) The Young modulus (E). This has already been 
considered (p. 29) and is concerned with change of 

length strains. It is defined by 

tensile stress 
Pirate ey 

tensile strain 

where stress is force per unit area (F/A) and strain is 

change of length per unit length (e//). 

(b) Shear modulus (G). In this case the strain involves 
a change of shape without change of volume. Thus if 

a tangential force F is applied along the top surface 

of area A of a rectangular block of material fixed to 
the bench, the block suffers a change of shape and is 

deformed so that the front and rear faces become paral- 

lelograms, Fig. 3.30. The shear stress is F/A and angle 

a is taken as a measure of the strain produced. (The 

force F on the bottom surface of the block is exerted 
by the bench.) The shear modulus is defined as 

shearstress F 

shearstrain Aa 

Fig. 3.30 

When a wire is twisted, a small square on the surface 
becomes a rhombus, Fig. 3.31, and is an example of 
a shear strain. G can be found from experiments on 

the twisting of wires. If a spiral spring is stretched, the 
wire itself is not extended but is twisted, i.e. sheared. 

The extension thus depends on the shear modulus of 

the material as well as on the dimensions of the spring. 

Wire 

Fig. 3.31 // 

(c) Bulk modulus (K). If a body of volume V is sub- 

jected to an increase of external pressure 5p which 

changes its volume by 8V, Fig. 3.32, the deformation 

fess areas 
ov— | 

| 
pane Se 

| 

+2 

J 

Fig. 3.32 

is a change of volume without a change of shape. The 

bulk stress is 5p, i.e. increase in force per unit area, 
and the bulk strain is 6V/V, i.e. change of volume/ 
original volume; the bulk modulus K is defined by 

_ bulk stress _ —8p 

~ bulkstrain 8V/V 

The negative sign is introduced to make K positive since 

dV, being a decrease, is negative. 

Note. 8 (pronounced ‘delta’) is the Greek letter d 
and when used as a prefix to the symbol for a quantity 

it indicates a change in that quantity is being considered. 
Solids have all three moduli, liquids and gases only 

K. All moduli have the same units—pascals (Pa). 

QUESTIONS 

1. (a) Why are stresses and strains rather than forces and 

extensions generally considered when describing the deforma- 

tion behaviour of solids? 

(b) A length of copper of square cross-section measuring 

1.0mm by 1.0mm is stretched by a tension of 40N. What is 

the tensile stress in Pa? 

(c) If the breaking stress of steel is 1.0 x 10° Pa will a wire 

of this material of cross-section area 4.0 x 10-*cm? break 
when a 10 kg mass is hung from it? (g = 10ms~?) 

(d) A strip of rubber 6cm long is stretched until it is 9cm 

long. What is the tensile strain in the rubber as (i) a ratio, 
(ii) a percentage? 

(e) A wire originally 2m long suffers a 0.1% strain. What 
is its stretched length? 

2. (a) The Young modulus for steel is greater than that for 

brass. Which would stretch more easily? Which is stiffer? 

(b) How does a deformed body behave when the deforming 

force is removed if the strain is (7) elastic, (ii) plastic? 

(c) A brass wire 2.5m long of cross-section area 

1.0 x 10-cm? is stretched 1.0mm by a load of 0.40kg. 
Calculate the Young modulus for brass. (Take g = 10ms~?.) 



Stress —. 
Strain 

(a) (b) 
Fig. 3.33 

What percentage strain does the wire suffer? Use the value 

of E to calculate the force required to produce a 4.0% strain 

in the same wire. Is your answer for the force reliable? If it 

isn’t, would it be greater or less than your answer? Explain. 

3. Stress—strain curves for four different materials are shown 

in Fig. 3.33. Describe what you would feel if you pulled a 

specimen of each. 

4. (a) A 0.S0kg mass is hung from the end of a wire 1.5m 

long of diameter 0.30 mm. If the Young modulus for the mater- 

ial of the wire is 1.0 x 10'! Pa, calculate the extension pro- 
duced. (Take g = 10ms~?.) 

(b) Two wires, one of steel and one of phosphor bronze, 

each 1.5 metres long and of diameter 0.20cm, are joined end 

to end to form a composite wire of length 3.0 metres. What 

tension in this wire will produce a total extension of 0.064 cm? 

(The Young modulus for steel = 2.0 x 10!! Pa and for phosphor 

bronze = 1.2 x 10"! Pa.) (L. part qn.) 

5. Write a short essay on ‘strong’ materials. Your essay might 

include discussion of such topics as: the need for strong mater- 

ials, why some materials are weak, how the weaknesses can 

be avoided, composite materials such as plywood, reinforced 

concrete and fibre-glass, and the new technology of composite 

materials. These are only suggestions: you might write about 

a few of them, or, if you prefer, about all of them, and you 

may of course discuss other related issues if you wish. 

(O. and C. Nuffield) 

6. Define stress, strain, the Young modulus. 
Describe in detail how the Young modulus for a steel wire 

may be determined by experiment. 
A vertical steel wire 350cm long, diameter 0.100cm, has 

a load of 8.50 kg applied at its lower end. Find (a) the extension, 

(b) the energy stored in the wire. (Take the Young modulus 
for steel as 2.00 x 10!! Pa and g= 9.81 ms.) Wha) 

7. Approximate values for the Young modulus, ultimate ten- 

sile strength and relative density of some materials are given 

in the table. 
(a) Explain the meaning and significance of each of these 

three terms. 
(b) The tensile strength of glass equals that of aluminium. 

Why isn’t glass used for the same kind of constructional applica- 

tions as aluminium? 
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eae 
(c) (d) 

(c) In structures like aircraft the designer is concerned with 

obtaining as much strength and stiffness as possible for a given 

weight. Using the values in the table derive measures of ‘stiff- 

ness-to-weight’ and ‘strength-to-weight’ for the four materials 

listed. 

Ultimate tensile | Relative 
strength 
(x 10° Pa) 

Material The Young 
modulus 
E/10!°Pa 

aluminium 
carbon fibres 

glasses 
steel 

8. Fig. 3.34 shows the force-extension graph for a length of 
steel wire A. The wire obeys Hooke’s law over the range of 

extensions considered. 

(a) If the wire has a diameter of 0.40 mm and its unstretched 

length is 2.0m, calculate the Young modulus of the steel. 

(b) A second wire B is made of the same steel. It has the 

same unstretched length as A, but twice the diameter. Draw 

accurately on a copy of Fig. 3.34 the force-extension graph 

for this wire. Label your graph B. 

(c) A student discovers that for a given force within the 

range considered above, the elastic energy stored by wire A 

is four times greater than that stored by wire B. Use the two 

graphs, or some other theoretical argument, to explain this 
fact. 

(d) If the breaking stress of the steel is 5.0 x 10°N m~?, cal- 
culate the maximum force which can be applied longitudinally 

to wire A. (H.K.A.L.E., 1984) 

Force/N 

fo) oO _— j=) N o wl oO p= oO o1 oO fo?) 

Extension/mm 
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Conduction in solids 

Materials exhibit a very wide range of electrical conduc- 
tivities. The best conductors (silver and copper) are over 

10° times better than the worst conductors, i.e. the best 
insulators (e.g. polythene). Between these extreme 
cases is the now important group of semiconductors 

(e.g. germanium and silicon). 

The first requirement for conduction is a supply of 
charge carriers that can wander freely through the 

material. In most solid conductors, notably metals, we 

believe that the carriers are loosely held outer electrons. 

With copper, for example, every atom has one ‘free’ 
electron (the one that helps to form the metallic bond, 
p. 16) which is not attached to any particular atom and 

so can participate in conduction. On the other hand 

if all electrons are required to form the bonds (covalent 
or ionic) that bind the atoms of the material together 
then the material will be an insulator. In semiconductors 

only a small proportion of the outer electrons are ‘free’ 

to move. 

The ‘free’ electrons in a solid conductor are in a state 
of rapid motion, moving to and fro within the crystal 

lattice at speeds calculated to be about 1/1000 of the 
speed of light. This motion is normally completely 

haphazard (like that of gas molecules) and as many elec- 
trons with a given speed move in one direction as in 
the opposite direction with the same speed. There is, 

therefore, no net flow of charge and so no current. 

If a battery is connected across the ends of the conduc- 

tor, an electric field is created in the conductor which 
causes the electrons to accelerate and gain kinetic 

energy. Collisions occur between the accelerating elec- 

trons and atoms (really positive ions) of the conductor 

that are vibrating about their mean position in the crystal 
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lattice but are not free to undergo translational motion. 

As a result the electrons lose kinetic energy and slow 

down whilst the ions gain vibrational energy. The net 

effect is to transfer chemical energy from the battery, 

via the electrons, to internal energy (see p. 76) of the 

ions. This shows itself on the macroscopic scale as a 
temperature rise in the conductor and subsequently 

energy may pass from the conductor to the surroundings 

as heat. The electrons are again accelerated and the 
process is repeated. 

The overall acceleration of the electrons is zero on 
account of their collisions. They acquire a constant aver- 

age drift velocity in the direction from negative to posit- 

ive of the battery and it is this resultant drift of charge 
that is believed to constitute an electric current. An 

analogous situation may arise when a ball rolls down 

a long flight of steps. The acceleration caused by the 

earth’s gravitational field when the ball drops can be 

cancelled by the force it experiences on ‘colliding’ with 

the steps. The ball may roll down the stairs with zero 

average acceleration, i.e. at constant average speed. 

The ‘free’ electron theory is able to account in a 

general way for many of the facts of conduction and 

although in more advanced work it has been extended 
by the ‘band’ theory it will be adequate for our present 
purposes. 

Current and charge 

In metals, current is the movement of negative charge, 

i.e. electrons; in gases and electrolytes both positive 

and negative charges may be involved. Under the action 
of a battery, charges of opposite sign move in opposite 

directions and so a convention for current direction has 



to be chosen. As far as most external effects are con- 
cerned, positive charge moving in one direction is the 
same as negative charge moving in the opposite direc- 

tion. By agreement all current is assumed to be due 

to the motion of positive charges and when current 
arrows are marked on circuits they are directed from 

the positive to the negative of the supply. If the charge 
carriers are negative they move in the opposite direction 
to that of the arrow. 

The basic electrical unit is the unit of current—the 
ampere (abbreviated to A); it is defined in terms of the 
magnetic effect of a current. The unit of electric charge, 

the coulomb (C), is defined in terms of the ampere. 

One coulomb is the quantity of electric charge carried 

past a given point in a circuit when a steady current of 

1 ampere flows for I second. 

If 2 amperes flow for 1 second, 2X1 coulombs 

(ampere-seconds) pass; if 2 amperes flow for 3 seconds 

then 2 x 3 coulombs pass. In general if a steady current 

I (in amperes) flows for time ¢ (in seconds) then the 
quantity Q (in coulombs) of charge that passes is given 

by 

Q=It 

The flow of charge in a conductor is often compared 

with the flow of water in a pipe. The flow of water in 
litres per second say, corresponds to the flow of charge 

in coulombs per second, i.e. amperes. 
The charge on an electron, i.e. the electronic charge, 

is 1.60 x 10~'°C and is much too small as a practical 

unit. In 1C there are therefore 1/(1.60 x 107"), i.e. 
6.24 x 10!8 electronic charges. A current of 1 A is thus 
equivalent to a drift of 6.24 x 10'* electrons past each 

point in a conductor every second. 
Smaller units of current are the milliampere (107? A), 

abbreviated to mA, and the microampere (10~°A), 
abbreviated to pA. 

Drift velocity of electrons 

On the basis of the ‘free’ electron theory an expression 
can be derived for the drift velocity of electrons in a 

current and an estimate made of its value. The results 

are surprising. 
Consider a conductor of length / and cross-section 

area A having n ‘free’ electrons per unit volume each 

carrying a charge e, Fig. 4.1. 

Volume of conductor =A 

Number of ‘free’ electrons =nAl 

Total charge Q of ‘free’ electrons = nAle 

ELECTRICAL, PROPERTIES, 45 

n free electrons per unit volume 

Conductor 

Fig. 4.1 

Suppose that a battery across the ends of the conduc- 
tor causes the charge Q to pass through length / in time 

t with average drift velocity v. The resulting steady cur- 
rent / is given by 

= nAle 

weer 

But v = //t, therefore t= 1/v. 

To obtain a value for v consider a current of 1.0 

ampere in SWG28 copper wire of cross-section. area 

1.1 x 10~’ square metre. If we assume that each copper 

atom contributes one ‘free’ electron, it can be shown 

(see question 2a, p. 69) that n ~ 10”? electrons per cubic 

metre. Then, since e = 1.6 x 107-9 coulomb (the charge 

on an electron), 

I 
y= 

nAe 

a (1.0A) 

~ (1079 m-3) x (1.1 x 1077 m?) x (1.6 X 107 9C) 

7 1.0 A 

~ 10° 1.1 x 10-7X1.6X 10" m3m?C 

Cs 
= 6 X 10-4 (HAeGce) 

c 

=6x107*ms_! 

=0(0.6mms~! 

This is a remarkably small velocity and means that 

it takes electrons about haif an hour to drift 1m when 

a current of 1 A flows in this wire. The tiny drift velocity 
of electrons contrasts with their random speeds due to 

‘their vibrational motion (about 1/1000 of the speed of 
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light) and is not to be confused with the speed at which 

the electric field causing their drift motion travels along 
a conductor. This is very great and is nearly equal to 

the speed of light, i.e. 3 x 108ms~! (see Appendix 7). 
Current therefore starts to flow almost simultaneously 

at all points in a circuit. 
The same expression for drift velocity holds for charge 

carriers other than electrons (in fact, it holds for the 

transport of other things as well as electric charge). In 

an electrolyte, conduction is due to ions and using the 
arrangement of Fig. 4.2 information can be obtained 

about their motion. On applying an electric field (from 
a 250 volt d.c. supply), the purple stains from the per- 

manganate crystals travel very slowly towards the posit- 

ive of the supply, and if we make the not unreasonable 

assumption that the stain travels with the charge carriers 

then ions too would appear to have tiny drift velocities 

of a similar value to those calculated for electrons. 

Strip of filter paper soaked in bench 
ammonium hydroxide solution 

Crystals of potassium permanganate 

Crocodile TOOSODOONOOAAASAAAF: ATITTUDOOOOOGSOY 

Jo 

Microscope slide To H.1T.+ 

Fig. 4.2 

Despite the slow movement of the carriers in conduc- 

tors and their very small charge, large currents are pos- 
sible. Why? 

Note. The term current density J is often used and 

is defined as the current per unit cross-section area at 
right angles to the direction of flow. It is given by 

Potential difference 

In an electric circuit electrical energy is converted into 
other forms of energy. A lamp converts electrical energy 

into heat and light, and an electric motor converts elec- 

trical energy into mechanical energy. Such energy con- 

versions, produced by suitable devices, are a useful 

feature of electric circuits and form the basis of the defi- 

nition of the term potential difference (p.d.)—an idea 
that helps us to make sense of circuits. 

The potential difference between two points in a circuit 

is the amount of electrical energy changed to other forms 

of energy when unit charge passes from one point to 

the other. 

The unit of potential difference is the volt (V) and 
equals the p.d. between two points in a circuit in which 

1 joule of electrical energy is converted when 1 coulomb 

passes from one point to the other. If 2 joules are con- 

verted per coulomb then the p.d. is 2 volts. If the passage 

of 3 coulombs is accompanied by the conversion of 9 

joules of energy, the p.d. is 9/3 joules per coulomb, 

i.e. 3 volts. 
It therefore follows that if the p.d. between two points 

A and B (we more commonly talk about the p.d. across 

AB) is 5 volts then when 4 coulombs pass from A to 

B, the electrical energy changed will be 5 joules per 

coulomb, i.e. 5 x 4 joules. In general if a charge of Q 

(in coulombs) flows in a part of a circuit across which 

there is a p.d. of V (in volts) then the energy change 

W (in joules) is given by 

W=OQV 

If Q is in the form of a steady current / (in amperes) 

flowing for time f (in seconds) then Q = /t and 

W=ItV 

Although it is always the p.d. between two points 
which is important in electric circuits there are some 

occasions when it is helpful to consider what is called 

the potential at a point. This involves selecting a conven- 

ient point in the circuit and saying it has zero potential. 

The potentials of all other points are then stated with 

reference to it, i.e. the potential at any point is then 

the p.d. between the point and the point of zero poten- 

tial. In practice one part of a piece of electrical equip- 

ment (e.g. a power supply) is often connected to earth; 

the earth and all points in the circuit joined to it are 
then taken as having zero potential. 

If positive charge moves (i.e. conventional current 

flows) from a point A to a point B then A is regarded 

as being at a higher potential than B. Negative charge 

flow is therefore from a lower to a higher potential, 

i.e. from B to A. We can look upon p.d. as a kind 

of electrical ‘pressure’ that drives conventional current 

from a point at a higher potential to one at a lower 
potential. 

Resistance 

When the same p.d. is applied across different conduc- 

tors different currents flow. Some conductors offer more 



opposition or resistance to the passage of current than 
others. 

The resistance R of a conductor is defined as the ratio 
of the potential difference V across it to the current I 
flowing through it. That is, 

V 
R= 

I 

The unit of resistance is the ohm (symbol ©, the 

Greek letter omega) and is the resistance of a conductor 
in which the current is 1 ampere when a p.d. of 1 volt 

is applied across it. Larger units are the kilohm 

(10° ohm), symbol kQ, and the megohm (10° ohm), sym- 
bol M©.. The ratio V/J is a sensible measure of the 
resistance of a conductor since the smaller / is for a 

given V, the greater must be opposition of the conduc- 
tor, that is, the greater is R. 

The resistance of a metal can be regarded as arising 

from the interaction which occurs between the crystal 

lattice of the metal and the ‘free’ electrons as they drift 

through it under an applied p.d. This interaction is due 

mainly to collisions between electrons and the vibrating 

ions of the metal but collisions between defects in the 

crystal lattice (e.g. impurity atoms and dislocations) also 

play a part, especially at very low temperatures. 

The conductance of a specimen is the reciprocal of 

its resistance and is measured in siemens (S). 

| Current-p.d. relationships 

Using one of the ammeter—voltmeter circuits described 

later (Fig. 4.15), the p.d. V across a component can 

be varied and the corresponding current J measured. 

A graph of / against V shows the relationship between 
these two quantities and is called the characteristic of 
the component. It summarizes pictorially how the com- 

ponent behaves. 

(a) Metals and alloys. These give I-V graphs which 
are straight lines through the origin, Fig. 4.3a, and are 

called linear or ohmic conductors. For them J « V and 

it follows that V/J =a constant (equal to the reciprocal 

of the slope of the graph, i.e. by OB/AB). They obey 

Ohm’s law, which states that the resistance of a metallic 

conductor does not change with p.d., provided the tem- 

perature is constant. 

(b) Semiconductor diodes. The typical -V graph in 

Fig. 4.3b shows that current passes when the p.d. is 

applied in one direction but is almost zero when its acts 
in the opposite direction. A diode thus has a small resis- 

tance if the p.d. is applied one way round but a very 

large resistance when the p.d. is reversed. It conducts 
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in One direction only and is a non-ohmic or non-linear 

conductor. This one-way property makes it useful as 

a rectifier for changing alternating current (a.c.) to direct 
current (d.c.). 

(c) Filament lamps. The I-V graph of, for example, 

a torch bulb, Fig. 4.3c, bends over as V and / increase, 

indicating that a given change of V causes a smaller 

change in / at larger values of V. That is, the resistance 
(V/1) of the tungsten wire filament increases as the cur- 

rent raises its temperature and makes it white-hot. In 

general, the resistance of metals and alloys increases 
with temperature rise. 

(d) Thermistors. These are made of semiconductors 

and the /-V graph of the commonest type bends 

upwards, Fig. 4.3d, i.e. their resistance decreases 
sharply as their temperature rises. 

if 

V 

(b) 0 

Ip 16 

0 V 0 V 

(c) (d) 

Types of resistor 

Conductors especially constructed to have resistance are 

called resistors, denoted by 4+——; they are required 

for many purposes in electric circuits. Several types 

exist. 

(a) Carbon composition resistors. These are made 

from mixtures of carbon black (a conductor), clay and 

resin binder (nen-conductors) which are pressed and 
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moulded into rods by heating. The resistivity of the mix- 

ture depends on the proportion of carbon. The stability 
of such resistors is poor and their values are usually 

only accurate to within +10% but they are cheap, small 
and good enough for many jobs. Three sizes are avail- 

able with power ratings of 3, 1 and 2 watts. 

Values are shown by colour markings as in Fig. 4.4. 

The tolerance colours are gold +5%, silver +10%, no 

colour +20%. 

2nd figure 
1st figure Number of noughts 

Tolerance (accuracy) 

Silver 

+10% 

Red Violet Orange 

2 7 000 

27 000Q (27kQ) 

Black 

Brown 

Red 

Orange || Colours 
Yellow | of 

Green spectrum 

Blue 

Violet 

Grey 

White OMDANOAnFWNH OO 

Fig. 4.4 

This colour code is now being replaced by a code 
with simpler markings: 

10.0 

Tolerances are indicated by adding a letter; F= +1%, 

G=+2%, J=+5%, K=+10%, M=+20%. Thus 
SK6K = 5.6kQ +10%. 

(b) Carbon film resistors. Ceramic rods are heated to 
about 1000 °C in methane vapour which decomposes and 

deposits a uniform film of carbon on the rod. The resis- 

tance of the film depends on its thickness and can be 

increased by cutting a spiral groove in it, Fig. 4.5. The 

Metal end Resin coating 

Carbon film on Spiral groove 
ceramic rod 

Fig. 4.5 

film is protected by an epoxy resin coating. The stability 

and hence accuracy of this type of resistor is commonly 

+2% and the power rating § to $ watt. 

(c) Wire-wound resistors. High-accuracy, high-stabi- 

lity resistors are always wire-wound, as are those 

required to have a large power rating (i.e. over 2 watts). 

They use the fact that the resistance of a wire increases 

with its length. Manganin (copper, manganese, nickel) 

wire is used for high-precision standard resistors because 

of its low temperature coefficient of resistance (p. 56); 
constantan or Eureka (copper-—nickel) wire is used for 

several purposes and Nichrome (nickel-chromium) wire 

for commercial resistors. 

Adjustable known resistances, called resistance 

boxes, are used for electrical measurements in the labor- 
atory. They consist of a number of constantan coils 

which can be connected in series by switches or plugs 
to give the required value, Figs 4.6 and 4.7. It is espe- 

cially important with resistance boxes not to exceed the 

maximum safe currents since overheating may change 

the resistance value or even burn out the coils. (The 

power limit is about 1 watt per coil and so a 1 ohm 

Brass plug Brass block 

Insulator 

Resistance coils 

Fig. 4.6 Plug type (reading = 65Q) 

Rotary switch 

Terminal 
ES 

x1 x10 

Fig. 4.7 Switch type (reading = 27Q) 



coil should not carry more than 1 ampere and a 100 

ohm coil not more than 0.1 ampere—from power = 
I’ R, see p. 60). 

(d) Variable resistors. Those used in electronic cir- 

cuits, often as sound volume or other controls and some- 
times called potentiometers, consist of an incomplete 

circular track of carbon composition or wire-wound 

card, with fixed connections to each end and a rotating 

arm contact which can slide over the track. Figs 4.8a 

and b show the outside and inside respectively of a wire- 
wound potentiometer. If the track is ‘linear’, the resis- 
tance tapped off is proportional to the distance moved 

Fig. 4.8 
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by the sliding contact; if it is ‘logarithmic’ it is proportio- 

nal to the log of the distance, and at the end of the 

track a small movement of the sliding contact causes 

a larger increase of resistance than at the start. 

Larger current versions as used in many electrical 

experiments consist of constantan wire wound on a 

straight ceramic tube with the sliding contact carried 

on a metal bar above the tube. 
There are two ways of using a variable resistor. It 

may be used as a rheostat for controlling the current 

in a circuit, when only one end connection and the slid- 

ing contact are required, Fig. 4.9. It can also act as 
a potential divider for controlling the p.d. applied to 

a device, all three connections then being used. In Fig. 

4.10 any fraction of the total p.d. from the battery can 

be tapped off by varying the sliding contact. 

Rheostat =A 

Potential 
divider 

oo 

Resistor networks 

Fig. 4.9 

Fig. 4.10 

A network of resistors like that in Fig. 4.11 has a com- 

bined or equivalent resistance which can be found exper- 

imentally from the ratio of the voltmeter reading to the 

ammeter reading. Its value may also be calculated. 

Fig. 4.11 

(a) Resistors in series. Resistors are in series if the 

same current passes through each in turn. In Fig. 4.12 
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Fig. 4.12 

if the total p.d. across all three resistors is V and the 

current is J, the combined resistance R is given by 

R=— 
I 

The electrical energy changed per coulomb in passing 

through all the resistors equals the sum of that changed 
in each resistor. Therefore if V,, V, and V; are the p.d.s 

across R,, R, and R; respectively then 

V=V,+V,+ V; 

By the definition of resistance, R, = V,/I, R, = V,/I and 
R, = V;/1, therefore V, a TR,, V, — IR), V; = IR; and 

since V = JR we have 

IR=IR,+IR,+ IR, 

R=R,+R,+R; 

(b) Resistors in parallel. Here alternative routes are 

provided to the current, which splits, and we would 
expect the combined resistance to be less than the smal- 

lest individual resistance. In Fig. 4.13 if J is the total 

Fig. 4.13 

current through the network and /,, J, and J, are the 

currents in the separate branches then since current is 

not used up in a circuit 

l=[,+1,+1, 

In a parallel circuit the p.d. across each parallel branch 

is the same. If this is V then by the definition of resistance 

R, =V/1,, Ry = V/h, R;3 = V/I, and if R is the combined 
resistance then R = V/J. Therefore = V/R, 1, = V/R,, 
I, = V/R, and I, = V/R;. Hence 

Varyory Vay, 

Rukh, oh ae 

i cee | iL 1 
— = — —+— 

Rathi ue 

The single resistance R which would have the same resis- 
tance as the whole network can be calculated. 

For the special case of two equal resistors in parallel 

we have R, = R, and 

ahs bom ad wih? 
ROR ORy OR, 

is 
> 2, 

In general for n equal resistances R, in parallel, the 

combined resistance is R,/n. 
The combined resistance of the network in Fig. 4.11 

is 6; do you agree? 

Using ammeters and voltmeters 

Most ammeters and voltmeters are basically galvano- 

meters (i.e. current detectors capable of measuring cur- 

rents of the order of milliamperes or microamperes) 

of the moving-coil type which have been modified by 

connecting suitable resistors in parallel or in series with 

them as described in the next sections. Moving-coil 

instruments are accurate, sensitive and reasonably 
cheap and robust. 

Connecting an ammeter or voltmeter should cause 

the minimum disturbance to the current or p.d. it has 

to measure. The current in a circuit is measured by 

breaking the circuit and inserting an ammeter in series 

so that the current passes through the meter. The resis- 

tance of an ammeter must therefore be small compared 
with the resistance of the rest of the circuit. Otherwise, 

inserting the ammeter changes the current to be mea- 

sured. The perfect ammeter would have zero resistance, 

the p.d. across it would be zero and no energy would 
be absorbed by it. 

The p.d. between two points A and B in a circuit 
is most readily found by connecting a voltmeter across 

the points, i.e. in parallel with AB. The resistance of 

the voltmeter must be /arge compared to the resistance 

of AB, otherwise the current drawn from the main cir- 

cuit by the voltmeter (which is required to make it oper- 
ate) becomes an appreciable fraction of the main current 

and the p.d. across AB changes. A voltmeter can be 

treated as a resistor which automatically records the 
p.d. between its terminals. The perfect voltmeter would 



have infinite resistance, take no current and absorb no 
energy. 

It is instructive to set up the circuit in Fig. 4.14 for 

measuring the p.d. tapped off by the potential divider 

between X and Y, using first a high-resistance voltmeter 

(e.g. one with a 100A movement) for @ and then 
a low-resistance voltmeter (e.g. one with a 10 mA move- 

ment). The reading in the second case is much lower. 

What will it be if both voltmeters are connected across 
AY? 

Fig. 4.14 

The most straightforward method of measuring resis- 

tance uses an ammeter and a voltmeter as in Fig. 4. 15a. 

The voltmeter records the p.d. across R but the ammeter 

gives the sum of the currents in R and in the voltmeter. 

If the voltmeter has a much higher resistance than R, 

the current through it will be small by comparison and 

the error in calculating R can be neglected. However, 

if the resistance of the voltmeter is not sufficiently high, 

perhaps because R is very high, the voltmeter should 

be connected across both R and the ammeter as in Fig. 
4.15b. The ammeter now gives the true current in R. 
The voltmeter indicates the p.d. across R and the 

ammeter together, but the resistance of the latter is 

usually negligible compared with that of R and so the 

p.d. across it will be so small as to make the error in 

calculating R negligible. 

Fig. 4.15 

Shunts, multipliers and multimeters 

(a) Conversion of a microammeter into an ammeter. 

Consider a moving-coil meter which has a resistance 

(due largely to the coil) of 10009 and which gives a 
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full-scale deflection (f.s.d.) when 100A (0.0001 A) 

passes through it. If we wish to convert it to an ammeter 

reading 0-1 A this can be done by connecting a resistor 

(perhaps a misnomer) of very low value in parallel with 
it. Such a resistor is called a shunt and it must be chosen 

so that only 0.0001 A passes through the meter and the 

rest of the 1A, namely 0.9999 A, passes through the 

shunt, Fig. 4.16. A full-scale deflection of the meter 
will then indicate a current of 1 A. 

is uA \ 

oS iia 
10) 0.0001A 7 | Coil of meter 

conning 

1A Gi Ammeter 
[Sr] terminal 
0-9999A 

| 

Fig. 4.16 

To obtain the value S of the shunt, we use the fact 

that the meter and the shunt are in parallel. Therefore 

p.d. across meter = p.d. across shunt 

Applying Ohm’s law to both meter and shunt 

0.0001 x 1000 = 0.9999 x § (from V = JR) 

_ 0.0001 x 1000 

~ 0.9999 

=0.10 

The combined resistance of the meter and the shunt 

in parallel will now be very small (less than 0.1) and 
the current in a circuit will be virtually undisturbed when 

the ammeter is inserted. 

(b) Conversion of a microammeter into a voltmeter. 

To convert the same moving-coil meter of resistance 

1000 2 and f.s.d. 100 wA to a voltmeter reading 0-1 V, 

a resistor of high value must be connected in series with 

the meter. The resistor is called a multiplier and it must 
be chosen so that when a p.d. of 1 V is applied across 

the meter and resistor in series, only 0.0001 A flows 

through the meter and a full-scale deflection results, 

Fig. 4.17. 
To obtain the value M of the multiplier, we apply 

Ohm’s law when there is an F.S.D. of 0.0001 A. Hence 

p.d. across multiplier and meter in series = 
0.0001 (M + 1000) 

But the meter is to give an f.s.d. when the p.d. across 
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it and the multiplier in series is 1 V. Therefore 

0.0001 (M + 1000) = 1 

1 
M + 1000 = ——— = 10000 

0.0001 

M = 9000 0 

In Fig. 4.18 a microammeter (20—0-100 pA) with its 

matching shunts and multipliers is shown. 
Voltmeters are often graded according to their ‘resis- 

tance per volt’ at f.s.d. For the above voltmeter, 1 V 

applied across its terminals produces a full-scale deflec- 
tion, i.e. a current of 100A, and so the resistance of 

the meter (coil + multiplier) must be 10000 (since R 

= V/I = 1/0.0001 = 10000). The ‘resistance per volt’ 
of the meter is thus 100000/V. To be used as a volt- 

meter with an f.s.d. of 10 V it would need to have a 

total resistance of 100000 0, i.e. a multiplier of 99 000 0 

to limit the full-scale current to 100 »A—but its resis- 

tance for every volt of deflection is still 100000. A 

100 ./V voltmeter has a resistance of 1000 for an f.s.d. 

of 1V and draws a full-scale current of i0mA (J = 
V/R = wo = 0.01A = 10mA). Hence the higher the 
‘resistance per volt’ of a voltmeter the smaller is the 

current it draws and the less will it disturb the circuit 

to which it is connected. A good voltmeter should have 

a resistance of at least 1000.0/V. 

2006100 

pA = 

POOH 

Fig. 4.18 

In electronic circuits resistances of 1 MQ or higher 

are encountered and electronic voltmeters which have 

very high resistances have to be used. 

(c) Multimeters. A multi-range instrument or multi- 

meter is a moving-coil galvanometer adapted to measure 

current, p.d. and resistance. There is a tapped shunt S 
across the meter and a tapped multiplier M in series 

with it, Fig. 4.19. A rotary switch allows the various 

ranges to be chosen. 

One other position of the switch is marked ‘ohms’ 

and puts a dry cell B (usually 1.5 volts) and a rheostat 
R in series with the meter. To measure resistance the 

terminals are short-circuited and R adjusted until the 

pointer gives a full-scale deflection, i.e. is on the zero 

of the ohms scale. The unknown resistance then replaces 

the short circuit across the terminals. The current falls 

and the pointer indicates the value in ohms. Fig. 4.20 

shows a multimeter. 
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Rough calibration of a voltmeter 

The calibration, which is done in two parts, is only 

approximate, but uses the definition of the volt as a 

joule per coulomb. First, the temperature rise produced 

in a solid copper drum by a known force acting through 

a known distance is found and from it the amount of 

mechanical energy required to cause a 1 °C rise is calcu- 

lated. Second, the drum is heated electrically for a cer- 

tain time by a known current and the p.d. to be 

Rubber band 

Nylon 

Thermometer cord 

Slack 

slide 

Fig. 4.21 (a) 
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measured. Assuming that the amounts of electrical 

energy and mechanical energy needed to cause a 1°C 

rise in the drum are the same, the p.d. can be calculated. 

(a) Mechanical experiment. The apparatus is shown 
in Fig. 4.21a. The drum can be rotated about a horizon- 

tal axis by a handle and has a nylon cord wound round 

it five or six times. A heavy mass m (e.g. 8kg) is hung 

from one end of the cord and a fixed rubber band 

attached to the other end. The initial temperature of 

the drum is noted. When the handle is turned the mass 

should lift slightly from the floor, the rubber band be 

just slack and the drum rotate steadily. The number 

of turns n to give a temperature rise of 6 (about 10°C) 
in time ¢ is noted, as is the diameter d (in metres) of 

the drum. 

The mass m is supported by a frictional force F 

between the cord and the drum. If g is the acceleration 

due to gravity (9.8ms~*) then F= mg. During n revolu- 

tions, F acts over a total distance of wdn where 7d is 
the circumference of the drum. The mechanical energy 

supplied by the person turning the handle is measured 

by the work, and work = force X distance in direction 
of force. Here the work = F X adn = mg X zrdn. There- 
fore the mechanical energy W to produce a temperature 

rise of 1°C in the drum is 

_ mgrdn 

6 

(b) Electrical experiment. The copper drum is 

allowed to cool to room temperature and is connected 

into the electric circuit of Fig. 4.216 with the nylon cord 

wound round it as before. The voltmeter to be calibrated 

is connected across the built-in heating coil in the drum 

Thermometer 
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and a steady current (0.7 A is suitable for some makes 
of apparatus) passed so that the temperature rises by 

about the same as in (a) (i.e. about 10°C) in roughly 

the same time ¢. This ensures the heat losses in each 

experiment are similar and can be neglected. The elec- 

trical energy supplied to produce a temperature rise of 

1°C is W, the same as the mechanical energy required 

and is given by 

ItvV 
W=—_ 

6, 

where / is the ammeter reading in amperes, ¢ the time 

in seconds for a temperature rise of 6, and V the 

unknown p.d. across the coil. Hence 

ItV _mgmdn 

0, 0 

Ve mgadn 4, 

It 6 

V can thus be calculated in joules per coulomb (volts) 

and compared with the reading on the voltmeter. In 

this experiment the same amount of internal energy (not 

heat as is often stated, see p. 76) is produced in the 

drum, first from mechanical energy and then from elec- 
trical energy. 

Resistivity 

The resistance of a conductor depends on its size as 

well as on the material of which it is made. To make 

fair comparisons of the abilities of different materials 

to conduct, the resistance of specimens of the same size 

must be considered. 

Experiment shows that the resistance R of a uniform 

conductor of a given material is directly proportional 

to its length / and inversely proportional to its cross- 
section area. A. Hence 

or => — 

where p is a constant (for fixed temperature and other 

physical conditions), called the resistivity of the material 

of the conductor. 

Hence since p= AR/I we can say that the resistivity 

of a material is numerically the resistance of a sample 
of unit length and unit cross-section area, at a certain 

temperature. The unit of p is ohm metre (1m) since 
those of AR// are metre” x ohm/metre, i.e. ohm metre. 

Knowing the resistivity of a material the resistance 
of any specimen of that material may be calculated. 

For example, if the cross-section area of the live rail 

of an electric railway is 50 cm’ and the resistivity of steel 

is 1.0 10-70 m then neglecting the effect of joints, 

the resistance per kilometre of rail R follows— 

l Rae 
A 

(1.0 x 10-70 m) x (10° m) 

i (50 x 10-4 m?) 
( x 107’ x Ss 

ah SO RIGA d 

=20x10-70 

m 

The resistivities at 20°C of various materials are given 

in Table 4.1; their experimental determination is briefly 

described on p. 62. 

The conductivity (a) of a material is the reciprocal 

of its resistivity (p), i.e. o=1/p, and has unit ohm™! 

metre!(Q7'm~!). 
Silver is the best conductor, i.e. has the lowest resisti- 

vity, and is followed closely by copper which, being 
much less expensive, is used for electrical connecting 

wire. Although the resistivity of aluminium is nearly 

twice that of copper, its density is only about one-third 

of copper’s. The ratio of current-carrying-capacity to 

weight of aluminium is therefore greater than that of 

copper. This accounts for its use in the overhead power 

cables of the Grid System where aluminium strands are 

wrapped round a core of steel wires (54 aluminium 

strands to 7 steel wires for example, Fig. 4.22). The 

cable then has the strength it requires for suspension 

in long spans between pylons. 

The resistivity of a pure metal is increased by small 

amounts of ‘impurity’ and alloys have resistivities appre- 

ciably greater than those of any of their constituents. 

On the other hand, the addition of tiny traces of ‘impuri- 

ties’ to pure semiconductors (a process known as 

‘doping’ the semiconductor) reduces their resistivity. 

‘Impurity’ atoms in a crystal lattice act as ‘defects’ and 

restrict the movement of charge carriers. When a semi- 

conductor is ‘doped’ this is more than offset by the pro- 
duction of extra ‘free’ charges. 

Electrical strain gauge 

One device which engineers employ to obtain informa- 

tion about the size and distribution of strains in struc- 

tures such as buildings, bridges and aircraft is the 
electrical strain gauge. It converts mechanical strain into 

a resistance change in itself by using the fact that the 
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Table 4.1 

Material Resistivity 
Qm 

CONDUCTORS 

Silver Ox 107 Contacts on small switches 
Copper lbsfh oe ihe Connecting wi Metal ar g wires 

eta!s) Aluminium Ox l0T? Power cables 
Tungsten Doel Ome Lamp filaments 
Manganin 44 x10°8 High-precision standard resistors 

Alloys Constantan or Eureka 49 x 1078 Resistance boxes, variable resistors 

Nichrome (Ni-Cr) KO) Seale’ Heating elements 
Carbon 3000 x 10-8 Radio resistors 

SEMICONDUCTORS 

Germanium 

Silicon 
Transistors 

Transistors 

INSULATORS 
Glass 
Polystyrene 

10!°-10'4 
1015 

resistance of a wire depends on its length and cross- 
section area. 

One type of gauge consists of a very fine wire (of 

an alloy containing mostly nickel, iron and chromium) 

cemented to a piece of thin paper as in Fig. 4.23. In 

use it is securely attached with a very strong adhesive 

to the component under test so that it experiences the 

same strain as the component. If, for example, an 

increase of length strain occurs, the gauge wire gets 

longer and thinner and on both counts its resistance 

increases. Thick leads connect the gauge to a resistance- 
measuring circuit (e.g. a Wheatstone bridge, p. 60) and 
previous calibration of the gauge enables the strain to 

be measured directly. What is the advantage of using 

a parallel-wire arrangement for the strain gauge? 

Strain gauges are used to check theoretical calcula- 

tions on new aircraft designs. Fig. 4.24 shows a model 

of a slender-wing aircraft with weights and strain gauges 

attached at various places. The weights simulate the 
aerodynamic loading when the aircraft is in flight. 

Fine wire i 

Paper < « 

* 

MG 

Thick leads WS <P 

Fig. 4.24 Fig. 4.23 
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Effects of temperature on resistance 

(a) Temperature coefficient. The resistance of a mater- 
ial varies with temperature and the variation can be 
expressed by its temperature coefficient of resistance a. 
If a material has resistance Ry at 0°C and its resistance 

increases by 5R due to a temperature rise 56 then a 

for the material is defined by the equation 

In words, a is the fractional increase in the resistance 

at 0°C (i.e. 8R/Ro) per unit rise of temperature. The 
unit of @ is °C~! since 8R and Ry have the same units 
(ohms) and 8R/Ry is thus a ratio. For copper 
a~4x 1073°C™!, which means that a copper wire hav- 
ing a resistance of 1 ohm at 0°C increases in resistance 

by 4 x 10-7 ohm for every 1 °C temperature rise. 

Experiment shows that the value of a varies with the 

temperature at which 86 occurs but, to a good approxi- 

mation, for metals and alloys we can generally assume 

it is constant in the range 0 to 100°C. Thus if a specimen 
has resistances Ry, and Ry at temperatures @ and 0°C 

respectively then replacing 5R by R,— Ry and 86 by 

6 in the expression for a, we obtain 

Ry Ro 
= —— 

Ro 

Rearranging gives Ry — Ry = Road 

and R,= Ro(1 + a8) 

When using the equation where accuracy is important 

Ry should be the resistance at 0°C. A calculation shows 

the procedure when Rj is not known. 

Suppose a copper coil has a resistance of 30 0 at 20°C 

and its resistance at 60°C is required. Taking a for cop- 
per as 4.0 x 10-3 °C~! we have 

Ry a R,(1 ata 20a) 

and R¢6o me Roi a5 60a) 

ieee Reo 1+ 60a 

Dividing, — = ——_ 
Ry 1+ 20a 

_ 30(1 + 60 x 4.0 x 107%) 

(1 + 20 x 4.0 x 10-4) 
If the calculation had not been based on the resistance 

at 0°C and we had taken the original resistance (i.e. 
Ry) as Ro then using Roy =Ro(1+a0) where @ = 
(60 — 20) °C = 40°C and Ry = 302, we get 

60 = 34.50 

Re = 30(1 + 4.0 x 10-3 x 40) = 34.80 

This approximate method is quicker but in this example 
introduces an error of 0.3 in 34.5, i.e. about 1%, which 

is acceptable for many purposes. 
The experimental determination of a is outlined on 

p. 62. Metals and alloys have positive temperature coef- 

ficients (they are p.t.c. materials), i.e. their resistance 
increases with temperature rise. The values for pure 
metals are of the order of 4 x 10~? per °C or roughly 
1/273 per °C, the same as the cubic expansivity of a 

gas. In a tungsten-filament electric lamp the current 

raises the temperature of the filament to over 2730°C 

when lit. The ‘hot’ resistance of the filament is, there- 

fore, more than ten times the ‘cold’ resistance. Why 

doesn’t a fuse blow every time lights are switched on? 
Alloys have much lower temperature coefficients of 
resistance than pure metals; that for manganin is about 
2x 10-> per °C and a small temperature change has 

little effect on its resistance. 
Graphite, semiconductors and most non-metals have 

negative temperature coefficients (they are n.t.c. mater- 

ials), i.e. their resistance decreases with temperature 

rise. 

(b) Superconductors. When certain metals (e.g. tin, 
lead) and alloys are cooled to near —273°C with liquid 

helium an abrupt decrease of resistance occurs. Below 
a definite temperature, different for each material, the 

resistance vanishes and a current once started seems 

to flow for ever. Such materials are called superconduc- 
tors and their use in electrical power engineering and 
electronics is being explored. 

Recently superconductors have been made from the 
oxides of copper, barium and yttrium, which need only 
be cooled with the plentiful and cheaper liquid nitrogen 
(at —210°C). 

(c) Thermistors (derived from thermal resistors). 

These are devices whose resistance varies quite mar- 
kedly with temperature. Depending on their composi- 

tion they can have either n.t.c. or p.t.c. characteristics. 
The n.t.c. type consists of a mixture of oxides of iron, 

nickel and cobalt with small amounts of other substances 

and is used in electronic circuits to compensate for resis- 

tance increase in other components when the tempera- 

ture rises and also as a thermometer for temperature 

measurement. The p.t.c. type, which is based on barium 

titanate, can show a resistance increase of 50 to 200 
times for a temperature rise of a few degrees. It is useful 

as a temperature-controlled switch. Why? Fig. 4.25 
shows a selection of thermistors. 

(d) Electrons, resistance and temperature. The ‘free’ 
electron theory can account qualitatively for the varia- 
tion of resistance with temperature of different mater- 



Fig. 4.25 
(a) disc n.t.c. type; 
(b) plate n.t.c. type; 
(c) p.t.c. type; 
(d) rod n.t.c. type; 
(e) rod voltage- 

dependent resistor; 
(£) bead-in-glass type 

ials. The increased average separation of the ions in 

a metal which accompanies a temperature rise (see p. 
84) causes local distortion of the crystal lattice. As a 
result there is increased interaction between the lattice 
and the ‘free’ electrons when they drift under an applied 

p.d. The average drift speed is reduced and the resis- 

tance thus increases. In semiconductors this is more than 
compensated when greater vibration of the atoms 
breaks bonds, ‘freeing’ more electrons (an insignificant 

effect in metals) and thereby produces a marked de- 
crease of resistance with temperature rise. Heavily 

‘doped’ (see Volume II, chapter 23) semiconductors can 
acquire metallic properties, a temperature rise increas- 

ing their resistance. 

Electromotive force 

Batteries and generators are able to maintain one termi- 

nal positive (i.e. deficient in electrons) and the other 

negative (i.e. with an excess of electrons). If we consider 

the motion of positive charges, then a battery, for exam- 

ple, moves positive charges from a place of low potential 
(the negative terminal) through the battery to a place 

of high potential (the positive terminal). The action may 
be compared with that of a pump causing water to move 

from a point of low gravitational potential to one of 

high potential. 
A battery or generator therefore does work on charges 

and so energy must be changed within it. (Work is a 

measure of energy transfer, see p. 76.) In a battery 

chemical energy is transferred into electrical energy 
which we consider to be stored in the electric and mag- 

netic fields produced. When current flows in an external 
circuit this stored electrical energy is changed, for exam- 
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ple, to heat, but it is replenished at the same rate at 

which it is transferred. The electric and magnetic fields 

thus act as a temporary storage reservoir of electrical 

energy in the transfer of chemical energy to heat. A 

battery or generator is said to produce an electromotive 

force (e.m.f.), defined in terms of energy transfer: 

The electromotive force of a source (a battery, genera- 
tor, etc.) is the energy (chemical, mechanical, etc.) con- 
verted into electrical energy when unit charge passes 
through it. 

The unit of e.m.f., like the unit of p.d., is the volt 
and equals the e.m.f. of a source which changes 1 joule 

of chemical, mechanical or other form of energy into 

electrical energy when 1 coulomb passes through it. A 

car battery with an e.m.f. of 12 volts supplies 12 joules 
per coulomb passing through it; a power station genera- 

tor with an e.m.f. of 25 000 volts is a much greater source 

of energy and supplies 25000 joules per coulomb—2 

coulombs would receive 50000 joules and so on. In 
general, if a charge Q (in coulombs) passes through 

a source of e.m.f. E (in volts), the electrical energy 
supplied by the source W (in joules) is 

W=QE 

It should be noted that although e.m.f. and p.d. have 
the same unit, they deal with different aspects of an 
electric circuit. Whilst e.m.f. applies to a source supply- 

ing electrical energy, p.d. refers to the conversion of 
electrical energy in a circuit. The term e.m.f. is mislead- 

ing to some extent, since it measures energy per unit 
charge and not force. It is true, however, that the source 

of e.m.f. is responsible for moving charges round the 
circuit. 
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A voltmeter measures p.d. and one connected across 

the terminals of an electrical supply such as a battery 
records what is called the terminal p.d. of the battery. 

If the battery is not connected to an external circuit 

and the voltmeter has a very high resistance then the 
current through the battery will be negligible. We can 
regard the voltmeter as measuring the number of joules 
of electrical energy the battery supplies per coulomb, 

i.e. its e.m.f. A working but less basic definition of 

e.m.f. is to say that it equals the terminal p.d. of a 
battery or generator on open circuit, i.e. when not main- 
taining current. 

Internal resistance 

A high-resistance. voltmeter connected across a cell on 
open circuit records its e.m.f. (very nearly), Fig. 4.26a. 

Let this be E. If the cell is now connected to an external 

circuit in the form of a resistor R and maintains a steady 

current J in the circuit, the voltmeter reading falls; let 

it be V, Fig. 4.26b. V is the terminal p.d. of the cell 

(but not on open circuit) and it is also the p.d. across 
R (assuming the connecting leads have zero resistance). 

Since V is less than E, then not all the energy supplied 

per coulomb by the cell (i.e. £) is changed in the external 
circuit to other forms of energy (often heat). What has 
happened to the ‘lost’ energy per coulomb? 

R 
Fig. 4.26 (b) 

The deficiency is due to the cell itself having some 

resistance. A certain amount of electrical energy per 

coulomb is wasted in getting through the cell and so 

less is available for the external circuit. The resistance 

of a cell is called its internal or source resistance (r). 
Taking stock of the energy changes in the complete cir- 
cuit including the cell, we can say, assuming conserva- 

tion of energy: 

energy supplied energy changed energy wasted 
per coulomb by = per coulomb by + per coulomb on 

cell external circuit internal __resis- 

tance of battery 

Or, from the definitions of e.m.f. and p.d., 

e.m.f. = p.d. across R + p.d. across r 

Ve Sey 
useful ‘lost’ 
volts volts 

In symbols E = 
e.m.f. 

where v is the p.d. across the internal resistance of the 
cell, a quantity which cannot be measured directly but 
obtained only by subtracting V from E. From the equa- 
tion E=V+v we see that the sum of the p.d.s across 

all the resistance in a circuit (external and internal) equals 

the e.m.f. 
Since V = JR and v = /r we can rewrite the previous 

equation 

E=IR+Ir 

E=I(R+r) 

Suppose a high-resistance voltmeter reads 1.5 V when 

connected across a dry battery on open circuit, and1.2V 

when the same battery is supplying a current of 0.30A 
through a lamp of resistance R. What is (a) the e.m.f. 
of the battery, (b) the internal resistance of the battery 

and (c) the value of R? 

Using symbols with their previous meanings: 

(a) Since the terminal p.d. on open circuit equals the 

e.m.f., we have E=1.5V. 

(b) E = V+v = V+Ir where V = 1.2V and / = 
0.30 A. Therefore 

- a : E-V_ 1.5-1.2 en 
= _ an SE id 

Saal 0.30 

(c) From V=IR, 

Velie 
Se SN 

I 0.30 

The internal resistance of an electrical supply depends 

on several factors and is seldom constant as is often 

assumed in calculations. However, it is sometimes useful 

to know its rough value and estimates can be made by 
taking p.d. and current measurements and proceeding 
as in the above example. Sources such as low-voltage 

supply units and car batteries from which large currents 
are required must have very low internal resistances. 

On the other hand if a 5000 V, E.H.T. power supply 

does not have an internal resistance of the order of 

megohms, to limit the current it supplies, it will be dan- 
gerous. 

The effect of internal resistance can be seen when 

a bus or car starts with the lights on. Suppose the starter 

motor requires a current of 100A from the battery of 
e.m.f. 12 V and internal resistance 0.041 to start the 
engine. How many volts are ‘lost’? What is the terminal 
p.d. of the battery with the starter motor working? Why 



do the lights dim if they are designed to operate on 
a 12 V supply? 

The effect of a load (i.e. an external circuit drawing 
current) on a source is to reduce its terminal p.d. The 
equation V = E — /r shows that if either / or r increases, 

V decreases. Also note that the maximum current that 
can be supplied by a source occurs when R = 0 and is 

E/r; it is called the ‘short-circuit’ current and would 
damage most sources. 

The terminal p.d. of a battery on open circuit as mea- 
sured by even a very-high-resistance voltmeter is not 

quite equal to the e.m.f. because the voltmeter must 
take some current, however small, to give a reading. 

A small part of the e.m.f. is, therefore, ‘lost’ in driving 

current through the internal resistance of the battery. 

A potentiometer is used to measure e.m.f. to a very 

high accuracy (p. 62). 

Kirchoff’s laws 

The statements that have been made about steady cur- 
rents and p.d.s in series and parallel circuits are summar- 
ized by Kirchoff’s two laws. 

(a) First law. This states that at a junction in a circuit, 
the current arriving equals the current leaving. If currents 
arriving are given, say, a positive sign and those leaving 

a negative sign, then the law may be stated in symbols 

as 

~1=0 

~ (pronounced ‘sigma’) stands for ‘the algebraic sum 
of’—in this case the currents J. For example in Fig. 

4.27a, at junction A, 

current arriving = / 

currentleaving =/,+1,+ J, 

l=I,+h+I, or I[-1,-1,-1,=0 

e. xJ=0 

The law is a statement of our belief that when we are 
dealing with steady currents, charge is conserved and 
flows in a circuit without being destroyed or accumulat- 

ing at any point. 

(b) Second law. This states that round any closed cir- 

cuit or loop the algebraic sum of the e.m.f. E is equal 

to the algebraic sum of the products of current I and 

resistance R. In symbols 

2E=ZIR 

If we adopt the sign conventions that, in going round 

a circuit or loop, 
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(i) e.m.f.s are positive if we pass from the positive 

terminal of the supply round the rest of the circuit or 
loop to the negative terminal, and negative if the oppo- 
site happens, and 

(ii) IR products are positive when there is a drop 

of potential and negative when there is a rise, then in 
Fig. 4.27b we can say for a clockwise journey round 

ABCDA, and with the current directions shown, 

> ye dos 
IR a LR, a LR, a LR; 

E, = E, — LR, a LR, = LR; 

The law is a statement of the conservation of energy 
using electrical quantities. 

E, 
I, R, R2 

B 

A (e 

D 

I Rs es 

(b) 

Fig. 4.27 

Power and heating effect 

Current flow is accompanied by the conversion of elec- 
trical energy into other forms of energy and it is often 
necessary to know the rate at which a device brings about 
this conversion. 

The power of a device is the rate at which it converts 

energy from one form into another. 

If the p.d. across a device is V and the current through 

it is J, the electrical energy W converted by it in time 
tis (from the definition of p.d., p. 46) 

W=ItV 

The power P of the device will be 



60 VOLUME I Materials and Mechanics 

The unit of power is the watt (W) and equals an energy 

conversion rate of 1 joule per second, i.e. 1W=1Js7'. 

In the expression P=JV, P will be in watts if J is in 

amperes and V in volts. A larger unit is the kilowatt 

(kW) which equals 1000 watts. 
If all the electrical energy is converted into heat by 

the device it is called a ‘passive’ resistor and the rate 

of production of heat will also be JV. If its resistance 

is R, Fig. 4.28, then since R = V/I we have 

P=IV 

4 iG 
Vee 

R R 

=].IR=I°R 

/ R ~Passive 
>, resistor 

P=IV=I‘R 

Fig. 4.28 

There are thus three alternative expressions for power 

but the last two are only true when all the electrical 

energy is changed to heat. The first, P=J/V, gives the 

rate of production of all forms of energy. For example 

if the current in an electric motor is 5 A when the applied 

p.d. is 10 V then 50 W of electric power is supplied to 

it. However, it may only produce 40 W of mechanical 

power, the other 10 W being the rate of production of 

heat by the motor windings due to their resistance. 

(a) Heating elements and lamp filaments. The expres- 
sion P = V?/R shows that for a fixed supply p.d. of V, 
the rate of heat production by a resistor increases as 

R decreases. Now R = pl/A, therefore P = V? A/pl and 
so where a high rate of heat production at constant p.d. 

is required, as in an electric fire on the mains, the heating 

element should have a large cross-section area A, asmall 

resistivity p and a short length /. It must also be able 
to withstand high temperatures without oxidizing in air 
(and becoming brittle). Nichrome is the material which 
best satisfies all these requirements. 

Electric lamp filaments have to operate at even higher 

temperatures if they are to emit light. In this case, tung- 
sten, which has a very high melting-point (3400°C), is 
used either in a vacuum or more often in an inert gas 

(nitrogen or argon). The gas reduces evaporation of 

the tungsten (why?) and prevents the vapour condensing 

on the inside of the bulb and blackening it. In modern 

projector lamps there is a little iodine which forms tung- 

sten iodide with the tungsten vapour and remains as 

vapour when the lamp is working, thereby preventing 

blackening. 

(b) Fuses. When current flows in a wire its tempera- 
ture rises until the rate of loss of heat to the surroundings 

equals the rate at which heat is produced. If this temper- 

ature exceeds the melting-point of the material of the 
wire, the wire melts. A fuse is a short length of wire, 

often tinned copper, selected to melt when the current 

through it exceeds a certain value. It thereby protects 

a circuit from excessive currents. 

It can be shown (see question 21, p. 71) that: 
(i) the temperature reached by a given wire depends 

only on the current through it and is independent of 

its length (provided it is not so short for heat loss from 

the ends where it is supported to matter); and 
(ii) the current required to reach the melting-point 

of the wire increases as the radius of the wire increases. 

Fuses which melt at progressively higher tempera- 

tures can thus be made from the same material by using 

wires of increasing radius. 

(c) The kilowatt-hour (kWh). For commercial pur- 

poses the kilowatt-hour is a more convenient unit of 

electrical energy than the joule. 

The kilowatt-hour is the quantity of energy converted 
to other forms of energy by a device of power 1 kilowatt 
in 1 hour. 

The energy converted by a device in kilowatt-hours 

is thus calculated by multiplying the power of the device 

in kilowatts by the time in hours for which it is used. 

Hence a 3 kW electric radiator working for 4 hours uses 

12kWh of electrical energy—often called 12 ‘units’. 

How many joules are there in 1 kWh? 

(d) Maximum power theorem. It can be shown that 
the power delivered to a load of resistance R is a maxi- 

mum when R equals the source resistance r. The maxi- 
mum power P is given by 

P=[?R= E°R/(R +r) = E?R/4R? = E2/4R 

The power wasted in the source is E”/4r, i.e. the same 
as that in R since r=R. The efficiency of the power- 
transfer process is thus 50%. 

Wheatstone bridge 

(a) Theory. The Wheatstone bridge circuit enables 

resistance to be measured more accurately than by the 

ammeter—voltmeter method (p. 51). It involves making 

adjustments until a galvanometer is undeflected and so, 
being a ‘null’ method, it does not depend on the accuracy 



of an instrument. Other known resistors are, however, 

required. 

Four resistors P, Q, R, S are joined as in Fig. 4.29a. 
If P is the unknown resistor, Q must be known as must 

the values of R and S or their ratio. A sensitive galvan- 

ometer G and a cell (dry or Leclanché) are connected 
as shown. One or more of Q, R and S are adjusted 

until there is no deflection on G. The bridge is then 

said to be balanced and it can be shown that 

from which P can be found. The proof of this expression 

follows. 

At balance, no current flows through G, therefore 

the p.d. across BD is zero and so 

p.d. across AB = p.d. across AD 

Also, current through P = current through Q = /, and, 

current through R = current through S = /,. Therefore 

I,xP=I1,XR 

Similarly, p.d. across BC = p.d. across DC. Therefore 

Dividing, oY = 
Oo. .S 

It can be shown that the same condition holds if the 

cell and G are interchanged. 

(b) Metre bridge. This is the simplest practical form 

of the Wheatstone bridge, Fig. 4.29b. The resistors R 

and S consist of a wire AC of uniform cross-section 
and 1 m long, made of an alloy such as constantan, with 

a resistance of several ohms. The ratio of R to Sis altered 
by changing the position on the wire of the movable 

contact or ‘jockey’ D. The other arm of the bridge con- 

tains the unknown resistor P and a known resistor Q. 

Thick copper strips of low resistance connect the various 
parts. Figs 4.29a and b have identical lettering to show 

their similarity. 

Fig. 4.29 (a) (b) 
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The position of D is adjusted until there is no deflec- 
tion on G, then 

12 < R 44 resistance of AD 

ae 
Since the wire is uniform, resistance will be proportional 

to length and therefore 

resistance of DC 

Four practical points should be noted. Resistor Q 

should be chosen to give a balance point near to the 
centre of the wire, say between 30 and 70cm, for three 

reasons. First, any errors in reading the balance lengths 
AD and DC are then small in comparison with their 

values. Second, where the resistors and metre wire are © 

screwed or soldered to the copper strips there are ‘con- 
nection’ resistances which may, if desired, be deter- 

mined experimentally and expressed in millimetres of 

bridge wire. However, when this is not done the ‘end 

corrections’, as they are called, will have least effect 

if neither AD nor DC is small. Third, the bridge is more 
sensitive near the middle since the unbalanced current 

is larger per mm change of position. 

In finding the balance point the cell key should be 

closed before the jockey makes contact with the wire. 

This is necessary because, due to an effect known as 

‘self-induction’, the currents in the circuit take a short 

time to grow to their steady values. During this time 

a momentary deflection of the galvanometer might be 

obtained even when the bridge is balanced for steady 

currents. 
A high resistor should be joined in series with the 

galvanometer to protect it from damage whilst the 

balance point is being found. In the final adjustment it 
is shorted out and maximum sensitivity of the galvano- 
meter obtained, Fig. 4.29c. 

Having obtained a balance point, P and Q should 
be interchanged and a second pair of values for AD 

and DC obtained and the means taken. This helps to 
compensate for errors arising from non-uniformity of 

Thick copper strip 

SEE 
Protective resistor 

(c) 
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the wire, from the wrong positioning of the millimetre 

scale in relation to the wire and from ‘end corrections’ 

provided the balance point is near the centre of the 

wire. 
Wheatstone bridge methods are unreliable for finding 

resistances of less than 1 ohm, due to ‘connection’ resis- 

tance errors becoming appreciable, and are insensitive 

for resistances greater than 1 megohm unless a highly 
sensitive galvanometer is used. A modern dial-operated 

form of Wheatstone bridge for the use of maintenance 

engineers is shown in Fig. 4.30. 

Fig. 4.30 

(c) Measurement of resistivity using a metre bridge. 
The resistivity p of a material can be determined by 
measuring the resistance R of a known length / of wire 
and also its average diameter d using a micrometer screw 

gauge. Then p= AR/I where A = 2(d/2)’. 

(d) Measurement of temperature coefficient of resis- 

tance. This may be found for, say, copper by measuring 

its resistance at different temperatures with the appara- 

tus shown in Fig. 4.31a. A graph of resistance against 

temperature is plotted. Over small temperature ranges 

it is a straight line and from it the temperature coefficient 

ais calculated using a = (R,— Ro)/(Ro9), Fig. 4.31b. 

Can 

Water 

Paraffin oil 

4 metres SWG 36 

DCC copper wire 

Wooden rod 

Fig. 4.31 (a) 

To metre bridge 

Potentiometer 

(a) Theory. A potentiometer is an arrangement 

which measures p.d. accurately. It can be adapted to 

measure current and resistance. 
In its simplest form it consists of a length of resistance 

wire AB of uniform cross-section area, lying alongside 
a millimetre scale, and through which a steady current 
is maintained by a cell, called the driver cell, Fig. 4.32. 

(This is usually an accumulator because it gives a steady 

current for a long time.) As a result there is a p.d. 

between any two points on the wire which is propor- 

tional to their distance apart. Part of the p.d. across 
AB is tapped off and used to counter-balance the p.d. 

to be measured. If the p.d. across AB is 2 volts and 

if the wire is uniform and the current steady, what p.d.s 

can be tapped off between (i) A and P, (ii) A and Q, 

(iii) A and R, (iv) Q and B? 

Accumulator 

Potentiometer 
: wire 

A B 
see rent Sir ome mecca: AAS) 
| | \ | | scale 

Fig. 4.32 

In practice the unknown p.d. V; is connected with 
its positive side to X in Fig. 4.33a if the positive terminal 
of the driver cell is joined to A, as shown. The negative 

side of the unknown p.d. goes to a galvanometer G 
and a jockey C. In AX and YGC there are thus two 

p.d.s trying to cause current flow. The one tapped off 

between A and C from the potentiometer wire acts in 

an anticlockwise direction whilst the unknown p.d. V, 

tends to drive current in a clockwise direction. The 

direction of current flow through G therefore depends 
on whether V, is greater or less than the p.d. across 

AC. When the position of the jockey on the wire is 
such that there is no current through G, these two p.d.s 

Resistance /Q2 

Temperature /°C 

(b) 



Driver cell 

B 

Potentiometer 
wire 

c 
B 

1 
Unknown pd. Pp . . applied across XY Y rotective resistor 

(a) (b) 

Fig. 4.33 

are equal and the potentiometer is said to be balanced. 
The balance length /; is then measured. 

If the resistance of AB per cm is r then the resistance 

of the balance length /, (in cm) is /;r and if the steady 
current through AB from the driver cell is J, we have 

unknown p.d. V; = p.d. tapped off at balance 

V,=1xXyr 

Since / and r are constants 

V,<1; 

Let the p.d. across the whole potentiometer wire AB 
be V, then if /= AB 

V= DXi 

Therefore, Vy _ Thr bs 
Vo eur, 

lh; 
V,=-.V 

Knowing V, / and /,, we can find V,. When the driver 
cell is an accumulator of low internal resistance, V may 

be taken as its e.m.f. If this is 2.0 volts and if / = 100cm 
and /, = 80cm then V; = (90/100) x2 = 1.6 volts. 
Where higher accuracy is required a slightly different 
procedure is adopted as we shall see presently. 
A potentiometer is a kind of voltmeter but is much 

more accurate than the best dial instrument since its 

‘scale’ (i.e. the wire) may be made as long as we wish 
and its adjustment, being a ‘null’ method, does not 

depend on the calibration of the galvanometer. It has 
the further advantage of not altering the p.d. to be mea- 
sured since at balance no current is drawn by it from 

the unknown p.d.; it behaves like a voltmeter of infinite 
resistance. On the other hand the wire form considered 
here is bulky and slow to use compared with an ordinary 
voltmeter. Modern potentiometers are dial-operated. 
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(b) Practical points. The following procedure should 
be noted. 

(i) With a large protective resistor in series with the 
galvanometer, Fig. 4.33b, the circuit is tested by first 
placing the jockey on one end of the wire and then 

on the other; the deflections should be in opposite direc- 

tions. If they are not then either the unknown p.d. is 
connected the wrong way round or the p.d. across the 
whole wire is less than the unknown p.d. 

(ii) The balance point is found by repeating (i) for 

pairs of points that get progressively closer together, 
the protective resistor being shorted out near balance. 
The jockey should not be drawn along the wire or its 
uniformity will be lost. 

(iii) The balance length is measured from the end 
A of the wire and should be reasonably long so that 
the percentage error in measuring it is small. 

(c) Comparison of e.m.f.s of two cells. The first cell, 
of e.m.f. E;, is connected to XY and its balance length 
1, found, Fig. 4.34a. At balance no current is drawn 

from the cell and so 

p.d. at terminals of cell = its e.m.f. = p.d. across AC 

l Hence Fi + aa 

where / = AB and V = p.d. across AB due to driver cell. 

Driver cell 

AGy vs 
x Y 

os 0-5 MQ 
Rigls of ical B 

1g (a) (b) 

Replacing the first cell by the second of e.m.f. E, 
and finding its balance length /, we have similarly 

l, 
Ex =—* 
ee 

E, |, 

EL 
If one of the cells is a Weston standard cell (p. 68) 

the e.m.f. of the other cell can be calculated accurately 



64 VOLUME I Materials and Mechanics 

and, in effect, the potentiometer is calibrated. The Wes- 

ton cell maintains a constant e.m.f. E, of 1.0186 volts 

(at 20°C) provided the current taken from it (out of 
balance) is less than 10 2A. To ensure this a very high 

resistance (0.5 MQ) is connected in series with it, Fig. 
4.34b, and shorted out when the balance point is 

approached. Note that the high resistor does not affect 

the position of balance (since no current flows then) 

but only the precision with which it can be found. 

(d) Calibrating a voltmeter. The potentiometer is first 
calibrated using a standard cell as explained in (c) so 

that the p.d. per cm of potentiometer wire is known. 
The circuit of Fig. 4.35 is suitable for calibrating a volt- 
meter in the range 0.2 to 2.0 volts. In the circuit below 

XY the variable resistor acts as a potential divider and 

enables various p.d.s to be applied to both the voltmeter 
®) and the potentiometer. The p.d. can be calculated 

for each balance length. 

Driver cell 

x 

Potential ] 
divider 

Za 2 
| 
| 
| 

Accumulator 

Fig. 4.35 

Design a circuit to calibrate a voltmeter reading up 

to 10 volts using a 2-volt potentiometer. 

In the circuit of Fig. 4.35 the balance lengths for p.d.s 

of less than 0.2 volt on a potentiometer wire 1-2 metres 

long would be too small for reasonable accuracy. The 
measurement of small p.d.s (and e.m.f.s) is achieved 

by reducing the p.d. across the whole potentiometer, 

by a method similar to that now to be considered. 

(e) Measuring the e.m.f. of a thermocouple. The 
e.m.f.s of thermocouples (p. 69) are of the order of 
a few millivolts, and to ensure that an appreciable 

balance length is obtained when measuring them a high 

resistance R is joined in series with the potentiometer 

wire, Fig. 4.36. The value of R is chosen so that the 

p.d. across the whole wire AB is just greater than the 

maximum e.m.f. to be measured. 
Let V be the p.d. across R and AB in series and let 

Driver cell 

Thermocouple 

Fig. 4.36 

Rag be the resistance of AB. Then the current / through 
AB due to the driver cell is 

2 V 

~R+Raz 

and eh 
AB AB R+Rap AB 

If V=2 volts, Rag = 2 ohms (as measured by a metre 

bridge) and R = 1998 ohms (a resistance box) then 

Sa) 4 2 
AB == = = = Volts 

1998+2 2000 1000 

=2mV 

If AB is 100cm long, the p.d. across every cm is 

2/100 = 0.02mV per cm and the e.m.f. of a thermo- 
couple can then be found from the balance length so 

long as it does not exceed 2 mV. For example, the e.m.f. 

of a copper—iron thermocouple can be measured for 
different hot-junction temperatures. 

Where greater accuracy is required the potentiometer 

is calibrated using a standard cell and the circuit of Fig. 

4.36 has to be modified as described in many practical 
books. 

(f) Calibrating an ammeter. The potentiometer is 

first calibrated using a standard cell so that the p.d. 

per cm-of the wire is known. The circuit is then con- 

nected as in Fig. 4.37a and the potentiometer used to 

measure the p.d. V across a suitable standard resistor 
R in series with the ammeter @ to be calibrated. The 

current J=V/R; R is chosen to give a balance point 

near the end of the wire, i.e. V should be nearly 2 volts 

so that if /= 0.5 ampere then R = 2/0.5 = 4ohms. 
Unknown connection resistances at'the terminals of 

two-terminal resistors are important’in resistances of 

a few ohms and four-terminal types should be used if 

high accuracy is required in this type of measurement. 



The specified resistance exists between L and M in Fig. 

4.37b; the resistance of the wires connecting L and M 

to the p.d. terminals does not affect things since at 
balance the current through them is zero. 

Driver cell 

p.d. terminals 

: vga L M 

; 4 ! , 
Current terminals 

(a) (b) 

Fig. 4.37 

(g) Comparison of resistances. The ratio of two resis- 

tances R, and R, can be found accurately by using a 

potentiometer to compare the p.d.s V, and V, across 

each when they are carrying the same current /. In the 

circuit of Fig. 4.38 X and Y are joined across R, and 

R, in turn and the corresponding balance lengths /,; and 
1, measured. Then 

Fig. 4.38 

To obtain balance lengths near the end of the wire 
V, and V, should approach 2 volts. If the value of / 

needed for this causes overheating of R, and R, then 
a smaller current must be used and a suitable resistor 

connected in series with the wire to make /, and /, large. 

Using four-terminal-type resistors for R, and R, the 

potentiometer method is very suitable for resistances 

of less than 1 ohm since the resistances of connecting 

wires and terminal connections do not affect the result 

as they can in bridge methods. 
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(h) Measuring internal resistance of a cell. The 

balance length / is found first with the cell on open cir- 

cuit, Fig. 4.39 (solid lines). The p.d. across XY therefore 
equals the p.d. at the terminals of the cell on open cir- 

cuit, i.e. its e.m.f. E; therefore E «</. A known resis- 

tance R is then connected across the cell (dotted lines) 

and if /; is the new balance length, the p.d. across XY 
falls and equals the p.d. V across the cell when it main- 

tains current through R; therefore V </,. Hence 

If the current through R (at balance) is / and r is the 
internal resistance of the cell, Ohm’s law applied first 

to the whole circuit and then to R alone gives 

E=I(R+r) and V=IR 

EE Rere 

Vale aL 

re 

rsd Ti, 
Refer 

Hence r can be calculated. 

Driver cell 

Fig. 4.39 

Electrolysis 

(a) Ionic theory. Liquids which undergo chemical 

change when a current passes through them are called 

electrolytes and the process is known as electrolysis. 

Solutions in water of acids, bases and salts are electro- 

lytes. Liquids that conduct without suffering chemical 
decomposition are non-electrolytes; molten metals such 
as mercury are examples. 
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Conduction in an electrolyte is considered to be due 
to the movement of positive and negative ions. There 
is evidence from X-ray crystallography that, in the solid 

state, compounds such as sodium chloride consist of 

regular structures of positive and negative ions (p. 19) 
held together by electrostatic forces. We believe that 
when such substances are dissolved in water (and some 
other solvents) the interionic forces are weakened so 

much by the water that the ions can separate and move 
about easily in the solution. Jonization or dissociation 

is said to have occurred as a result of solution; the ioniza- 

tion of other salts, bases and acids is similarly explained. 
(Note. Whilst ions may exist in a solid, they are not 

free to move and so we do not consider the solid is 

ionized.) 

Conventional 
current 

Electron flow 

o— 
Ca 

Ca 
Cathode 

@®~ Positive ion 
—© Negative ion 

Fig. 4.40 

In Fig. 4.40 when a p.d. is applied to the plates that 
dip into the electrolyte, i.e. the electrodes, an electric 

field is created which causes positive ions to move to- 
wards one electrode (the cathode), while negative ions 

are attracted to the other (the anode). The two streams 
of oppositely charged ions, drifting slowly in opposite 

directions (see p. 46), constitute the current in the elec- 
trolyte. At the electrodes, for conduction to continue, 

either (Z) the ions must be discharged, i.e. give up their 
excess electrons if they are negative or accept electrons 

if they are positive, or (ii) fresh ions must be formed 

from the electrode and pass into solution. In any event 

the anode must gain electrons and the cathode lose them 
to maintain electron flow in the external circuit. After 

being discharged the ions usually come out of solution 

and are liberated as uncharged matter, being either 
deposited on the electrodes or released at them as bub- 

bles of gas. (The electrodes must be made of metal or 
carbon. Why?) 

Consider the electrolysis of copper sulphate solution 
with copper electrodes. The solution contains copper 

ions with a double positive charge (Cu?*) and sulphate 
ions with a double negative charge (SO4-). Under an 

applied p.d. the copper ions drift to the cathode where 
each receives two electrons (2e) and forms a copper 

atom that is deposited on the cathode. 

Cu** + (2e from the cathode) —> Cu 

Sulphate ions collect round the anode and the most 

likely reaction to occur there, because it involves less 

energy than any other, is the formation of fresh copper 
ions by copper atoms of the anode going into solution. 

The anode is thus able to acquire electrons because 
every copper atom must lose two electrons to form a 

copper ion. Also, the fresh copper ions neutralize the 
negatively charged sulphate ions tending to gather 

round the anode. 

Cu— > Cu’* + (2e to'anode) 

The net result is that copper is deposited on the cathode 
and goes into solution from the anode. In general, 

metals and hydrogen are liberated at the cathode and 

non-metals at the anode. 
Electrolysis is used in many industrial processes. By 

allowing chemical reactions to occur at different places 

in the same solution, it keeps the products separate and 

makes feasible reactions that are otherwise impossible. 

(b) Specific charge of an ion. If the same kind of ion 

always has the same charge and mass then the mass 

of a substance liberated or deposited in electrolysis is 
directly proportional to the total charge passed. This is 

confirmed by experiment and is called Faraday’s first 
law of electrolysis. 

If m is the mass liberated and Q the charge passed 

for a particular substance, Q/m is a constant for the 

ions of that substance. It is called the specific charge 

of the ion and is expressed in coulombs per kilogram 

(Ckg™'). 
For example, if in the electrolysis of copper sulphate 

solution a steady current J=1.0A deposits 1.2g of 

copper on the cathode in a time t= 1 hour, the specific 
charge of the copper ion is given by 

It 
specific charge = e =— 

mom 

_ (1.0A) x (3600s) 

(1.2 x 10-3 kg) 

= 3.0 x 10°Ckg"! 

Knowing that a copper ion carries a double electronic 
charge, i.e. 2e, where e = 1.6 x 107!9C, the mass m of 

a copper ion is then given by 

’ chargeonion 2e 
specific charge = ——~—____ = — 

massofion m 



Oe 15 19 
atis. Ca ee 

m 

2 x 1.6 x 10-19 
hence, Ee ee ne vesithe ee 

3.0 x 10° 

=1.1x 10-*%kg 

Large-scale measurements on matter in bulk thus 

enable us, with the help of theory, to obtain information 
about atomic-sized particles. The results agree well with 
those from more direct methods (e.g. mass spec- 
trometry, Volume II, p. 501). 

(c) The Faraday constant (F). This is the quantity 

of electric charge which liberates one mole of any singly 
charged ion. Experiment gives its value as 

F=9.65 x 10*C mol"! 

If e is the charge on a hydrogen ion and L is the number 

of ions in 1 mole of hydrogen ions, i.e. the Avogadro 
constant (p. 13), then 

F=Le 

since 1 mole of hydrogen ions is liberated by 9.65 x 104 
coulombs. X-ray crystallography measurements give 

L = 6.02 x 10 per mole and so 

This is the charge on a singly charged ion and is found 

to be the same as that on an electron. The above expres- 
sion gives one of the most accurate ways of obtaining 

the electronic charge e. 

(d) Ohm’s law and electrolytes. The variation of cur- 

rent with p.d. for an electrolyte may be investigated 

using the circuit of Fig. 4.41. The p.d. is varied from 
044 volts by the potential divider and measured with 
a high-resistance voltmeter. 

4V 

H 
Potential divider 

Fig. 4.41 
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With copper sulphate solution and copper electrodes, 
the graph of current against p.d. is a straight line through 
the origin, Fig. 4.42a, and Ohm’s law is fairly well 

obeyed. The smallest p.d. causes current to flow and 
supports the ionic theory assumption that electrolytes, 

as soon as they dissolve, split into ions which are imme- 
diately available for conduction. 

Current Current 

(a) (b) 

Fig. 4.42 

Using water (acidulated) and platinum electrodes 
there is no appreciable current flow until the p.d. 

exceeds 1.7 volts. Thereafter increases of p.d. cause 
proportionate increases of current, and hydrogen and 

oxygen are evolved at the cathode and anode respect- 
ively. The current-p.d. graph is shown in Fig. 4.425. 

The virtual absence of current for p.d.s below 1.7 volts 

is attributed to the existence of a back e.m.f. of maxi- 

mum value 1.7 volts which the applied p.d. must exceed 
before the electrolyte conducts. The back e.m.f. is due 

to polarization, i.e. the accumulation at the electrodes 
of products of electrolysis formed when the circuit is 
first made. In this case hydrogen at the cathode and 
oxygen at the anode effectively replace the platinum 
electrodes by gas electrodes and act as a chemical cell 
with an e.m.f. which opposes the applied p.d. (If the 
switch in Fig. 4.41 is opened the back e.m.f. is recorded 
on the voltmeter and falls rapidly.) AB in the graph 
of Fig. 4.425 is a straight line showing that, if allowance 
is made for the back e.m.f., acidulated water obeys 

Ohm’s law. The equation of AB is 

V-E=IR 

where R is the resistance of the electrolyte, J is the 

current when the applied p.d. is V, and E is the back 

e.m.f. 

Electric cells 

These convert chemical energy into electrical energy 

and consist of two different metals (or a metal and car- 

bon) separated from each other by an electrolyte. Their 

e.m.f. depends on the nature and concentration of the 

chemicals used, their size affects the internal resistance 
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and the amount of electrical energy they can supply, 

i.e. their capacity. 
Many different cells have been invented since the first 

was made by Volta at the end of the eighteenth century. 

Volta’s simple cell consisted of plates of copper and zinc 

in dilute sulphuric acid and had ane.m.f. of about 1 V. 

(a) Primary cells. In general these have to be dis- 

carded after use and are popularly called ‘dry’ batteries 
though this description is not strictly correct. Some types 

used today are listed in Table 4.2. 
The graphs in Fig. 4.43 show roughly how the e.m.f. 

of different cells of size AA(U12—Pencell) vary when 

supplying moderate currents (e.g. 30mA). 

(b) Secondary cells. These can be charged and dis- 
charged repeatedly (but not indefinitely) and are gener- 
ally called accumulators. They supply ‘high’ continuous 

currents depending on their capacity, which is expressed 

in ampere-hours (Ah) for a particular discharge rate. 
For example, a cell with a capacity of 30 Ah at the 10- 

hour rate will sustain a current of 3A for 10 hours, 

but whilst 1 A would be supplied for more than 30 hours, 
6 A would not flow for 5 hours. 

The lead-acid type is commonest. It has an e.m.f. 
of 2.0 V which it maintains until it is nearly discharged. 
A 12 V car battery consists of six in series and may supply 
a current of several hundred amperes for a few seconds 

to the starter motor. The internal resistance of one cell 

is of the order of 0.01, consequently for ordinary cur- 

rents, the ‘lost’ volts are negligible. 

> 
ay 

515 
MN 
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0.5 
0) 5 10 15 20 

Time/ hours 

1 Carbon-zinc 4 Mercury 

2 High-power carbon-zinc 5 Silver oxide 

3 Alkaline-manganese 

Fig. 4.43 

The nickel-iron (nife) cell has an e.m.f. of 1.2 V which 

falls during use but its weight is about half that of a 
lead-acid cell of the same capacity. Batteries of nife 

cells are used to drive electrically propelled vehicles such 
as milk floats. 

The nickel-cadmium (nicad) cell also has an e.m.f. 

of 1.2 V but it maintains this value in use. ‘Button’ types 

are used as rechargeable batteries for calculators and 
shavers. They are very expensive. 

Table 4.2 

Alkaline-manganese 5V 

4V 

5) \V/ 

zinc cell. 

Weston standard 1.0186 V 

Relatively cheap; most popular 
type; e.m.f. 
increases; best for low currents 

or occasional use. 

Medium price; e.m.f. does not 

fall so much in use; long ‘shelf’ 
life; better for higher continuous 
currents; lasts about four times 
longer than same size carbon— 

Large capacity for their size; 
made as ‘buttons’; e.m.f. almost 
constant till discharged; best for 
low current use; expensive. 

1 

e.m.f. constant if current does 

not exceed 10 nA 

Torches 

Radios falls as current 

Radios 

Calculators 

Hearing aids 
Cameras 

Watches 

Calculators 

As for mercury cell 

Laboratory standard 
of e.m.f. 



Thermoelectric effect 

If two different metals such as copper and iron are joined 
in a circuit and their junctions are kept at different tem- 
peratures, a small e.m.f. is produced and current flows, 

Fig. 4.44. The effect is known as the thermoelectric or 
Seebeck effect and the pair of junctions is called a 
thermocouple. 

Copper Copper 

Cold Hot 

Fig. 4.44 

The value of the thermo-e.m.f. depends on the metals 

used and the temperature difference between the junc- 
tions; the e.m.f.—temperature difference curve is always 

approximately a parabola. Fig. 4.45 shows the curves 
for (a) copper-iron and (b) iron—constantan which may 

be obtained using a potentiometer as described pre- 

viously (p. 64). The iron—-constantan curve (although 

part of a parabola) is almost linear over a large range 

and produces about 10 times the e.m.f. of a copper—iron 

couple. The temperature of the hot junction at which 

the e.m.f. is a maximum is called the neutral tempera- 
ture. 

Copper-iron 

Neutral temperature 

e.m.f./mV 

0 100 200 300 400 

Temperature / °C 

(a) 

lron- 
constantan 

e.m.f./mV 

) 200 400 600 800 

Temperature / °C 

(b) 

Fig. 4.45 
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Thermocouples are used as thermometers, particu- 

larly for measuring varying temperatures or the temper- 

ature at a point (p. 74). 
The direct conversion of heat into electricity by metal 

thermocouples is a very inefficient process but better 

couples are now available based on semiconductors such 

as iron disilicide. On account of their reliability, long 

life and cheapness, these are suitable as small power 

supply units in space satellites, weather buoys and 

weather ships. Radiation from a radioactive source (e.g. 

strontium-90) in the unit falls on the hot junction and 

produces the necessary temperature rise in it. 

QUESTIONS 

Current and charge 

1. If the heating element of an electric radiator takes a current 
of 4.0A, what charge passes each point every minute? If the 

charge on an electron is 1.6 x 10~!?C how many electrons pass 

a given point in this time? 

2. (a) If the density of copper is 9.0 x 10°kg m~? and 63.5 kg 
of copper contains 6.0 x 107° atoms, find the number of ‘free’ 
electrons per cubic metre of copper assuming that each copper 

atom has one ‘free’ electron. 

(b) How many ‘free’ electrons will there be in a 1.0m length 

of copper wire of cross-section area 1.0 10~°m? (i.e. 
1.0mm7?)? 

(c) Taking the charge on an electron as 1.6 x 107!9C, what 
is the total charge of the ‘free’ electrons per metre of wire? 

(d) Assuming that the ‘free’ electrons are responsible for 

conduction, how iong will the charge in (c) take to travel 1m 

when a current of 2.0 A flows? 

(e) What is the drift velocity of the ‘free’ electrons? 

3. Explain in terms of the motion of free electrons what hap- 
pens whan an electric current flows through a metallic conduc- 

tor. 
A metal wire contains 5.0 x 107? electrons per cm? and has 

a cross-sectional area of 1.0mm/. If the electrons move along 

the wire with a mean drift velocity of 1.0mms7|, calculate 

the current in amperes in the wire if the electronic charge is 

M6 107 (O. and C. part qn.) 

Potential difference : resistance : meters 

4. (a) What is the p.d. between two points in a circuit if 200 

joules of electrical energy are changed to other forms of energy 
when 25 coulombs of electric charge pass? If the charge flows 

in 10 seconds, what is the current? 

(b) What is the p.d. across an immersion heater which 

changes 3.6 x 10° joules of electrical energy to héat every 

second and takes a current of 15 amperes? 
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5. Three voltmeters Q), @ and @) are connected as in 

Fig. 4.46. 

Fig. 4.46 

(a) If @) reads 12 volts and @) reads 8.0 volts, what does 

read? 

'(b) If the ammeter (A) reads 0.50 ampere, how much elec- 
trical energy is changed to heat and light by L, in 1 minute? 

(c) Copy the diagram and mark with a + the positive termi- 

nals of the voltmeters and ammeter for correct connection. 

6. A p.d. of V drives current through two resistors of 2ohms 
and 3 ohms joined in series, Fig. 4.47. 

Fig. 4.47 

(a) If voltmeter @) reads 4 volts, what is the current in 

the 2 ohm resistor? 

(b) What is the current in the 3 ohm resistor? 

(c) What does voltmeter @) read? 

(d) What is the value of V? 

(e) Find the value of the single equivalent resistor which, 

if it replaced the 2 ohm and 3 ohm resistors in series, would 

allow the same current to flow when joined to the same p.d. V. 

7. Two resistors of 3 ohms and 6 ohms are connected in parallel 

across a p.d. of 6 volts, Fig. 4.48a. 

(a) How are J, J, and J, related? 
(b) What is the p.d. across each resistor? 

/ / 

/, h 

6V 30 6Q 6V R 

(a) (b) 

Fig. 4.48 

(c) Find the values of J, J; and J, in amperes. 
(d) Find the value of the single equivalent resistor R which, 

if it replaced the 3 ohm and 6 ohm resistors in parallel, would 

allow the value of J found in (c) to flow when the p.d. across 

it is 6 volts, Fig. 4.48. 

8. (a) In the circuit of Fig. 4.49a what is the p.d. across (i) 

AB, (ii) BC? 
(b) What do these p.d.s become when the circuit is altered 

as in Fig. 4.49b? 

A 

2002 

60V B 

1002 

C 

(a) 

Fig. 4.49 

9. The circuit shown in Fig. 4.50 is used to provide a variable 

negative voltage, —V, with respect to earth, from a —200V 

supply to a device drawing negligible current. 

-200 V 

Fig. 4.50 

The value of the fixed resistor, R,, is known only to an accur- 

acy (or tolerance) of +10% and that of the variable resistor, 

R,, to +20%. Choose values of R, and R, from the table shown, 
in order to satisfy the following conditions. 

(a) The current in R, must be as low as possible but greater 
than 1 mA. 

(b) It must be possible to vary the voltage (— V) over a 
range of at least 0 to —20 V. 

erke: le Resistor values 
R, (£10%)/kO 100 150 220 330 470 680 
R, (+20%)/kO 10 25 50 

(J.M.B. Eng. Sc.) 



10. A resistor of 500 ohms and one of 2000 ohms are placed 

in series with a 60 volt supply. What will be the reading on 

a voltmeter of internal resistance 2000 ohms when placed across 

(a) the S00 ohms resistor, (b) the 2000 ohms resistor? 

11. Measurements of p.d. and current on five different 

‘devices’ A, B, C, D, E gave the graphs in Fig. 4.51. Suggest, 

with reasons, what each might be. 

pd. 

0 Current O Current 

p.d. 

ie) Current 

Fig. 4.51 

12. If a moving-coil ammeter gives a full-scale deflection for 
a current of 15 mA and has a resistance of 5.0 ohms, how would 

you adapt it so that it could be used (i) as a voltmeter reading 

to 1.5 V, (ii) as an ammeter reading to 1.5 A? (W. part qn.) 

Resistivity : temperature coefficient 

13. Assuming that the resistivity of copper is half that of alumi- 

nium and that the density of copper is three times that of alumi- 

nium, find the ratio of the masses of copper and aluminium 

cables of equal resistance and length. 

14. A wire has a resistance of 10.0ohms at 20.0°C and 

13.1 ohms at 100°C. Obtain a value for its temperature coeffi- 

cient of resistance. 

15. When the current passing through the Nichrome element 

of an electric fire is very small the resistance is found to be 

50.9, room temperature being 20.0°C. In use the current 

is 4.17 A on a 240V supply. Calculate (a) the rate of energy 
conversion by the element, (b) the steady temperature reached 

by it. (The temperature coefficient of resistance of Nichrome 

may be taken to have the constant value 1.70 x 10-*°C™! over 
the temperature range involved.) 

Electrical energy :e.m.f. : internal resistance 

16. How much electrical energy does a battery of e.m.f. 12 

volts supply when 
(a) acharge of 1 coulomb passes through it, 

ELECTRICAL PROPERTIES 71 

(b) acharge of 3 coulombs passes through it, 

(c) acurrent of 4 amperes flows through it for 5 seconds? 

17. Three accumulators each of e.m.f. 2 volts and internal 

resistance 0.01 ohm are joined in series and used as the supply 

for a circuit. 

(a) What is the total e.m.f. of the supply? 

(b) How much electrical energy per coulomb is supplied 

using (7) one accumulator, (ii) all three accumulators? 

(c) What is the total internal resistance of the supply? 

(d) What current would be driven by the supply through 

a resistance of 1.97 ohms? 

18. (a) A flashlamp bulb is marked ‘2.5 V, 0.30 A’ and has 

to be operated from a dry battery of e.m.f. 3.0 V for the correct 

p.d. of 2.5 V to be produced across it. Why? 

(b) How much heat and light energy is produced by a 100 
watt electric lamp in 5 minutes? 

(c) What is the resistance of a 240 V, 60 W bulb? 

19. The p.d. across the terminals XY of a box is measured 

by a very-high-resistance voltmeter V. In arrangement A, Fig. 

4.52, the voltmeter reads 105 volts. In arrangement B with 

the same box, the reading of the voltmeter is 100 volts. The 

inside of the box is not altered between the two arrangements. 

Xx X 

100 22 

A B 

Fig. 4.52 

Explain what you think may be in the box. 

(You may, if you want to, draw in extra features on (copies 

of) the diagrams to use in your explanation.) 

(O. and C. Nuffield) 

20. What quantitative evidence could you bring forward in 

favour of the view that a cell may be looked upon as possessing 

a definite internal resistance? Describe an experiment you 

would perform to obtain such evidence. 

A cell of e.m.f. 2.0 volts and internal resistance 1.0ohm 

is connected in series with an ammeter of resistance 1.0 ohm 

and a variable resistor of Rohm. A voltmeter of resistance 

1.0 x 10? ohm is connected across R. Find the value of R and 
the ammeter reading when the voltmeter reads 1.0 volt. Find 

also the power delivered to the external circuit. 653) 

21. By considering a wire of radius r, length / and resistivity 
p, through which a current J flows, show that 

(a) the rate of production of heat by it is I” pl/(ar*), 

(b) the rate of loss of heat from its surface is 2arlh where 

his the heat lost per unit area of surface per second, 

(c) the steady temperature it reaches is independent of its 

length and depends only on J. 
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Wheatstone bridge : potentiometer 

22. Two resistance coils, P and Q, are placed in the gaps of 

a metre bridge. A balance point is found when the movable 

contact touches the bridge wire at a distance of 35.5cm from 

the end joined to P. When the coil Q is shunted with a resistance 

of 10 ohms, the balance point is moved through a distance of 

15.5 cm. Find the values of the resistances P and Q. 

(W. part qn.) 

23. How would you investigate the way in which the current 

through a metal wire depends on the potential difference 

between its ends? What conditions should be fulfilled if Ohm’s 

law is to hold? 
Explain the theory of the Wheatstone bridge method of com- 

paring resistances. 

In an experiment with a simple metre bridge, the unknown 

X is kept in the left-hand gap and there is a fixed resistance 

in the right-hand gap. X is heated gradually, and when its 

temperature is 30°C, the balance point on the bridge is found 

to be 51.5cm from the left-hand end of the slide wire. When 

its temperature is 100°C the balance point is 54.6cm from that 

end. Find the temperature coefficient of resistance for the 

material of X, and calculate where the balance point would 

be if X were cooled to 0°C. (ORES) 

24. From the adoption of the fundamental units metre, kilo- 

gram, second, trace the steps necessary to define the volt and 

the ohm in terms of the ampere. 

Discuss the suitability of (a) a moving-coil voltmeter, and 

(b) a slide-wire potentiometer for determining the potential 

differences in an experiment designed to verify Ohm’s law. 

Four resistors AB, BC, CD and DA of resistance 4.0 ohms, 

8.0ohms, 4.00hms and 8.0ohms respectively are connected 

to form a closed loop, and a 6.0 volt battery of negligible resis- 

tance is connected between A and C. Calculate (i) the potential 

difference between B and D and (ii) the value of the additional 

resistance which must be connected between A and D so that 

no current flows through a galvanometer connected between 

Band D. (J.M.B.) 

25. Explain in detail how you would measure a small e.m.f. 

such as that of a thermocouple using a potentiometer method. 

A 2 volt cell is connected in series with a resistance R ohms 

and a uniform wire AB of length 100 cm and resistance 4 ohms. 

One junction of a thermocouple is connected to A, and the 

other through a galvanometer to a tapping key. No current 

flows in the galvanometer when the key makes contact with 

the mid-point of the wire. If the e.m.f. of the couple was 4 

millivolts what was the value of R? If the resistance of R is 

now increased by 4ohms, by how much would the balance 
point change? (Sa) 

26. A two-metre potentiometer wire is used in an experiment 

to determine the internal resistance of a voltaic cell. The e.m.f. 

of the cell is balanced by the fall of potential along 90.6cm 
of wire. When a standard resistor of 10.0 ohms is connected 

across the cell the balance length is found to be 75.5cm. Draw 

a labelled circuit diagram and calculate, from first principles, 

the internal resistance of the cell. 

How may the accuracy of this determination be improved? 

Assume that other electrical components are available if 

required. (J.M.B.) 

27. The metre wire AB in Fig. 4.53 has a resistance of 200. 

What is the p.d. across AC when C is at the. mid-point of AB? 

Fig. 4.53 

28. The potentiometer circuit in Fig. 4.54 is used to calibrate 

the ammeter @). The voltage drop down the potentiometer 

wire PQ is 0.015 Vcm'. If the balance length PC is 80cm, 

calculate the current through @). 

Fig. 4.54 
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Temperature and thermometers 

A knowledge of the thermal properties of materials is 

desirable when deciding, for example, what to use for 

making an electric storage heater or what to use as lag- 

ging in a refrigerator. Before studying some of these 

properties, certain basic ideas will first be considered. 

(a) Defining a temperature scale. Temperature is 
sometimes called the ‘degree of hotness’ and is a quan- 

tity which is such that when two bodies are placed in 
contact, heat flows from the body at the higher tempera- 

ture to the one at the lower temperature. To measure 

temperatures, a femperature scale has to be established 

as follows. 
(i) Some property of matter is selected whose value 

varies continuously with the degree of hotness. Suitable 
properties must be accurately measurable over a wide 

range of temperature with fairly simple apparatus and 

vary in a similar way to many other physical properties. 

(ii) Two standard degrees of hotness are chosen— 

called the fixed points—and numbers assigned to them. 

On the Celsius method of numbering (until 1948 known 

as the centigrade method) the lower fixed point is the 

ice point, i.e. the temperature of pure ice in equilibrium 

with air-saturated water at standard atmospheric pres- 

sure!, and is designated as 0 degrees Celsius (0°C). The 
upper fixed point is the steam point, i.e. the temperature 

at which steam and pure boiling water are in equilibrium 

at standard atmospheric pressure, and is taken as 100°C. 
(iii) The values Xj9) and X, of the temperature- 

measuring property are found at the steam and ice points 

respectively and (Xj) — Xo) gives the fundamental inter- 

val of the scale. If X, is the value of the property at 

' Standard atmospheric pressure is defined to be 

1.013 x 10° Pa (1 Pa=1 pascal = 1 Nm_~’) and equals the pres- 
sure at the foot of acolumn of mercury 760 mm high of specified 

density and subject to a particular value of g. 

some other temperature @ which we wish to know then 
the value of @ in °C is given by the equation 

6 i 2G .G 

100 Xo — Xo 

This equation defines temperature 6 in °C on the 
scale based on this particular temperature-measuring 

property. Note that it has been defined so that equal 

increases in the value of the property represent equal 

increases of temperature, i.e. the temperature scale is 
defined so that the property varies uniformly or linearly 

with temperature measured on its own scale. 

Some thermometers using different temperature- 

measuring properties will now be considered briefly. 

(b) Mercury-in-glass thermometer, Fig. 5.1. The 

change in length of a column of mercury in a glass capil- 

lary tube was one of the first thermometric properties 

to be chosen. If /) and /)9) are the lengths of a mercury 

column at 0°C and 100°C respectively and if /, is the 

length at some other temperature 6 then @ in °C is 

defined on the mercury-in-glass scale by the equation 

6 lg — lo 

100 Lioo a ly 

Thick glass wall 

Capillary 

Mercury 

Thin glass 

Large volume bulb 

Fig. 5.1 

2B 
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For example, if a mercury thread has lengths 5.0cm 

and 20cm at the ice and steam points and is 8.0cm 

long at another temperature 6 then 

Q- 8.0—5.0 3.0 

3.0 
6=— X 100 = 20°C 

ii) 

Inaccuracies arise in mercury thermometers from (i) 

non-uniformity of the bore of the capillary tube, (ii) 

the gradual change in the zero due to the bulb shrinking 

for a number of years after manufacture, and (iii) the 

mercury in the stem not being at the same temperature 

as that in the bulb. 

Properties of this and other types of thermometer 

are summarized in Table 5.1, opposite. 

(c) Constant-volume gas thermometer. If the volume 

of a fixed mass of gas is kept constant, its pressure 

changes appreciably when the temperature changes. A 

temperature @ in °C is defined on the constant-volume 

gas scale by the equation 

8 Po Po 

where po, Pg and Pjo9 are the pressures at the ice point, 

the required temperature @ and the steam point. 

A simple constant-volume thermometer is shown in 

Fig. 5.2. The gas (air in school models, hydrogen, 

helium or nitrogen in more accurate versions) is in bulb 

A which is at the temperature to be measured. As the 

temperature increases the gas expands, pushing the mer- 

cury down in B and up in tube C. By raising C the 

mercury level in B is restored to the reference mark 

R and the volume of gas thus kept constant. The gas 

pressure is then h + H where H is atmospheric pressure. 

Rubber tubing 

Fig. 5.2 

In accurate work corrections are made for (i) the gas 
in the ‘dead-space’ D not being at A’s temperature, 

(ii) thermal expansion of A and (iii) capillary effects 

at the mercury surfaces (see p. 225). 

(d) Platinum resistance thermometer. The electrical 

resistance of a pure platinum wire increases with tem- 
perature (by about 40% between the ice and steam 
points) and since resistance can be found very accurately 

it is a good property on which to base a temperature 

scale. A temperature 6 in °C on the platinum resistance 

scale is defined by the equation 

6 =. R, =a Ro 

100 Rioo — Ro 

where R, and Rj are the resistances of the platinum 

wire at the ice and steam points respectively and R, 

is the resistance at the temperature required. 

A platinum resistance thermometer, Fig. 5.3a, con- 

sists of a fine platinum wire wound on a strip of mica 

(an electrical insulator) and connected to thick copper 
leads. A pair of identical short-circuited dummy leads 

are enclosed in the same silica tube (which can withstand 

high temperatures) and compensate exactly for changes 
in resistance with temperature of the leads to the plati- 

num wire. The thermometer is connected to a Wheat- 

stone bridge circuit (p. 60) as in Fig. 5.3b and if P= Q, 
the resistance of the platinum wire equals that of S. 

__Leads to platinum 
wire 

Dummy 

leads 

Mica spacers 

Platinum wire 

Mica 

Silica tube 

(a) (b) 

Fig. 5.3 

(e) Thermocouple thermometer. The thermoelectric 
effect was considered on p. 69 and is widely used to 
measure temperature; in Fig. 5.4 a thermocouple ther- 
mometer is about to be used to take the temperature 
of a furnace. If great accuracy is not required, especially 
at high temperatures, the thermocouple can be con- 
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nected across a galvanometer (rather than to a potenti- It is not usual to define a thermoelectric scale of tem- 
ometer). The meter may be marked read perature but what would be the shape of a graph of 
temperatures directly if it is calibrated using the known _ thermocouple e.m.f. against temperature measured on 
melting-points of metals. such a scale? 

Table 5.1 

Thermometer Range/°C Comments 

Mercury-in-glass —39 to 500 Simple, cheap, portable, direct reading but not very accurate. 
Everyday use, clinical work, and weather recording 

Constant-volume gas —270 to 1500 Very wide range, very accurate, very sensitive but bulky, slow to 
respond and not direct reading. Used as a standard to calibrate other 
more practical types 

Platinum resistance 

/ 

—200 to 1200 Wide range, very accurate but unsuitable for rapidly changing 
temperatures because of large heat capacity. Best for small steady 
temperature differences 

Thermocouple 

eS a © 

—250 to 1500 Wide range, fairly accurate, robust and compact. Widely used in 
industry for rapidly changing temperatures and temperatures at a 
‘point’ 

Pyrometer above 1000 The only thermometer for temperatures above 1500 °C 
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(f) Disagreement between scales: thermodynamic 
scale. Thermometers based on different properties give 

different values for the same temperature, except at the 

fixed points where they must agree by definition. All 

are correct according to their own scales and the discre- 
pancy arises because, not unexpectedly, thermometric 

properties do not keep in step as the temperature 

changes. Thus when the length of the mercury column 

in a mercury-in-glass thermometer is, for example, mid- 

way between its 0 and 100°C values (i.e. reading 50°C) 

the resistance of a platinum resistance thermometer is 

not exactly mid-way between its 0 and 100°C values. 

The disagreement between scales, although small in 

the range 0 to 100°C, is inconvenient. We could always 

state the temperature scale involved when giving a tem- 

perature, e.g. 50°C on the mercury-in-glass scale, but 

a better procedure is to take one scale as a standard 

in which all temperatures are expressed, however they 

are measured. The one chosen is called the absolute 
thermodynamic scale. At present it is enough to say that 

it is the fundamental temperature scale in science and 

that the SI unit of temperature, the kelvin (denoted 

by K not °K) is defined in terms of it. The zero of this 

scale is called absolute zero and it is thought that temper- 

atures below this do not exist; certainly so far all 

attempts to reach it have been unsuccessful, although 

it has been approached very closely. 
On the thermodynamic scale 0°C = 273.15K (273K 

for most purposes) and 100°C = 373.15K, hence a 

temperature interval of one Celsius degree equais one 
kelvin. 

Heat and internal energy 

Temperature is a useful idea when describing some 

aspects of the behaviour of matter in bulk. It is a quantity 

which is measurable in the laboratory as we have just 

seen and is capable of perception by the sense of touch. 

One of the aims of modern science is to relate macro- 
scopic (i.e. large-scale) properties such as temperature, 

to the masses, speeds, energies, etc., of the constituent 

atoms and molecules. That is, to explain the macro- 

scopic in terms of the microscopic. 

The kinetic theory regards the atoms of a solid as 
vibrating to and fro about their equilibrium positions, 
alternately attracting and repelling one another. Their 
energy, called internal energy, is considered to be partly 

kinetic and partly potential. The kinetic component is 

due to the vibratory motion of the atoms and according 

to the theory depends on the temperature; the potential 

component is stored in the interatomic bonds that are 

continuously stretched and compressed as the atoms 

vibrate and it depends on the forces between the atoms 

and their separation. In a solid both forms of energy 

are present in roughly equal amounts and there is contin- 

ual interchange between them. In a gas, where the inter- 

molecular forces are weak, the internal energy is almost 

entirely kinetic. The kinetic theory thus links tempera- 

ture with the kinetic energy of atoms and molecules. 

Heat, inscience, is defined as the energy which is trans- 

ferred from a body at a higher temperature to one at 
a lower temperature by conduction, convection or radia- 

tion. Like other forms of energy it is measured in joules. 

When a transfer of heat occurs the internal energy of 

the body receiving the heat increases and if the kinetic 

component increases, the temperature of the body rises. 

Heat was previously regarded as a fluid called ‘caloric’, 
which all bodies were supposed to contain. It was mea- 

sured in calories—a unit now going out of use—one- 

thousand of which equal the dietician’s Calorie. 
The internal energy of a body can also be increased 

by doing work, i.e. by a force undergoing a displacement 
in its own (or a parallel) direction. Thus the temperature 

of the air in a bicycle pump rises when it is compressed, 

i.e. it becomes hotter. Work done by the compressing 

force has become internal energy of the air and its tem- 

perature rises, as it would by heat transfer. It is therefore 

impossible to tell whether the temperature rise of a given 
sample of hot air is due to compression (i.e. work done) 

or to heat flow from a hotter body. 

The expression ‘heat in a body’, although often used, 

is thus misleading, for it may be that the body has 

become hot yet no heat flow has occurred. We should 

talk about the ‘internal energy’ of the body. It is some- 

times said that ‘the quantity of heat contained in a cup 
of boiling water is greater than in a spark of white-hot 
metal’. What is really meant is that the boiling water 

has more internal energy and more heat can be obtained 
from it than from the spark. 

The internal energy of a body may be changed in 

two ways: by doing work or by transferring heat. Work 

and heat are both concerned with energy in the process 

of transfer and when the transfer is over, neither term 

is relevant. Work is energy being transferred by a force 

moving its point of application, and the force may arise 

from a mechanical, gravitational, electrical or magnetic 

source; heat flow arises from a temperature difference. 

In a wire carrying a current, electrical energy is 

changed to internal energy (i.e. more vigorous vibration 

of the atoms of the wire) and a temperature rise occurs. 

Subsequently this energy may be given out by the wire 

to the surroundings as heat. We sum up the whole pro- 

cess by saying that an electric current has a ‘heating 
effect’. 



Specific heat capacity 

(a) Definition. Materials differ from one another in 
the quantity of heat needed to produce a certain rise 

of temperature in a given mass. The specific heat capacity 

c enables comparisons to be made. Thus if a quantity 

of heat 5Q raises the temperature of a mass m of a 
material by 56 then c is defined by the equation 

In words, we can say that c is the quantity of heat required 
to produce unit rise of temperature in unit mass. (In 

modern terminology the word ‘specific’ before a quan- 

tity means per unit mass.) 

The unit of c is joule per kilogram kelvin (Jkg~' K~'), 
since in the above expression 8Q is in joule, m in kilo- 

gram and 86 in K. Sometimes it is more convenient 
to consider mass in grams, when the unit is J g-'! K7!. 

In the expression for c, as the temperature rise 50 

tends to zero, c approaches the specific heat capacity 

at a particular temperature and experiment shows that 

its value for a given material is not constant but varies 

slightly with temperature. Mean values are thus 

obtained over a temperature range and to be strictly 

accurate this range should be stated. For ordinary pur- 

poses, however, it is often assumed constant. 

The approximate specific heat capacity of water 

at room temperature is 4.2x10°Jkg-!'K7! (or 
4.2Jg-'K~') and is large compared with the values for 

most substances. At temperatures approaching absolute 

zero (0K) all values of c tend to zero. Values for some 

other materials at ordinary temperatures are shown in 

Table 5.2. 

Table 5.2 

Mean specific heat capacities/J kg~'K7' 

aluminium 9.110? | ice 2740" 
brass 3.8 x 10° | rubber ele 
copper 3.9x 10? | wood 1.7x 10° 
glass (ordinary) 6.7 x 10° | alcohol SOG: 
iron 4.7x 10° | glycerine PMT lig 
mercury 1.4 10° | paraffin oil 2.1 >< 1 
lead 1.3 x 10° | turpentine 1.8 x 10° 

High specific heat capacity is desirable in a material 

if only a small temperature rise is required for a given 

heat input. This accounts for the efficiency as a coolant 

of water in a car radiator and of hydrogen gas in enclosed 

electric generators (the latter also because of its compar- 

atively good thermal conductivity). 

(b) Molar heat capacity. If heat capacities are 
referred to 1 mole (p. 13) of the material instead of 
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to unit mass, the quantity obtained by multiplying the 
specific heat capacity by the atomic or molecular mass 

(p. 13) is called the atomic or molar heat capacity. It 

is very nearly 25J mol~!K~! for many solids. This fact 
is known as Dulong and Petit’s law. Since 1 mole of 

any substance contains the same number of atoms or 

molecules, the heat required per atom or molecule to 
raise the temperature of many solids by a given amount 

is about the same. The implication is that the heat capa- 
city of a solid depends on the number of atoms or mole- 
cules present, not on their mass, and is further evidence 

for the atomic theory of matter. 

(c) Useful equation. The equation defining specific 
heat capacity may be written 

Q = mc(6,— 4) 

This expression is useful in heat calculations and gives 

the quantity of heat Q taken in by a body of mass m 

and mean specific heat capacity c when its temperature 

rises from 0, to 6). It also gives the heat lost by the 

body when its temperature falls from 6, to 6,. In words, 

we can say 

heat given out specific heat x. temperature 
(or taken in) 

= mass X ; 
capacity change 

Thus if the temperature of a body of mass 0.5kg and 

specific heat capacity 400J kg~!K7! rises from 15°C to 

20°C (288 K to 293 K) the heat taken in is 

O = (0.Skg) x (4003 kg~! K~!) x (SK) 
= (0.5 x 400 x 5) kg} kg"! K7!K 
= 1000) 

(d) Heat capacity. The heat capacity or thermal capa- 
city of a body is a term in common use and is defined 

as the quantity of heat needed to produce unit rise of 

temperature in the body. It is measured in joules per 

kelvin (JK~') and from the definition of specific heat 

capacity it follows that 

heat capacity = mass X specific heat capacity 

Thus the heat capacity of a copper vessel of mass 0.1 kg 

and specific heat capacity 390J kg-'K~! is 39J K7!. 

Measuring specific heat capacities 

1. Electrical method 

(a) Solids. The method is suitable for metals such 

as copper and aluminium that are good thermal conduc- 

tors. A cylindrical block of the material is used, having 

holes for an electric heater (12 V, 2-4A) and a ther- 

mometer, Fig. 5.5. The mass m of the block is found 
and its initial temperature 6, recorded. The block is 
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Thermometer 

Expanded 
polystyrene 

Metal block 

Electric heater 

Fig. 5.5 

lagged with expanded polystyrene and a suitable steady 

current switched on as a stop-clock is started. The volt- 

meter and ammeter readings V and / are noted. When 

the temperature has risen by about 10K, the current 

is stopped and the time ft taken for which it passed. 

The highest reading 6, on the thermometer is noted. 

Assuming that no energy loss occurs we have 

electrical energy supplied by heater 
= heat received by block 

iv = mc(6, a 0;) 

where c is the specific heat capacity of the metal. Hence 

ItV 
Cc =——_—_ 

m(@, — 6) 

Notes. (i) If J is in amperes, ¢ in seconds, V in volts, 

min g, 6, and 6,inK, thencisinJg-!K7!. 
(ii) The small amount of heat received by the ther- 

mometer and heater has been neglected. 

(b) Liquids. The apparatus is shown in Fig. 5.6, a 

calorimeter being a vessel in which heat measurements 

are made. The procedure is similar to that for solids 
except that the liquid is stirred continuously during the 

heating. If m is the mass of liquid, c its specific heat 

Jacket 

Calorimeter 
Heating coil 
in liquid i Stirrer 

Insulating stand 

Fig. 5.6 

Fig. 5.7 (b) 

capacity, m, the mass of the calorimeter and stirrer, 

c, the specific heat capacity of the material of the calori- 

meter and stirrer, and if 0,, 0), 1, V and ¢t have their 

previous meanings, then assuming 

energy received 

by calorimeter 

and stirrer 

energy supplied _ energy received 

by heater by liquid 

we have 

ItV = mc(@, — 6;) + m.c( — 4) 

= (mc a M.C,)( A; <A 6) 

from which c can be found if c, is known. 

2. Method of mixtures 

(a) Solids. The solid is weighed to find its mass m, 

heated in boiling water at temperature 0; for 10 minutes, 

Fig. 5.7a, and then quickly transferred to a calorimeter 

of mass m, containing a mass of water m,, at temperature 

6,, Fig. 5.7b. The water is stirred and the highest reading 

6, on the thermometer noted. 

Stirrer 

Calorimeter =| 
Pan Solid , Jacket 

—— Insulating 
stand 

Assuming no heat loss from the calorimeter when 
the hot solid is dropped into it, we have 

heat givenout heat received by _ heat received by 
by solid cooling = water warming + calorimeter 
from 6; to @; from 6, to 6, warming 

from 6; to 6, 

If c is the specific heat capacity of the solid, c,, that 
of water and c, that of the calorimeter, then 

me( 43 — 8y) = myCy( 82 — 0) + m.C.(8,— 6;) 

= (MyCy + M.C.)(O2 — 94) 

__ (bu + MC) = 41) 
m(63 — 63) 

Hence c can be found knowing c,, and c,. 



(b) Liquids. In this case a hot solid of known specific 

heat capacity is dropped into the liquid whose specific 

heat capacity is required; the procedure and calculation 
are the same as in (a). 

3. Continuous-flow method 

The method was devised by Callendar and Barnes for 

measuring the specific heat capacity of water. A simple 

form of the apparatus is shown in Fig. 5.8. It consists 

of a wire carrying a steady electric current which heats 

a liquid flowing at a constant rate through a glass tube 
from a constant-head tank to a collecting vessel. Two 

thermometers measure the entrance and exit tempera- 

tures of the liquid. 

f Constant head 

Heating 
coil 

Collecting 
vessel 

Fig. 5.8 

After a time the thermometer readings become steady 

and none of the electrical energy supplied by the current 

warms the apparatus (since it is at a constant tempera- 

ture); it is either used to heat the liquid or is lost to 

the surroundings. 
Let the current in the wire be /; and the p.d. across 

it be V,, then if 6, and 6, are the thermometer readings 

and mz, is the mass of liquid collected in time f, we have 

Itv, — m,c(@> i 6;) =F h 

where c is the specific heat capacity of the liquid and 

his the heat lost in time f to the surroundings. 
The rate of flow is changed and the p.d. and current 

adjusted to V, and /, so that the entrance and exit tem- 

peratures are the same as before, i.e. 6, and 0,. This 

ensures that / is the same as in the first case since the 
average temperature excess of the apparatus over the 
‘surroundings is unaltered. If m, is now the mass col- 

lected in the same time ¢ then 

Ltv, — myC( > = 6;) +h 

| 

Subtracting the two equations, 

(11V, — 1,V2)t = c(m, — my) — 4) 

) 
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(VY, — LV)t 

(m, — Mz)(8, — 9) 

The advantages of this method are (/) the heat capa- 

city of the apparatus does not need to be known and 

(ii) consideration of heat loss is unnecessary. The chief 

difficulty is ensuring the liquid is mixed sufficiently to 
keep 0, constant. 

In their more elaborate form of the apparatus Callen- 

dar and Barnes surrounded the glass tube by a vacuum 

jacket to make A very small, the currents and p.d.s. 

were measured accurately by potentiometer methods 

and the temperatures were taken with platinum resis- 

tance thermometers (p. 74). 

4. Mechanical method 

The first part of the experiment described on p. 53 to 

calibrate a voltmeter can also be used to find the specific 

heat capacity of a solid in the form of the material of 

the drum. If M is the mass of the drum, c its specific 
heat capacity and @ the temperature rise produced by 

n revolutions with a mass m attached, we can say 

mechanical energy supplied = mgzrdn 

and 

heat needed for a temperature rise 6= Mc 

Assuming all the mechanical energy appears as heat, 

therefore Mc@=mgzdn 

mgrrdn 

“Me 

Heat loss and cooling corrections 

In experiments with calorimeters certain precautions 

can be taken to minimize heat losses. These include 

(i) polishing the calorimeter to reduce radiation loss, 

(ii) surrounding it by an outer container or a jacket 

of a poor heat conductor to reduce convection and con- 
duction loss and (iii) supporting it on an insulating stand 

or supports to minimize conduction. 

When the losses, despite all precautions, are not 

small, or where great accuracy is required, an estimate 

can be made of the temperature that would have been 

reached, i.e. a ‘cooling correction’ is made which when 

added to the observed maximum temperature gives the 

estimated maximum temperature had no heat been lost. 

Alternatively the need to make a cooling correction can 

be eliminated, as in the continuous-flow method des- 

cribed above, or in other ways, one of which is explained 
in (b) below. 
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(a) Graphical method. As well as being suitable for 

electrical heating experiments, this method is conven- 

ient when finding the specific heat capacity of a bad 

thermal conductor (e.g. glass or rubber) by the method 

of mixtures. In the latter case the hot solid is slow to 

transfer heat to the calorimeter and water and some 
time elapses before the mixture reaches its maximum 

temperature. During this time appreciable cooling 

occurs even if the calorimeter is lagged. 
To make the cooling correction, the temperature is 

taken at half-minute intervals starting just before the 

hot solid is added to the calorimeter and ending when 

the temperature has fallen by at least 1°C from its 

observed maximum value. A graph of temperature 

against time is plotted. In that shown in Fig. 5.9, 6, 
is the initial temperature of the calorimeter and contents 

(i.e. room temperature) and @, is the observed maxi- 
mum temperature. The dotted line shows how the tem- 

perature might have risen if no heat were lost. 

Temperature 

Fig. 5.9 

The cooling correction required is x. To obtain it, 
PQ is drawn through the top of the curve parallel to 

the temperature axis and similarly LM further along 

the curve so that y is 1°C. XYZ is then drawn through 

6,, parallel to the time axis. The areas A, and A, are 

found by counting the squares on the graph paper and 

it can be shown that the cooling correction is given by 

x AG xy 

where y= 1°C for convenience. The estimated maxi- 
mum temperature is then 6, + x. 

This method is based on the assumption that the rate 

of loss of heat is directly proportional to the temperature 

difference between the body (e.g. calorimeter) and its 

surroundings. This is true for heat loss by (a) conduction 

(see p. 86), (b) convection so long as it is forced (i.e. 

a draught) or if natural, provided the temperature differ- 

ence is small (see below) and (c) radiation if the temper- 

ature excess is small. 

In electrical heating experiments, temperature-time 

readings are taken during and immediately after the 

heating, and the cooling correction obtained from a 

graph as explained above. 

(b) Initial cooling method. If the calorimeter and its 

contents are cooled to about 5°C below room tempera- 

ture and then heated steadily during the experiment 

to about 5 °C above, the heat gained from the surround- 

ings during the first half of the time will be nearly equal 

to that lost to the surroundings during the second half. 

No cooling correction is then necessary. The method 

is suitable when finding the specific heat capacity of a 

liquid by electrical heating. 

Cooling laws and temperature fall 

(a) Five-fourths power law. For cooling in still air 
by natural convection the five-fourths power law holds. 

It states 

rate of loss of heat < (@— @)°/* 

where @ is the temperature of the body in surroundings 

at temperature 6). If the temperature excess (6— 4) 

is small, the relation becomes approximately linear. 

(b) Newton’s law of cooling. Under conditions of 

forced convection, i.e. in a steady draught, Newton’s 

law applies. It states 

rate of loss of heat « (@— 6p) 

and is true for quite large temperature excesses. 

(c) Rate of fall of temperature. As well as the tempera- 

ture excess, the rate of loss of heat from a body depends 

on the area and nature of its surface (i.e. whether it 

is dull or shiny). Hence for a body having a uniform 

temperature @ and a surface area A we can say, if New- 

ton’s law holds, 

rate of loss of heat = kA(@— 4) 

where k is a constant depending on the nature of the 
surface. 

If the temperature 6 of the body falls we can also 
write 

rate of loss of heat = me X rate of fall of temperature 

where m is the mass of the body and c is its specific 
heat capacity. Hence 

rate of fall of temperature = kA(@— 05)/(mc) 

The mass of a body is proportional to its volume and so 

the rate of fall of temperature of a body is proportional 



to the ratio of its surface area to its volume, i.e. is inver- 

sely proportional to a linear dimension. A small body, 

therefore, cools faster than a large one (its temperature 
falls faster), as everyday experience confirms. In calori- 

meter experiments the use of large apparatus, etc. , mini- 
mizes the effect of errors due to heat loss. 

Latent heat 

The heat which a body absorbs in melting, evaporating 

or sublimating and gives out in freezing or condensing 

is called /atent (hidden) heat because it does not produce 

a change of temperature in the body—it causes a change 

of state or phase. Thus when water is boiling its tempera- 

ture remains steady at 100°C (at s.t.p.) even although 

heat, called latent heat of vaporization, is being supplied 

to it. Similarly the temperature of liquid naphthalene 

stays at 80°C whilst it is freezing; there is no fall of 

temperature until all the liquid has solidified, but heat, 
called latent heat of fusion, is still being given out by 

the liquid. 

The kinetic theory sees the supply of latent heat to 

a melting solid as enabling the molecules to overcome 

sufficiently the forces between them for the regular crys- 

talline structure of the solid to be broken down. The 

molecules then have the greater degree of freedom and 
disorder that characterize the liquid state. Thus, whilst 
heat which increases the kinetic energy component of 

molecular internal energy causes a temperature rise, the 

supply of latent heat is regarded as increasing the poten- 

tial energy component since it allows the molecules to 

move both closer together and farther apart. 

When vaporization of a liquid occurs a large amount 
of energy is needed to separate the molecules and allow 

them to move around independently as gas molecules. 

In addition some energy is required to enable the vapour 

to expand against the atmospheric pressure. The energy 

for both these operations is supplied by the latent heat 

of vaporization and, like latent heat of fusion, we regard 
it as increasing the potential energy of the molecules. 

(a) Specific latent heat of fusion. This is defined as 

_ the quantity of heat required to change unit mass of a 
substance from solid to liquid without change of tempera- 
ture. It is denoted by the symbol /,, and is measured 

inJkg-'orJg™!. 
The specific latent heat of fusion of ice can be deter- 

mined by the method of mixtures. A calorimeter of mass 
m, is two-thirds filled with a mass m,, of water warmed 

to about 5°C above room temperature. The tempera- 

ture 6, of the water is noted, then a sufficient number 

of small pieces of ice, carefully dried in blotting paper, 
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are added one at a time and the mixture stirred, until 

the temperature is about 5°C below room temperature. 

The lowest temperature 0, is noted. The calorimeter 

and contents are then weighed to find the mass of ice 

m added. 

The heat given out by the calorimeter and warm water 
in cooling from 6; to 0; does two things. First it supplies 

the latent heat needed to melt the ice at 0°C to water 

at 0°C and second it provides the heat to raise the now 

melted ice from 0°C to the final temperature of the 
mixture 6. Hence 

heat used to warm 

+ melted ice from 

0 2 to > 

heat given out heat used to 
by calorimeter =melt ice at 

and water cooling 0°C 

If c, and c,, are the specific heat capacities of the calori- . 
meter and water respectively and /,, is the specific latent 
heat of fusion of ice then 

MCA, = 6) ar MyCy( a 65) abe MCy( 0, 7 0) 

Hence 

(mC, 1 MyCy)( 4} = 6,) es Mn au; Cw) 

1H Gacteelt laces) (Ora @ i Ape (0 = @) 
m 

TI Get) (Caan ne Joss Uiteee aE eNOS age 
m 

For ice the accepted value of /,, is 334 J g~!. No cooling 

correction is necessary (see ‘Initial cooling method’ on 

p. 80) but the temperature of the mixture must not be 

taken more than 5°C below room temperature other- 

wise water vapour in the air may condense to form dew 

on the calorimeter and give up latent heat to it. 

(6) Specific latent heat of vaporization. This is the 

quantity of heat required to change unit mass of a sub- 
stance from liquid to vapour without change of tempera- 
ture. It is denoted by J, and measured inJ kg"! orJg™!. 
A value can be found for /, by a continuous-flow-type 

method using the apparatus of Fig. 5.10. The liquid is 

heated electrically by a coil carrying a steady current 

I and having a p.d. V across it. Vapour passes down 

the inner tube of a condenser where it is changed back 
to liquid by cold water flowing through the outer tube. 

After the liquid has been boiling for some time it 
becomes surrounded by a ‘jacket’ of vapour at its boil- 

ing-point and a steady state is reached when the rate 

of vaporization equals the rate of condensation. All the 
electrical energy supplied is then used to supply latent 

heat to the liquid (and none to raise its temperature) 

and to make good any heat loss from the ‘jacket’. If 
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Felt 
lagging 

Liquid 

Fig. 5.10 

a mass m of liquid is now collected in time ¢ from the 

condenser, we have 

ItV=ml,+h 

where /, is the specific latent heat of vaporization of 

the liquid and h is the heat lost from the ‘jacket’ in 

time t. The ‘jacket’ of vapour makes h/ small and if it 
is neglected /, can be found. Alternatively it may be 

eliminated as in the Callendar and Barnes experiment 
(p. 79) by a second determination with a different power 

input. 

The specific latent heat of vaporization of water is 

23 AO eah 

(c) Bonding energy and latent heat. The bonding 
energy for two atoms or molecules is the amount of 

energy that has to be supplied to pull them apart and 

make their potential energy zero. In Fig. 2.6b (p. 17) 

it equals Eo, the minimum value of the p.e. at the equili- 
brium separation 79. 

If a molecule has n neighbours, the total bonding 

energy for each molecule with its neighbours is nE). 
For a mole, containing L molecules (the Avogadro con- 

stant) the energy needed to break all the bonds would 

be 2nLE, (the 3 is necessary because, for any pair of 
molecules A and B, A is regarded as a neighbour of 

B and then B as a neighbour A—otherwise each bond 

would be considered twice). 

Taking the conversion of water to steam as an exam- 

ple, 2.3 x 10°J are needed to vaporize 1kg of water 

(at 373 K), so, since 1 mole of water has mass 0.018 kg, 

the energy to be supplied is given by 

inLE = (2.3 X 10°J kg~!)(0.018 kg mol™') 

= 4.14 x 10*J mol"! 

But L = 6.02 x 10” mol™! and for a liquid n ~ 10, there- 
fore 

2 x 4.14 x 104*J mol! 

° 10 x 6.02 x 102 mol! 

=1TAKIO * J 

This is a rough estimate of the bonding energy of water. 

Heat calculations 

1. A piece of copper of mass 100 g is heated to 100°C 

and then transferred to a well-lagged copper can of mass 
50.0g containing 200g of water at 10.0°C. Neglecting 

heat loss, calculate the final steady temperature of the 
water after it has been well stirred. Take the specific heat 
capacities of copper and water as 4.00 X 10 Jkg™!K7! 
and 4.20 x 10°? Jkg~! K~! respectively. 

Let the final steady temperature =6 
Fall in temperature of piece of copper = (100 — 4) °C 
Rise in temperature of can and water = (@— 10) °C 

Expressing masses in kg, 

heat given out bycopper =0.1 x 400 x (100—- 4)J 

heat received by copper can = 0.05 x 400 x (@— 10)J 

heat received by water = 0.2 x 4200 x (@— 10)J 

heat given out = heat received 

Therefore 

40(100 — 6) = 20(@ — 10) + 840(@ — 10) 
= (20 + 840)(@ — 10) 

4000 — 400 = 8606 — 8600 
9000 = 12.600 

Hence 6=14:0°E 

2. The rate of flow of liquid through a continuous- 

flow calorimeter is 15 x 10~>kgs~! and the electric heat- 

ing element dissipates 200 W, a steady difference of tem- 

perature of 3°C being maintained. To maintain the same 

temperatures, 80 W is necessary when the flow is reduced 

to 5.0 x 10-* kg s~!. Assuming the temperature of the sur- 
roundings to be the same in the two cases, calculate the 
specific heat capacity of the liquid and the rate at which 
heat is lost to the surroundings. 

In the steady state the apparatus absorbs no heat, hence 

electricalenergy heatreceived heat lost to 

supplied per = by water per + surroundings 

second second per second 



Since 1W=1Js!, in the first case the electrical 
energy supplied per second=200Js~!. Also, heat 
received by water per second =/mc(6,— 6) where 
m= 15 x 10-?kgs"!, c= specific heat capacity of liquid 
in Jkg-'K7! and (6, — 6) =3°C =3K. If h is the heat 
lost to the surroundings per second, then 

200Js~' = (15 x 10-7 kgs“')c (3K) +h (1) 

In the second case 

80Js-'=(5.0x 10-3 kgs"!)c(3K) +h (2) 

Subtracting (2) from (1), 

(200 — 80) Js! = (15 x 10-3 — 5.0 x 1073) kgs~! x 
c X (3K) 

120Js~! = (10 x 10-7kgs~')c(3K) 

is 120Js"! 

(10 x 10> kgs~)(3K) 

_ 120 ¥ss 

30% 107 kes 'K 

=4.0x 10 Jkg-'K"! 

Substituting for c in (1), 

200Js~! = (15 x 10-3kgs~!)(4.0 x 103Jkg~! K~!) (3K) 
+h 

= (15 x 10-3 x 4.0 x 10° x 3) kgs“! Jkg-! K-17 K 
+h 

=180Js-!+h 

h = (200 — 180) Js“! =20Js7} 

3. When a current of 2.0A is passed through a coil 

of constant resistance 15 Q immersed in 0.5 kg of water 

at 0°C in a vacuum flask, the temperature of the water 

rises to 8°C in 5 minutes. If instead the flask originally 

— contained 0.25 kg of ice and 0.25 kg of water, what cur- 

rent must be passed through the coil if this mixture is 
to be heated to the same temperature in the same time? 

(Specific heat capacity of water = 4.2 x 1 Jkg™'K"!; 
specific latent heat of fusion of ice = 3.3 x 10° Jkg™'.) 

Assuming no heat is lost from the vacuum flask, then 

in time ¢ 

electrical : heat received 
heat received 

ener = + by vacuum (1) 
ey by water 

supplied flask 

But, electrical energy supplied =/?Rr joules where 

IT=2A, R=150 and t=5x60=300s. Also, heat 
received by water=mc(6,—06,) where m=0.5kg, 
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c=4.2 x 10° Jkg"'!K~! and 6, — 6, =8°C=B8K. If h is 
the heat received by the vacuum flask in time ¢, then 
from (1) 

(2 A)?(15.0)(300s) = (0.5kg)(4.2 x 10? J kg-! K-1)(8 K) 
+h 

(4 x 15 x 300) J = (0.5 4.2 x 10° x 8) kgJkg-!K-1K 
+h 

h = (18000 — 16800) J 
= 12005 

In the second part, in the same time f, 

electrical heatto heat to heat received 
energy =melt +warm0.5kg+ by vacuum 
supplied 0.25kg waterfrom flask 

eat’ §O0°Ctos"C (1.6.72) 
Ure 

(15 Q)(300s) = (0.25 kg)(3.3 x 10° J kg~!) + 
(0.5 kg)(4.2 x 10° Jkg~! K~1)(8 K) 

+ 1200J 

where / is the current required to warm the ice and 
water to 8°C in 300s. 

P15 x 300). Os = (0.25 x 3.3.x 10°) J + 
(0.54.2. 10 x 8)J 
+ 1200J 

I?(4500) Os = 82 500J + 16 800J + 1200J 
= 100500J 

100500 J 

~ 4500 Qs 
G =223V COs sc 

1=4.7A(sinceA=Cs*=VO") 

Expansion of solids 

(a) Linear expansion. The change of length which 

occurs with temperature change in a solid has to be 

allowed for in the design of many devices. The variation 

is described by the linear expansivity a. Thus if a solid 

of length / increases in length by 8/ due to a temperature 

rise 50, a for the material is defined by the equation 

al i 

+180 

In words, a is the fractional increase of length (i.e. 81/1) 

per unit rise of temperature. The unit of @ is K! since 

8/ and / have the same units (metres) and so 8//I is 

a ratio. 
As the temperature rise 66 tends to zero, a 

approaches the linear expansivity at a particular temper- 

ature and experiment shows that its value for a given 
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material is not constant but varies slightly with tempera- 

ture. Mean values are therefore obtained over a temper- 

ature range and in accurate work this range is stated. 

For ordinary purposes a can be assumed constant in 

the range 0 to 100°C. The mean value for copper (at 

room temperatures) is 1.7 x 10-°K~!; a copper rod 1 

metre long therefore increases in length by 1.7 x 107° 

metre for every 1 °C (1 K) temperature rise. 
A useful expression is obtained if we consider a solid 

of original length /) which increases to /, for a tempera- 

ture rise of 6. Replacing 8/ by /,—/) and 80 by @ in 
the expression for a we get 

= ly — ly 

10 

Rearranging, Ly — ly = gad 

l, = Rel ae a6) 

Note that /) is the original length and, since values of 

a are very small, it need not be the length at 0°C. 

(Unlike Rp in the temperature coefficient of resistance 

formula Ry= Ry(1 + a8) on p. 56, which is generally 

taken to be the resistance at 0°C.) For example, if the 

temperature of a 2 metre long copper rod rises from 

15°C to 25°C then =2m, @=(25-—15)=10°C= 
10K, w@=1.7 < 10" K-* and 

Lp — ly = lad 

= (2m)(1.7 x 10°°K~!)(10K) 

Set ax ds xX 10° mk 1K 

=3.4K10%m 

= 0.34mm 

Thermal expansion of a solid can be explained on 
the atomic scale with the help of Fig. 5.11a which shows 

Repulsion 

Separation of atoms mn ° 4 io} oO 

(c) 6 (62> 0,) [ greater on extension side 

Note: 15> 5> 
Attraction 

“solid expands 

Fig. 5.11 

Average equilibrium separation at increasing temperature 

(a) @% (very low temperature) - symmetrical vibration 

(b) 6, (6, > ae vibration with displacement 

that the repelling forces between atoms increase more 

rapidly than the attractive forces as their separation var- 

ies. A rise of temperature increases the amplitude of 

vibration of the atoms about their equilibrium position 
but this will be greater on the extension side of that 

position, for the reason just given, and the average sepa- 

ration of the atoms increases. At low temperatures the 

amplitudes of oscillation are small and symmetrical, Fig. 

5.11b, about the equilibrium position and so we would 
not expect expansion with increase of temperature—a 

fact confirmed by experiment. A further conclusion 
from this argument is that linear expansivities should 

increase with rising temperature, as they do. 

(b) Area expansion. The change of area of a surface 

with temperature change is described by the area or 

superficial expansivity B. Thus if an area A increases 

by 5A due to a temperature rise 66 then B is given by 

8A 1 
A 86 

In words, B is the fractional increase of area (i.e. 8A/A) 

per unit rise of temperature. 

The variation of area with temperature is given by 

an equation similar to that for linear expansion, thus 

Ag = Ao(1 + BA) 

where A, and A, are the original and new areas respec- 

tively and @is the temperature rise. 

It can be shown that for a given material B ~ 2a. Con- 
sider a square plate of side /), Fig. 5.12. We have 

Ag = ly 

A temperature rise of 6 causes the length of each side 

to become /)(1 + a6) if the material is isotropic, i.e. has 

(oa 

, (a6) 

(ae !} 
(, (1+a@) 

Fig. 5.12 



the same properties in all directions. Hence the new 
area Ag is 

Ag=/7(1 + a0) 

=1(1 + 200+ a6) 

Now a’@ is very small compared with 2@@ and since 
Ap = |)? we have 

Ag~ Ao(1 + 2a6) 

Comparing this with A, = A,(1 + B8@) it follows that 

B=2a 

(c) Volume expansion. Changes of volume of a 
material with temperature are expressed by the cubic 

expansivity y. Thus if a volume V increases by 8V for 

a temperature rise 5@ then yis given by 

In words, y is the fractional increase of volume (i.e. 

8V/V) per unit rise of temperature. 

The equation V,= V (1 + yé@) is also useful and it can 

be shown that for a given material y~ 3a. The proof 

involves calculating the volume change of a cube in 
terms of the linear expansion of each side—in a similar 

manner to that adopted for areas. Cubic and area expan- 

sivities for solids are not given in tables of physical con- 

stants since they are readily calculated from linear 

expansivities. The comment on the constancy of a (p. 

83) also applies to Band y. 

A hollow body such as a bottle expands as if it were 
solid throughout, otherwise it would not retain the same 

_ shape when heated. 

_ Thermal stress 

_ Forces are created in a structure when thermal expan- 

sion or contraction is resisted. An idea of the size of 

such forces can be obtained by considering a metal rod 

of initial length /), cross-section area A and linear expan- 
sivity a, supported between two fixed end plates, Fig. 

5.13. If the temperature of the rod is raised by 6°C, 

Metal rod 

Fig. 5.13 Fixed end plates 
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it tries to expand but is prevented by the plates and 

a compressive stress arises in it. 

Removing one of the plates would allow the rod to 

expand freely and its new length /, would be J) + a. 

We can therefore look upon the plate, when fixed in 
position, as exerting force F on the rod and reducing 

its length from /, to /). Then (from p. 28), 

change in length 
compressive strain =——— 

original length 

ll Also, compressive stress 

If the Young modulus for the material of the rod is 

E (the compressive modulus is the same as the tensile 
one for small compressions) then 

Stress. Fl, 
E — = = 

strain Aljaé 

The difference between /, and /) would be small com- 

pared with either and so to a good approximation J, = /. 

Therefore 

Jet 
E=—— and F=EAaé 

Aaé 

For a steel girder with E=2.0x10"Pa(Nm~%), 
A= 100cem? = 10-7 nr, a=1.2 10> K * and a tem- 
perature rise = 20°C = 20K, 

F=(Q <104 Nam?) (105 4m yx 
(1.2 x 10-5K7!) x (20K) 

=2~x 10!! x 107? x 1.2 x 1075 x 20 

Nm “mK 'K 

=4.8x10°N 

—a sizeable force. The original length of the rod does 

not affect the force but long rods tend to buckle at lower 

compressive stresses than short ones. 

Thermal stress is put to good use in the technique 

of shrink fitting in which, for example, a large gear wheel 

is fitted on to a shaft of the same material. The diameter 

of the central hole in the wheel is smaller at room tem- 
perature than the outside diameter of the shaft. If the 

shaft is cooled with solid carbon dioxide (‘dry ice’) at 

—78 °C it can be fitted into the wheel. At room tempera- 
ture the shaft is under compression and the wheel under 

tension and a tight-fitting joint results. 
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Expansion of liquids 

(a) Real and apparent expansion. Only the cubic 
expansivity has meaning in the case of a liquid since 

its shape depends on the containing vessel. The cubic 

expansivities of liquids are generally greater than those 
for solids and like the latter they vary with temperature. 

Mean values are therefore obtained for the temperature 

range considered. 
The expansion of a liquid is complicated by the fact 

that the vessel expands as well and makes the expansion 

of the liquid appear less than it really is. Consequently 

two expansivities are defined. 

The apparent cubic expansivity Yapp Of a liquid in a 
vessel of a particular material is the apparent fractional 

increase of volume per unit rise of temperature. 

The real or absolute cubic expansivity Y,oq of a liquid 

is the actual fractional increase of volume per unit rise 

of temperature and is always greater than Yapp. 

It can be shown that 

Yreal ~ Yapp + Y material of vessel 

This relationship enables the apparent expansion of a 
liquid relative to its container to be calculated. For 
example, if the temperature of 100cm? of mercury 

in a glass vessel is raised from 10°C to 100°C and 
rea, for mercury = 1.82 X 10-*K™! and ayiacs = 8.00 X 
10-°K~! then since 

Yelass a OO as. = 2.40 x 10> Ky 

we have 

Yapp ~ Yreal — Yelass 

== 1.82 x 10-*-— 2.40 x 107° 

=158x 107*K 

Hence 

apparent expansion of mercury = Voy, 

= (100 cm*)(1.58 x 104 K~!)(90 K) 

= 1.42 cm? 

(b) Variation of density with temperature. It is some- 
times more useful to know how the density rather than 

the volume of a liquid changes with temperature. Con- 

sider a fixed mass m of liquid of real cubic expansivity 

y which occupies volume Vp and has density py at a 

certain temperature. Let the temperature rise be 8, 

causing the volume to increase to V, and the density 

to decrease to pp», then as for a solid 

V,=V(1 + yé) 

Vo 
—=1+/y¥0 
Vo 

But m = Vo po = VoPo 

Ms _ Po 
Vo Po 

Thus Paso 
Po 

or Po = po 1 + YA) 

(c) Anomalous expansion of water. At 4°C the den- 

sity of water is a maximum; from 4°C to 0°C it expands 

and the expansion is said to be anomalous, i.e. abnor- 

mal. It is this abnormal behaviour of water which results 

in convection currents ceasing when all the water in 

a pond has reached 4 °C, assuming, of course, a surface 

air temperature of that value or below. The expansion 

between 4°C and 0°C is explained on the assumption 

that at 4°C the expansion due to the dissociation of 
complex molecules such as H,O, and H,O3;, already 

present in the water, more than cancels out the contrac- 

tion due to the fall of temperature. 

Water is also unusual because it expands on freezing, 
every 100cm? of water becoming 109cm? of ice. This 
accounts for the bursting of water pipes in very cold 

weather. 

Thermal conductivity 

Heat transfer, i.e. the passage of energy from a body 

at a higher temperature to one at a lower temperature, 

occurs by the three processes of conduction, convection 

and radiation, although evaporation and condensation 
may often play an important part. In some cases the 

aim of the heat engineer is to encourage heat flow (as 

in a boiler) while in others it is to minimize it (e.g. 

lagging a house). Here we shall discuss conduction, i.e. 

the transfer of energy due to the temperature difference 

between neighbouring parts of the same body. 

(a) Definition. Consider a thin slab of material of 
thickness 5x and uniform cross-section area A between 
whose faces a small temperature difference 86 is main- 
tained, Fig. 5.14. Ifa quantity of heat 8Q passes through 

Direction of 

heat flow 

Fig. 5.14 . 



the slab by conduction in time 8, the thermal conducti- 

vity k of the material is defined by the equation 

5 50 OTE 
ot ox 

The negative sign indicates that heat flows towards 

the lower temperature, i.e. as x increases @ decreases 
thus making 56/8x—called the temperature gradient— 
negative. Inserting the negative sign ensures that 8Q/8r 

and k will be positive. as 

or Wm7!K™! as can 
be seen by inserting units for the various quantities in 

the previous expression and remembering that 1 watt 

is 1 joule per second. Its value for copper is 
390Wm-!K~! and for polystyrene 0.08 Wm-!K-! 
(both at room temperature). 

When 86— 0, k approaches the thermal conductivity 

at a particular temperature and experiment shows that 

its value for a given material varies slightly with temper- 

ature. (In the limiting case when 8x — 0, a cross-section 

is then being considered and the equation defining k 

can be more precisely written in calculus notation as 

dQ/dt = —kA(d6/dx).) If measurements are not made 

over too great a temperature range, a constant mean 
value for & is usually assumed. 

(b) Temperature gradients. When heat has been pass- 

ing along a conductor for some time from a source of 
fixed high temperature, a steady state may be reached 

with the temperature at each point of the conductor 

becoming constant. 
In the unlagged bar of Fig. 5.15a the quantity of heat 

_ passing in a given time through successive cross-sections 

- decreases due to heat loss from the sides. The lines of 

heat flow are divergent and the temperature falls faster 
near the hotter end. For steady-state conditions a graph 

UNLAGGED BAR 

A, 
HOT, OLD 

Line of heat flow 

Slope of tangent gives 
temperature gradient 

atA 
Temperature 0 

Distance x 

| Fig. 5.15 (a) 
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of temperature @ against distance x from the hot end 

is as shown. The temperature gradient at any point is 

given by the slope of the tangent at that point (in calculus 

notation by d6/dx). 
In a lagged bar whose sides are well wrapped with 

a good insulator, Fig. 5.155, heat loss from the sides 
is negligible and the rate of flow of heat is the same 

all along the bar. The lines of heat flow are parallel 

and, in the steady state, the temperature falls at a con- 

stant rate as shown. The temperature gradient in this 
case is the slope of the graph, i.e. 80/8x. 

There is a useful expression applicable to many simple 

problems in which the lines of heat flow are parallel; 

they are in a lagged bar and in a plate of large cross- 

section area. Why the latter? Consider a conductor of 

length x, cross-section area A and thermal conductivity 

k whose opposite ends are maintained at temperatures 

6, and 6, (6, > 0,). From what has id in the pre- 

vious paragraph it follows 

passing any point in time f e has 

been reached is given by 

a 
t x 

We will now use this expression, which is sometimes 

called Fourier’s law. 

(c) Composite slab problem. Suppose we wish to find 

the rate of flow of heat through a plaster ceiling which 

measures 5m X 3m X 15mm (i) without and (ii) with 
a 45 mm thick layer of insulating fibreglass if the inside 

and outside surfaces are at the surrounding air temper- 

atures of 15°C and 5°C respectively. (Kpisster= 

0.60 W m7! K7! and Kepregiass = 9-040 W m7! K~!.) 
Assuming steady states are reached and lines of heat 

flow are parallel we can use rate of flow of heat = Q/t= 
kA(@,— 0,)/x. We have A =5 x 3= 15'm?. 

LAGGED BAR 

S 

ie 
2 
oO 

S é0 

e dmc 
AS 

Distance 2 

(b) 
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(i) Without fibreglass, Fig. 5.1l6a, x = 15mm = 

0.015 m, 

Q_ (0.60Wm7!K7!)(15 m’) x (10°C) 

ee (0.015 m) 

Ks A x 15 Xx ee Km 

* 0.015 m 

= 6.0 x 10°W 

(In practice it will be very much less than this, see 

later.) 

15mm 15mm 45mm 

62 —Y4—- 1 02—~ — 6; 
(15 °C) (5 °C) (15 °C) (5i°C) 

Plaster Plaster Fibreglass 

(a) (b) 

Fig. 5.16 

(ii) With fibreglass, Fig. 5.16b. Let the temperature 

of the plaster—-fibreglass boundary be @. The rate of flow 

of heat is the same through both materials. 

Q  (0.60W m7! K~!)(15 m?)(15°C — 8) 
t (0.015 m) 

_ (0.04 W m7! K7')(15 m’)(@ — 5°C) 

(0.045 m) 

Solving for 6 we get 

6= 14.8°C 

Substituting @in the equation above, 

Q 0.60 x 15 x (15 — 14.8) 
t 0.015 

= 12x10 W 

The previous example shows that when heat flows 

through a composite slab the temperature fall per mm 

is greater across the poorer conductor. This is of prac- 

tical importance where a good conductor is in contact 
with a bad conductor such as air (or a liquid); the latter 
in fact controls the rate of conduction of heat through 

the good conductor. If it is assumed that the surface 

of a good conductor is at the same temperature as that 

of the surrounding air, heat flows will be obtained that 
are of the order of one hundred times too large. In 

Fig. 5.17 most of the temperature drop occurs in the 

layer of gas between the flame and the boiler plate and 

in any scale deposited on the plate by the water. 

Layer of 
gas 

Boiler plate 

Fig. 5.17 

(d) Mechanisms of thermal conduction. In solids (and 

liquids) two processes seem to be involved. The first 

concerns atoms and the second ‘free’ electrons. 
Atoms at a higher temperature vibrate more vigor- 

ously about their equilibrium positions in the lattice than 

their colder neighbours. But because they are coupled 

to them by interatomic bonds they pass on some of their 

vibratory energy and cause them to vibrate more ener- 

getically as well. These in turn affect other atoms and 

thermal conduction occurs. However, the process is 

generally slow because atoms, compared with electrons, 

are massive and the increases in vibratory motion are 

therefore fairly small. Consequently materials such as 

electrical insulators, in which this is the main conduction 
mechanism, are usually poor thermal conductors. 

This effect is often regarded as resembling the passage 

of elastic waves through the material. As light waves 

are considered to have a dual nature, sometimes behav- 

ing as particles called photons, so too are these elastic 
waves considered to have particle-like forms called 

phonons, and thermal conduction is said to be due to 

phonons having collisions with, and transferring energy 

to, atoms in the lattice. 

The second process concerns materials with a supply 

of ‘free’ electrons. In these the electrons share in any 

gain of energy due to temperature rise of the material 

and their velocities increase much more than those of 
the atoms in the lattice since they are considerably 

lighter. They are thus able to move over larger distances 

and pass on energy quickly to cooler parts. Materials 

such as electrical conductors in which this mechanism 
predominates are therefore good thermal conductors; 

‘free’ electrons are largely responsible for both proper- 

ties. The analogy between them is developed further 

after the motion of fluids has been considered (p. 241). 



It should not be thought that only metals are good 

thermal conductors: phonons can be a very effective 

means of heat transfer, especially at low temperatures. 

Thus at about —180°C synthetic sapphire (AI,O;) is a 
better conductor than copper. 

(e) Heating buildings. This is considered in chapter 

10, where the terms U-value and thermal resistance, used 

by heating engineers, are explained. 

Methods of measuring k 

Since we use the expression Q/t=kA(@)— 0,)/x we 
must ensure that (/) the specimen is in a steady state 

and (ii) the lines of heat flow are parallel. By measuring 

the rate of flow of heat Q/t through the specimen, the 

temperature gradient (6, — 6,)/x and the cross-section 

area A, k can be calculated. 

(a) Good conductors. The problem here is to obtain 
a measurable temperature gradient and is solved by 

using a bar of the material which is long compared with 

its diameter. Large x and small A then make (6, — 0;) 

sufficiently big whilst still giving a satisfactory heat flow 

rate. 

The apparatus due to Searle is shown in Fig. 5.18. 

The bar under study is heavily lagged and heated at 

one end by steam (or by an electrical heating coil in 

some arrangements). A spiral copper tube soldered to 
the bar carries a steady flow of water which is warmed 

at the cold end by the heat conducted down the bar. 

Two thermometers record the entrance and exit temper- 

atures 6; and 6, of the water. Which will be the greater? 

The thermometers giving the temperatures 6, and 6, 
at a known separation x on the bar are inserted in holes 

containing mercury. Why? 

eo 
i? Cross-section 
(A ae of bar 

Spiral copper tube Lagging Bar 

Fig. 5.18 

When all four thermometer readings are constant they 

are noted and the mass m of water flowing through the 

copper tube in time fis found with a measuring cylinder 

and stop-watch. If Q is the quantity of heat flowing 
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down the bar also in time ¢ and A is the cross-section 

area of the bar then 

Sia iA eS " a) 
t ne 

This heat is taken from the bar by the mass m of cooling 
water of specific heat capacity c and so 

Q = mc(6,— 43) 

6, — 0 
Hence Karl = mc( 4 — 43) 

from which k can be found. 

In this method once a steady state has been reached 

the rate of flow of heat and the temperature gradient 

are the same for any section of the bar, since it is lagged. 

It is then possible to measure each at different parts 

of the bar. 

For accurate work thermocouples bound to the bar 

replace the mercury thermometers. 

(b) Poor conductors. In this case even a thin speci- 

men gives a measurable temperature gradient; the diffi- 

culty is getting an adequate rate of heat flow. It is 

overcome by using a thin disc of the material (i.e. x 

small and A large); this shape also helps to reduce heat 

loss from the sides of the specimen thereby giving paral- 
lel lines of heat flow. 

A simple form of the apparatus, adapted from one 

due to Lees, is shown in Fig. 5.19. A disc D of the 

material under test rests on a thick brass slab B contain- 
ing a thermometer and is heated from above by a steam- 

chest C whose thick base also carries a thermometer. 

In the first part of the experiment steam is passed 

until temperatures 6, and 6, are steady. We can then 

say that the heat passing per second through D, to B 

from C, equals the heat lost per second by B at tempera- 

ture 6, to the surroundings. If this is Q then 

6, — 6; 

o= kal 
x 

A, x, 05 and-6, can all be measured. 

In the second part D is removed and B heated directly 
from C until its temperature is about 5°C above what 
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Lagging 

Temperature 

> 

Ti 
(b) 6 ime 

Fig. 5.20 

it was in the first part, i.e. about 5°C above 6,. C is 
now removed and a thick felt pad placed on B, Fig. 

5.20a. Temperature-time readings are taken and a cool- 

ing curve plotted. The rate of fall of temperature of 

B (in °C per second) at 6, equals the slope (b/a) of 

the tangent to the curve at 6,, Fig. 5.20b. If we assume 

that the heat lost per second by B at 6,, cooling under 

more or less the same conditions as in the first part 

(since the felt minimizes heat loss from the top surface) 

is O then 

b oom! a 
where is the mass of B and c its specific heat capacity. 
Hence k can be found from 

ka(2—*) =me(2) 
Note that whilst B’s temperature is steady in the first 

part when it is supplied with heat from C, in the second 

part it is falling since it is drawing on its own internal 
energy. 

QUESTIONS 

Temperature: thermometers 

1. Explain what is meant by a scale of temperature and how 

a temperature is defined in terms of a specified property. 

When a particular temperature is measured on scales based 

on different properties it has a different numerical value on 

each scale except at certain points. Explain why this is so and 

state (a) at what points the values agree and (b) what scale 
of temperature is used as a standard. 

Explain the principles of two different types of thermometer 

one of which is suitable for measuring a rapidly varying temper- 

ature and the other for measuring a steady temperature whose 

value is required to a high degree of accuracy. Give reasons 
for your choice of thermometer in each case. Experimental 

details are not required. (Es) 

2. (a) What is the value of the temperature 6 in °C on the 

scale of a platinum resistance thermometer if Ry = 2.000 ohms, 

>: 

Rio = 2-760 ohms and R, = 2.480 ohms? 
(b) The resistance of a wire at a temperature 6°C measured 

on a standard scale is given by 

R,=R(1+ A+ 107A?) 

where A is a constant. When the thermometer is at a tempera- 

ture of 50.0°C on the standard scale, what will be the tempera- 

ture indicated on the resistance scale? (J.M.B. part qn.) 

Specific heat capacity: latent heat 

3. A current of 2.50A passing through a heating coil im- 

mersed in 180 g of paraffin (specific heat capacity 2.00 J ee 

contained in a 100g calorimeter (specific heat capacity 

0.400J g-! K~') raises the temperature from 5°C below room 
temperature to 5°C above room temperature in 100s. What 

should be the reading of a voltmeter connected across the heat- 

ing coil? (S.) 

4. When water was passed through a continuous flow calori- 

meter the rise in temperature was from 16.0 to 20.0°C, the 

mass of water flowing was 100g in 1 minute, the potential 

difference across the heating coil was 20.0 V and the current 

was 1.50 A. Another liquid at 16.0°C was then passed through 

the calorimeter and to get the same change in temperature 

the potential difference was changed to 13.0 V, the current 

to 1.20A and the rate of flow to 120g in 1 minute. Calculate 

the specific heat capacity of the liquid if the specific heat capa- 

city of water is assumed to be 4.20J g-!K™!. 
State two advantages of the continuous flow method of calor- 

imetry. (J.M.B.) 

5. Give a labelled diagram of a continuous-flow apparatus 

which could be used to determine the specific heat capacity 

of water. The diagram should include the electrical circuit, 

but a description of the apparatus is not required. 

In such an experiment, the following readings were taken: 

Current in heating coil 2.0A 1.5A 

Potential difference across coil 6.0V 4.5V 

Mass of water collected 42.3¢g 70.2 g 

Time of flow 60s 180s 

Inlet temperature 38:0°C 938.0 -€ 
Outlet temperature 42.0°C 42.0°C 

Explain how each reading would be taken, and use the 

figures to obtain a value for the specific heat capacity of water 

in Jg-'K~'. If each temperature reading was subject to an 
uncertainty of +0.1°C, find the resulting percentage uncer- 
tainty in the specific heat capacity due to this cause alone. 

(C. part qn.) 

6. Describe how you would determine experimentally the 

specific heat capacity of either copper or water by a direct 
mechanical method. 

(You may assume, as necessary, that the values of other 
specific heats are known.) 

A metal disc of radius 0.050 m and thickness 0.10 m is turned 

at 10 revolutions per second against a friction band, the tensions 



on the two sides of the band being 45 N and 5.0 respectively. 
The density of the metal is 8.0 x 10°kgm~? and its specific 
heat capacity 4.0 x 10’Jkg~'K~'. Find the rate at which the 
temperature of the disc rises initially. 

For what speed of revolution would a disc of the same dimen- 

sions, but consisting of metal of density 2.7 x 10°kgm~> and 
specific heat capacity 8.0 x 10° Jkg~'K~!, give the same initial 
rate of temperature rise when rotated against the friction band 

under the same tensions as before? (O.27E,)) 

7. Define the terms specific heat capacity, specific latent heat 
of vaporization. 

Describe how the specific latent heat of vaporization of a 

liquid such as alcohol may be determined by an electrical 

method explaining how a correction for heat losses may be 
made in the experiment. 

A well-lagged copper calorimeter of mass 100g contains 

200g of water and 50.0g of ice all at 0°C. Steam at 100°C 

containing condensed water at the same temperature is passed 

into the mixture until the temperature of the calorimeter and 

its contents is 30.0°C. If the increase in mass of the calorimeter 

and its contents is 25.0 g calculate the percentage of condensed 

water in the wet steam. (Assume that specific latent heat of 

vaporization of water at 100°C =2.26x10°Jg~'; specific 
latent heat of fusion of ice at 0°C = 3.34 x 10°J g7!; specific 

heat capacity of copper = 0.400J g-'K~!; mean specific heat 

capacity of water = 4.18Jg-'K"!. (E:) 

Expansion 

8. The steel cylinder of a car engine has an aluminium alloy 

piston. At 15°C the internal diameter of the cylinder is exactly 

8.0cm and there is an all-round clearance between the piston 

and the cylinder wall of 0.050mm. At what temperature will 

they fit perfectly? (Linear expansivities of steel and the alumin- 

ium alloy are 1.2 x 10~> and 1.6 x 10-° K~! respectively.) 

9. The height of the mercury column in a barometer is 76.46 cm 

as read at 15°C by a brass scale which was calibrated at 0°C. 

Calculate the error caused by the expansion of the scale and 

hence find the true height of the column. (Linear expansivity 

of brass is 1.900 x 107>K~!.) 

10. Calculate the minimum tension with which platinum wire 

of diameter 0.10mm must be mounted between two points 

in a stout invar frame if the wire is to remain taut when the 

temperature rises 100°C. Platinum has linear expansivity 

9.0 x 10-°K~! and the Young modulus 1.7 x 10!! Pa. The ther- 
mal expansion of invar may be neglected. (O. and C. partqn.) 

11. (a) Distinguish between the real and apparent cubic expan- 

Sivities. 
A glass vessel contains some tungsten and is then filled with 

mercury to a certain mark. It is found that the mercury level 

remains at this mark despite changes of temperature. What 

is the ratio of volumes of the mercury and tungsten? (Linear 

expansivities of tungsten and glass are 4.4 x 10°° and 

8.0 x 10-°K~! respectively, and real cubic expansivity of mer- 

cury is 1.8 x 10-*K7!.) (L. part qn.) 

tHERMAL PROPERTIES 91 

(b) The density of a certain oil at 15°C is 1.03gcm~? and 

its cubic expansivity is 8.50 x 10-*K~!; the density of water 
at 4°C is 1.00gcm~‘ and its mean cubic expansivity over the 

range concerned is 2.10 x 10°*K~!. Find the temperature at 

which drops of the oil will just float in water. (O.L.E. partgn.) 

Thermal conductivity 

12. A cubical container full of hot water at a temperature of 

90°C is completely lagged with an insulating material 

of thermal conductivity 6.4x10°-*Wcem7!K7! (6.4x 
10°*>Wm!K~!). The edges of the container are 1.0m long 
and the thickness of the lagging is 1.0cm. Estimate the rate 

of flow of heat through the lagging if the external temperature 

of the lagging is 40°C. Mention any assumptions you make 

in deriving your result. 

Discuss qualitatively how your result will be affected if the 

thickness of the lagging is increased considerably assuming that 

the temperature of the surrounding air is 18°C. (J.M.B.) 

13. Explain what is meant by temperature gradient. 

An ideally lagged compound bar 25cm long consists of a 

copper bar 15cm long joined to an aluminium bar 10cm long 

and of equal cross-sectional area. The free end of the copper 

is maintained at 100°C and the free end of the aluminium 

at 0°C. Calculate the temperature gradient in each bar when 

steady state conditions have been reached. 

Thermal conductivity of copper = 3.9 Wem! K7!. 
Thermal conductivity of aluminium = 2.1 Wcm7!K7!. 

(J.M.B.) 

14. Define thermal conductivity and explain how you would 

measure its value for a good conductor. Explain why the 

method which you describe is not suitable for a poor conductor. 

The walls of a container used for keeping objects cool 

consist of two thicknesses of wood 0.50.cm thick separated by 

a space 1.0cm wide packed with a poorly conducting material. 

Calculate the rate of flow of heat per unit area into the 

container if the temperature difference between the internal 

and external surfaces is 20°C. (Thermal conductivity of 

wood = 2.4 10->Wcem™!K7!, of the poorly conducting 
material = 2.4 x 10°*Wem7!K7~!.) (A. E.B:) 

15. The ends of a straight uniform metal rod are maintained 

at temperatures of 100°C and 20°C, the room temperature 

being below 20°C. Draw sketch-graphs of the variation of the 

temperature of the rod along its length when the surface of 

the rod is (a) lagged, (b) coated with soot, (c) polished. Give 

a qualitative explanation of the form of the graphs. 

A liquid in a glass vessel of wall area 595 cm? and thickness 
2.0mm is agitated by a stirrer driven at a uniform rate by 

an electric motor rated at 100 W. The efficiency of conversion 

of electrical to mechanical energy in the motor is 75%. The 

temperature of the outer surface of the glass is maintained 

at 15.0°C. Estimate the equilibrium temperature of the liquid, 

stating any assumptions you make. 

Thermal conductivity of glass = 0.840 Wm7!K7!, (C.) 
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Introduction 

The scientific study of light and optical materials is 

involved in the making of spectacles, cameras, projec- 

tors, binoculars, microscopes and telescopes. Whilst the 

most important of all optical materials are the various 

kinds of glass, others such as plastics, Polaroid, synthetic 

and natural crystals have useful applications. 
In this chapter we shall consider the behaviour of 

certain optical components and instruments. Light will 

be treated as a form of energy which travels in straight 
lines called rays, a collection of rays being termed a 

beam. The ray treatment of light is known as geometrical 

optics and is developed from 

(i) rectilinear propagation, i.e. straight-line travel 

(ii) the laws of reflection 

(iii) the laws of refraction. 

When light comes to be regarded as waves it will be 

seen that shadows cast by objects are not as sharp as 

rectilinear propagation suggests. However, for the 

present it will be sufficiently accurate to assume that 

light does travel in straight lines so long as we exclude 

very small objects and apertures (those with diameters 
less than about 10-? mm). 

Reflection at plane surfaces 

(a) Laws of reflection. When light falls on a surface 

it is partly reflected, partly transmitted and partly 

absorbed. Considering the part reflected, experiments 
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with rays of light and mirrors show that two laws hold. 

1. The angle of reflection equals the angle of incidence, 

i.e. j; =i, in Fig. 6.1. 

Incident Reflected 
ray | ray 

| 
| 
| 

Silvering on mirror 

Fig. 6.1 

2. The reflected ray is in the same plane as the incident 

ray and the normal to the mirror at the point of incidence, 
i.e. the reflected ray is not turned to either side of the 
normal as seen from the incident ray. 

Note that the angles of incidence and reflection are 

measured to the normal to the surface and not to the 

surface itself. 

(b) Regular and diffuse reflection. A mirror in the 

form of a highly polished metal surface or a piece of 

glass with a deposit of silver on its back surface reflects 
a high percentage of the light falling on it. If a parallel 

beam of light falls on a plane (i.e. flat) mirror in the 

direction IO, it is reflected as a parallel beam in the 

direction OR and regular reflection is said to occur, Fig. 

6.2a. Most objects, however, reflect light diffusely and 
the rays in an incident parallel beam are reflected in 
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Mirror Rough surface 

(a) (b) 

Fig. 6.2 

many directions as in Fig. 6.2b. Diffuse reflection is due 

to the surface of the object not being perfectly smooth 

like a mirror and although at each point on the surface 

the laws of reflection are observed, the angle of inci- 

dence and therefore the angle of reflection varies from 
point to point. 

(c) Rotation of a mirror. When a mirror is rotated 

through a certain angle, the reflected ray turns through 
twice that angle. This is a useful fact which can be proved 

by considering the plane mirror of Fig. 6.3a. When it 

is in position MM, the ray IO, incident at angle i, is 
reflected along OR so that Z RON =i. 

Fig. 6.3 

If the mirror is now rotated through an angle 6 to 

position M’M’ and the direction of the incident ray kept 

constant, Fig. 6.3b, the angle of incidence ZION’ 

becomes (i+ 0) since the angle between the first and 

second positions of the normals, i.e. Z NON’, is also 
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6. Let OR’ be the new direction of the reflected ray 

then Z R'ON’ = (i+ 6). The reflected ray is thus turned 

through Z ROR’ and 

Z ROR’ =ZR’'ON-ZRON 
=ZR’'ON’+ZN’ON—-—ZRON 
=(0+i)+0-i 
= 26 
= twice the angle of rotation of the mirror 

(d) Optical lever and light-beam galvanometers. Some 
sensitive galvanometers use a beam of light in conjunc- 

tion with a small mirror as a pointer. The arrangement 
is called an optical lever, it uses the ‘rotation of a mirror’ 

principle and increases the ability of the meter to detect 

small currents, i.e. makes it more sensitive. 

A tiny mirror M is attached to the part (e.g. a coil 

of wire) of the meter which rotates when a current flows 

in it, Fig. 6.4. A beam of light from a fixed lamp falls 

on M and is reflected into a scale S. For a given current, 

the longer the pointer (i.e. the reflected beam) the 
greater will be the deflection observed on S. Besides 

being almost weightless the arrangement has the ad- 

ditional advantage of doubling the rotation of the moy- 

ing part since the angle the reflected beam turns through 

is twice the angle of rotation of the mirror, the direction 

of the incident ray remaining fixed. 

Light from 

ee is lamp 

Small mirrorM 

attached to 

meter movement 

y/ Spot of light 

Scale S 

Fig. 6.4 

Images in plane mirrors 

(a) Point object. The way in which the image of a 

point object is seen in a plane mirror is shown in Fig. 

6.5. Rays from the object at O are reflected according 

to the laws of reflection so that they appear to come 

from a point I behind the mirror and this is where the 

observer imagines the image to be. The image at I is 

called an unreal or virtual image because the rays of 

light do not actually pass through it, they only seem 

to come from it. It would not be obtained on a screen 

placed at I as would a real image which is one where 
rays really do meet. (The image produced on a cinema 
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Fig. 6.5 

screen by a projector is a real image.) Rays OA and 

AE are real rays, IA is a virtual ray that appears to 

have travelled a certain path but in fact has not; it gives 

rise to a virtual image. 
Everyday observation suggests and experiment shows 

that the image in a plane mirror is as far behind the 

mirror as the object is in front and that the line joining 

the object to the image is perpendicular to the mirror, 

i.e. in Fig. 6.5 ON=NI and OI is at right angles to 

the mirror. However, you should be able to show, using 

the first law of reflection and congruent triangles, that 

this is so and also that all rays from O, after reflection, 

appear to intersect at I. A perfect image is thus obtained, 

i.e. all rays from the point object pass through one point 

on the image; a plane mirror is one of the few optical 

devices achieving this. 

It is possible for a plane mirror to give a real image. 

Thus in Fig. 6.6a a convergent beam is reflected so that 

the reflected rays actually pass through a point I in front 

of the mirror. There is a real image at I which can be 

picked up on a screen. At the point O, towards which 

the incident beam was converging before it was inter- 

cepted by the mirror, there is considered to be a virtual 

object. Later we will find it useful on occasion to treat 

Convergent beam 

(Real image) 

\ 
Nis 
V Divergent 

: O ; beam 
Virtual object \ y: 

(a) Nat 
V 
| 

Virtual image 

Fig. 6.6 (b) 

a convergent beam in this way. Comparing Figs. 6.6a 
and b, we see that in the first, a convergent beam 

regarded as a virtual point object gives a real point 
image, whilst in the second, a divergent beam from a 

real point object gives-a virtual point image. In both 

cases object and image are equidistant from the mirror. 

(b) Extended object. Each point on an extended 

(finite-sized) object produces a corresponding point 

image. In Fig. 6.7 the image of a point A on the object 

is at A’, the two points being equidistant from the mir- 
ror. The image of point B is at B’. If an eye at E views 

the object directly it sees A on the right of B, but if 

it observes the image in the mirror A’ is on the left. 

The right-hand side of the object thus becomes the left- 

hand side of image and vice versa. The image is said 
to be laterally inverted, i.e. the wrong way round, as 

you can check by looking at yourself in a mirror. 

B 
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Fig. 6.7 

(c) ‘No parallax’ method of locating images. Suppose 

the object is a small pin O placed in front of a plane 

mirror M. To find the position of its virtual image I, 

a large locating pin P is placed behind M, Fig. 6.8a, 

and moved towards or away from M until P and the 

| 

No parallax for all 
positions of 

observer's eye 

P has moved to right 
with observer .°. P 

farther from M than | 

(b) 
Fig. 6.8 



image of O always appear to move together when the 
observer moves his head from side to side. P and I are 
then coincident: P is at the position of the image of 
O. When P and I do not coincide there is relative 

movement, called parallax, between them when the 

observer’s head is moved sideways. The location of I 

can be achieved more quickly by remembering that if 

P is farther from M than I, then P appears to move 

in the same direction as the observer, Fig. 6.8). 

The no parallax method is used to find real as well 
as virtual images as we shall see later when curved 
mirrors and lenses are considered. 

(d) Inclined mirrors. Two mirrors M, and M; at 90° 
form three images of an object P placed between them, 

Fig. 6.9a. I, is formed by a single reflection at M,, I, 

by a single reflection at M, and I, by reflections at M, 

and M,. The line joining each image and its object is 

perpendicularly bisected by the mirror involved (we can 

think of I, as being either the image of I, acting as an 

object for mirror M, extended to the left or the image 

of I, as an object for mirror M, extended downwards) 

and so it follows that OP = OI, = OI, = Ol. Justify this. 

Hence P, I,, I, and I, lie on a circle, centre O. 
Two mirrors at 60° to each other form five images, 

Fig. 6.9b. As the angle between the mirrors decreases 
the number of images increases and in general for an 

angle @ (which is such that 360/6 is an integer) it can 

be shown that [(360/6) — 1] images are formed. When 
the mirrors are parallel 6=0° and in theory an infinite 
number of images should be obtained, all lying on a 

straight line passing through the object and perpendicu- 

lar to the mirrors, Fig. 6.10. In practice some light is 

lost at each reflection and a limited number only is 
seen. If the distances of P from M, and M, are a and 

b respectively, prove that the separation of the images 

is successively 2a, 2b, 2a, 2b, etc. 

(a) 

Fig. 6.9 
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Curved mirrors 

Curved mirrors are used as car driving-mirrors and as 

reflectors in car headlamps, searchlights and flashlamps. 

They are an essential component of the largest teles- 

copes. We shall consider mainly spherical mirrors, i.e. 

those which are part of a spherical surface. 

(a) Terms and definitions. There are two types of: 

spherical mirror, concave and convex, Figs. 6.1la and 

b. For a concave mirror the centre C of the sphere of 

A 

Concave mirror 

Light 
oT 

(a) B 

Fig. 6.11 

(b) 
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which the mirror is a part is in front of the reflecting 
surface, for a convex mirror it is behind. C is the centre 

of curvature of the mirror, and P, the centre of the mirror 

surface, is called the pole. The line CP produced is the 

principal axis. AB is the aperture of the mirror. 

Observation shows that a narrow beam of rays, paral- 
lel and near to the principal axis, is reflected from a 

concave mirror so that all rays converge to a point F 

on the principal axis, Fig. 6.12. F is called the principal 

focus of the mirror and it is a real focus since light 

actually passes through it. Concave mirrors are also 

known as converging mirrors because of their action 

on a parallel beam of light. 

Narrow 
beam Cc 

Fig. 6.12 

A narrow beam of rays, parallel and near to the princi- 

pal axis, falling on a convex mirror is reflected to form 

a divergent beam which appears to come from a point 

F behind the mirror, Fig. 6.13. A convex mirror thus 

has a virtual principal focus; it is also called a diverging 
mirror. 

k 

>_< PS >____— 
een: S 

Fig. 6.13 

Rays which are close to the principal axis and make 

small angles with it, i.e. are nearly parallel to the axis, 

are called paraxial rays. Our treatment of spherical 

mirrors will be restricted at present to such rays, which, 

in effect, means we shall consider only mirrors of small 

aperture. In diagrams, however, they will be made 

larger for clarity. 

Spherical mirrors form a point image of all paraxial 

rays from a point object (as we will see shortly, p. 99), 

as well as bringing paraxial rays that are parallel to the 

principal axis to a point focus F. 

(b) Relation between f and r. The distance PC from 
the pole to the centre of curvature of a spherical mirror 

is called its radius of curvature (r); the distance PF from 

the pole to the principal focus is its focal length (f). 

A simple relation exists between f and r. 

Fig. 6.14 

In Fig. 6.14 a ray AM, parallel to the principal axis 

of a concave mirror of small aperture, is reflected 

through the principal focus F. If C is the centre of curva- 

ture, CM is the normal to the mirror at M because the 

radius of a spherical surface is perpendicular to the sur- 

face. Hence by the first law of reflection 

ZL AMC =ZCMF= 46 

But ZL AMC =Z MCF (alternate angles) 

ZL CMF = Z MCF 

A\FCM is thus isosceles and FC = FM. The rays are 

paraxial and so M is very close to P; therefore to good 

approximation FM = FP. 

EFC=FP on BP=sCe 

f=r/2 

Thus the focal length of a spherical mirror is approxima- 

tely half the radius of curvature. Check this relation for 

a convex mirror using Fig. 6.15. 

That is 

Fig. 6.15 

Images in spherical mirrors 

In general the position of the image formed by a spheri- 
cal mirror and its nature (i.e. whether it is real or virtual, 

inverted or upright, magnified or diminished) depend 

on the distance of the object from the mirror. Informa- 

tion about the image in any case can be obtained either 

by drawing a ray diagram or by calculation using formu- 
lae. 

(a) Ray diagrams. We shall assume that small objects 

on the principal axes of mirrors of small aperture are 

being considered so that all rays are paraxial. Point 



Object i Object 

~ 

0 C F . . 

(i) Object beyond C. 
Image between C and F, real, 

inverted, diminished. 

(iv) Object between F and P. 
Image behind mirror virtual, 

upright, magnified. 

Fig. 6.16 

images will therefore be formed of points on the object. 

To construct the image, two of the following three 

rays are drawn from the top of the object. 

(i) A ray parallel to the principal axis which after 

reflection actually passes through the principal focus or 

appears to diverge from it. 

(ii) A ray through the centre of curvature which 

strikes the mirror normally and is reflected back along 

the same path. 
(iii) A ray through the principal focus which is re- 

flected parallel to the principal axis, i.e a ray travelling 

the reverse path to that in (7). 

Since we are considering paraxial rays the mirror must 

be represented by a straight line in accurate diagrams. 

It should also be appreciated that the rays drawn are 

constructional rays and are not necessarily those by 

which the image is seen. 
The diagrams for a concave mirror are shown in Fig. 

Plane mirror 

(ii) Object at C. 
Image at C, real, inverted, 

same size. 
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Object | 

(iii) Object between C and F. 
Image beyond C, real, 

inverted, magnified. 

Notes: 1. In (i) and (iii) O and I are interchangeable; such 

positions of object and image are called conjugate points. 

2. C is a self-conjugate point—as (ii) shows, object and 

image are coincident at C. 

3. If the object is at infinity (i.e. a long way off), a real 

image is formed at F. Conversely an object at F gives a real 

image at infinity. 

4. In all cases the foot of the object is on the principal axis 

and its image also lies on this line. 

6.16 and for a convex mirror in Fig. 6.17. In the latter 

case no matter where the object is, the image is always 

virtual, upright and diminished. Fig. 6.18 shows that 

a convex mirror gives a wider field of view than a plane 

mirror which explains its use as a driving mirror and 
on the stairs of double-decker buses. It does make the 
estimation of distances more difficult, however, because 
there is only small movement of the image for large 

movement of the object. 

Fig. 6.17 

Convex mirror 

Fig. 6.18 
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Fig. 6.19 

(b) The mirror formula. In Figs. 6.19a and b a ray 
OM from a point object O on the principal axis is re- 

flected at M so that the angles @, made by the incident 

and reflected rays with the normal CM, are equal. A 

ray OP strikes the mirror normally and is reflected back 

along PO. The intersection I of the reflected rays MI 

and PO in (a) gives a real point image of O, and of 
MI and PO both produced backwards in (b) gives a 

virtual point image of O. 
Let angles a, B and y be as shown. In ACMO, since 

the exterior angle of a triangle equals the sum of the 

interior opposite angles, 

Concave 

B=at+, ate 6=B-a 

In ACMI y=Bt+O 

ic 0. y= 

B-a=y-B 
2B = yt a (1) 

Convex 

d6=at+B 

In ACMI y=0+ 8 

v= y— p 
OF Yo M | 
2B=y-a (1)' 

If the mirror is of small aperture, the rays are paraxial, 

M will be close to P and a, B and y are small. Then 

a (in radians) ~ tan @ (1 radian = 57.3°), 

_ MP 
= Nv” _ where OP is the object 
OP distance 

Similarly B~ MP where CP is the radius of 
CE curvature of the mirror 

~MP where IP is the image 
‘ap distance 

Substituting in (1), 

2MP_ MP _ MP 

CP IP OP 

ei aad 
— (2) CP IP. OP 

CP IPen OF 

pinta tt 
iat taro (2) 
CP IP. OF 

If we now introduce a sign convention so that distances 

are given a positive or a negative sign, the same equation 

is obtained for both concave and convex mirrors irres- 

pective of whether objects and images are real or virtual. 

We shall adopt the ‘real is positive’ rule which states: 

A real object or image distance is positive. 

A virtual object or image distance is negative. 

The focal length of a concave mirror is thus positive 
(since its principal focus is real) and of a convex mirror 

negative. The radius of curvature takes the same sign 
as the focal length. 

If we now let u, v andr stand for the numerical values 

and signs of the object and image distance and radius 

of curvature respectively, then for both cases we get 

the same algebraic relationship 



Notes. (i) The formula is independent of the angle 

the incident ray makes with the axis, therefore all parax- 

ial rays from point object O must, after reflection, pass 
through I to give a point image. 

(ii) When numerical values for u, v, r or f are substi- 
tuted in the formula, the appropriate sign must also be 
included; the sign (as well as the value) of the distance 

to be found comes out in the answer and so even if 

the sign is known from other information it must not 

be inserted in the equation. 
(tii) Only two cases have been considered but it can 

be shown that the same formula holds for others, e.g. 

aconcave mirror forming a virtual image of a real object, 

a convex mirror giving a real image of a virtual object 
(i.e. of converging light). 

(c) Magnification. The lateral, transverse or linear mag- 

nification m (abbreviated to magnification) produced 
by a mirror is defined by 

height of image 
YY) = 

height of object 

Fig. 6.20 

In Fig. 6.20, II’ is the real image formed by a concave 

mirror of a finite object OO’. A paraxial ray from the 

top O’ of the object, after reflection at say P, passes 

through the top I’ of the image. Since the principal axis 

is the normal to the mirror at P, ZO’PO=ZI'PI, by 

the first law of reflection. Triangles O'PO and I'PI are 
therefore similar and so 

height ofobject O’O OP 

v 
m=— 

u 

For example, if the image distance is twice the object 

distance, the image is twice the height of the object. 

Notes. (i) No signs need be inserted in this formula 

for m, i.e. itis a numerical and not an algebraic formula. 

(ii) The same result can be derived for other cases. 
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Mirror calculations 

I, An object is placed 15cm from (a) a concave mirror, 

(b) a convex mirror, of radius of curvature 20cm. Calcu- 

late the image position and magnification in each case. 

(a) Concave mirror 

The object is real, therefore u = + 15cm. 

Since the mirror is concave r= + 20cm, therefore 

f=+10cm. 

Substituting values and signs in 1/v + 1/u=1/f, 

1 1 1 
— > — SS 

(445) © 10) 

Aid Lib eA 
v 10 15 30 

v= +30cm 

The image is real since v is positive and it is 30cm in 

front of the mirror. Also, 

Vv 

magnificationm=-— (numerically) 
u 

30 
=—=2.0 

15 

The image is twice as high as the object (see Fig. 

6.16ii). 

(b) Convex mirror 

We have u= + i5cm but r= — 20cm and f= — 10cm 

since the mirror is convex. 

Substituting as before in 1/v + 1/u=1/f, 

1 1 1 
= f- —<— = 

Peet 3)s C= 10) 

The image is virtual since v is negative and it is 6.0cm 

behind the mirror. Also 

The image is two-fifths as high as the object (see Fig. 

6.17). 
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2. When an object is placed 20cm from a concave 

mirror, a real image magnified three times is formed. 

Find (a) the focal length of the mirror, (b) where the 

object must be placed to give a virtual image three times 

the height of the object. 

(a) The object is real, therefore u = + 20cm. 

Also, 

Vv Vv 

=3=—=— (numericall m ae ( y) 

The image is real, 

v=+3x20=+60cm 

Substituting in 1/v + 1/u=1/f, 

1 1 1 
+ ——— — 

(+60) (+20) ~ F 

Lied 
f 60 

f=+15cm 

(b) Let the numerical value of the object distance = x. 

Therefore, w=+x since the object is real and 

v = — 3x since the image is virtual; f= + 15cm. 

Using the mirror formula, 

1 1 1 
+ —— 

CEx) esx) (EIS) 

ee ee 

Cy ames cel 

a A 

au 15 

x= 10cm 

The object should be 10cm in front of the mirror. 

Note. By letting x be the numerical value of u we 

are able to substitute for u since we know its sign—a 

useful dodge. 

Methods of measuring f for spherical mirrors 

1. Concave mirror 

(a) Rough method. The image formed by the mirror 

of a distant (several metres away) window is focused 

sharply on a screen, Fig. 6.21a. The distance between 
the mirror and the screen is f since rays of light from 

a point on such an object are approximately parallel, 

Fig. 6.21b. 

Screen Concave mirror 
Light from 

Ruler Yo 

Orla 
eS 

window 

| 
Distant window 

(a) 

Rays from a point on a distant 

object. The nearer the point 

is to the mirror the more 

divergent are the rays 

(b) 
Fig. 6.21 

(b) Self-conjugate point method. The position of an 

object is adjusted until it coincides with its own image. 

This occurs when the object is at the centre of curvature 

and distant r, i.e. 2f, from the mirror. A point at which 

an object and its image coincide is said to be ‘self-conju- 
gate’. 

The object can be a pin moved up and down above 

the mirror until there is no parallax between it and its 

real, inverted image, Fig. 6.22a. If an illuminated object 

is used, it is moved to and from the mirror until a clear 

image is obtained on a screen beside the object, Fig. 
6.22b. 

The pin/no parallax method generally gives more 
accurate results. 

Pin 
Waite ge 

tas at Image on screen 
Image o 
pin 

> fa Object (illuminated cross-wire) 

(a) (b) 

Fig. 6.22 

(c) Mirror formula method. Values of the image dis- 

tance v corresponding to different values of the object 

distance u are found using either the pin/no parallax 

method or an illuminated object and screen. For each 

pair of values, f is calculated from 1/f=1/v + 1/u and 
the average taken. 

A better plan is to plot a graph of 1/v against 1/u 
and draw the best straight line AB through the points, 

Fig. 6.23. Each pair of values of u and v gives two points 



<|- 

c|- 

Fig. 6.23 

on the graph because uw and v are interchangeable; they 
are called ‘conjugate points’. The intercepts OA and 

OB on the axes are both equal to 1/f. Prove this. 

2. Convex mirror 

Auxiliary converging lens method. A convex mirror 
normally forms a virtual image of a real object. Such 

an image cannot be located by a screen and is not easy 

to find by a pin/no parallax method. With the help of 
a converging lens, however, a real image can be 

obtained. 

In Fig. 6.24 the lens L forms a real image at C of 

an object O when the convex mirror is absent. This 

image is located and the distance LC noted. The mirror 

is then placed between L and C and moved until O 

coincides in position with its own image. 

Fig. 6.24 

The light from L is then falling normally on the mirror 

and is retracing its path to form a real inverted image 
at O. If produced, the rays from L must pass through 

the centre of curvature of the mirror since they are nor- 

mal to the mirror. C, the position of the image of O 

formed by L alone, must therefore also be the centre 

of curvature of the mirror and so PC =r. Distance LP 

is measured and then r = 2f = PC = LC — LP. 

Refraction at plane surfaces 

(a) Laws of refraction. When light passes from one 

medium, say air, to another, say glass, Fig. 6.25, part 

is reflected back into the first medium and the rest passes 

into the second medium with its direction of travel 

changed. The light is said to be bent or refracted on 
entering the second medium and the angle of refraction 
is the angle made by the refracted ray OB with the 

normal ON. There are two laws of refraction. 
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Fig. 6.25 

1. For two particular media, the ratio of the sine of 

the angle of incidence to the sine of the angle of refraction 

is constant, i.e. sin i,/sin i, = a constant in Fig. 6.25. 

(This is known as Snell’s law after its discoverer. ) 

2. The refracted ray is in the same plane as the incident 

ray and the normal to the medium at the point of incidence 
but on the opposite side of the normal from the incident. 
ray. 

The constant ratio sin i,/sin i, is called the refractive 

index for light passing from the first to the second 

medium. If the media containing the incident and 

refracted rays are denoted by @ and © respectively, 

the refractive index is written as ,1>. That is, 

The ratio depends on the colour of the light and is 

usually stated for yellow light. If medium @) is a vacuum 

(or, in practice, air) we refer to the absolute refractive 
index of medium @)and denote it by ,, or ,n, or simply 

by nj. The absolute refractive index of water is 1.33, 

of crown glass about 1.5 and of air at normal pressure 

about 1.0003—which is 1 near enough, the same as for 
a vacuum. 

The greater the refractive index (absolute) of a 

medium the greater is the change in direction suffered 

by a ray of light when it passes from air to the medium. 

Refraction is therefore greater from air to crown glass 
than from air to water. In both cases the refracted ray 

is bent towards the normal, i.e. towards ON in Fig. 

6.26a, and the light is travelling into an ‘optically denser’ 

medium. A ray travelling from glass or water to air is 

bent away from the normal, Fig. 6.266. 

Fig. 6.26 
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Refraction can be attributed to the fact that light has 

different speeds in different media. 

(b) Refractive index relationships 

(i) yn) = 1/,n,. Consider a ray AO travelling from air 
(medium () to glass (medium @) and refracted along 

OB as in Fig. 6.27. We have 

Fig. 6.27 

Since light rays are reversible, a ray travelling along 

BO in glass (medium @) will be refracted along OA 
in air (medium (@), hence 

Sin 15 
2; = —— 

sin 1; 

i] 
2 aes 

2 

For example, if the refractive index from air to water 

(,n,,) is 4/3 then that from water to air (,,7,) is 3/4. 

(ii) \n3= \Nz X yn3. Suppose a ray AB travels from 
air (medium @), to glass (medium @), to water 
(medium @)), to air (medium (), as in Fig. 6.28. Experi- 
ment shows that if the boundaries of the media are paral- 
lel, the emergent ray DE, although laterally displaced, 

is parallel to the incident ray AB. The incident and 

emergent angles are thus equal and are denoted by j,. 

Fig. 6.28 

We then have 

sin 1, 
Dare 

SIN 15 

Sinz, Osi, Sint ig ae, ip 
1Nz X Nz X 3, =| ao: —=1 

sini, sini; sini, 

Os ae 
ay 

; it 
From (i), 13 =— 

Wy 

113 = {Nz X 7N3 

The order of the subscripts aids memorization of the 

relation. For example, if we wish to know the refractive 

index for water to glass (,,7,) and we know air to water 

(Mw = 3) and air to glass (,n, = 2) then 

ig lg Sigal 
ie 

=37Xi=8 

Will a ray of light be bent towards or away from the 

normal on travelling from water to glass? 

(iii) ny sini; =ny sini,. This is a more symmetrical 

form of Snell’s law, useful in calculations, which will 

now be derived. 

From Fig. 6.27 we can say 

sin 1; 
Ny 

sin 1, 

From (ii) above, 

11 = 4N, X Ny (a=air ora vacuum) 

= all2 ~< Ny 

al, Ny 

where n, and n, are absolute refractive indices of media 

@ and @ respectively. 

ny sini, 

nN, sini, 

nN, SiN i; = nN sini, 

For example, if a ray of light is incident on a water-glass 

boundary at 30° then i, = i, = 30° and if n, =n, =4 and 
n) =n, =3, the angle of refraction i, = i, is given by 

ny SiN iy =n, sin is 

i.e. $ sin30 =3 sini, 

sini, =3X2X3 (sin30=3) 



(c) Real and apparent depth. Because of refraction 
the apparent depth of a pool of clear water, when viewed 

from above the surface, is less than its real depth; also, 

an object under water is not where it seems to be to 
an outside observer. 

Fig. 6.29 

In Fig. 6.29 rays from a point O under water are 

bent away from the normal at the water—air boundary 

and appear to come from I, the image of O. For refrac- 

tion at B from water to air, 

ny SiN ly, =n, Sini, = sini, (n, = 1) 

sini 
Rget 

siniy 

AB/IB- OB 
ny, =——— = — 

AB/OB_ IB 

If the observer is directly above O, i, and i, are small, 

rays OB and IB are close to OA, thus making OB ~OA 

and IB ~ IA. Hence 

(approximately) eee 
ae TA 

_ real depth 

~ apparent depth 

Taking n,, = 3, what will be the apparent depth of a pond 

actually 2 metres deep? 
The distance OI is called the displacement d of the 

object and if tis the real depth then 

“(0-2 
The same expression gives the displacement of an object 

which is some distance in air below a parallel-sided block 

of material, as can be seen from Fig. 6.30. When viewed 

through several media whose boundaries are parallel, 
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the total displacement is the sum of the displacements 

that would be produced by each medium if the others 

were absent. 

( , 
vl 

Ge 

Fig. 6.30 

A pool of water appears even shallower when viewed 

obliquely rather than from vertically above. As the 

observer moves, the image of a point O traces out a 

curve, called a caustic, whose apex is at I,, Fig. 6.31. 

risen 

iin 

Fig. 6.31 

(d) Multiple images in mirrors. Several images are 

seen when an object is viewed obliquely in a thick glass 

mirror with silvering on the back surface. In Fig. 6.32, 

I, is a faint image of object O formed by the weak 
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reflected ray AB from the front surface of the mirror. 

I,, the main image, is bright and is due to the refracted 

ray AC being reflected at the back (silvered) surface 

and again refracted at the front surface. I, and other 

weaker images are formed as shown. The net effect of 

these multiple reflections and refractions is to reduce 
the sharpness of the primary image I,. Front-silvered 

mirrors eliminate the secondary images but are liable 

to be scratched and to tarnish. 

(e) Mirages. These are often seen as small, distant 

pools of water on a hot tarmac road, particularly when 

vision is very oblique as it is for anyone in a car. They 

are caused by refraction in the atmosphere. 

The air near a road heated by the sun is hot; higher 

up the air is cool and its density greater. Consequently 

rays from the sky travelling towards the road are 

gradually refracted away from the normal as they pass 

from denser to less dense air. Upward bending of the 
light occurs, Fig. 6.33, and the blue light from the sky 

then seems to an observer to have been reflected from 

the road and gives the appearance of puddles. 

Cool air 
SIDE 
VIEW 

ir 

Road 

GZ 
Ge 

f 

Puddles 

Fig. 6.33 

Mirages are sometimes seen in the desert as distant, 

shimmering lakes. 

Total internal reflection 

(a) Critical angle. For small angles of incidence a ray 
of light travelling from one medium to another of 
smaller refractive index, say from glass to air, is 

refracted away from the normal, Fig. 6.34a; a weak 
internally reflected ray is also formed. Increasing the 

angle of incidence increases the angle of refraction and 

at a certain angle of incidence c, called the critical angle, 

the refracted ray just emerges along the surface of the 
glass and the angle of refraction is 90°, Fig. 6.34b. At 

this stage the internally reflected ray is still weak but 

just as c is exceeded it suddenly becomes bright and 

the refracted ray disappears, Fig. 6.34c. Total internal 
reflection is now said to be occurring since all the incident 

light is reflected inside the optically denser medium. 

Critical angle 

(a) (b) 

Air 

Total internal reflection 

(c) 

Fig. 6.34 

Applying Snell’s law in the form n, sin i; =n sin 1, 

to the critical ray at a glass—air boundary, we have 

n, = refractive index of glass = n, 

i; =critical angle for glass = e. 

n= refractive index ofair =1 

i, = angle of refraction in air = 90° 

n, sinc =1sin90=1 (sin 90 = 1) 

1 
n, =—— 
8 sinc 

Taking n, = 3 (crown glass), sinc = 3 and so c = 42°. Thus 
if the incident angle in the crown glass exceeds 42°, total 

internal reflection occurs. Can it occur when a ray of 
. ¥ 3 . . . . 

light in glass (n, = 3 Say) is incident on a boundary with 
water (n,, =3)? 

(b) Totally reflecting prisms. The disadvantages of 
plane mirrors (pp. 103-4), silvered on either the back 

or front surface, can be overcome by using right-angled 

isosceles prisms (angles 90°, 45°, 45°) as reflectors. 

The critical angle of crown glass is about 42° and a 

ray OA incident normally on face PQ of such a prism, 

Fig. 6.35a, suffers total internal reflection at face PR 

since the angle of incidence in the optically denser 

medium is 45°. A bright ray AB emerges at right angles 

to face QR since the angle of reflection at QR is also 

45°. The prism thus reflects the ray through 90°. 



45° 

45° 

(b) 

Fig. 6.35 

Light can be reflected through 180° and an erect image 

obtained of an inverted one (as in prism binoculars, 
p. 103) if the prism is arranged as in Fig. 6.35b. 

(c) Fibre optics. Light can be confined within a bent 

glass rod by total internal reflection and so ‘piped’ along 

a twisted path, as in Fig. 6.36. The beam is reflected 

from side to side practically without loss (except for 

that due to absorption in the glass) and emerges only 

at the end of the rod where it strikes the surface almost 

normally, i.e. at an angle less than the critical angle. 

A single, very thin, solid glass-fibre behaves in the same 

way and if several thousand are taped together a flexible 

light pipe is obtained that can be used, as it has been 

in medicine and engineering, to illuminate some other- 

Tamworth © re ape ere 

Fig. 6.37 (c) ° 
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wise inaccessible spot. One difficulty which arises in a 

bundle of fibres is leakage of light at places of contact 

between the fibres. This can be reduced by coating each 

fibre with glass of lower refractive index than its own, 

thereby encouraging total internal reflection. 

If it is desired to transport an image and not simply 

to transport light, the fibres must occupy the same posi- 

tion in the bundle relative to each other. Such bundles 
are more difficult to make and cost more. Fig. 6.37a 
shows part of the end-section of a bundle of fibres and 

Fig. 6.376 is a fibre-optics viewing instrument with bent 

light pipe and an inset of the word ‘optics’ as seen by 

a camera above the eyepiece at the top. Figure 6.37c 

shows a motorway sign illuminated by light pipes. Opti- 

cal fibres are now used to carry telephone, television 

and computer signals as pulses of light from a laser (see 

Volume II, pp. 570-1). 
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Refraction through prisms 

A prism has two plane surfaces inclined to each other 

as are LMQP and LNRP in Fig. 6.38. Angle MLN is 
called the refracting angle of the prism, LP is the refract- 

ing edge and any plane such as XYZ which is perpendi- 

cular to LP is a principal plane. 

Fig. 6.38 

The importance of the prism really depends on the 

fact that the angle of deviation suffered by light at the 

first refracting surface, say LMQP, is not cancelled out 
by the deviation at the second surface LNRP (as it is 

in a parallel-sided block), but is added to it. This is 

why it can be used in a spectrometer, an instrument 
for analysing light into its component colours. In what 

follows, expressions for the angle of deviation will be 

obtained and subsequently used. 

(a) General formulae. In Fig. 6.39, EFGH is a ray 
lying in a principal plane XYZ of a prism of refracting 

angle A and passing from air, through the prism and 

back to air again. KF and KG are normals at the points 

of incidence and emergence of the ray. 

Fig. 6.39 

For refraction at XY 

angle of deviation = angle JFG =i; — r, 

For refraction at XZ 

angle of deviation = angle JGF = i, — r, 

Since both deviations are in the same direction, the total 

deviation D is given by 

angle TJH = angle JFG + angle JGF 

1.€, D= (i, =F — fh) (1) 

Another expression arises from the geometry of Fig. 

6.39. In quadrilateral XFKG 

angle XFK + angle XGK = 180° 

A + angle FKG = 180° 

But since FKS is a straight line 

angle GKS + angle FKG = 180° 

angle GKS=A 

In triangle KFG, angle GKS is an exterior angle, 

angle GKS =7, +1 

A=rnt+fh (2) 

Equations (1) and (2) are true for any prism. (The posi- 

tion and shape of the third side of the prism does not 
affect the refraction under consideration and so is shown 

as an irregular line in Fig. 6.39.) 

(b) Minimum deviation. It is found that the angle 

of deviation D varies with the angle of incidence i, of 
the ray incident on the first refracting face of the prism. 

Deviation (D) 
iw) 3 

| | 

Fig. 6.40 (b) 

The variation is shown in Fig. 6.40a and for one angle 

of incidence it has a minimum value D,,;,. At this value 

the ray passes symmetrically through the prism (a fact 

that can be proved theoretically as well as be shown 

experimentally), i.e. the angle of emergence of the ray 

from the second face equals the angle of incidence of 

the ray on the first face: i, = i, =i, Fig. 6.40b. It there- 

fore follows that r;=r,=r. Hence from equation (1) 
of the previous section the angle of minimum deviation 
Din 1S given by 

Dyin = (i— 1) + (i — 7) = 2(i- 7) (3) 



Also, from equation (2), 

A=r+r=2r 

A 
r=— 

2 

Substituting for rin (3), 

Din = 2i- A 

agen A+ Dini 
aaa thee 

~ 

If n is the refractive index of the material of the prism 
then 

sini 
A= ae. 

sinr 

_sin[(A + Dpig)/2] 
sin (A/2) 

Thus if A = 60° and D,,;, = 40°, then (A + D,,,,)/2 = 50° 
and so n = sin 50/sin 30 = 1.5. 
Two points for you to consider. First, no values of 

D are shown on the graph of Fig. 6.40a for small values 
of i (less than about 30° for a crown glass prism of 

refracting angle 60° and n=1.5). Why? Second, the 

above formula for minimum deviation only holds for a 

prism of angle A less than twice the critical angle. Why? 

(c) Small-angle prism. The expression for the devia- 

tion in this case will be used later for developing lens 

theory. 

Consider a ray falling almost normally in air on a 

prism of small angle A (less than about 6° or 0.1 radian) 

so that angle i, in Fig. 6.41 is small. Now n = sini,/sinr, 
where n is the refractive index of the material of the 

prism, therefore r, will also be small. Hence, since the 
sine of a small angle (like the tangent) is nearly equal 

to the angle in radians, we have 

i; =nr, 

(angles exaggerated for clarity) 

Fig. 6.41 
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Also, A =r, +r (see p. 106), and so if A and r, are 

small, r; and i, will also be small. From n = sini,/sinr, 
we can say 

lb = Nr, 

The deviation D of a ray passing through any prism 
is given by (p. 106) 

D=()— 71) + (Gh) 

Substituting for i, and i,, 

D=nn—-—1r, + nr, - 1, 

=n(r, +r) — (7, +1) 

=(n—-1)(r, +1) 

But A=r,+1r, 

D=(n-1)A 

This expression shows that for a given angle A all rays 

entering a small-angle prism at small angles of incidence 
suffer the same deviation. 

(d) Dispersion. Newton found that when a beam of 

white light (e.g. sunlight) passes through a prism it is 

spread out by the prism into a band of all the colours 

of the rainbow from red to violet. The band of colours 
is called a spectrum and the separation of the colours 

by the prism is known as dispersion. He concluded that 

white light is a mixture of light of various colours and 
identified red, orange, yellow, green, blue, indigo, 

violet. 

Red is deviated least by the prism and violet most 
as shown by the exaggerated diagram of Fig. 6.42a. The 

refractive index of the material of the prism for violet 

light is thus greater than for red light since the angle 

of incidence in the air is the same for red and violet 

rays. 

uit? Red 

Violet 

(a) 

source 

(b) 
Fig. 6.42 
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A method of producing a pure spectrum, i.e. one in 

which the different colours do not overlap (as they do 

when a prism is used on its own), is shown in Fig. 6.425. 

A diverging beam of white light, emerging from a very 

narrow slit, is made parallel by lens L, and then dis- 

persed by the prism into a number of different coloured 

parallel beams, each travelling in a slightly different 

direction. Lens L, brings each colour to a separate focus 

on a screen. The spectrum is a series of monochromatic 

images of the slit and the narrower this is the purer 

the spectrum. (L, and L, are achromatic doublets, see 

p. 118.) 

Methods of measuring n 

(a) Real and apparent depth method (solids and 
liquids). A travelling microscope is focused on a pencil 

dot O on a sheet of white paper lying on the bench 

and the reading on the microscope scale noted, Fig. 

6.43. Let it be x. If the refractive index of glass is 

required, a block of the material is placed over the dot 
and the microscope refocused on the image I of O as 

seen through the block. Let the reading be y. Finally 

the microscope is focused on the top T of the block, 

made visible by a sprinkling of lycopodium powder. 

Travelling 

microscope 

Glass block —— 

Fig. 6.43 

Suppose the reading is now z, then 

real depth of O= OT =z-—x 

apparent depth of O= IT =z-—y 

realdepth = z-x 

7 apparent depth 7 y 

The refractive index of a liquid in a beaker can be 
found by a similar procedure. 

The method satisfies the assumption made in deduc- 

ing the expression for n (p. 103) because the microscope 

collects only rays very close to the normal OT; accuracy 

of +1% is possible if the microscope has a small depth 
of focus. 

(b) Minimum deviation method (solids and liquids). 
A solid prism of the material is placed on the table 
of a spectrometer, A and D,,;, measured as described on 

p. 130 and n calculated from n=sin [(A + Dpin)/2]/ 
sin (A/2). The method is suitable for liquids if a hollow 

prism with perfectly parallel, thin walls is used. Accur- 

acy of +0.1% is possible. 

(c) Concave mirror method (liquids). The centre of 

curvature C of the mirror is first found by moving an 

object pin up and down above the mirror until it coin- 

cides in position with its image (Method b, p. 100). Some 

liquid is then poured into the mirror and the object 

pin moved until point O is found where it again coincides 

with its image. In Fig. 6.44 ray ONB must be retracing 
its own path after striking the mirror normally at B and 

if BN is produced it will pass through C. 

Liquid 

Fig. 6.44 

For the refraction at N 

1, = angle of incidence = LONA = ZNOM (alt. angles) 

i, = angle of refraction = ZBND = ZNCM (corr. angles) 

The refractive index n of the liquid is given by 

If ray ONB is close to the principal axis CP of the 

mirror then to a good approximation NC = MC and 
NO= MO, 

MC 
n= 

MO 

Both distances can be measured and n found. The 
method is useful when only a small quantity of liquid 
is available. 



Thin lenses 

Lenses are of two basic types, convex which are thicker 

in the middle than at the edges and concave for which 
the reverse holds. Fig. 6.45 shows examples of both 

types, bounded by spherical or plane surfaces. 

Converging Diverging 

Biconvex Plano- Convex Biconcave Plano- Concave 
convex meniscus concave meniscus 

Fig. 6.45 

The principal axis of a spherical lens is the line joining 
the centres of curvature of its two surfaces, Fig. 6.46. 

For the present our treatment will be confined to par- 

axial rays, i.e. rays close to the axis and making very 

small angles with it. In effect this means we shall only 

consider lenses of small aperture but in diagrams both 

angles and lenses will be made larger for clarity. The 

case of wide-angle beams will be considered briefly later 

(p. 117). 
The principal focus F of a thin lens is the point on 

the principal axis towards which all paraxial rays, paral- 

lel to the principal axis, converge in the case of a convex 

lens or from which they appear to diverge in the case 

of a concave lens, after refraction, Fig. 6.46a and b. 

Since light can fall on either surface, a lens has two 

principal foci, one on each side, and these are equidis- 

tant from its centre P (if the lens is thin and has the 

same medium on both sides, e.g. air). The distance FP 

is the focal length f of the lens. A convex lens is a con- 

verging lens! and has real foci. A concave lens is a diverg- 

ing lens and has virtual foci. 

Fig. 6.46 (a) 

! This is only true if the convex lens has a greater refractive 

index than the surrounding medium. In water a biconvex air 

lens diverges light. 

Principal 
axis 
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A parallel beam at a small angle to the axis of a lens 

is refracted to converge to, or to appear to diverge from, 
a point in the plane containing F, perpendicular to the 

axis and known as the focal plane, Fig. 6.47a and b. 

As we shall see shortly the important property of a 
lens is that it focuses all paraxial rays from a point object 

(and not just parallel, paraxial rays) to form a point 
image. 

Focal plane 

Fig. 6.47 Focal plane 

Images formed by thin lenses 

Information as to the position and nature of the image 
in any case can be obtained either from a ray diagram 
or by calculation. 

(a) Ray diagrams. To construct the image of a small 

object perpendicular to the axis of a lens, two of the 

following three rays are drawn from the top of the 

object. 

(i) A ray parallel to the principal axis which after 

refraction passes through the principal focus or appears 
to diverge from it. 

(ii) A ray through the centre of the lens (called the 

optical centre) which continues straight on undeviated 
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(it is only slightly displaced laterally because the middle 

of the lens acts like a thin parallel-sided block), Fig. 

6.48. 

Fig. 6.48 

(iii) A ray through the principal focus which is 

refracted parallel to the principal axis, i.e. a ray travel- 

ling the reverse path to that in (7). 

The diagrams for a converging lens are shown in Fig. 

6.49a to e and for a diverging lens in Fig. 6.49f. The 

latter, like a convex mirror, always forms a virtual 

upright and diminished image whatever the object posi- 

tion. Note that a thin lens is represented by a straight 

line at which all the refraction is considered to occur; 

in practice it is usually refracted both on entering and 

leaving the lens. 
It must also be emphasized that the lines drawn are 

constructional ones; two narrow cones of rays that 

actually enter the eye of an observer from the top and 

bottom of an object are shown shaded in Fig. 6.49e. 

They are obtained by working back from the eye, from 

right to left here. 

(b) Simple formula for a thin lens. We can regard 

a thin lens as made up of a large number of small-angle 

prisms whose angles increase from zero at the middle 

of the lens to a small value at its edge. Consider one 

such prism at distance h from the optical centre P of 
a lens, Fig. 6.50. If a paraxial ray parallel to the axis 

is incident on this prism it suffers small deviation D 

(since the prism is small-angled) and is refracted through 

the principal focus F. Hence, since the tangent of a small 

angle equals the small angle in radians, 

(f) 2F F 

Fig. 6.49 

D s (1) ~ FP 

Nature 
of image Use 

Real 

inverted Camera 

diminished 

Real Terrestrial 
inverted 

i telescope 
same size 

Real : 

inverted Provesart 
ee enlarger 

magnified 

| 
Res Searchlight; 
inverted aiaka 

magnified aid 

Virtual Magnifying 
erecr 

ve glass 
magnified 

Virtual 

= erect Spectacles 

F diminished 



Converging 
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Diverging 

Small-angle prism 

Fig. 6.50 (a) 

Fig. 6.51 (a) 

Now consider a point object O on the axis which gives 

rise to a point image I, Fig 6.51. If a paraxial ray from 

O is incident on the small-angle prism at distance h from 

the axis, it must also suffer deviation D (since all rays 

entering a small-angle prism at small angles of incidence 

suffer the same deviation (p. 107). 
Let angles a and B be as shown. In triangle IOM, 

since the exterior angle of a triangle equals the sum 

of the interior opposite angles, 

Converging Diverging 

D=at B D=B-a 

oe. wih. it 

OP IP IP OP 

Therefore from (1) 

h hk oh a ae , 
ie 2) == (2) 
FRi /.OP- IP. FP; 12; ~OP. 

If we introduce the ‘real is positive’ sign convention 

given on p. 98, the focal length of a converging lens 

is positive and of a diverging lens negative. If u, v and 

f stand for the numerical values and signs of the object 

and image distances and focal length respectively then 
for both cases we get the algebraic relationship 

ae | 

vou 

i 
a 

(Virtual) } " 

(b) 

Notes. (i) The formula is independent of the angle 

the incident ray makes with the axis, therefore all par- 

axial rays from point object O must, after refraction, 

pass through I to give a point image, i.e the small-angle 

prisms to which the lens is equivalent deviate the various 

rays from O by varying amounts depending on the angle 

of the prism but always so that they all pass through 
I 

(ii) When numerical values for u, v and f are inserted 

in the formula, the appropriate sign must also be 
included. 

(c) Magnification. The lateral, transverse or linear 

magnification m (abbreviated to magnification) pro- 
duced by a lens is defined by 

height of image 
m — 

height of object 

In Fig. 6.52 II’ is the real image formed by a converging 

lens of a finite object OO’. Triangles O’PO and I’PI 

Fig. 6.52 
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are similar, therefore 

height ofimage __ I'I IP 

height of object OO OP 

Vv 
m= 

Uu 

This is a numerical formula and no signs need be 
inserted. 

Lens calculations 

1. An object is placed 20cm from (a) a converging 

lens, (b) a diverging lens, of focal length 15 cm. Calculate 
the image position and magnification in each case. 

(a) Converging lens 
The object is real, therefore u = + 20cm. 

Since the lens converges, f= + 15cm. 
Substituting values and signs in 1/v + 1/u=1/f, 

ee 
vy (+20) (+15) 

i} ede Sell Ara ghain de 
Vanes 20 60 60 60 

v=+60cm 

The image is real since v is positive and it is 60cm from 

the lens. 

Also, 

: ; Vv : 
magnification m=— (numerically) 

u 

60 
=—=3.0 

20 

The image is three times as high as the object (see 
Fig. 6.49c). 

(b) Diverging lens 
We have u = + 20cm and f= — 15cm. 
Substituting as before in 1/v + 1/u=1/f, 

1 1 1 
= pt ios 

vy (+20) (—15) 

eT kt Se 

v2 150i 60 

60 
v= —-—=-—8.6cm 

7 

The image is virtual since v is negative and it is 8.6cm 

from the lens. 

Also, 

aay (numerically) 
u 

60/7_ 3 
| ae 

The image is three-sevenths as high as the object (see 

Fig. 6.49f). 

2. An object is placed 6.0cm from a thin converging 

lens A of focal length 5.0cm. Another thin converging 

lens B of focal length 15cm is placed coaxially with A 

and 20 cm from it on the side away from the object. Find 
the position, nature and magnification of the final image. 

For lens A, 

u=+6.0cm, f=+5.0cm 

Substituting in 1/v + 1/u=1/f, 

1 1 1 

v- (+6) (+5) 
a et ili: a ial 

i: 6M 

v= +30cm 

Image I, in Fig. 6.53 is real, therefore converging light 

falls on lens B and I, acts as a virtual object for B. 

Applying 1/v + 1/u = 1/f to B we have 

u = —(AI, — AB) = —(30 — 20) = —10cm, f= +15cm 

i 4 1 
(10) 4325) 

eae whe Wa 
y 1510 30°30 30 

v= +6.0cm 

Image I, is real and is formed 6.0 cm beyond B. 

6cm 20 cm 

Fig. 6.53 



30 
Magnification by A = m, = ie 7 5.0 

u 

Dubitor Mos 
Magnification by B = m, =—-=— =~ 

. te wn 10 “5 

, ,; 3 
Total magnification m = m, X m, =5 x — 

2) 

= 3.0 

The final image is three times the size of the object. 

(Note. m, and m, are multiplied and not added. Why?) 

Other thin lens formulae 

(a) Full formula for a thin lens. We require to find 

a relationship, sometimes called the ‘lens-maker’s for- 

mula’, between the focal length of a thin lens, the radii 

of curvature of its surfaces and the refractive index of 

the lens material. It will be assumed that (7) the lens 

can be replaced by a system of small-angle prisms and 

(ii) all rays falling on the lens are paraxial, i.e. the lens 

has a small aperture and all objects are near the axis. 

Fig. 6.54 

Consider the prism of small angle A which is formed 

by the tangents XL and XM to the lens surfaces at L 

and M, Fig. 6.54. XL and XM are perpendicular to 

the radii of curvature C,L and C)M respectively, C, 
and C, being the centres of curvature of the surfaces. 

Therefore angle LXM (i.e. A) between the tangents 

equals angle MYC, between the radii, 

LMYC,=A=0,+ 4 

(ext. angle of triangle YC,C, = sum of int. opp. angles) 

But since 6, and 6, are small we can say 6,=tan 6, 

and 6, = tan 6, 

(h = YP) 

The deviation D produced in any ray incident at a small 

angle on a prism of small angle A and refractive index 

nis (p. 107) 
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D=(n-1)A 

sa (a+ +25) 
If we now consider a ray parallel to the axis and at 

height h above it, it suffers the same deviation D as 

any other paraxial ray and since it is refracted through 

the principal focus F, D = h/FP (from equation (1), p. 
100). Hence 

aren 5 v(a+ +25) 

1 1 1 
=(n-1)(——+— 

FP C.Peatr 

Introducing a sign convention for distances converts this 

numerical relationship to an algebraic one applicable 

to ali lenses and cases. Thus if f, 7; and r, stand for 

the numerical values and signs of the focal length and 

radii of curvature respectively of the lens then we have 

etn n-D(=+ +2) 
In the ‘real is positive’ convention the rule for the sign 

of a radius of curvature is—a surface convex to the less 
dense medium has a positive radius while a surface con- 
cave to the less dense medium has a negative radius. A 
positive surface thus converges light, a negative one 

diverges it. 

A numerical example may help. For the convex 

meniscus lens of Fig. 6.55a we haven = 1.5, 7; = + 10cm 
(since it is convex to the air on its left), r,= — 15cm 

(since it is concave to the air on its right). 

oer »( Lael 
fo oy (15) 

(a) (b) (c) 

Fig. 6.55 
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Now calculate f for the biconcave lens in Fig. 6.555 
whose radii of curvature are each 20cm. (Ans. —20cm.) 

A more general form of the formula is 

mieGes 
where n, is the refractive index of the lens material and 

n, that of the surrounding medium. (n,/n, ~ 1) is always 

taken to be positive since refractive indices do not have 

signs. (~ means the ‘difference between’.) 

For a plano-convex air lens of radius 10cm, in water 
of refractive index 3, we have n, = 1, n, =3,r,; = — 10cm 
(since it is concave to the air), r7 = ©, Fig. 6.55c. 

te iecoye2) tal ied 
f=-—40cm (a diverging lens) 

(b) Focal length of two thin lenses in contact. Combi- 

nations of lenses in contact are used in many optical 
instruments to improve their performance. In Fig. 6.56, 

A and B are two thin lenses in contact, of focal lengths 
f, and f,. Paraxial rays from point object O on the princi- 

pal axis are refracted through A and would, in the ab- 

sence of B, give a real image of O and I’. Hence for 

A, u=+x and v=+y. From the simple formula for 

a thin lens 

er een ne 
(+x) (ty) ff 

Fig. 6.56 

For B, I’ acts as a virtual object (i.e. converging light 

falls on B from A) giving a real image of O at I and 
so for B,u=—yandv=+z, 

1 1 1 
—— }_— ———— = — 

(yas) Fs 

Adding, baniee ig alin 
CHA ONCE Zea aD 

Considering the combination, I is the real image formed 

of O by both lenses, therefore u = + x andv = +z, 

1 1 1 
—— + — 

(+x) (+z) f 

where fis the combined focal length, i.e. the focal length 

of the single lens that would be exactly equivalent to 

the two in contact. 

1 err | 
_-=—+ 

, Gs 
For example if a converging lens of 5.0 cm focal length 

is in contact with a diverging lens of 10cm focal length, 

then f, = +5.0cm, f, = — 10cm and the combined focal 

length fis given by 

1 1 1 Lick 1 
a — = ——_ + —— — 

fF. (45)" (10). Sector ep 

f=+10cm (aconverging combination) 

(c) Power of a lens. The shorter the focal length of 

a lens, the more it converges or diverges light. The 

power F of a lens is defined as the reciprocal of its focal 

length f in metres. 

“ 
f 

The unit of power is now the radian per metre (rad m7!) 

since f = h/D (p. 110), where the distance h is in metres 
and the angle of deviation D is in radians. (The former 

unit was the dioptre, 1 dioptre = 1 radian per metre.) 

The power of a lens of focal length (i) 1 metre is 1 

rad m7!, (ii) 25cm (0.25m) is 4.0 rad m7!. The sign 
of F is the same as f, i.e. positive for a converging lens 

and negative for a diverging one. 

Opticians obtain the power of a lens using a ‘lens 

measurer’, Fig. 6.57. This has three legs, the centre one 

being spring-loaded and connected to a pointer moving 

over a scale. By measuring the surface curvature, the 

power may be obtained quickly and accurately of any 
lens made of material of a certain refractive index. 

Lenses of materials of other refractive indices are 

catered for by using a scale of refractive indices along 
with the instrument. 

F= 

Fig. 6.57 



Whilst f is useful for constructing ray diagrams, it 

is more convenient to use F when calculating the com- 
bined effect of several optical parts. Thus the combined 
power F of three thin lenses of power F;, F) and F, 
in contact is 

Methods of measuring f for lenses 

1. Converging lens 

(a) Rough method. The image formed by the lens 
of a distant window is focused sharply on a screen. The 
distance between the lens and the screen is f. Why? 

(b) Plane mirror method. Using the arrangement 

shown in Fig. 6.58, a pin or illuminated object is 
adjusted until it coincides in position with its image, 
located by no parallax or by a screen. The rays from 

the object must emerge from the lens and fall on the 

plane mirror normally to retrace their path. The object 

is therefore at the principal focus. 

(a) 

Qbject (illuminated cross-wire) 

Fig. 6.58 

(c) Lens formula method. Several values of the image 

distance v, corresponding to different values of the 
object distance u are found using either the pin/no par- 
allax method or an illuminated object and screen. For 

each pair of values, f is calculated from 1/f= 1/v + 1/u 
and the average taken. 
A better plan is to plot a graph of 1/v against 1/u, 

draw the best straight line AB through the points, Fig. 

6.59. The intercepts OA and OB on the axes are both 

OPRTIGALSPROPERTIES 5 

<|- 

1 
U 

Fig. 6.59 

equal to 1/f since when 1/u=0, 1/v=OA=1/f, from 
the simple lens equation. 

(d) Two-position method. The image I of an illumi- 
nated object O is obtained on a screen, Fig. 6.60. With 

the object and screen in the same position, the lens 

is moved from A to B where another sharp image is — 

obtained. (The image is magnified for position A of 

the lens and diminished for B. Why?) The distances 

between O and I, d, and between A and B, /, are mea- 

sured then f calculated from 

d2-[? 

f= 

4d 

Fig. 6.60 

By changing d, a set of values of d and / can be found 
to give an average value of f. 

To derive the above expression for f we use the fact 

that O and I are interchangeable, i.e. are conjugate 

points, therefore OA = BI and OB= AI. For position 

A of the lens 

u=OA=OI-AB- BI=d-I-u 

2u=d-lI u=(d—1)/2 

v= AI=OI1+AB-— AI=d+l-v 

2v=d+l v=(d+1)/2 

Substituting for u and v in 1/v + 1/u=1/f gives 

1 1 1 

Genin dann t 

Hence f follows. The method is suitable when wu and 
v cannot be measured because the faces of the lens are 

inaccessible due, for example, to the iens being in a 

tube. 
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Note. A converging lens cannot form a real image 

on a screen if (i) the object is inside the principal focus 
or (ii) the distance between the object and the screen 

is less than 4f (this can be proved theoretically and 
experimentally). When the separation is 4f, the object 

and image are then each distant 2f from the lens on 

opposite sides. In the ‘two-position’ method for f, the 

separation of the object and screen must exceed 4f. 

(e) Magnification method. Using an object of known 

size (e.g. an illuminated transparent scale) direct mea- 

surement is made of the size of the image produced 

on a screen by the lens. The magnification m can thus 

be obtained directly. 
Multiplying both sides of 1/v + 1/u = 1/f by v we get 

Vv Vv 

1+-=- 
Hoof, 

ees m=- 

f 

Vv 

m=--1 
fi 

A set of values of m and v are obtained and a graph 

of m against v plotted. It should be a straight line whose 

slope is 1/f and intercept on the v-axis (when m = 0) 

is f, Fig. 6.61. 

Slope = 8¢ 

| 
| 
| 
| 

A B 
Keay 

Fig. 6.61 

2. Diverging lens 

Auxiliary converging lens method. A diverging lens 

normally forms a virtual image of a real object. Such 

an image cannot be located by a screen and is not easily 

found by a pin/no parallax method. However with the 

help of a converging lens, a real image can be obtained. 

In Fig. 6.62 the converging lens forms a real image 

at I’ of an object O when the diverging lens is absent. 

This image is located and its position noted. The diverg- 

ing lens is then placed between C and I’ and the converg- 

ing beam of light falling on it behaves as a virtual object 

Fig. 6.62 

at I’. The diverging lens forms a real image of I’ at 

I, which is located. For the diverging lens u= —I’D 

and v = + ID from which f can be calculated. 

Methods of measuring r for a lens surface 

(a) Converging lens (Boys’ method). The lens is 

floated on mercury and an object O moved until its 

image is also formed at O. Rays from O must be 

refracted at the top surface to be incident normally on 

the bottom surface and thence be reflected to retrace 

their own path to O, Fig. 6.63a. 

Reflecting surface (mercury) 

(a) (b) 

Fig. 6.63 

If refraction was allowed to occur at both surfaces 

of the lens, the ray OAB, since if falls normally on 

the bottom surface, would pass straight through the lens 

along BD and form a virtual image of O at C, the centre 
of curvature of the bottom surface, Fig. 6.630. 

Knowing the focal length f of the lens and measuring 

u(= + OP), v (= — CP), which is the radius of curvature 
of the bottom surface, can be calculated from the simple 

lens equation 1/v + 1/u=1/f. The radius of the other 
surface is found in the same way by turning the lens 
over. 

Notes. (i) Although use is made of reflection at the 
bottom surface of the lens, the calculation is based on 
what would occur if refraction through the lens took 
place. 



(ii) The refractive index n of the lens material can 
be found if r,, 7, and f are known, using 1/f=(n— 1) 
(1/r, +1/r,). 

(b) Diverging lens. The position is found in which 
an object coincides with its image formed by the weak 

reflection at the surface of the lens acting as a concave 
mirror. The object is then at the centre of curvature 

of the surface. The method is simply the ‘self-conjugate 

point’ method for a concave mirror (p. 100). 

Defects in images 

So far our discussion of the formation of images by 
spherical mirrors and lenses has been confined to par- 

axial rays; we have assumed that the mirror or lens had 

a small aperture and that object points were on or near 

the principal axis. In such cases it is more or less true 

to say that point images are formed of point objects. 

However, when rays are non-paraxial and objects are 

extended and mirrors and lenses are of large aperture, 

the image can differ in shape, sharpness and colour from 

the object. Two of the most important image defects 

or aberrations will be considered. 

(a) Spherical aberration. This arises with mirrors and 

lenses of large aperture and results in the image of an 
object point not being a point. The defect is due to 

the fact that the focal length of the mirror or lens for 

marginal rays is /ess than for paraxial rays—a property 

of a spherical surface. 
Consider a point object at infinity (i.e. a long distance 

off) on the principal axis of a mirror or lens whose aper- 

ture is not small. The incident rays are parallel to the 

axis and are reflected or refracted so that the marginal 
rays farthest from the axis come to a focus at F,, whilst 

the paraxial rays give a point focus at F,, Fig. 6.64a 

and b. All the reflected or refracted rays are tangents 

to a surface, called a caustic surface, which has an apex 

at F,. (A caustic curve may be seen on the surface of 

a cup of tea in bright light, the inside of the cup acting 

Marginal | Paraxial 
rays rays F 

ad 4 

Circle of least 

confusion 

(a) 

Fig. 6.64 

OPTICAL PROPERTIES 117 

as the mirror.) The nearest approach to a sharp image 

is the circle of least confusion, i.e. the smallest circle 
through which all the reflected or refracted rays pass. 

In general, the image of any object point, on or off 

the axis, is a circular ‘blur’ and not a point. The distance 

F,F) in Fig. 6.64 is the longitudinal spherical aberration 
of the mirror or lens for the particular object distance. 

Whilst it is not possible to construct a mirror which 

always forms a point image of a point object on the 

axis, an ellipsoidal mirror achieves this for one definite 
point on the axis for both paraxial and marginal rays. 

SA ee ee ee 

Fig. 6.65 (b) 

In Fig. 6.65a, ABC represents an ellipsoidal mirror with 

foci F; and F,; all rays from F, are reflected through 

F,. A parabola is an ellipse with one focus at infinity 
and so a paraboloidal mirror brings all rays from an 

object point on the axis at infinity to a point focus, thus 

accounting for its use as the objective in an astronomical 

telescope, Fig. 6.655. (It should be noted, however, 

that it does not form a point image of a point object 

off the axis.) Searchlights and car headlamps have para- 
boloidal reflectors which produce a roughly parallel 

beam from a small light source at the focus. A perfectly 

parallel beam does not spread out as the distance from 

Circle of least 

confusion 

(b) 
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Fig. 6.66 

the reflector increases and its intensity does not there- 

fore decrease on this account. 
In a lens spherical aberration can be minimized if 

the angles of incidence at each refracting surface are 

kept small, thus, in effect, making all rays paraxial. This 

is achieved by sharing the deviation of the light as 

equally as possible between the surfaces. Fig. 6.66 shows 

parallel light falling on a plano-conxex lens; spherical 

aberration is smaller in (a) than in (b). Why? Why would 

it be better to have the convex side towards the object 

if the lens was used as a telescope objective but the 

other way around for a microscope objective? 
Spherical aberration can also be reduced by placing 

a stop in front of the lens or mirror to cut off marginal 
rays but this has the disadvantage of making the image 

less bright. 

(b) Chromatic aberration. This defect occurs only 
with lenses and causes the image of a white object to 

be blurred with coloured edges. A lens has a greater 

focal length for red light than for violet light, as shown 

in the exaggerated diagram of Fig. 6.67a. (This can be 

seen from 1/f = (n — 1)(1/r, + 1/r,) bearing in mind that 
Aviolet > Nrea-) Thus a converging lens produces a series 

of coloured images of an extended white object, of 
slightly different sizes and at different distances from 

the lens, Fig. 6.67b. The eye, being most sensitive to 

yellow-green light, would focus the image of this colour 

on a screen but superimposed on it would be the other 
images, all out of focus. 

Chromatic aberration can be eliminated for two 

colours (and reduced for all) by an achromatic doublet. 

White | 

(a) 

Fig. 6.67 

This consists of a converging lens of crown glass com- 

bined with a diverging lens of flint glass. One surface 

of each lens has the same radius of curvature to allow 

them to be cemented together with Canada balsam and 

thereby reduce light loss by reflection, Fig. 6.68. The 
flint glass of the diverging lens produces the same disper- 

sion as the crown glass of the converging lens but in 

the opposite direction and with less deviation of the 

light, so that overall the combination is converging. In 

Fig. 6.69, the dispersions (exaggerated) 6, and 6, are 

equal and opposite; for the deviations, D, > D3. 

Converging Canada ~ Diverging 

crown balsam flint glass 

glass lens lens 
Fig. 6.68 

Crown glass Flint glass 

Fig. 6.69 

White object | 

Violet image Red image 



The eye and its defects 

The construction of the human eye is shown in Fig. 

6.70. The image on the retina is formed by successive 

refraction at the surfaces between the air, the cornea, 
the aqueous humour, the lens and the vitreous humour. 

Ciliary ligament 
Muscles 

Retina 
Sclerotic (white of eye) 

Iris (eye colour) Choroid (black) 

Pupil 

Cornea bar 
(transparent) Optic nerve 

Aqueous humour Blind spot 

Lens 
Vitreous humour 

Fig. 6.70 

The brain interprets the information transmitted to it 

as electrical impulses from the retinal image and appre- 

ciates by experience that an inverted image means an 

upright object, Fig. 6.71. In good light the eye automati- 

cally focuses the image of an object on a very small 

region towards the centre of the retina called the fovea. 

The fovea permits the best observation of detail—to 

about two minutes of arc, i.e. to 77mm at about 20cm. 
The periphery of the retina can only detect much coarser 

detail but it is more sensitive to dim light. Objects at 

different distances are focused by the ciliary ligaments 

changing the shape of the lens—a process known as 

accommodation. It becomes more convex to view nearer 

objects. 

Fig. 6.71 

The farthest point which can be seen distinctly by 

the unaided eye is called the far point—infinity for the 

normal eye; the nearest point that can be focused dis- 

tinctly by the unaided eye is called the near point—25 cm 

for a normal adult eye but less for younger people. The 

distance of 25 cm is known as the distance of most distinct 

vision. The range of accommodation of the normal eye 

is thus from 25cm to infinity and when relaxed it is 

focused on the latter point. 
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(a) Short sight (Myopia). The short-sighted person 
sees near objects clearly but his far point is closer than 

infinity. The image of a distant object is focused in front 
of the retina because the focal length of the eye is too 

short for the length of the eyeball, Fig. 6.72a. The defect 

is corrected by a diverging spectacle lens whose focal 

length f is such that it produces a virtual image at the 

far point of the eye of an object at infinity, Fig. 6.72b. 

Thus if the far point is 200cm, v = — 200cm, u = » and 
from 1/f=1/v+1/u we get 1/f=—1/200+1/, 
therefore f= — 200cm. 

From 

distant 

point 

object 

Fig. 6.72 

(b) Long sight (Hypermetropia). The long-sighted 

person sees distant objects clearly but his near point 

is more than 25cm from the eye. The image of a near 

object is focused behind the retina because the focal 

length of the eye is too long for the length of the eyeball, 

Fig. 6.73a. The defect is corrected by a converging spec- 

tacle lens of focal length f which gives a virtual image 

at the near point of the eye for an object at 25cm, Fig. 

6.73b. For example, if the near point is 50cm, 

u=+25cm, v=—50cm and 1/f=—1/50+1/25= 
+ 1/50. Therefore f= + 50cm. 

25 cm 

Fig. 6.73 
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(c) Presbyopia. In this defect, which often develops 
with age, the eye loses its power of accommodation and 

two pairs of spectacles may be needed, one for distant 

objects and the other for reading. Sometimes ‘bifocals’ 
are used which have a diverging top part to correct for 

distant vision and a converging lower part for reading, 

Fig. 6.74. 

Diverging 

Converging 

Bifocal lens 

Fig. 6.74 

(d) Astigmatism. If the curvature of the cornea varies 

in different directions, rays in different planes from an 

object are focused in different positions by the eye and 

the image is distorted. The defect is called astigmatism 

and anyone suffering from it will see one set of lines 

in Fig. 6.75 more sharply than the others. It may be 
possible to correct it with a non-spherical spectacle lens 

whose curvature increases the effect of that of the cornea 

in its direction of minimum curvature or decreases it 

in the maximum curvature direction. 

Fig. 6.75 

(e) Contact lenses. These consist of tiny, unbreakable 
plastic lenses held to the cornea by the surface tension 

(p. 222) of eye fluid and in recent years they have 

increased in popularity. Fig. 6.76a shows one balanced 

on a finger tip. As well as being safer for sportsmen, 
they may help certain eye defects which spectacles can- 
not. Thus if the cornea is conical-shaped, vision is very 

distorted but if a contact lens is fitted and the space 

between the lens and the cornea filled with a saline solu- 
tion of the same refractive index as the cornea, normal 
vision results, Fig. 6.76b. 

(a) 

Contact lens 

Saline fluid 

(b) Fig. 6.76 

Magnifying power of optical instruments 

Previously, when considering the magnification pro- 

duced by mirrors and lenses, we used the idea of linear 

magnification m and showed that it was given by 

m=v/u. However, if the image is formed at infinity, 

as it can be with some optical instruments, then m should 
be infinite! The difficulty is that we cannot get to the 

image to view it and in such cases m is therefore not 

a very helpful indication of the improvement produced 

by the instrument. A more satisfactory term is clearly 
necessary to measure this. 

The apparent size of an object depends on the size 

of its image on the retina and, as Fig. 6.77 shows, this 

depends not so much on the actual size of the object 

as on the angle it subtends at the eye, i.e. on the visual 

angle. Thus, AB is larger than CD but because it sub- 

tends the same visual angle as CD, it appears to be 

L 8 Smaller 
bak object 

object 

Fig. 6.77 



of equal size. The angular magnification or magnifying 

power M of an optical instrument is defined by the equa- 
tion 

wae 
Qa 

where B= angle subtended at the eye by the image 

formed when using the instrument, and a = angle sub- 
tended at the unaided eye (i.e. without the instrument) 

by the object at some ‘stated distance’. 

In the case of a telescope the ‘stated distance’ 

has got to be where the object (e.g. the moon) is; for 

a microscope it is usually taken to be the ‘distance of 

most distinct vision’ (i.e. 25cm away) since it is at that 

distance the object is seen most distinctly by the normal, 

unaided eye. 

The difference between the magnifying power M and 
the magnification m should be noted. M is the ratio 

of the apparent sizes of image and object and involves 
a comparison of visual angles; ™ is the ratio of the actual 

sizes of image and object. They do not necessarily have 

the same value but in some cases they do. 

Magnifying glass 

This is also called the simple microscope and consists 
of a converging lens forming a virtual, upright, magni- 

fied image of an object placed inside its principal focus, 

Fig. 6.78a. The image appears largest and clearest when 

it is at the near point. 

Assuming rays are paraxial and that the eye is close 

to the lens, we can say 8B = h,/D where h, is the height 
of the image and D is the magnitude of the distance 

of most distinct vision (usually 25cm). If the object is 

viewed at the near point by the unaided eye, Fig. 6.78), 

we have a=h/D where h is the height of the object. 
Hence, the magnifying power M is given by 

Fig. 6.78 
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m=v/u; v and u being the image and object distances 

respectively. 

Vv 

M=- 
u 

If 1/v + 1/u = 1/f is multiplied throughout by v, we get 
v/u=v/f-1 

Vv 

M=--1 
F 

It follows that a lens of short focal length has a large 

magnifying power. For example if f=+5.0cm and 

v= — D=-— 25cm (since the image is virtual) then 

on 2h Ce trees Dearne 
Firercistoe lamatt tar ole 

The magnifying power is 6.0, i.e. (D/f+1); since M 
is a number the negative sign can be omitted. 

You should draw a ray diagram for a magnifying glass 

forming a virtual image at infinity (where must the object 

be placed?) and use it to show that in this case M = D/f 

numerically, i.e. M is one less than when the image 

is at the near point. 

What is the effect, if any, on M if the eye is moved 

back from the lens when the image is at (i) the near 

point, (i/) infinity? 

Compound microscope 

The focal length of a lens can be decreased and its magni- 

fying power thereby increased by making its surfaces 

more curved. However, serious distortion of the image 

results from excessive curvature and to obtain greater 

magnifying power a compound microscope is used con- 

sisting of two separated, converging lenses of short focal 

lengths. 

The lens L, nearer to the object, called the ‘objective’, 

forms a real, magnified, inverted image I, of an object 
O placed just outside its principal focus F,. I, is just 

inside the principal focus F, of the second lens L,, called 

the ‘eyepiece’, which acts as a magnifying glass and 
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Constructional ray diagram 

to locate |, and |, 

D 
Fig. 6.79 

produces a magnified, virtual image I, of I,. The micros- 

cope is said to be in ‘normal adjustment’ when I, is at 

the near point. Fig. 6.79 shows the usual constructional 

rays (p. 109) drawn to locate I, and 1; note that the 

object is seen inverted. 

(a) Magnifying power. We shall assume that (7) all 
rays are paraxial, (ii) the eye is close to the eyepiece 

and (iii) the microscope is in normal adjustment. 

M = B/a where, in this case, 

B = angle subtended at the eye by I, at the near point 

= h,/ D (hy being the height of I, and D the distance 

of most distinct vision), and 

= angle subtended at the eye by O at the near point, 

without the microscope 

=h/D (h being the height of O). 

Hence _B_h/D_n 
a h/D h 

LD 
h, h 

(where h, is the height of I,). Now A,/h, is the linear 
magnification m, produced by the eyepiece and h,/h 

is the linear magnification m, due to the objective. Thus 

M=m, X mg, i.e. when the microscope is in normal 

adjustment with the final image at the near point, the 

magnifying power equals the linear magnification (as 

it does for a magnifying glass with the image at the 

near point). If follows that M will be large if f, and 
f. are small. 

Many school-type microscopes have a low-power 

objective (f, ~ 16mm) magnifying 10 times and a high- 
power objective (f, ~ 4mm) magnifying 40 times. When 

used with a x 10 eyepiece, the overall magnifying power 

is therefore 100 on low power and 400 on high power. 

If prolonged observation is to be made it is more rest- 

ful for the eye to view the final image I, at infinity instead 

of at the near point. The intermediate image I, must 

then be at the principal focus F, of the eyepiece so that 

the emergent rays from the eyepiece are parallel. It can 

be shown that the magnifying power is then slightly less 

than for normal adjustment. 

(b) Resolving power. This is the ability of an optical 
instrument to reveal detail, i.e. to form separate images 

of objects that are very close together. To increase the 

magnifying power unduly without also increasing the 

resolving power has been likened to stretching an elastic 

sheet on which a picture has been painted—the picture 

gets bigger but no more detail is seen. 
It can be shown that the resolving power of a micro- 

scope is greater (i) the greater the angle @ subtended 

at the objective by a point in the object, Fig. 6.80, and 

(ii) the shorter the wavelength of the light used. Both 

these factors impose a definite limit on the resolving 
power and, having regard to this limit, the maximum 

useful magnifying power is about 600. In practice, in 
the interests of eye comfort, this value is often exceeded 

(over X 2000 is attainable in the best instruments). 

Objective 

Object 
Fig. 6.80 

(c) The eye ring. The best position for an observer 

to place his eye when using a microscope is where it 

gathers most light from that passing through the objec- 

tive—the image is then brightest and the field of view 
greatest. 

In Fig. 6.81 the paths of two cones of rays are shown 
coming from the top and bottom of an object, filling 
the whole aperture of the object and passing through 

the microscope. (Constructional rays, not shown here, 

are first drawn as in Fig. 6.79 to locate I, and I,.) The 

only position at which the eye would receive both these 



Fig. 6.81 

cones (and also those falling on the objective from all 
other object points) is at EE’ where they cross. All light 

from the objective refracted by the eyepiece will pass 
through a small circle of diameter EE’ which must there- 

fore be the image of the objective formed by the eye- 
piece. This image at EE’ is called the eye ring (or exit- 
pupil) and it is the best position for an observer’s eye. 

Ideally EE’ should equal the diameter of the average 

eye pupil and in a microscope a circular opening of this 
size is often fixed just beyond the eyepiece to indicate 

the eye ring position. If, for example, the objective is 

- 15cm from the eyepiece of focal length 1cm then the 
distance v of the eye ring from the eyepiece is given 
by 1/v + 1/(+15) = 1/(+1), i.e. v=1.1¢cm. 

(d) A calculation. You are strongly advised to work 
out numerical problems from first principles and not 

to quote formulae. It is also helpful to draw a diagram. 

The objective and the eyepiece of a microscope may 
be treated as thin lenses with focal lengths of 2.0cm and 

5.0cm respectively. If the distance between them is 15cm 
and the final image is formed 25cm from the eyepiece, 
calculate (i) the position of the object and (i) the magnify- 
ing power of the microscope. 

Let the positions of the object O, the first image I, 
and the final image I, be as in Fig. 6.82. A ray from 
the top of O through the optical centre P, of the objec- 
tive passes through the top of I, and a ray from the 
top of I, through the optical centre P, of the eyepiece 

passes through the top of I, when produced backwards. 

Let h and h, be the heights of O and I, respectively. 

(i) Consider the eyepiece. I, acts as the object and 
the final image I, is virtual. We have v = —25cm and 
f.= +5.0cm, 
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Ray diagram for two non-axial 

points on the object O 

Objective Eyepiece 

Fig. 6.82 

chet acs 
(-25) u (+5) 
wig BMS 
Te es 

u= [,P,= +4icm 

Consider the objective. Image I, is real and at a distance 

P,I, from the objective where P,J,=P,P,—I,P,= 
15—4,=10;cm. Hence v=P,I, = +103 = +65/6cm. 
Also f, = +2.0.cm, 

1 ieee 
+—-=—— 

(+65/6) u (+2) 

bos et Sale 

u 2 65 130 

130 
u= OP, = +——cm 

53 

=+24%cm (=2.5cm) 

The object O is about 2.5 cm from the objective. 
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(ii) Assuming the observer is close to the eyepiece 

the angle subtended at his eye is given by 

Pap, “(25/ oyu ces 

The angle a subtended at the observer’s eye when he 

views the object at his near point (assumed to be 25cm 

away) without the microscope is given by a = h/25, Fig. 

6.83. 

Fig. 6.83 

Magnifying power M = E 
Qa 

_ 6h,/25__ 6h, 
Ths Sh 

But a a 
h P,O 2% 130/53 12 

53 
M=6x—=27 

12 

Refracting astronomical telescope 

A lens-type astronomical telescope consists of two con- 

verging lenses; one is an objective of long focal length 

and the other an eyepiece of short focal length. The 

objective L, forms a real, diminished, inverted image 
I, of a distant object at its principal focus F, since the 

rays incident on L, from a point on such an object can 

be assumed parallel. The eyepiece L, acts as a magnify- 

ing glass and forms a magnified virtual image of I, and, 

when the telescope is in normal adjustment, this image 
is at infinity. I, must therefore be at the principal focus 
F, of L,, hence F, and F, coincide. 

Parallel rays 
from point at 

top of distant 

object 

In Fig. 6.84 three actual rays are shown coming from 

the top of a distant object and passing through the top 
of I, in the focal plane of L,. They must emerge parallel 

from L, to appear to come from the top of the final 

image at infinity. They must also be parallel to the line 

joining the top of I, to the optical centre of Ly. 

(a) Magnifying power. It will be assumed that (7) all 
rays are paraxial, (ii) the eye is close to the eyepiece 
and (iii) the telescope is in normal adjustment. Now 

M = B/aand in this case 

B=angle subtended at the eye by the 

final image at infinity 
= angle subtended at the eye by I, 

= h,/f. 

(h, being the height of I,), and 

a=angle subtended at the eye by the 

object without the telescope 

= angle subtended at the objective by 

the object 

(since the distance between L, and L, is very small com- 

pared with the distance of the object from L,). 

a= h,/f. 

Hence BL hdh 
Qa h,/f 

fo 
fe 

Notes. (i) The above expression for M is true only 

for normal adjustment; the separation of the objective 
and eyepiece is then f, + f.. 

(ii) A telescope is in normal adjustment when the 

final image is formed at infinity; a microscope is in nor- 

mal adjustment with the final image at the near point. 

For high magnifying power the objective should have 

a large focal length and the eyepiece a small one. The 

largest lens telescope in the world is at the Yerkes 

To top of final virtual 
image at infinity 

Fig. 6.84 



Observatory, U.S.A.; the objective has a focal length 

of about 20 metres and the most powerful eyepiece has 

a focal length of about 6.5mm. The maximum value 
of M is therefore 20 x 10°/6.5 ~ 3000. 

If it is desired to form the final image at the near 

point, i.e. telescope not in normal adjustment, the eye- 

piece must be moved so that I, is closer to it than F,. 

The magnifying power is then slightly greater than f,,/f.. 

(b) Resolving power. It can be shown that the ability 
of a telescope to reveal detail increases as the diameter 

of the objective increases. However, large lenses are 
not only difficult to make but they tend to sag under 

their own weight. The objective of the Yerkes telescope 

has a diameter of 1 metre which is about the maximum 

possible. There is no point in increasing the magnifying 

power of a telescope unduly if the resolving power can- 

not also be increased. 

(c) The eye ring. As in the case of the microscope, 

the eye ring is in the best position for the eye and is 

the circular image of the objective formed by the eye- 
piece. All rays incident on the objective which leave 

the telescope pass through it. In Fig. 6.85a two cones 

of rays are shown coming from the top and bottom of 

a distant object and crossing at the eye ring EE’. 

If the telescope is in normal adjustment, the separa- 

tion of the lenses is f, +f. and from similar triangles 

in Fig. 6.855 

AB f, 

EE OY 
But the magnifying power M for a telescope in normal 

adjustment is f,/f., hence 

Ray from top of 

distant object Objective pe Eyepiece 
~ 
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_ diameter of objective 

~ diameter of eye ring 

This expression enables M to be found simply by illu- 

minating the objective with a sheet of frosted glass and 
a lamp, locating the image of the objective formed by 

the eyepiece (i.e. the eye ring) on a screen and measur- 

ing the diameter. 

(d) Brightness of image. A telescope increases the 
light-gathering power of the eye and in the case of a 
point object, such as a star, forms a brighter image. 

Thus, when the diameter of the objective is doubled, 

the telescope collects four times more light from a given 

star (why?) and since a point image is formed of a point 

object, whatever the magnifying power, the star appears 
brighter. Many more stars are therefore visible than 

would otherwise be seen and in fact the range of a tele- 

scope is proportional to the diameter of its objective. 
The brightness of the background is not similarly 

increased because it acts as an extended object and, 

as we will now see, a telescope does not increase the 

brightness of such an object. 
When the diameter of the eye ring equals the diameter 

of the pupil of the eye, almost all the light entering 

the telescope enters the eye. If M is the magnifying 

power of the telescope, the diameter of the objective 

is M times the diameter of the eye ring and the area 
of the objective is M* times greater. M? times more 
light enters the eye via the telescope than would enter 

it from the object directly. However the image has 
an area M? times that of the object since the tele- 

scope makes the object appear M times as high and M 

times as wide as it does to the unaided eye at the same 

Ray from bottom of 
distant object 

Fig. 6.85 
(b) 
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distance. The brightness of the image cannot therefore 
exceed that of the object and is less, due to loss of light 

in the instrument. The contrast between a star and its 

background is thus increased by a telescope. 

(e) A calculation. 
An astronomical telescope has an objective of focal 

length 100cm and an eyepiece of focal length 5.0cm. 

Calculate the power when the final image of a distant 

object is formed (i) at infinity, (ii) 25.0 cm from the eye- 

piece. 

(i) When the final image is at infinity, the telescope 

is in normal adjustment and the magnifying power is 

given by 

(ii) Let the position of I, be as shown in Fig. 6.86. 

A ray from the top of the distant object through the 

optical centre P, of the objective passes through the top 

of I,. Also a ray from the top of I, through the optical 

centre P, of the eyepiece passes through the top of the 

final image when produced backwards. 

Objective Eyepiece 

Fig. 6.86 

For the eyepiece we can say v = —25.0 cm (final image 

virtual) and f, = +5.0cm. 

1 1 1 
+ —- = ——_ 

(=25).WaGho) 

PG 
—_ => — + — = 

it) a MB PB 

u=I,P,= 46cm 

If the eye is close to the eyepiece the angle B 

subtended at the eye is given by B=h,/I,P,= 
h,/(25/6) = 6h,/25. The angle a@ subtended at the 
unaided eye by the object = angle subtended at the 
objective by the object (see p. 124) = h,/f, = h,/100. 

_B_ 6h,/25_ 6x 100 
a h,/100 25 

Hence 

Reflecting astronomical telescope 

The largest modern astronomical telescopes use a con- 

cave mirror of long focal length as the objective instead 

of a converging lens but the principle is the same as 

the refracting telescope. One arrangement, called the 

Newtonian form after the inventor of the reflecting tele- 

scope, is shown in Fig. 6.87. Parallel rays from a distant 

point object on the axis are reflected first at the objective 

and then at a small plane mirror to form a real image 

I, which can be magnified by an eyepiece or photo- 

graphed by having a film at I,. The plane mirror, whose 

area is negligible compared with that of the concave 
mirror, deflects the light sideways without altering the 

effective focal length f, of the objective. In normal 

adjustment the magnifying power is f,/f. where f, is 

the focal length of the eyepiece. 

The advantages of reflecting telescopes are 

(¢) no chromatic aberration since no refraction occurs 

at the objective, 

(ii) no spherical aberration for a point object on the 
axis at infinity if a paraboloidal mirror is used (see p. 

IEF); 
(iii) a mirror can have a much larger diameter than 

a lens (since it can be supported at the back) thereby 

giving greater resolving power and a brighter image of 
a point object. 

(iv) only one surface requires to be ground (com- 
pared with two for a lens), thus reducing costs. 

The large reflecting optical telescope on Mount Palo- 
mar, California, Fig. 6.88, has a concave paraboloidal 
mirror of diameter 5 metres. It is made of low expansion 

glass which took six years to grind and the reflecting 

surface is coated with aluminium. Photographs of nebu- 
lae up to a distance of 10!” light-years away (1 light-year 
is the distance travelled by light in 1 year) can be taken. 

It is used in conjunction with spectrometers, cameras 

and other instruments in temperature-controlled, air- 

conditioned surroundings. 

For general astronomical work lens telescopes are 
more easily handled than large mirror telescopes; the 

latter are used only where high resolving power is 
required. 

Other telescopes 

(a) Terrestrial telescope. The final image in an astro- 
nomical telescope is inverted and whilst this is not a 

handicap for looking at a star, it is when viewing objects 
on earth. 

A terrestrial telescope is a refracting astronomical 

telescope with an intermediate ‘erecting’ lens arranged 
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as in Fig. 6.89 to be at a distance of 2f (where f is the 

focal length of the erecting lens) from the inverted image 

I, formed by the objective. An erect image I, of the 

same size as I, is formed at 2f beyond the erecting lens 

and acts as an ‘object’ for the eyepiece in the usual 

way. A disadvantage of this arrangement is the increase 

in length of the telescope by 4f. 

(b) Prism binoculars. These consist of a pair of 

refracting astronomical telescopes with two totally re- 

flecting prisms (angles 90°, 45° and 45°) between each 

objective and eyepiece as in Fig. 6.90. Prism A causes 
lateral inversion and prism B inverts vertically so that 

the final image is the same way round and the same 

way up as the object. Each prism reflects the light 

through 180°, making the effective length of each tele- 

scope three times the distance between the objective 

and the eyepiece. Good magnifying power is thus 

obtained with compactness. 

From 
objective 

eyepiece 
Fig. 6.90 

Objective 

Parallel rays 

from point at 

top of 

distant 

object 

Fig. 6.91 

Prism binoculars marked ‘7 x 50’ have a magnifying 

power of 7 and objectives of diameter 50 mm. 

(c) Galilean telescope. A final erect image is obtained 

in the Galilean telescope using only two lenses—a con- 

verging objective of large focal length f, and a diverging 

eyepiece of small focal length f.. 

The image of a distant object would, in the absence 

of the eyepiece, be formed by the objective at I,, where 

P.l,=f,, Fig. 6.91. With the eyepiece in position at a 

distance f. from I,, the separation of the lenses is f,-f, 
(numerically) and rays falling on the eyepiece emerge 

parallel, so that to the eye the top of the final image 

is above the axis of the telescope. An upright image 

at infinity is thus obtained. The converging light falling 

on the eyepiece behaves like a virtual object at I, and 

a virtual image of it is formed. 

If the telescope is in normal adjustment, i.e. final 

image at infinity, the magnifying power is f,/f., as for 

an astronomical telescope. In Fig. 6.91 the ray from 

the top of I, passing through the centre P, of the eyepiece 
goes to the top of the final image at infinity. It must 

therefore be parallel to the three parallel rays emerging 

from the eyepiece. The angle B subtended at the eye 

(close to the telescope) is thus given by B = h/I,P,=h/f. 
where h is the height of I,. Also, the angle a subtended 

To top of final virtual 

image at infinity Eyepiece 

fo ! 



at the unaided eye by the object is very nearly equal 

to the angle subtended at the objective by the object, 
hence a=h/I,P,=h/f,. Thus, the magnifying power 
Mis 

The Galilean telescope is shorter than the terrestrial 

telescope but the field of view is very limited because 

the eye ring is between the lenses (why?) and so inacces- 

sible to the eye. Opera glasses consist of two telescopes 

of this type. 

Spectrometer 

The spectrometer is designed primarily to produce and 

make measurements on the spectra of light sources and 

is generally used with a diffraction grating but a prism 

can be employed. It also provides a very accurate 

method of measuring refractive index. 

The instrument consists of (7) a fixed collimator with 

a movable slit of adjustable width (to produce a parallel 

beam of light from the source illuminating the slit), (ii) 

a turntable (having a circular scale) on which the grating 
or prism is placed and (iii) a telescope (with a vernier 

scale) rotatable about the same vertical axis as the turn- 

table, Fig. 6.92. The converging lenses in the collimator 

and telescope are achromatic. 
Four preliminary adjustments must be made before 

use. 

Collimator Turntable 

DRIICALSPROPERTIES 129 

(a) Adjustments 

(i) Eyepiece. This is moved in the tube containing 

the cross-wires until the cross-wires are clearly seen. 

An image formed on the wires will then be distinct. 

(ii) Telescope. A distant object (e.g. a vertical line 

of mortar between bricks in a building outside) is viewed 

through the telescope and the distance of the objective 

from the cross-wire eyepiece adjusted by a thumb-screw 

until there is no parallax between the image of the dis- 

tant object and the cross-wires. Parallel rays entering 

the telescope are now brought to a focus at the cross- 
wires. 

(iii) Collimator. The telescope is turned into line with 

the collimator, and the slit, illuminated with sodium 

light, is moved in or out of the collimator tube until 

there is no parallax between the image of the slit and 
the cross-wires. The slit is then at the principal focus 

of the collimator lens which is producing a parallel 

beam. 
(iv) Levelling the table. The method adopted depends 

on whether a grating or a prism is to be used; we will 

consider the latter at present. The prism is placed on 

the turntable with one face (AB in Fig. 6.93a) perpendi- 
cular to the lines on the table which join levelling screws 

S, and S,. With the telescope at right angles to the colli- 

mator the table is rotated until a reflected image of the 
slit from AB enters the telescope. S, is then adjusted 

so that this image is in the centre of the field of view, 

as in Fig. 6.93b. Keeping the telescope in the same posi- 

tion, the turntable is rotated to give a reflected image 

Telescope 

Movable, adjustable slit 

Fig. 6.92 

Levelling screw 

From 
collimator 

To telescope 

Fig. 6.93 

Cross-wires Eyepiece 

Field of view 

Cross-wire 

Image of slit 

(b) 
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of the slit which is obtained in the telescope from face 

AC of the prism. S; only is adjusted to centralize the 

image of the slit in the field of view. The turntable is 

then level, i.e. the refracting edge of the prism is now 

parallel to the axis of rotation of the telescope. 

(b) Measurement of refractive index 

By finding the refracting angle A of a prism and its 

angle of minimum deviation D,,,,, the refractive index 

n of the material of the prism can be found for light 

of one colour (i.e. monochromatic light) from 

tg sin [(A 18 Dyin)/ 2] 

~ sin(A/2) 

To measure A, the slit is made as narrow as possible 

and the prism set on the turntable as in Fig. 6.94a so 

that the incident light is reflected from both faces AB 

and AC. The telescope is rotated in turn into the posi- 

tions T, and T, so that the images of the slit, reflected 

from AB and AC respectively, coincide with the inter- 

section of the cross-wires. From the diagram we see 
that if three dotted lines are drawn parallel to the inci- 

dent beam of light then A = a + Band the angle between 

T, and T, = 2(a+ B) =2A. Hence A is half the angle 

read on the telescope scale between positions T; and 

1% 

To measure D,,;, a monochromatic source, e.g. a 

sodium lamp or flame, must be used and the prism set 

on the turntable as in Fig. 6.946. The minimum devia- 
tion position of the prism is found by rotating the table 

so that the telescope is as near the straight-through posi- 

tion as possible whilst still receiving a refracted image 

of the slit at the intersection of the cross-wires. The 

scale reading in this position T; is noted, the prism 

removed and the straight-through reading taken with 

the telescope and collimator in line, position Ty. Dyj, 

is the angle between T; and T,. (Alternatively the mini- 

mum deviation position on each side can be found and 

the difference halved.) 

(p.106) 

Parallel 

light from 

collimator 

Fig. 6.94 

Camera 

A typical arrangement is shown in Fig. 6.95. The lens 

system has to have a field of view of about 50° (compared 

with 1° or so for an ayerage microscope objective) and 

so the reduction of aberrations is a major consideration. 

Lens pss 

Stop 

Fig. 6.95 

Very large apertures give blurred images because of 

aberrations; so do very small apertures but due to the 

phenomenon called diffraction. The best images are 

therefore generally obtained with intermediate aper- 

tures. For some types of optical systems (e.g. eyes, 

cameras, enlargers) aberrations are more significant and 

the aperture has to be reduced to obtain clear images. 

For others (e.g. telescopes) diffraction is usually more 

significant and apertures have to be made as large as 
is practicable. 

Cheap cameras use a meniscus lens, which is usually 

an achromatic doublet, and a stop to restrict the aper- 

ture. More expensive cameras have a lens system of 

several components designed to minimize the various 

aberrations. Focusing of objects at different distances 

is achieved by slightly altering the separation of the lens 
from the film. 

In many cameras the amount of light passing through 

the lens can be altered by an aperture control or stop 

of variable width. This has a scale of f-numbers with 

all or some of the following settings—1.4, 2, 2.8, 4, 

5.6, 8, 11, 16, 22, 32. These are such that reducing the 

f-number by one setting, say from 8 to 5.6, doubles the 

area of the aperture, i.e. the smaller the f-number the 

A 
—_ -14 

From min 
collimator T 

B Gc 

(b) 



larger the aperture. An f-number of 4 means the 

diameter_d of the aperture is the focal length f of the 
lens, i.e. d=f/4. 

The aperture affects (i) the exposure time and (ii) 
the depth of field. Consider (i). Using the next lower 

f-number halves the exposure time needed to produce 

the same illumination on the film (since the area of the 

aperture has been doubled). The exposure required 

depends on the lighting conditions and must be brief 

if the object is moving. 

The depth of field is the range of distances in which 

the camera can more or less focus objects simulta- 

neously. A landscape photograph needs a large depth 

of field whilst in a family group it may be desirable 

to have the background out of focus. The depth of field 

is increased by reducing the lens aperture as can be 

seen from Fig. 6.96, in which the images formed by 
a lens of point objects O, and O, are at I, and I, respec- 

tively. The diameter of the circular patch of light on 

a film in focus for I, is, for the out-of-focus I,, AB if 
the whole aperture is used but only A’B’ if the lens 
is stopped down. Depth of focus is the tiny distance 

the film plane can be moved to or from the lens without 

defocusing the image. 

Fig. 6.96 

Telephoto lens 

To obtain a larger image of a distant object on the film 
of a camera, the focal length of the lens needs to be 

increased. This is achieved without making the camera 

too long by using a telephoto lens. 
It consists of a convex lens in front of a concave lens 

which converges the light from the convex lens less 

rapidly, Fig. 6.97. The combination acts as a convex 

lens of greater focal length. The distance from the con- 

cave lens to the film (the back focal length) is appreciably 
less than the effective focal length of both lenses 
together. The camera is thus shorter than it would be 

if just one convex lens had been used to give the required 

magnification. 
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The telephoto ratio of the combination is defined by 

. equivalent focal length 
telephoto ratio = ————__—_ 

back focal length 

Typically, the ratio is 2, making the camera around half 

the size it would be with an equivalent single lens. (See 
question 25, p. 136.) 

Projector 

A projector is designed to throw on a screen a magnified 

image of a film or transparency. It consists of an illumi- 

nation system and a projection lens, Fig. 6.98. 

Image 

Transparency 

Reflector Condenser Projection 

lens Screen 

Fig. 6.98 

The image on the screen is usually so highly magnified 

that very strong but uniform illumination of the film 

with white light is necessary if the image is also to be 

bright. This is achieved by directing light from a high- 
power, intense, tungsten—-iodine filament lamp on to the 

film by means of a curved reflector and a condenser 

lens system arranged as shown. Since the screen is gener- 

ally a considerable distance away, the film, inverted, 

must be just outside the principal focus of the projection 

lens. Any chance of the image of the lamp appearing 

on the screen is also removed. To keep the projector 

as short as possible, the condenser has a short focal 

length f and the lamp is placed at a distance of 2f from 
it. What will be approximately (7) the separation of the 

condenser and the projection lens and (ii) the focal 

length of the projection lens if the film is close to the 

condenser? 
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Radio telescopes 

Certain ‘objects’ in space, among them the sun, emit 

radio signals which can be picked up by huge aerials 

called radio telescopes. These do not give visual pictures 
as do optical telescopes but produce electrical signals 

which are often recorded graphically. There are various 

types of radio telescopes: the famous one at Jodrell 

Bank, Cheshire, Fig. 6.99, consists of a steerable metal 

reflector or ‘dish’, 75 metres in diameter; others have 

isolated aerials distributed over a large area. 

The resolving power of any telescope depends on the 

diameter of the objective (lens, mirror or aerial) and 
the wavelength of the radiation from the object. The 
larger the diameter and the shorter the wavelength, the 

closer together can two distant points be and still be 

separated by the telescope. The Mount Palomar optical 

telescope has an objective (concave mirror) of diameter 

5 metres but its resolving power is more than 1000 times 
that of the Jodrell Bank radio telescope with an aerial 

of diameter 75 metres. This is because the shortest wave- 

length of the radio signals from outer space that can 

penetrate the ionized layers in the upper atmosphere 

is about 1cm, whereas the mean wavelength of light 

is 6X 10-°cm. (The longest wavelength that can pass 
through the earth’s radio ‘window’ is about 30 metres.) 

One of the strongest radio sources in our own star- 

system (the Galaxy) is the Crab nebula, a mass of lumi- 

nous gas in the constellation of the Bull. This nebula 

is believed to be the remains of a star which underwent 

a tremendous explosion, becoming a supernova and 

shining so brightly that it was observed in 1054, accord- 

ing to Chinese records, in broad daylight for several 

months. The radio signals arise from the highly excited 

gas which is still expanding outwards from the explosion 

centre. Some other radio ‘stars’ may also be due to old 
supernovae but most lie outside our galaxy and cannot 

usually be identified with ordinary stars. 

Whilst interstellar dust and gas stop light reaching 

us from distant stars, they do not block radio waves 

which can bring information about regions we cannot 

see. Very cold, rarefied hydrogen gas emits 21cm long 

waves and radio astronomers have established that invi- 

sible clouds of hydrogen in this state are very widely 



distributed in all space. By studying its distribution in 

our own galaxy, we now know that the latter is spiral- 

shaped and rotating like a huge Catherine-wheel. 

Cosmology is concerned with how the universe began 

and two main theories have been proposed. The ‘evolu- 
tionary’ (or ‘big bang’) theory suggests that millions of 
years ago all matter in the universe was concentrated 

into a very small volume of space, referred to as the 
‘primeval atom’, which exploded, throwing out matter 

in all directions. From the debris the galaxies of stars 

gradually formed and the expanding universe is a result 

of this explosion. The ‘steady-state’ theory on the other 

hand proposes that new matter is continually being 

created out of nothing to fill up the empty space arising 

from the expansion of the universe. In this case the 

universe would always ‘look’ the same. 

It is not easy to decide between the two theories but 

the problem may be resolved by radio astronomy. Some 

galaxies are known to be radio sources and the signals 

we receive give information about them, not as they 

are now, but as they were millions of years ago when 

the radio signals left them. If the evolutionary theory 

is correct we would expect the distant galaxies to be 

much closer together than those nearer to us; the more 

distant galaxies let us ‘look back’ through a longer time. 

If the steady-state theory applies there should be no 

difference in the average ‘density’ of galaxies near and 
far. Work done so far tends to support the evolutionary 

theory and it seems certain that simple steady-state 
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cosmology cannot be accepted, despite its attractive 
features. 

Two recent discoveries of radio astronomy are qua- 

sars and pulsars. Quasars (quasi-stellar objects) are very 

distant and are small compared with ordinary galaxies 

but are very powerful radio sources. Pulsars also emit 

strong radio signals but in sharp regular pulses at rates 

varying from 30 pulses per second to 1 in 4 seconds. 

They are thought to be a very long way off and planet- 
sized. 

Electron microscopes 

The electron microscope is analogous in principle to 

the optical microscope but its performance is far super- 

ior. The maximum magnifying power attainable with 

the best optical microscope is about 2000, for an electron 
microscope up to 100000 is typical. The former can 

resolve detail about 10~° m across, in the electron instru- 

ment it is very much smaller, about 10~’ m. Since atomic 

dimensions are of the order of 10~? m (1 nm), this means 

that in some cases an electron microscope can reveal 

separate molecules. 

The similarity between the paths of light in an optical 

microscope and the paths of electrons in an electron 
microscope can be seen from Fig. 6.100. In the latter, 

electrons are produced by an electron gun and the 

‘lenses’ are electromagnets designed so that their 

fields focus the electron beam to give an image on a 

Optical microscope 
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fluorescent screen or photographic plate. The focal 
lengths of the ‘lenses’ are variable and are determined 

by the current through the ‘lens’ coils. 

When the object is struck by electrons, more pene- 

trate in some parts than in others, depending on the 

thickness and density of the part. The image is brightest 

where most electrons have been transmitted. The object 

must be very thin, otherwise too much electron scatter- 

ing occurs and no image forms. Also, the whole arrange- 

ment is highly evacuated. Why? An air-lock device 

permits objects to be inserted and removed without loss 

of vacuum. 
The high resolving power of an electron microscope 

arises from the fact that just as light can be considered 
to have both wave-like and particle-like properties, so 

moving electrons seem to have the characteristics of 

both particles and waves. (Electrons as well as light can 

give interference and diffraction effects.) The wave- 

length associated with a moving electron depends on 

its speed which in turn depends on the p.d. accelerating 

it in the electron gun. It can be shown that for a p.d. 
of 100kV, common in many electron microscopes, the 

wavelength is about 3.5 x 107!’ m. The resolving power 
of a microscope increases as the wavelength of the radia- 
tion falling on the object decreases (p. 122) and there- 
fore, if we compare the above very small wavelength 

with that of light (say 6 x 10~*m), we see why the elec- 

tron microscope shows much greater detail. 

Two recent developments in electron microscopy are 

the high-voltage electron microscope and the scanning 

electron microscope. The first operates at 1 million volts 

and enables thicker specimens to be studied. In the 

second, the surface of a relatively large specimen is 

scanned by the electron beam; photographs taken with 

this instrument are shown on p. 12. 

QUESTIONS 

Spherical mirrors 

1. If a concave mirror has a focal length of 10cm, find the 

two positions where an object can be placed to give, in each 

case, an image twice the height of the object. 

2. Aconvex mirror of radius of curvature 40 cm forms an image 

which is half the height of the object. Find the object and 

image positions. 

3. Aconcave mirror of radius of curvature 25 cm faces a convex 

mirror of radius of curvature 20cm and is 30cm from it. If 

an object is placed midway between the mirrors find the nature 
and position of the image formed by reflection first at the con- 

cave mirror and then at the convex mirror. 

4. Describe an experiment to determine the radius of curvature 

of a convex mirror by an optical method. Illustrate your answer 

with a ray diagram and explain how the result is derived from 

the observations. 
A small convex mirror is placed 0.60m from the pole and 

on the axis of a large concave mirror, radius of curvature 2.0m. 

The position of the convex mirror is such that a real image 

of a distant object is formed in the plane of a hole drilled 

through the concave mirror at its pole. Calculate (a) the radius 

of curvature of the convex mirror, (b) the height of the real 

image if the distant object subtends an angle of 0.50° at the 

pole of the concave mirror. Draw a ray diagram to illustrate 

the action of the convex mirror in producing the image of a 

non-axial point of the object and suggest a practical application 

of this arrangement of mirrors. (J.M.B.) 

Refraction at plane surfaces 

5. A ray of light in air passes successively through parallel- 

sided layers of water and glass. If the angle of incidence in 

air is 60° and the refractive indices of water and glass are 4/3 

and 3/2 respectively, calculate (a) the angle of refraction in 

the water, (b) the angle of incidence at the water—glass bound- 

ary and (c) the angle of refraction in the glass. 

6. Find by calculation what happens to a ray of light which 

falls at an angle of (i) 30°, (ii) 60°, on a glass—water surface 

if the refractive index of the glass is 3/2 and of water 4/3. 

7. The refractive indices of crown glass and of a certain liquid 
are 1.51 and 1.63 respectively. Determine the conditions under 

which total internal reflection can occur at a surface separating 

them. 

8. (a) A ray of light is incident at 45° on one face of a 60° 
prism of refractive index 1.5. Calculate the total deviation of 

the ray. 

(b) A ray of light just undergoes total internal reflection 

at the second face of a prism of refracting angle 60° and refrac- 

tive index 1.5. What is its angle of incidence on the first face? 

9. (a) A 60.0° prism is made of glass whose refractive index 

for a certain light is 1.65. At what angle of incidence will mini- 

mum deviation occur? Between what limits must the angle 

of incidence lie, if light is to pass through the prism by refraction 

at adjacent faces? (W. part qn.) 

(b) A ray of monochromatic light is incident at an angle 

of 30.0° on a prism of which the refractive index for the given 

light is 1.52. What is the maximum refracting angle for the 

prism if the light is just to emerge from the opposite face? 

10. If the refractive index of diamond for sodium light is 2.42, 
calculate the refracting angle of a diamond prism which will 

cause the greatest possible deviation of a beam of sodium light 

after two refractions (with no total internal reflection). Explain 

your reasoning. (C. part qn.) 



Lenses: the eye 

11. (a) The filament of a lamp is 80cm from a screen and 

a converging lens forms an image of it on the screen, magnified 

three times. Find the distance of the lens from the filament 

and the focal length of the lens. 

(b) An erect image 2.0cm high is formed 12 cm from a lens, 

the object being 0.5 cm high. Find the focal length of the lens. 

12. Explain what is meant by (a) a virtual image, (b) a virtual 

object, in geometrical optics. Illustrate your answer by describ- 

ing the formation of (/) a virtual image of a real object by 

a thin converging lens, (ii) a real image of a virtual object 

by a thin diverging lens. In each instance draw a ray diagram 

showing the passage of two rays through the lens for a non-axial 

object point. (J.M.B.) 

13. A lens forms the image of a distant object on a screen 

30cm away. Where should a second lens, of focal length 30cm, 

be placed so that the screen has to be moved 8.0cm towards 

the first lens for the new image to be in focus? 

14. The radii of curvature of the faces of a thin converging 

meniscus lens of glass of refractive index 3/2 are 15cm and 

30cm. What is the focal length of the lens (a) in air, (b) when 

completely surrounded by water of refractive index 4/3? 

15. Explain why a sign convention is adopted in geometrical 

optics. Describe a convention and explain its use in solving 

the following problem. 
An equi-convex lens A is made of glass of refractive index 

1.5 and has a power of 5.0radm7!. It is combined in contact 

with a lens B to produce a combination whose power is 

1.0radm7!. The surfaces in contact fit exactly. The refractive 

index of the glass in lens B is 1.6. What are the radii of the 

four surfaces? Draw a diagram to illustrate your answer. (W.) 

16. Draw a diagram to explain what is meant by (a) the princi- 

pal axis, (b) the focal length of a thin converging lens. 
A small luminous object is placed on the axis of a thin plano- 

convex lens (made of glass of refractive index 1.6) on the side 

of the lens nearer to the plane face. When at a distance of 

30cm from the lens it coincides with the real inverted image 

formed by light which has undergone two refractions at the 

plane face and one reflection at the curved face. Find the posi- 

tion and nature of the image of this object formed by light 

transmitted directly by the lens. (J.M.B.) 

17. A person can focus objects between 60.0cm and 500cm 

from his eyes. What spectacles are needed to make his far 

point infinity? What is now his range of vision? 

18. What spectacles are required by a person whose near and 

far points are 40.0cm and 200cm away respectively to bring 

his near point to a distance of 25.0cm? Find his new range 

of vision. 
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Optical instruments 

19. Explain the difference between the terms magnifying 

power and magnification, as used about optical systems. Illus- 

trate this, by calculating both, in the case of an object placed 

5.0cm from a simple magnifying glass of focal length 6.0cm, 

assuming that the minimum distance of distinct vision for the 

observer is 25cm. (Sa) 

20. (a) Explain the terms magnifying power and resolving 
power in connection with a microscope. 

(b) A compound microscope is formed from two lenses of 

focal lengths 1.0 and 5.0cm. A small object is placed 1.1 cm 

from the objective and the microscope adjusted so that the 

final image is formed 30cm from the eyepiece. Calculate the 

angular magnification of the instrument. (Assume that the 

nearest distance of distinct vision is 25 cm.) 

21. Describe, with the help of diagrams, how (a) a single bicon- 

vex lens can be used as a magnifying glass, (b) two biconvex 

lenses can be arranged to form a microscope. State (i) one 

advantage, (ii) one disadvantage, of setting the microscope 

so that the final image is at infinity rather than at the near 
point of the eye. 

A centimetre scale is set up 5.0cm in front of a biconvex 

lens whose focal length is 4.0cm. A second biconvex lens is 

placed behind the first, on the same axis, at such a distance 

that the final image formed by the system coincides with the 

scale itself and that 1.0mm in the image covers 2.4cm in the 

scale. Calculate the position and focal length of the second 

lens. (O. and C.) 

22. State what is meant by normal adjustment in the case of 

an astronomical telescope. 

Trace the paths of three rays from a distant non-axial point 

source through an astronomical telescope in normal adjust- 

ment. 

Define the magnifying power of the instrument, and, by 

reference to your diagram, derive an expression for its magni- 

tude. 

A telescope consists of two thin converging lenses of focal 

lengths 100cm and 10.0cm respectively. It is used to view an 

object 2.00 x 10° cm from the objective. What is the separation 

of the lenses if the final image is 25.0cm from the eye-lens? 

Determine the magnifying power for an observer whose eye 

is close to the eye-lens. (J.M.B.) 

23. What should be the focal length of the objective of an 

astronomical telescope if the eyepiece is of focal length 5.0cm 

and the lenses are to be fixed 85 cm apart in normal adjustment 

(final image at infinity)? What will then be the magnifying 

power obtained? (No proofs required.) 

With such a telescope all the light received by the objective 

which also passes through the eyepiece eventually passes 

through a small circular region, called the exit pupil (eye ring), 

a short distance beyond the eyepiece. The exit pupil coincides 

in position and size with the image which would be formed 

by the eyepiece of the objective lens if the latter were a self- 
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luminous object. Give arguments to justify these statements. 

How far behind the eyepiece will the exit pupil be in the case 

given above? 

It is generally reckoned best to have an objective of such 

a size that the exit pupil can coincide in size and position with 

the pupil of the observer’s eye. If the pupil (at night) has a 

diameter of 8.0mm, what should be the diameter of the objec- 

tive for this telescope? 

What are the advantages of using an objective of as large 

a diameter as possible? What are the disadvantages of a large 

objective? GS) 

24. What is meant by the f-number of a camera lens? The 

stop of a camera lens is reduced from f/8 to f/22. State and 
explain in what ratio the illumination of the image on the film 

is changed. Explain also, with the aid of a diagram, why the 

‘depth of focus’ is increased. 

An image of a distant object is formed on a screen by an 

optical system consisting of a converging lens of focal length 

15cm placed co-axially 9.0cm from a diverging lens of focal 

length 7.5cm, the light being incident on the converging lens. 

Compare the size of this image with that produced of the same 

object by the converging lens alone. (bs) 

25. The telephoto lens in a camera consists of a convex lens 

of focal length 10.0 cm with a concave lens of focal length 5.0cm 

placed 7.0cm behind it. The subject to be photographed is 

5.0m in front of the convex lens. 

(a) What is the total length of the camera from the convex 

lens to the film when the image is in focus on the film? 

(b) What magnification is produced? 

(c) If the telephoto lens is replaced by a single convex lens 

of a focal length which gives the same magnification as the 

telephoto lens (the subject still being 5.0m away), what is the 

total length of the camera now? 

(d) What is the focal length of the single equivalent lens? 

26. Which pair of lenses with the focal lengths (in cm) listed 

below could be used to make a telescope which gives an 

upright, magnified final image? 

A B C D E 

rod) ~arA) spel0! Ses) SESiHe) 

Sy) ae sn Sse) S10) 

Objective 

Eyepiece = 510, 

27. An astronomical telescope consisting of two convex lenses 

is used to view a distant piece of paper with two arrows drawn 

on it as in Fig. 6.10la. Which of A to E in Fig. 6.1016 

represents the image seen? 

Object 
A B (& D E 

—> ——> Ss x — el ClO 

<_— <«_—- <_— <—— —~, -> 

(a) (b) 

Fig. 6.101 

28. A sharp, magnified image of a slide is produced on a 

screen by a projector. To obtain a larger image that is still 

sharp, how would you move (a) the screen and (b) the 

projector lens in relation to the slide? 

29. A simple two-convex lens refracting telescope has a 

magnifying power of 12.5 when the telescope is in normal 

adjustment. The focal length of the objective is 0.75 m. The 

separation between the objective and the eye piece is 

A 0.06 m 

E 16.7 m 

B 0.69 m C 0.81m D 1.35m 

(H.K.A.L.E., 1991) 

30. The f-number of a certain camera is decreased without 

changing any other camera controls. How would the image 

size, image brightness and depth of field be affected? 

Image size Image Depth 

brightness of field 

A decreased decreased increased 

B decreased increased decreased 

C increased increased decreased 

D unaffected increased decreased 

E unaffected decreased increased 

(H.K.A.L.E., 1991) 



Objective-type revision questions 

The first figure of a question number gives the relevant chapter, 

e.g. 2.2 is the second question for chapter 2. 

Multiple choice 

Select the response which you think is correct. 

2.1. The density of aluminium is 2.7gcm~*, its atomic mass 

is 27 and the Avogadro constant is 6.0 x 10°° atoms per mole. 
If aluminium atoms are assumed to be spheres, packed so that 

they occupy three-quarters of the total volume, the volume 

of an aluminium atom in cm’ is 

46 27/(3 X 2.7 X 6.0% 107) 
3 x 27/(4 x 2.7 x 6.0 x 107) 
3 x 2.7/(4 x 27 x 6.0 x 1075) 

Ax 27 x 6.0 X 107/(3 X 2.7) 
3x 2.7 ~ 6.0 x 107/(4 X 2.7) AOS 

2.2. The weakest form of bonding in materials is 

A vander Waals’ B ionic C covalent D metallic 

3.1. Which one of the following is the Young modulus (in 

Pa) for the wire having the stress-strain curve of Fig. 1? 

A 36x 10!! B 8.0 x 10!! e20<10" 

D 0.50 x 10! B 16.010" 

20 

us 16 A 
ie 

fe) 12 

on 
3. 8 

D 
4 

0) 8 16 24 32 40 48 

Strain/10-4 

Fig. 1 

3.2. Which one of the following statements is a correct state- 

- ment about the evidence provided by Fig. 1? 

A The wire only obeys Hooke’s law between O and A and 

after A it becomes much more difficult to stretch it. 

B The wire does not obey Hooke’s law between O and A 

and after A it becomes much more difficult to stretch 

it. 

C The wire only obeys Hooke’s law between O and A and 

after A it becomes much easier to stretch it. 

D The wire does not obey Hooke’s law between O and A 

and after A it becomes much easier to stretch it. 

E The wire does not obey Hooke’s law at all and is no harder 

or easier to stretch before A than after A. (J.M.B.) 

3.3. Wires X and Y are made from the same material. X has 

twice the diameter and three times the length of Y. If the 

elastic limits are not reached when each is stretched by the 

same tension, the ratio of energy stored in X to that in Y 

Is 

Ay 2:3 B 3:4 CBZ D 6:1 E, 12:1 

3.4. Reasons for the good stiffness and strength of three differ- 

ent materials are given below. Select from the list of five mater- 

ials the one to which each statement best applies (three 

answers). 

(i) It has ‘foreign’ atoms in the lattice which oppose disloca- 

tion movement. 

(ii) It has high covalent bond density. 

(ui) It has long-chain molecules lying more or !ess parallel 

along their length. 

Asteel Brubber Ccopper D polythene  E glass 

3.5. Two objects of weights 2 N and 3 N are suspended from a 

fixed point by two identical light springs A and B as shown in 

Fig. 2. The force constants of the springs are both 1 Ncm_?. 

What are the extensions of springs A and B? 

A B Cc D E 

Extension of Scm 5S cm 3. cm 3 cm 2cm 

spring A 

Extension of 3cm 2cm 2cm 5 cm 3.cm 

spring B 

(AIK AVIZE) 1982) 

Spring A 

2N 

Spring B 

3N 

Fig. 2 

‘hee oe 
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4.1. The drift velocity of the free electrons in a conductor is 

independent of one of the following. Which is it? 

A The length of the conductor. 

B The number of free electrons per unit volume. 

C The cross-sectional area of the conductor. 

D The electronic charge. 

E The current. 

4.2. The value of X in ohms which gives zero deflection on the 

galvanometer in Fig. 3 is 

A 3 B 6 Cris D 18 E 27 

Fig. 3 

4.3. If X, Y and Z in Fig. 4 are identical lamps, which of the 

following changes to the brightnesses of the lamps occur when 

switch S is closed? 

A Xstaysthesame Y decreases 

B Xincreases Y stays the same 

C Xincreases Y decreases 

D Xdecreases Y increases 

E Xdecreases Y decreases 

Fig. 4 

4.4. A moving-coil galvanometer has a resistance of 10 and 

gives a full scale deflection for a current of 0.01 A. It could 

be converted into a voltmeter reading up to 10 V by connecting 

a resistor of value 

A 0.10Q in parallel with it 

C 0.10Q__ in series with it 

E 990 _ inseries with it 

B 900 

D 9900 

in series with it 

in parallel with it 

(J.M.B.) 

4.5. Which of the graphs in Fig. 5 best shows the variation of 

current with time in a tungsten filament lamp, from the 

moment current flows? 

/ / / 

/ / 

fe fas 
O t O t 

4.6. Two resistors are connected in parallel as shown in Fig. 6. 

A current passes through the parallel combination. The power 

dissipated in the 5.0 resistor is 40W. Which one of the 

following is the power dissipated in watts in the 10 resistor? 

Fig. 5 

A10 B20 C40 Dg0 (J.M.B. Eng. Sc.) 

10Q 
= 

/ 

5Q 
E—4 

Fig. 6 

4.7. If each resistor in Fig. 7 is 2, the effective resistance in 

ohms between X and Y is 

£25 Sah! 6.2 Snel CES 

Fig. 7 

4.8. A cylindrical copper rod is re-formed to twice its original 

length. Which one of the following statements describes the 
way in which the resistance is changed? 

A The resistance remains constant. 

B The resistance increases by a factor of two. 

C The resistance increases by a factor of four. 

D The resistance increases by a factor of eight. 

(J.M.B. Eng. Sc.) 
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4.9. A thermocouple thermometer is to be designed using the 
circuit of Fig. 8. AB is a potentiometer wire of resistance 5.00 
and ED is a thermocouple whose e.m.f. is 20mV at 400°C and 

zero at 0°C. For a temperature measurement range from 0°C 

to 400°C, the required value for resistor R in ohms is 

A 195 B 295 C395 D 495 

(J.M.B. Eng. Sc.) 

Fig. 8 

4.10. In the circuit shown in Fig. 9, no current flows through 

the galvanometer. If the internal resistance of the cell is 

negligible, the value of R is 

A B Cc D E 
4.30 8a 100 322 =: 160 

(H.K.A.L.E., 1987) 

R 2V 

O.5A 0.5A 

40 200 
Fig. 9 

4.11. Fig. 10 shows part of a circuit which carries a current of 

1A from X to Y through a cell of e.m.f. 3 V and internal 

resistance 1(. The potential difference between X and Y is 

A B c D E 

OV 1V ZV 3V 4V 

(BURA, E1990) 

1A 

Fig. 10 

5.1. Choose from the following statements one which does 

not apply to the platinum resistance thermometer. 

A It can give high accuracy. 
B It is suitable for measuring the temperature in a small 

object. 

C It has a high heat capacity. 

D It can cover a wide range of temperature. 

E Itcan only be used for steady temperatures. 

5.2. Spheres P and Q are uniformly constructed from the same 

material which is a good conductor of heat and the radius of 

Q is twice the radius of P. The rate of fall of temperature 

of P is x times that of Q when both are at the same surface 

temperature. The value of x is 

A B} C2 D 4 E 8 

5.3. Heat flows through the bar XYZ in Fig. lla, the ends X 

and Z being maintained at fixed temperatures (temperature at 

X> temperature at Z). If only the part YZ is lagged, which 

graph in Fig. 11b shows the variation of temperature (6) with 

distance along XZ for steady-state conditions? 

(a) 

(] 0 (3) 

» 4 6 ZX iy, Zax ¥ Zz 

6 6 

Be Rae 
xX Y ZX Y Zz 

Fig. 11 

5.4. The dimensions of specific heat capacity are 

A ML’T@"! Boles ae Cer 
DiMPLiT'¢~ Eo ML-tT-20e 

5.5. The electrical resistance of a certain device is given by 

R =a+bt?’, where tis the temperature indicated by a Celsius- 

scale mercury thermometer, and a, b are constants. If the 

device is calibrated at 0°C and 100°C, how will its perform- 

ance, when used as a thermometer, compare with that of the 

mercury thermometer? 

A It will read the same temperature for all temperatures. 

B It will give a lower reading at all temperatures. 

C It will give a lower reading for temperatures between 0°C 

and 100°C. 

D It will give a lower reading for temperatures above 

100°C. 
E It will never read the same temperature. 

CEKGARIC. E,, 1986)) 
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6.1. A lens of focal length 12cm forms an upright image three 

times the size of a real object. The distance in cm between 

the object and image is 

A 8.0 B 16 C 24 D 32 E 48 

6.2. When a lens is inserted between an object and a screen 

which are a fixed distance apart the size of the image is either 

6cm or §cm. The size of the object in cm is 

A 2 B 3 Cc 4 D 43 E 9 

6.3. Which one of the following combinations of lenses is used 

as a compound microscope? (The objective is listed first. ) 

A long focus converging and shorter focus converging 

B long focus converging and shorter focus diverging 

C long focus converging and long focus converging 

D short focus converging and longer focus converging 

E short focus converging and longer focus diverging 

(J.M.B.) 

6.4. A glass vessel in the shape of a triangular prism is filled 

with water, and light is incident normally on the face XY, Fig. 

12. If the refractive indices for water and glass are 4/3 and 3/2 

respectively, total internal reflection will occur at the glass—air 

surface XZ only for sin @ greater than 

A B C D E 

1/2 2/3 3/4 8/9 16/27 

(ELKCA_L-E., 1986) 

0.2m 

Fig. 12 

0.2m 

Fala) 

ee 2 

ee 

6.5. When a pin is moved along the principal axis of a small 

concave mirror, the image position coincides with the object at 

a point 0.5 m from the mirror, Fig. 13. If the mirror is placed 

at a depth of 0.2m in a transparent liquid, the same phe- 

nomenon occurs when the pin is placed 0.4 m from the mirror. 

The refractive index of the liquid is 

A B Cc D E 
6/5 5/4 4/3 3/2 5/3 

(H.K.A.L.E., 1988) 

Multiple selection 

In each question one or more of the responses may be correct. 

Choose one letter from the answer code given. 

Answer A if (1), (ii) and (iit) are correct 

Answer B if only (1), (ii) are correct 

Answer C if only (ii) and (iti) are correct 

Answer D if (i) only is correct 

Answer E if (iii) only ts correct 

4.12. In the potentiometer circuit of Fig. 14 the galvanometer 

reveals a current in the direction shown wherever the sliding 

contact touches the wire. This could be caused by 

(i) E, being too low 

(ii) 3.00 being too high 

(iii) a break in PQ. 

£,=20V r=10Q 

p 3.002 

6.02 

Fo=11 

Fig. 14 

4.13. In the circuit shown in Fig. 15, filament lamps L, and L, 

are identical and are seen to be marked ‘6 V 18 W’. Which of 

the following statements is/are correct? 

(i) When switch S is closed, lamp L,; and lamp L, glow 

with the same brightness. 

(ii) When switch S is closed, lamp L, glows with its normal 

brightness. 

(iii) When switch S is opened, lamp L, glows with its 

normal brightness. 

(H.K.A.L.E., 1991) 

Fig. 15 

6.6. A microscope with a short-focus objective 

(7) allows more light to be collected 

(ti) keeps the distance between objective and eyepiece 
small 

(iii) gives high magnifying power. 
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7 Statics and dynamics 

Mechanics 
Composition and resolution of forces 
Moments and couples 
Equilibrium of coplanar forces 
Laws of friction 
Triangle and polygon of forces 
Nature of friction 
Velocity and acceleration 
Equations for uniform acceleration 
Velocity-time graphs 
Motion under gravity 
Projectiles 

Mechanics 

Mechanics is concerned with the action of forces on 

a body. If the forces balance they are said to be in 

equilibrium and the branch of mechanics which deals 

with such cases is called statics—the subject reviewed 

in the first part of this chapter. In the second part of 

the chapter we will consider the effects of forces which 
are not in equilibrium—a study known as dynamics. 
Many engineering and technological problems such 

as designing buildings, bridges (see chapter 1), roads, 
reservoirs, jet engines and aircraft require the appli- 

cation of the principles of mechanics so that structures 

with the necessary strength are obtained using the mini- 

mum of material. Not only are these principles useful 

for dealing with the world of ordinary experience but, 
suitably supplemented, they enable us to deal with the 

physics of the atom on the one hand, and astronomy 

and space travel on the other. 

Composition and resolution of forces 

(a) Scalar and vector quantities. A scalar quantity has 
magnitude only and is completely described by a certain 

number of appropriate units. A vector quantity has both 

magnitude and direction; it can be represented by a 

straight line whose length represents the magnitude of 

the quantity on a particular scale and whose direction 

(shown by an arrow) indicates the direction of the quan- 

tity. 
For example, if the points X and Y in Fig. 7.1a are 

2 metres apart, the statement that XY =2m fully de- 

scribes the distance between them; distance is a scalar. 
However the displacement XY between the points is 

2m in a direction 30° east of north, Fig. 7.1b; displace- 

Newton’s laws of motion 
F = ma calculations 
Momentum 

Conservation of momentum 
Rocket and jet propulsion 
Momentum calculations 
Work, energy and power 
Kinetic and potential energy 
Conservation of energy 
Energy calculations 
Elastic and inelastic collisions 

ment is a vector (like other vectors it is often printed 

in bold type). Other examples of scalars are mass, time, 

density, speed, energy. Force, velocity (displacement 

per unit time) and momentum are vectors. What kind 

of quantity is (i) temperature, (ii) acceleration? 

Y N y 

| 
| 

us | 
2m |30° 

Uh . x x 

(a) (b) 

Fig. 7.1 

(b) Parallelogram of forces. Scalars and vectors 

require different mathematical treatment. Thus scalars 

are added arithmetically but vectors are added geo- 

metrically by the parallelogram law which ensures their 

directions as well as their magnitudes are taken into 

account. The law will be illustrated by the addition of 
two displacements. 

Suppose we walk from A to B and then from B to 

C as in Fig. 7.2a so that we suffer successive displace- 

ments AB and BC. The resultant displacement is given 

by AC in magnitude and direction. The same resultant 

(e D C 

A B A B 

(a) (b) 

Fig. 7.2 

143 
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displacement (i.e. AC) would be obtained if we started 

from the same point A and drew AD equal to BC in 

magnitude and direction and then drew DC equal to 
AB, Fig. 7.2b. The sum of two vectors therefore equals 

the diagonal of the parallelogram of which the vectors 

are adjacent sides. How would you subtract two vectors? 

The parallelogram law for the addition (composition) 

of forces is stated as follows. 

If two forces acting at a point are represented in magni- 

tude and direction by the sides of a parallelogram drawn 

from the point, their resultant is represented by the diag- 

onal of the parallelogram drawn from the point. 

(c) Resolution of forces. The reverse process to the 

addition of two vectors by the parallelogram law, is the 

splitting or resolving of one vector into two components. 

It is particularly useful in the case of forces when the 

components are taken at right angles to each other. 

Suppose the force F is represented by OA in Fig. 

7.3a and that we wish to find its components along OX 

and OY (Z XOY = 90°). A perpendicular AB is dropped 

from A on to OX and another AC from A on to OY, 

to give rectangle (parallelogram) OCAB. OB and OC 

are the required components or resolved parts. If 

Z AOB = @6then 

cos @= OB/OA = OB/F 

OB = Fcos @ 

and sin @= AB/OA = OC/F 

OC = Fsin 6 

Fig. 7.3 (b) 

The two mutually perpendicular forces Fcos@ and 

Fin @ are thus equivalent to F, Fig. 7.3b. The total 
effect of F along OX is represented by Fcos @. Also 
note that if @=0, Fcos@=F and Fsin@=0, hence a 
force has no effect in a perpendicular direction. Resolv- 

ing a force (or any vector) gives two quite independent 
forces and is a process we shall use frequently. 

The component of a force of 10 N in a direction mak- 

ing an angle of 60° with it, is 10cos60N (i.e. 5N); in 

a direction perpendicular to this component the effective 

value of the force is 10sin 60 N (i.e. SV3N). 

Moments and couples 

A force applied to a hinged or pivoted body changes 

its rotation about the hinge or pivot. Experience shows 

that the turning effect or moment or torque of the force 
is greater the greater the magnitude of the force and 

the greater the distance of its point of application from 

the pivot. 

The moment or torque of a force about a point is 

measured by the product of the force and the perpendicu- 

lar distance from the line of action of the force to the 

point. 

Thus in Fig. 7.4a if OAB is a trap-door hinged at 

O and acted on by forces P and Q as shown then 

moment of P about 0 = Px OA 

and moment of Q about O= Q x OC 

Note that the perpendicular distance must be taken. 

Ye) Pees 
7 ens 

Pe 
4\O0 ok \ 

O B 

Qsiné@ 

Fig. 7.4 (b) 

Alternatively, we can resolve Q into component Q cos @ 

perpendicular to OB and Qsin @ along OB, Fig. 7.40. 

The moment of the latter about O is zero since its line 

of action passes through O. For the former we have 

moment of Q cos 6 about O = O cos @ xX OB 

=QxOC 

(since cos @= OC/OB) 

which is the same as before. Moments are measured 

in newton metres (Nm) and are given a positive sign 

if they tend to produce clockwise rotation. 

A couple consists of two equal and opposite parallel 

forces whose lines of action do not coincide; it always 

tends to change rotation. A couple is applied to a water 



Tap handle 

a 

Fig. 7.5 

tap to open it. From Fig. 7.5 we can say that the moment 
or torque of the couple P— P about O 

=PxOA+PxOB 

=P SCAB 

(both are clockwise) 

Hence, 

moment of couple = one force X perpendicular distance 

between forces 

Equilibrium of coplanar forces 

(a) General conditions for equilibrium. If a body is 

acted on by a number of coplanar forces (i.e. forces 

in the same plane) and is in equilibrium (i.e. there is 
rest or unaccelerated motion) then 

(i) the components of the forces in both of any two 

directions (usually taken at right angles) must balance, 

and 

(ii) the sum of the clockwise moments about any 

point equals the sum of the anticlockwise moments 

about the same point. 

The first statement is a consequence of there being 
no translational motion in any direction and the second 

follows since there is no rotation of the body. In brief, 

if a body is in equilibrium the forces and the moments 

must both balance. 
The following worked example (and also that on p. 

147) shows how the conditions for equilibrium are used 

to solve problems. 

(b) Worked example. A sign of mass 5.0kg is hung 

from the end B of a uniform bar AB of mass 2.0kg. 
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bar. The bar is uniform and so its weight acts vertically 

downwards at its centre G. Let the length of the bar 

be 21. 

(i) There is no rotational acceleration, therefore tak- 

ing moments about A we have 

clockwise moments = anticlockwise moment 

1G 

20 x 1+ 50 x 2/= P x AD (AD is perpendicular to BC) 

120/= P x AB sin 30 (sin 30 = AD/AB) 

=Px21x0.5 

PH12x10N 

Note: By taking moments about A there is no need 

to consider Q since it passes through A and so has zero 
moment. 

O O 

1G, OS IETS) 
Sra Ce 

Fig. 7.6 

(ii) There is no translational acceleration, therefore 

the vertical components (and forces) must balance, like- 

wise the horizontal components. Hence resolving Q and 

P into vertical and horizontal components (which now 

replace them, Fig. 7.6b) we have: 

Vertically 

QO sin 0+ Psin 30 = 20 + S50 

Q sin 6 = 70 — 120(1/2) 

QO sin @= 10 (1) 

Horizontally The bar is hinged to a wall at A and held horizontal 
by a wire joining B to a point C which is on the wall 

vertically above A. If angle ABC = 30°, find the force 
in the wire and that exerted by the hinge. (g = 10ms~°) 

QO cos 6= P cos 30 = 120(V3/2) 

QO cos 0= 60V3 (2) 

Dividing (1) by (2), 

tan @= 10/(60V3) 

G=15.5° 

The weight of the sign will be 50N and of the bar 

20 N (since W = mg). The arrangement is shown in Fig. 
7.6a. Let P be the force in the wire and suppose Q, 

the force exerted by the hinge, makes angle @ with the 
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Squaring (1) and (2) and adding, 

Q*(sin? 6+ cos? @) = 100 + 10800 

Q = 10900 

Q = 1.0(4) x 10°N 

(sin? 6 + cos? @= 1) 

and 

(c) Structures. Forces act at a joint in many structures 
and if these are in equilibrium then so too are the joints. 

The joint O in the bridge structure of Fig. 7.7 is in 

equilibrium under the action of forces P and Q exerted 

by the girders and the normal force § exerted by the 

bridge support at O. The components of the forces in 

two perpendicular directions at the joint must balance. 

Hence 

S=Qsin6 and P=Qcos@ 

Fig. 7.7 

If 6 and S are known (the latter from the weight and 

loading of the bridge) then P and Q (which the bridge 

designer may wish to know) can be found. Other joints 

may be treated similarly (see question 4, p. 163). 

Laws of friction 

Frictional forces act along the surface between two 

bodies whenever one moves or tries to move over the 

other, and in a direction so as to oppose relative motion 

of the surfaces. Sometimes it is desirable to reduce fric- 

tion to a minimum but in other cases its presence is 

essential. For example, it is the frictional push of the 

ground on the soles of our shoes that enables us to walk. 

Otherwise our feet would slip backwards as they do 
when we try to walk on an icy road. The study of friction, 

Spring balance 

(0-5 N) 

Wooden block 

Crank Steel! roller 

a 

Fig. 7.8 

Pulley 

Wooden plank 

wear and lubrication, now called tribology, is a matter 

of great importance to industry and is the subject of 

much research. 

(a) Coefficients of friction. Friction between two solid 

surfaces can be studied using the apparatus of Fig. 7.8 

in which the plank tends to move or does move, depend- 

ing on the force applied to the crank, whilst the block 

remains at rest. The frictional force between the block 

and the plank is measured by the spring balance. 

As the crank is gently wound the spring balance read- 
ing increases and reaches a maximum value when the 

plank is about to move. This maximum force between 

the surfaces is called the /imiting frictional force. When 
motion does start, the spring balance reading usually 

decreases slightly showing that the sliding, kinetic or 

dynamic frictional force (all terms are used) is rather 

smaller than the limiting value. The block can be set 

on edge to see if friction depends on the area of contact 

between the surfaces. The normal force N exerted by 

the plank on the block equals the weight W of the block. 

The effect on the frictional force of varying N can be 

found by placing weights on the block. 

The results of such experiments are summarized in 

the following laws of friction, which hold approximately. 

1. The frictional force between two surfaces opposes 

their relative motion. 

2. The frictional force does not depend on the area 

of contact of the surfaces if the normal reaction is con- 
stant. 

3. (a) When the surfaces are at rest the limiting fric- 

tional force F is directly proportional to the normal force 
N, i.e. Fx N (or F/N = constant). 

(b) When motion occurs the dynamic frictional force 

F" is directly proportional to the normal force N, i.e. 

F' x N (or F'/N=constant) and is reasonably indepen- 

dent of the relative velocity of the surfaces. 

The coefficients of limiting and dynamic friction are 

denoted by » and yw’ respectively and are defined by 
the equations 



@=F/N and p'=F'/N 

For two given surfaces y’ is usually less than w but they 

are often assumed equal. For wood on wood p is about 
0.2 to 0.5. In general a surface exerts a frictional force 

and the resultant force on a body on the surface has 
two components—a normal force N perpendicular to 

the surface and a frictional force F along the surface, 

Fig. 7.9. If the surface is smooth, as is sometimes 
assumed in mechanics calculations, u« = 0 and so F=(0. 

Therefore a smooth surface only exerts a force at right 

angles to itself, i.e. a normal force N. 

Resultant force 

Body moving to 
the right or about 
to do so 
a 

Fig. 7.9 

The coefficient of limiting friction, 4, can also be 

found by placing the block on the surface and tilting 

the latter to the angle @ at which the block is just about 

to slip, Fig. 7.10a. The three forces acting on the block 

are its weight mg, the normal force N of the surface 

and the limiting frictional force F(= uN). They are in 

equilibrium and if mg is resolved into components 

mg sin @ along the surface and mg cos @ perpendicular 

to the surface, Fig. 7.10b, then 

F=puN=mg sin 0 

and N=meg cos @ 

Dividing, w=tand 

Hence » can be found by measuring 6, called the angle 

of friction. 

mg cos @ 

(b) Worked example. A uniform ladder 4.0m long, 
of mass 25 kg, rests with its upper end against a smooth 

vertical wall and with its lower end on rough ground. 

What must be the least coefficient of friction between the 
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ground and the ladder for it to be inclined at 60° with 

the horizontal without slipping? (g = 10ms~°.) 

The weight (mg) of the ladder is 250 N and the forces 

acting on it are shown in Fig. 7.11. The wall is smooth 

and so the force S$ of the wall on the ladder is normal 
to the wall. Since the ladder is uniform its weight W 

can be taken to act at its mid-point G. If it is about 

to slip there will be a force exerted on it by the ground 

which can be resolved into a normal force N and a limit- 
ing frictional force F = N, where jis the required coef- 

ficient of friction. 

Fig. 7.11 

The forces are in equilibrium. 

Resolving vertically, 

N= W = 250 newtons 

Resolving horizontally, 

F=pN=S 

Taking moments about A, 

Sx AC=Wx AD 

S x 4.0 cos 30 = 250 X 2.0 sin 30 = 250 

S = 125/ V3 newtons 

Hence he 

Triangle and polygon of forces 

These are two laws which enable statics problems to 

be solved graphically. 

The triangle of forces states that if three forces acting 
at a point can be represented in size and direction by 
the sides of a closed triangle, taken in order, then the 

forces are in equilibrium. 
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Fig. 7.12 

‘Taken in order’ means that the arrows showing the 

force directions follow each other in the same direction 
round the triangle. If the triangle is not closed the forces 
have a resultant. 

In Fig. 7.12a three forces are shown acting at a point. 

In the scale diagram of Fig. 7.126, their sizes and direc- 

tions are represented by the sides of a closed triangle 

taken in order. The forces are therefore in equilibrium. 

The converse of the triangle of forces is often more 

useful; it states that if three forces acting at a point 

are in equilibrium, they can be represented in size and 

direction by the sides of a triangle taken in order. For 

example, it could be applied to the three forces P, Q 

and R acting at O in the structure of Fig. 7.7. 
With more than three forces a polygon is drawn; if 

it is closed, the forces are in equilibrium, Fig. 7.12c,d. 

Nature of friction 

Close examination of the flattest and most highly 

polished surfaces shows that they have hollows and 

humps more than one hundred atoms high. When one 

solid is placed on another, contact therefore only occurs 

at a few places of small area. From electrical resistance 

measurements of two metals in contact it is estimated 

that in the case of steel, the actual area that is touching 

may be no more than 1/10 000th of the apparent area. 

The pressures at the points of contact are extremely 

high and cause the humps to flatten out (undergoing 

plastic deformation) until the increased area of contact 

enables the upper solid to be supported. It is thought 
that at the points of contact small, cold-welded ‘joints’ 

are formed by the strong adhesive forces between mole- 

cules which are very close together. These have to be 

broken before one surface can move over the other, 

thus accounting for law 1 (p. 146). Measurements show 
that changing the apparent area of contact of the bodies 

has little effect on the actual area for the same normal 

force, so explaining law 2. It is also found that the actual 

area is proportional to the normal force and since this 

theory suggests that the frictional force depends on the 

actual area we might expect the frictional force to be 

proportional to the normal force—as law 3 states. 

Velocity and acceleration 

(a) Speed and velocity. If a car travels from A to B 

along the route shown in Fig. 7.13a, its average speed 

is defined as the actual distance travelled, i.e. AXYZB, 

divided by the time taken. The speed at any instant is 

found by considering a very short time interval. Speed 
has magnitude only and is a scalar quantity. 

B B 

A A 

(a) (b) 

Fig. 7.13 

Velocity is defined as the distance travelled in a particu- 

lar direction divided by the time taken. The average vel- 

ocity of the car in the direction AB is the distance 

between A and B, i.e. the length of the straight line 

AB, Fig. 7.136, divided by the time actually taken for 

the journey from A to B. AB is the displacement of 

the car; in this case it is not the actual path followed 

from A to B, although of course it could be in other 

cases. Velocity can therefore also be defined as the 

change of displacement in unit time; it has both magni- 

tude and direction and is a vector quantity. 

The SI unit of velocity is 1 metre per second (1 ms~'); 

10ms-'=36kmh™!. In Fig. 7.13 if the route AXYZB 
is 40 kilometres and the car takes 1 hour for the journey, 

its average speed is 40kmh7!. If B is 25km north-east 
of A as the crow flies, its average velocity is only 
25 km h™! towards the north-east. 



The velocity v of a body which undergoes a very small 
displacement 8s in the very small time 8 is given by 
the equation 

Or more strictly, in calculus notation, the velocity v 
at an instant is defined by 

Velocity is therefore the rate of change of displacement. 

A body which covers equal distances in the same 
straight line in equal time intervals, no matter how short 
these are, is said to be moving with constant or uniform 

velocity. Only a body moving in a straight line can have 

uniform velocity. The direction of motion of a body 

travelling in a curved path is continually changing and 
so it cannot have uniform velocity even though its speed 

may be constant. 

(b) Acceleration. A body is said to accelerate when 

its velocity changes. Thus if a very small velocity change 

dv occurs in a very small time interval 8r, the acceleration 

a of the body is 

change in velocity év 
a= - 

timetakenforchange 6f 

More correctly, in calculus notation, the instantaneous 

acceleration a is defined by 

, dv 
a=lim|— 

650 dr 

In words, acceleration is the rate of change of velocity. 

For a car accelerating towards the north from 10ms_! 

to 20 ms! in 5.0 seconds we can say 

(20 — 10) ms! 
average acceleration = 

5.0s 

= 2.0 ms? towards the north 

That is, on average, the velocity of the car increases 

by 2.0ms~! every second. Since 10ms~! = 36kmh™! 
and 20ms~! = 72kmh‘|, we could also say the average 

acceleration is (72 —36)kmh7!/5s = 7.2kmh™! per 
second = 7.2kmh7!s7!. 

Equations for uniform acceleration 

The acceleration of a body is uniform if its velocity 

changes by equal amounts in equal times. We will now 

derive three useful equations for a body moving in a 

straight line with uniform acceleration. 
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Suppose the velocity of the body increases steadily 

from u to v in time f then the uniform acceleration a 

is given by 

change of velocity 
ad = _ 

time taken 

en 

i t 

v=urtat (1) 

Since the velocity is increasing steadily, the average 

velocity is the mean of the initial and final velocities, 
ic. 

uty 

2 
average velocity = 

If s is the displacement of the body in time fr, then since 

average velocity = displacement/time = s/t, we can 
say 

Su actoat 

ja 

s=3(ut+v)t 

But =ut+tat 

s=}(uturtatyt 

or s=ut+ ar (2) 

If we eliminate ¢ from (2) by substituting t=(v —u)/a 

from (1), we get on simplifying 

v? =u? + 2as (3) 

Knowing any three of u, v, a, s and ¢ the others can 
be found. 

Velocity—time graphs 

Acceleration is rate of change of velocity (in calculus 

notation dv/df) and equals at any instant the slope of 

the velocitytime graph. In Fig. 7.14, curve @® has zero 
slope and represents uniform velocity, curve @) is a 

straight line of constant slope and represents uniform 
acceleration, while curve @) is for variable acceleration 

since its slope varies. 
The distance travelled by a body during any interval 

of time can also be found from a velocity—time graph, 

a fact which is especially useful in cases of non-uniform 

acceleration since the three equations of motion do not 

then apply. For the constant velocity case, curve ©, 

the distance travelled in time OC = velocity x time = 
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OA xX OC = area OABC. For curve @), if we consider 

a small enough time interval 6f, the velocity is almost 

constant and the distance travelled in 6¢ will be the area 

of the very thin shaded strip. By dividing up the whole 

area under curve @) into such strips it follows that the 

total distance travelled in time OC equals the area between 

the velocity—time graph and the time-axis. 

Motion under gravity 

(a) Free fall. Experiments show that at a particular 

place all bodies falling freely under gravity, in a vacuum 

or when air resistance is negligible, have the same con- 

stant acceleration irrespective of their masses. This 

acceleration towards the surface of the earth, known 

as the acceleration due to gravity, is denoted by g. Its 

magnitude varies slightly from place to place on the 

earth’s surface and is approximately 9.8 ms’. The velo- 

city of a freely falling body therefore increases by 

9.8ms~! every second; in the equations of motion g 

replaces a. 

A direct determination of g may be made using the 

apparatus of Fig. 7.15 in which the time for a steel ball- 

bearing to fall a known distance from rest is measured 

(to about 0.005 second) by an electric stop-clock. When 

Electromagnet 

Electric stop clock 

Steel ball 
bearing 

Clock 
Two-way switch | ¥ 

| Small 
Impact switch | magnet 

‘Trap door 

the two-way switch is changed to the ‘down’ position, 

the electromagnet releases the ball and simultaneously 
the clock starts. At the end of its fall the ball opens 

the ‘trap-door’ on the impact switch and the clock stops. 
Air resistance is negligible for a dense object such as 

a ball-bearing falling a short distance. The result is found 
from s = ut + sat’ since u=O0 anda =g. 

The measurement of g using a simple pendulum is 

described on p. 191. 

(b) Vertical projection. The velocity of a body pro- 

jected upwards from the ground decreases by 9.8 ms! 

(near enough to 10ms7') every second—neglecting the 

effect of air resistance. Hence if a ball is projected 

straight upward with an initial velocity of 30ms7' then 

in just over 3 seconds it will have zero velocity and 

be at its highest point. 

(c) Sign convention for displacement, velocity and 
acceleration. The three equations for uniform accel- 
eration can be used to solve problems on falling and 
rising bodies so long as a sign convention is adopted. 

Vector quantities have magnitudes and directions. By 

their nature magnitudes are positive and direction is 

stated in terms of angles. However when we are dealing 

with one-dimensional effects, such as linear motion, the 

only way to indicate direction is by signs. If we take 

downward as being positive, a downward acceleration, 
velocity or displacement is positive. Hence g= 

+10ms~° and this is true whether the body is rising 
and slowing down or falling and speeding up. 

Consider an example. Suppose a ball is projected 

straight up with an initial velocity of 40ms~! and we 

wish to find its velocity and height after 2 seconds. We 

haveu= —40ms"!, t=2s,a=g=+10ms~. 

Since v=utat 

v=-—40+10x2 

=-—20ms"! 

The ball has a velocity of 20ms~! upward. Also 

II s=ut+ tar 

—40x2+i4x10x4 

—60m 

It rises 60 m in 2 seconds. 

Projectiles 

In Fig. 7.16 a multiflash photograph is shown of the 
motion of two balls, one released from rest and the 
other projected simultaneously with a horizontal vel- 
ocity. It is clear that the vertical motion of the projected 



Fig. 7.16 

ball (a constant acceleration = g) is unaffected by its 

horizontal motion (a constant velocity). The two 

motions are quite independent of each other. 

Consider a body projected obliquely from O with 

velocity u at an angle @ to the horizontal, Fig. 7.17. 

Suppose we wish to know the height attained by the 

body and its horizontal range. If we resolve wu into 

horizontal and vertical components ucos @ and usin @ 

respectively, each component can be considered inde- 

pendently of the other. 

usiné 

Fig. 7.17 

Vertical motion. Whilst rising, the body is subject to 

a constant acceleration a = —g. (Here it is convenient 

to take downward directed vectors as negative, which 

explains why g has a negative sign.) If s is the height 

attained then, since the initial velocity is usin @ and the 

final velocity zero, we have from the third equation of 

motion (v? = u’ + 2as) 

0 =u’ sin’ 6 — 2gs 
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uw sin’ 0 
cio peas 

2g 

Also, if t is the time to reach the highest point A, it 

follows from the first equation of motion (v =u + at) 

that 

0 = usin 6- gt 

usin 6 
Z nt 

& 

The time taken by the body to fall to the horizontal 

level of O is also t. Therefore 

usin 6 

& 
time of flight = 27 = 2 

Horizontal motion. Neglecting air resistance, the 

horizontal component ucos @ remains constant during 

the flight since g has no effect in a horizontal direction. 

The horizontal distance travelled, OB, 

= horizontal velocity x time of flight 

_ ucos 6X 2usin 6 

ces doled 

B, 2u* sin Ocos 0 
Bias a 

B u? sin 26 

. § 

For a given velocity of projection the range is a maxi- 

mum when sin 26 = 1, i.e. when 6 = 45° and has the value 

u’/g. 

Trajectory. Let the body be at point C (co-ordinate 

x, y) at time ¢ after projection from O. Therefore 

x = tucos 0 

and y =tusin 6 — 3gf 

Substituting for fin the second equation we get 

% gx? 
y= -U sin 6 — ——— 

ucos @ 2u- cos 8 

exe 
y =x tan @ — ——_—_—__— 

2u’ cos‘ 8 

This is of the form y = ax + bx* which is the equation 

of a parabola (a and b are constants for a given velocity 

and angle of projection). In practice air resistance causes 

slight deviation from a parabolic path. 
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Newton’s laws of motion 

Newton (1642-1727) studied and developed Galileo’s 

(1564-1642) ideas about motion and subsequently stated 

the three laws which now bear his name. He established 
the subject of dynamics. His laws are a set of statements 

and definitions that we believe to be true because the 

results they predict are found to be in very exact agree- 

ment with experiment over a wide range of conditions. 

We do not regard them as absolutely true and more 

exact laws are required for certain extreme cases. 

(a) First law. If a body is at rest it remains at rest 

or if it is in motion it moves with uniform velocity (i.e. 

constant speed in a straight line) until it is acted on by 

a resultant force. 

The second part of the law appears to disagree with 

certain everyday experiences which suggest that a steady 

effort has to be exerted on a body, e.g. a bicycle, even 

to keep it moving with constant velocity (let alone to 

accelerate it), otherwise it comes to rest. The law on 

the other hand states that a moving body retains its 

motion naturally and if any change occurs (i.e. if it is 

accelerated) some outside agent—a force—must be re- 

sponsible. It seems that the question to be asked about 

a moving body is not ‘what keeps it moving’ but ‘what 

changes or stops its motion’. Frequently it is friction 

and if a body does move under near-frictionless con- 

ditions, its velocity is in fact almost uniform. This is 

shown in Fig. 7.18 which is a photograph of a puck, 

illuminated at equal time intervals by a flashing xenon 

lamp, moving on a cushion of carbon dioxide gas across 

a clean, level glass plate. 

Fig. 7.18 

This law really defines a force as something which 
changes the state of rest or uniform motion of a body. 

Contact may be necessary, as when we push a body 

with our hands, or it may not be, as in the case of gravi- 
tational, electric and magnetic forces. 

(b) Mass. The first law implies that matter has a built- 

in reluctance to change its state of rest or motion. This 

property, possessed by all bodies, is called inertia. Its 

effects are evident when a vehicle suddenly stops, caus- 

ing the passengers to lurch forward (tending to keep 

moving), or starts, jerking the passengers backwards 

(since they tend to remain at rest). 
The mass of a body is a measure of its inertia; a large 

mass requires a large force to produce a certain accel- 

eration. The unit of mass is the kilogram (kg) and is 
the mass of a piece of platinum-iridium carefully pre- 

served at Sévres, near Paris. In principle the mass m 

of a body can be measured by comparing the accel- 

erations a and a, produced by the same force in the 

body and the standard kilogram (m,) respectively. The 

ratio of the two masses is then defined by 

m ag 

mM a 

from which m can be calculated. Jn practice this is 

neither quick nor accurate and mass is most readily 
found using a beam balance to compare the weight of 

the body with that of a standard. It can be shown (p. 

153) that the mass of a body is proportional to its weight 

and so a beam balance also compares masses. 

The second law indicates how forces can be measured. 

(c) Second law. The rate of change of momentum of 

a body is proportional to the resultant force and occurs 
in the direction of the force. 

The momentum of a body of constant mass m moving 

with velocity u is, by definition, mu. That is 

momentum = mass X velocity 

Suppose a force F acts on the body for time t and 
changes its velocity from u to v, then 

change of momentum = mv — mu 

m(v—u 
rate of change of momentum = ae 

t 

Hence, by the second law, 

m(v — u) 

t 
Fo 

Ifa is the acceleration of the body then 

Lea 
a= 

t 

Fama 

or F=kma 



where k is a constant. Now, one newton is defined as 
the force which gives a mass of 1 kilogram an acceleration 

of 1 metre per second per second. Hence if m=1kg 
and a=1ms~* then F=1N and substituting these 
values in F = kma we obtain k = 1. Thus with these units 

k=) Vand F=— ma 

This expression is one form of Newton’s second law 

and it indicates that a force can be measured by finding 

the acceleration it produces in a known mass. It can 

be verified experimentally using, for example, a ticker- 

tape timer and trolleys on a runway. Two points should 
be noted when using F= ma to solve numerical prob- 

lems. First, Fis the resu/tant (or unbalanced) force caus- 

ing acceleration a in a certain direction, and second, 

F must be in newtons, m in kilograms and a in metres 

per second squared. 

(d) Weight. The weight W of a body is the force of 

gravity acting on it towards the centre of the earth. 

Weight is thus a force, not to be confused with mass 
which is independent of the presence or absence of the 
earth. If g is the acceleration of the body towards the 
centre of the earth then we can substitute F (force accel- 

erating the body) = W and a=g in F= ma, hence 

W=mg 

Thus if g=9.8ms~’, a body of mass 1 kg has a weight 

of 9.8 N (roughly 10 N). The mass m of a body is constant 

but its weight mg varies with position on the earth’s 

surface since g varies from place to place.. Weight can 

be measured by a calibrated spring balance. 
Note. To be strictly accurate the value of mg recorded 

by a spring balance is not quite equal to W if W is the 

gravitational attraction on the body directed towards 

the centre of the earth. We will see later that due to 

the rotation of the earth the observed direction of g 

is not exactly towards the earth’s centre and its observed 

value is slightly different from the true value in that 

direction (p. 179). Hence mg does not equal W in magni- 

tude and direction but the differences are extremely 

small. 
If two bodies of masses m, and m, have weights W, 

and W, at the same place then 

W,=m,g and W,=mg 

That is, the weight of a body is proportional to its mass, 
a fact we use when finding the mass of a body by compar- 

ing its weight with that of standard masses on a beam 

balance. 
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(e) Third law. If body A exerts a force on body B, then 
body B exerts an equal but opposite force on body A. 

The law is stating that forces never occur singly but 

always in pairs as a result of the interaction between 

two bodies. For example, when you step forward from 

rest your foot pushes backwards on the earth and the 

earth exerts an equal and opposite force forward on 

you. Two bodies and two forces are involved. The com- 

paratively small force you exert on the large mass of 

the earth produces no noticeable acceleration of the 

earth, but the equal force it exerts on your very much 

smaller mass causes you to accelerate. It is important 

to note that the equal and opposite forces do not act 

on the same body; if they did, there could never be 

any resultant forces and all acceleration would be impos- 

sible. 
If you pull a string attached to a block with a force 

P to the right, Fig. 7.19, the string pulls you with an 

equal force P to the left. Generally we can assume the 
string transmits the force unchanged and so there is 
another pair of equal and opposite forces at the block. 

The string exerts a pull P to the right on the block and 

the block exerts an equal pull to the left on the string— 

one force acts on the block and the other on the string. 

The string is pulled outwards at both ends and is in 

a State of tension. 

Force Force on 
on you = string 

Force Forceon 
onstring block 

—=— oe 

Block 

Fig. 7.19 

Two pairs of forces exist when a book lies at rest 
on a table; draw diagrams to show what they are. 

F = ma calculations 

I. A Saturn V rocket develops an initial thrust of 

3.3 X 10’N and has a lift-off mass of 2.8 x 10°kg. Find 
the initial acceleration of the rocket at lift-off. (Take 
g=10ms-’.) 

Let T be the initial thrust on the rocket, m its mass 

and W its weight, Fig. 7.20. Then 

W = mg =2.8 X 10°kg x 10ms~2 

=2'8 x 10’N 
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i |\; 
if \ 

W=mg 
I[|\\ 

Fig. 7.20 

The resultant upwards force on the rocket is (T — W) 
and if a is the initial vertical acceleration, then from 

F=mawe have 

(T-— W)=ma 

niesa uh 

m 
a 

P3310" 28x 10" oN 
2.8 x 10° kg 

=Wenisto S(NKa>) 

Note. We can apply F= ma here since the rocket is 

instantaneously at rest. In general this is not possible 

because the mass of the rocket changes. 

2. Two blocks A and B are connected as in Fig. 7.21 

on a horizontal frictionless floor and pulled to the right 

with an acceleration of 2.0ms~* by a force P. If m, 

= 50 kg and m, = 10 kg, what are the values of T and P? 

A 

aL 
Be EZ - 

The forces acting on the blocks are shown. Apply 

F=ma to each. 

For B, 

For A, 

Fig. 7.21 

T=ma=10X2=20N 

P—T=ma=50X2=100N 

P=120N 

3. A helicopter of mass M and weight W rises with 

vertical acceleration, a, due to the upward thrust U gener- 
ated by its rotor. The crew and passengers of total mass 

m and total weight w exert a combined force R on the 
floor of the helicopter. Write an equation for the motion 
of (a) the helicopter, (b) the crew and passengers. 

The forces acting on the helicopter are the upwards 

force U due to the action of the rotor on the surrounding 

air, its weight W downwards due to the earth and the 

force R downwards exerted on the floor by the crew 

and passengers, Fig. 7.22a. 

Resultant upwards force on helicopter 

=U—-W-—k 

Hence, by the second law 

U-W-R=Ma (1) 

Crew and passengers 

Fig. 7.22 

The forces acting on the crew and passengers are the 

upwards push of the floor of the helicopter (which by 

the third law must equal the downwards push R of the 

crew and passengers on the floor) and their weight w 

downwards, Fig. 7.225. 

Resultant upwards force on crew and passengers 

=R-w 

Hence, by second law 

R-—w=ma (2) 

The required equations are (1) and (2). 

Momentum 

The momentum of a body was previously defined as 

the mass of the body multiplied by its velocity. If SI 

units are used, Newton’s second law may be written 

force = rate of change of momentum 

In symbols 

mv — mu 
p= 

t 

where F is the force acting on a body of mass m which 
increases its velocity from u to v in time t. Hence 

Ft=mv— mu 

The quantity Ft is called the impulse of the force on 

the body. It is a vector and, like linear momenta, 

impulses in opposite directions must be given positive 



and negative signs. In words, the impulse-momentum 
equation is 

impulse = change of momentum 

The equation shows that impulse and momentum have 
the same units, i.e. Nsorkgms"!. 

These ideas are important in games. The good crick- 
eter or tennis player ‘follows through’ with the bat or 

racquet when striking the ball. The force applied then 

acts for a longer time, the impulse is greater and so 

also is the change of momentum (and velocity) of the 

ball. On the other hand when a cricket ball is caught 

its momentum is reduced to zero. This is achieved by 

an impulse in the form of an opposing force acting for 

a certain time and whilst any number of combinations 

of force and time will give a particular impulse, the 

‘sting’ can be removed from the catch by drawing back 

the hands as the ball is caught. A smaller force is thus 

applied for a longer time. 

In collisions of this and other types, the force is not 
constant but builds up to a maximum value as the defor- 

mation of the colliding bodies increases. It does, how- 

ever, have an average value. 

Conservation of momentum 

(a) Principle. Suppose a body A of mass m, and vel- 
ocity u, collides with another body B of mass m, and 

velocity uw, moving in the same direction, Fig. 7.23a. 

If A exerts a force F to the right on B for time ¢ then 

by Newton’s third law, B will exert an equal but opposite 

force F on A, also for time f¢ (since the time of contact 

is the same for each) but to the /eft. 

A B A B 

eS poco Der ool oe 

Before collision After collision 

(a) (b) 
Fig. 7.23 

The bodies thus receive equal but opposite impulses 

Ft and so it follows from the impulse-momentum equa- 

tion that the changes of momentum must be equal and 

opposite. The total momentum change of A and B is 

therefore zero, or in other words the total momentum 

of A and B together remains constant despite the colli- 

sion. Thus if A has a reduced velocity v, after the colli- 

sion and B has an increased velocity v2, both in the 

same direction as before, Fig. 7.23b, then 

my, = MU, = MV, Se MM V2 
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This important result, known as the principle of con- 

servation of momentum, has been deduced from New- 
ton’s second and third laws and is a universal rule of 

the physical world which still holds even in certain 

extreme (relativistic) conditions where Newton’s laws 

fail. It applies not only to collisions but to any interaction 
between two or more bodies. Thus in an explosion such 

as occurs when a gun is fired, the backward momentum 

component of the gun in a horizontal direction equals 
the component of the forward momentum of the shell 

and propellant gases so that the total momentum of the 

gun-shell system remains zero even though the momen- 

tum of each part changes. 

No external agent must act on the interacting bodies 

otherwise momentum may be added to the system. 

Sometimes momentum does appear to be gained (or 

lost). For example a body falling towards the earth 
increases its downwards momentum but the body is 

interacting with the earth (the external agent) which 

gains an equal amount of upward momentum from the 

attraction of the body on the earth. The complete system 

consists of the body and the earth and their total momen- 
tum remains constant. Similarly when a car comes to 

rest we believe that all the momentum it loses is trans- 
ferred by the action of friction to the earth, although 
we cannot easily prove this. 

The general statement of the principle is as follows. 

When bodies in a system interact the total momentum 

remains constant provided no external force acts on the 

system. 

(b) Experimental test. The principle can be investi- 
gated experimentally using a linear air track (which 

enables Perspex vehicles to move with negligible fric- 

tion) and multiflash photography or electric stop-clocks 
to measure velocities. Fig. 7.24a shows an air track (sup- 

plied with air by a domestic vacuum cleaner) and two 

vehicles with drinking straws attached so that a multi- 

fiash photograph can be taken using a xenon strobos- 

cope which flashes at regular intervals. 
In Fig. 7.245 a collision is shown between a vehicle 

of mass ‘two’ moving in from the left and one of mass 

‘three’ from the right; the top markers give the velocities 

before the collision and the bottom ones after, when 

the vehicles have ‘rebounded’ and are moving in oppo- 
site directions. (In Fig. 7.24a the hinged shutter is shown 

in the up position revealing to the camera the bottom 

half of one straw. At the exact instant of collision the 

shutter is rotated from one position to the other so that 

only one half of each straw is visible at any time. The 

velocities before and after the collision are thus 

obtained. ) 
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Fig. 7.24 

Make measurements on Fig. 7.245 to see if momen- V is found from the time taken by a card (say 10cm 

tum is conserved in this collision. In any attempt to long) attached to the truck to pass through a beam of 

verify the principle of conservation of momentum fric- light which switches on a millisecond scaler (or electric 

tion must be negligibly small. Why? stop-clock) when interrupted. 

A check may be made on v and so also on the principle 

of conservation of momentum, by timing the pellet di- 

rectly using the scaler and two aluminium foil ‘circuit- 

breakers’ 1 metre apart, Fig. 7.25b. 

(c) Speed of an air-rifle pellet. An estimate is made 

by firing the pellet of mass m and speed v into Plasticine 

on a model railway truck of total mass M on a friction- 
compensated runway, Fig. 7.254, and measuring the 

speed V of the truck. Assuming conservation of momen- 

tu e have ae Rocket and jet propulsion 
momentum of pellet to the right before collision 

= momentum of pellet and truck to the The principle of both is illustrated by the behaviour 
right after collision of an inflated balloon when released with its neck open. 

If the neck is closed there is a state of balance inside 
mv =(M+m)V the balloon with equal pressure at all points, Fig. 7.26a. 

Plasticine 

Thin aluminium foil 

Plasticine on 
truck 

Air rifle é : 
i Spring P} Circuit 

breaker 

Friction compensated (a) Circuit breakers 
run , , unway 

To Make to count 
’ sockets 

Fig. 7.25 (b) 



(a) (b) 

Fig. 7.26 

When the neck is opened the pressure on the surface 

opposite the neck is now unbalanced and the balloon 

is forced to move in the opposite direction to that of 

the escaping air, Fig. 7.26b. According to the principle 

of conservation of momentum the air and the balloon 

have equal but opposite amounts of momentum, that 
is 

Mair X Vair = Mpalioon * Voalloon 

Ina rocket and a jet engine a stream of gas is produced 

at very high temperature and pressure and then escapes 

at high velocity through an exhaust nozzle. The thrust 

arises from the large increases in momentum of the 

exhaust gases. A rocket carries its own supplies of oxy- 

gen (liquid) and fuel (e.g. kerosene or liquid hydrogen), 
Fig. 7.27a. The mass of a rocket is not constant but 

decreases appreciably as it uses fuel (often at a rate 

of over 3000kgs~'). The acceleration consequently 
increases. A jet engine uses the surrounding air for its 
oxygen supply and so is unsuitable for space travel. Fig. 

7.27b is a simplified drawing of one type of jet engine 

(gas turbine). The compressor draws in air at the front, 

compresses it, fuel (often paraffin) is injected and the 

mixture burns to produce hot exhaust gases which 
escape at high speed from the rear of the engine. These 

cause forward propulsion and drive the turbine which 

in turn rotates the compressor. 

Liquid oxygen 

Combustion 
chamber 

Fig. 7.27 
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Momentum calculations 

The concepts of impulse and momentum are useful 
when considering collisions and explosions, i.e. situ- 

ations in which forces (called impulsive forces) act for 
a short time. 

1. A jet of water emerges from a hose pipe of cross- 

section area 5.0 x 10-3 m?* with a velocity of 3.0ms"! 
and strikes a wall at right angles. Calculate the force on 

the wall assuming the water is brought to rest and does 

not rebound. (Density of water = 1.0 x 10°kgm~?.) 

If the water arrives with a velocity of 3.0ms7!, 3.0m? 
hits every square metre of the wall per second. 

Hence volume of water striking wall per second 

= (3.0ms7!)(5.0 x 1077 m’) 

=15x10?ms_— 

Therefore mass of water striking wall per second 

=1.5 10-7 x1.0 x 10°’ kgs“! 

=15kgs"! 

Velocity change of water on striking wall 

=3.0-0=3.0ms"! 

Therefore momentum change per second of water on 

striking wall 

= (15kgs~')(3.0ms~') 

=45kgms~ 

But force = momentum change per second 

=45N 

(In practice the horizontal momentum of the water is 

seldom completely destroyed and so the answer is only 

approximate. ) 

Turbine 
Combustion 

Compressor chamber 

(b) 
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2. A railway truck A of mass 2 x 10*kg travelling at 

0.5ms~! collides with another truck B of half its mass 
moving in the opposite direction with a velocity of 
0.4ms7!. If the trucks couple automatically on collision, 

find the common velocity with which they move, Fig. 

7.28. 

O05ms! 04ms" 
—= = —_v 

ey eer elses, 
2x10* kg —-_ 1x10* kg 3x10* kg 

Before After 

Fig. 7.28 

Total momentum to the right of A and B before collision 

=2x 10 x05—1x 10*x04kems=t 

=0.6 x 10¢kgms7! 

(If the momentum of A is taken as positive, that of 

B must be negative.) 

Total momentum fo the right of A and B after collision 

=3 x 10 <ykenrs=* 

By the principle of a conservation of momentum 

3 x 104 x v=0.6 x 104 

=O mise- 

3. A jet engine on a test bed takes in 20.0kg of air 

per second at a velocity of 100ms7' and burns 0.80kg 

of fuel per second. After compression and heating the 

exhaust gases are ejected at 500ms_! relative to the air- 

craft. Calculate the thrust of the engine. 

Velocity change of 20 kg of air 

= (500 — 100) = 400 ms"! 

Momentum change per second of 20 kg of air 

=20kss_ x 400ms~ 

The initial velocity of the fuel is zero and so its velocity 

change is 500ms7!. 

Momentum change per second of 0.80 kg of fuel 

=0.80kgs"! x 500ms"! 

Total momentum change per second of air and fuel 

= (20 x 400 + 0.80 x 500) kgms~? 

=8.4x 10?kgms* 

But 
force (thrust) = total change of momentum per second 

thrust of engine = 8.40 x 10°N 
(1kgms~-*=1N) 

Note. If the engine is in an aircraft flying at 100ms"', 

taking in air at this speed, the thrust would be about 

the same. 

Work, energy and power 

(a) Work. In science the term ‘work’ has a definite 

meaning which differs from its everyday one. For exam- 

ple, someone holding a heavy weight at rest may say 

and feel he is doing hard work but in fact none is being 

done on the weight in the scientific sense. 

Work is done when a force moves its point of applica- 

tion along the direction of its line of action. 

In the simple case of Fig. 7.29a, the constant force 

F and the displacement s are in the same direction and 

we define the work W done by the force on the body 

by 
W = Fs 

F F 
A Ao 

o_o o> 

F F 
—_— 

s Fcos @ Fcos@ 

S 

(a) (b) 

Fig. 7.29 

If the force does not act in the direction in which 

motion occurs but at an angle 6 to it as in Fig. 7.29b, 
then the work done is defined as the product of the 

component of the force in the direction of motion and 

the displacement in that direction. That is, 

W = (Fcos @)s 

When 6= 0, cos = 1 and so W = Fs, in agreement with 

the first equation. When @= 90°, cos @=0 and F has 

no component in the direction of motion and so no work 

is done. Thus the work done by the force of gravity 
when a body is moved horizontally is zero. 

If the force varies, the work done can be obtained 
from a force—displacement graph in which the compo- 

nent of the force in the direction of the displacement 

is plotted, Fig. 7.30. Suppose the force is F when the 

displacement is x, then the work done during a further, 
very small displacement 5x (which is so small that F 
can be considered constant during it) is F8x, i.e. the 



Force 

Displacement 

Fig. 7.30 

shaded area. By dividing up the whole area under the 
curve into narrow strips we see that the total work done 

during displacement s is represented by area OABC. 

Work can be either positive or negative. It is positive 

if the force (or a component of it) acts in the same 

direction as the displacement (Figs 7.29a and b), but 

negative if it is oppositely directed (@ is then >90° and 

cos @ is negative). The work done by friction when it 
opposes one body sliding over another is negative. 

The unit of work is / joule and is the work done by 

a force of 1 newton when its point of application moves 

through a distance of I metre in the direction of the force. 
Thus 

1 joule (J) = 1 newton metre (N m) 

Work is a scalar although force and displacement are 

both vectors. 

(b) Energy. When a body A does work by exerting 

a force on another body B, the body A is said to lose 

energy, equal in amount to the work it performs. Energy 

is therefore often defined as that which enables a body 

to do work; it is measured in joules, like work. When 

an interchange of energy occurs between two bodies 

we can look upon the work done as measuring the quan- 

tity of energy transferred between them. Thus if body 

A does 5 joules of work on body B then the energy 

transfer from A to B is 5 joules. 

(c) Power. The power of a machine is the rate at which 

it does work, i.e. the rate at which it converts energy 
from one form to another. The unit of power is the 

watt (W) and equals a rate of working of 1 joule per 

second, i.e. 1W=1Js"!. 
The two basic reasons for bodies having mechanical 

energy will now be considered. 

Kinetic and potential energy 

(a) Kinetic energy. This is the energy a body has 
because of its motion. For example a moving hammer 

does work against the resistance of the wood into which 
a nail is being driven. An expression for kinetic energy 
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can be obtained by calculating the amount of work the 

body will do while it is being brought to rest. 

ee At rest 

fe fa . [is 

Fig. 7.31 

Consider a body of constant mass m moving with vel- 

ocity u. Let a constant force F act on it and bring it 

to rest in a distance s, Fig. 7.31. Since the final velocity 
v is zero, from v? = u? + 2as we have 

0=u? + 2as 

me 
= — 

2s 

The negative sign shows that the acceleration a is oppo- 

site in direction to u (as we would expect). The accel- 

eration in the direction of F is thus +u*/2s. The original 
kinetic energy of the body equals the work W it does 
against F, hence 

kinetic energy of body = W= Fs 

=mas (since F= ma) 

i 2 

71S since a = — 

= dmu? 

So the kinetic energy of a body of mass m moving with 

speed u is 4mu*. Conversely, if work is done on a body 

the gain of kinetic energy when its velocity increases 
from zero to u can be shown to be mu’. 

In general, if the velocity of a body of mass m 

increases from u to v when work is done on it by a 
force F acting over a distance s, then 

Fs = 4mv? — mu? 

This is called the work—energy equation and may be 

stated 

work done by the forces _ change in kinetic energy 

acting on the body _ of the body 

(b) Potential energy. This is the energy a system of 

bodies has because of the relative positions of its parts, 
i.e. due to its configuration. It arises when a body experi- 

ences a force in a field such as the earth’s gravitational 

field. In that case the body occupies a position with 

respect to the earth and the potential energy is regarded 
as a joint property of the body-earth system and not 
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of either body separately. The relative positions of the 

parts of the system, i.e. of the body and earth, determine 

its potential energy; the greater the separation the 

greater the potential energy. 

Normally we are only concerned with differences of 

potential energy. In the gravitational case it is conve- 

nient to consider that the potential energy is zero when 

the body is at the surface of the earth. The potential 

energy when a body of mass m is at height h above 

ground level equals the work which must be done against 

the downward pull of gravity to raise the body to this 
height. A force, equal and opposite to mg, has to be 
exerted on the body over displacement h (assuming g 

is constant near the earth’s surface). Therefore 

work done by external force against gravity 

= force X displacement 

=megh 

potential energy = mgh 

On returning to ground level an amount of potential 
energy equal to mgh would be lost. A good example 

of this occurs when the water in a mountain reservoir 
falls to a lower level and does work by driving a power 

station turbine. 
A stretched or compressed spring is also considered 

to have potential energy. 

Conservation of energy 

If a body of mass m is thrown vertically upwards with 
velocity u at A, it has to do work against the constant 

force of gravity, Fig. 7.32. When it has risen to B let 

its reduced velocity be v. By the definition of kinetic 

energy (k.e.), 

loss of k.e. between A and B 

= work done by body against mg 

By the definition of potential energy (p.e.), 

gain of p.e. between A and B 

= work done by body against mg 

loss of k.e. = gain of p.e. aie 

smu? — 4mv? = mgh 
ney 

m h g 

Uu 

mie 

Fig. 7.32 mg 

This is called the principle of conservation of mechanical 

energy and may be stated as follows. 

The total amount of mechanical energy (k.e. + p.e.) 

which the bodies in an isolated system possess ts constant. 

It applies only to frictionless motion, i.e. to conserva- 

tive systems. Otherwise in the case of a rising body, 

work has to be done against friction as well as against 
gravity and the body gains less p.e. than when friction 

is absent. Furthermore, the gain of p.e. would depend 
on the path taken; it does not in a conservative system. 

Work done against frictional forces is generally 

accompanied by a temperature rise. This suggests that 

we might include in our energy accountancy what we 

have called internal energy. This would then extend the 

energy conservation principle to non-conservative sys- 

tems and we can then say, for example, 

loss of k.e. = gain of p.e. + gain of internal energy 

The mechanics of a body seen to be in motion has 

thus been related to a phenomenon which is apparently 

not mechanical and in which motion is not directly 

detected. (However, we believe that internal energy is 

random molecular kinetic and potential energy, see p. 

76.) In a similar way, the idea of energy has been 

extended to other areas of physics and is now a unifying 

theme. In fact, physics is sometimes said to be the study 

of energy transformations, measured in terms of the 

work done by the forces created in the transformation. 

The principle of conservation of mechanical energy 

is a special case of the more general principle of conser- 

vation of energy—one of the fundamental laws of 
science. 

Energy may be transformed from one form to another, 

but it cannot be created or destroyed, i.e. the total energy 
of a system is constant. 

Energy uses and the background to energy supply 

and demand are considered in chapter 10. 

Energy calculations 

The work-energy equation Fs = 3mv? — mu? is useful 
for solving problems when the distance over which a 
force acts is known. 

1. A car of mass 1.0 X 10°kg travelling at 72kmh~ 
on a horizontal road is brought to rest in a distance of 
40m by the action of the brakes and frictional forces. 
Find (a) the average stopping force, (b) the time taken 
to stop the car. 

A speed of 72 km h7! = 72 x 103 m/3600s = 20ms7! 



(a) If the car has mass m and initial speed u, then 

kinetic energy lost by car = $mu? 

If F is the average stopping force and s the distance 
over which it acts, then 

work done by car against F = Fs 

But Fs = 3mw 

Fx 40m=3xX (1.0 x 10°kg) x (20ms~!)? 

_—1.0x10°x 400 kgm*s~ 

2 x 40 m 

=5.0x 10°N 

(b) Assuming constant acceleration and substituting 
v=0,u=20ms"!ands = 40m in v? = uw? + 2as we have 

0 = 20° + 2a x 40 

a=—5.0ms"! 

(the negative sign indicates the acceleration is in the 

opposite direction to the displacement). 

Using v=u+at 

0=20—5.0t 

f= 40's 

2. A bullet of mass 10g travelling horizontally at a 

speed of 1.0 x 107 ms~! embeds itself in a block of wood 
of mass 9.9 x 10? g suspended by strings so that it can 

swing freely. Find (a) the vertical height through which 

the block rises, (b) how much of the bullet’s energy 
> 

becomes internal energy. (g = 10ms ~~) 

(a) The bullet is brought to rest very quickly due to 

the resistance offered by the block and we shall assume 

that the block (with the bullet embedded) hardly moves 

until the bullet is at rest. Momentum is conserved in 

the collision and so 

mu=(M+m)v 

where m and M are the masses of the bullet and block 

respectively, wu is the velocity of the bullet before impact 

and v is the velocity of the block + bullet as they move 

off. 

10 X 10-2kg x 1.0 x 10?ms7! 
= (990 + 10) x 10-7kg Xv 

v=1.0ms"! 

When the block has swung to its maximum height h, 
all its kinetic energy has become potential energy—if 

frictional forces are neglected. Conservation of energy 

therefore holds and we can say 
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3(M + m)v? = (M + m)gh 

sorte 
2g 

Wea Bui 3 el emg mes" 

2x10ms-2 2x10 ms~ 

h=5.0X 107-2m 

(b) Original kinetic energy of bullet = smu? 

= 3X (10 x 10-3 kg) x (1.0 x 10? ms~!)? 

=}x 10x 107? x 1.0 x 10*kg m?s~? 

= 50J 

Kinetic energy of block + bullet after impact 

=3(M + m)v* 

= 3(1000 x 10-7 kg)(1 ms~!)? 

= 0.50J 

Therefore 

internal energy produced = loss of kinetic energy 

= 50 — 0.50 

= 49.5J 

Elastic and inelastic collisions 

Whilst momentum is always conserved in a collision, 

there is generally a change of some kinetic energy, 

usually to internal energy or to a very small extent to 

sound energy. Collisions in which a loss of kinetic energy 

occurs (see previous worked example) are said to be 

inelastic. In a perfectly elastic collision, kinetic energy 
is conserved. 

The linear air track (or trolleys and ticker-tape timers) 

can be used to investigate what happens to kinetic 

energy, as well as to momentum, in different collisions. 

Nearly perfect elastic collisions are obtained if a rubber 

band is fitted to the front of one vehicle and the other 

vehicle has a pointed end, Fig. 7.33a. By contrast, com- 

pletely inelastic (i.e. no-bounce) collisions occur if a 
needle is fitted to one vehicle and Plasticine inserted 

in a hole (in line with the needle) in the other, Fig. 
7.33b, By making measurements on Fig. 7.24b (p. 156) 

find the total kinetic energy before and after the collision 
and say what kind of collision has occurred. 

The head-on collisions of air-track vehicles are one- 

dimensional. An oblique, two-dimensional collision 
between a moving, magnetic, ‘dry-ice’ puck and a 

Stationary one of equal mass is shown in Fig. 7.34a. 
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Fig. 7.33 

Make measurements to see if momentum is conserved 

(remember that momentum is a vector quantity and is 
added by the parallelogram law). Compare the kinetic 

energy before and after the collision and comment on 
the result. What is the angle between the directions of 

motion of the pucks after the collision? 
Collisions between atoms and other atomic particles 

were first studied in a cloud chamber; many such colli- 

sions are elastic. Fig. 7.34b shows a cloud-chamber 
photograph of an alpha particle colliding with a helium 

nucleus. Compare this with Fig. 7.34a and, assuming 

atomic particles and magnetic pucks behave similarly, 

comment on (i) the mass of an alpha particle compared 

Fig. 7.34 

with that of a helium nucleus, (ii) the type of collision 

which has occurred. 

Electrons can have elastic or inelastic collisions with 

the atoms of a gas and the latter give information about 

the electronic structure of atoms. 

QUESTIONS 

Assume g = 10ms~?. 

Statics 

1. Distinguish between scalar and vector quantities, giving two 

examples of each. How may the resultant of a number of vector 

quantities be obtained? Why are vector quantities frequently 

resolved into rectangular components? 

It is possible for the product of two vector quantities to be 

a scalar. Give an example of two such quantities. 

Show how, by considering the sail to be a flat plane and 

by resolving the thrust on the sail due to the wind into compo- 



nents, it is possible to explain how a yacht may make progress 

upwind. Why is it an advantage for a yacht to have a large 

and heavy keel? (Hint: see p. 239) (A:E.B.) 

2. State the conditions of equilibrium of a body acted on by 

a system of coplanar forces. 

An aerial attached to the top of a radio mast 20 m high exerts 
a horizontal force on it of 3.0 x 10?N. A stay-wire from the 

mid-point of the mast to the ground is inclined at 60° to the 

horizontal. Assuming the action of the ground on the mast 

can be regarded as a single force, find (a) the force exerted 

on the mast by the stay-wire, (b) the magnitude and direction 

of the action of the ground. 

3. A uniform ladder 5.0m long and having mass 40 kg rests 

with its upper end against a smooth vertical wall and with its 

lower end 3.0 m from the wall on rough ground. Find the magni- 

tude and direction of the force exerted at the bottom of the 
ladder. 

4. Find the forces in the members of a pin-jointed structure 

shown in Fig. 7.35. State whether each force is tensile or com- 

pressive. Given that the maximum safe stress for the material 

used in each member is 8 X 107Nm_~’, for the member with 

the highest load calculate the minimum cross-sectional area. 

(J.M.B. Eng. Sc.) 

10° N 

Fig. 7.35 

Dynamics 

5. A dart player stands 3.00m from the wall on which the 

board hangs and throws a dart which leaves his hand with 

a horizontal velocity at a point 1.80m above the ground. The 

dart strikes the board at a point 1.50m from the ground. 

Assuming air resistance to be negligible, calculate (7) the time 

of the flight of the dart, (ii) the initial speed of the dart and 

(iii) the speed of the dart when it hits the board. 
(A.E.B. part qn.) 

6. A projectile is fired from ground level with a velocity of 

500ms~! at 30° to the horizontal. Calculate its horizontal 

range, the greatest height it reaches and the time taken to 

rise to that height. (Neglect air resistance.) 

7. A body slides, with constant velocity, down a plane inclined 

at 30° with the horizontal. Show in a diagram the forces acting 
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on the body, and find the coefficient of kinetic friction between 

the body and the plane. 

If the plane were now tilted so as to make an angle of 60° 

with the horizontal, with what acceleration would the body 

slide down the plane? What force, applied parallel to this plane, 

would be required to cause the body to move up the plane 

with a constant velocity? (W.) 

8. An object of mass m rests on the floor of a lift which is 

ascending with acceleration a. Draw a diagram to show the 

external forces acting on the object, and write down its equa- 

tion of motion. How do these forces arise? Show graphically 

how their magnitudes vary with the acceleration of the lift. 

What force constitutes the second member of the action— 

reaction pair in the case of each of these external forces? 

9. Five identical cubes, each of mass m, lie in a straight line, 

with their adjacent faces in contact, on a horizontal surface, 

as shown in Fig. 7.36. 

sacra 66s] G0] 
Fig. 7.36 

Suppose the surface is frictionless and that a constant force 

P is applied from left to right to the end face of A. 

What is the acceleration of the system and what is the resul- 

tant force acting on each cube? What force does cube C exert 

on cube D? 

If friction is present between the cubes and the surface, draw 

a graph to illustrate how the total frictional force varies as 

P increases uniformly from zero. (W.) 

10. State Newton’s second law of motion. 

A stream of water travelling horizontally at 30ms~° is 

ejected from a hole of cross-sectional area 40cm? and is di- 

rected against a vertical wall. Calculate the force exerted on 

the wall assuming that the water does not rebound. 

What is the power of the pump needed to give the ejected 

water the necessary kinetic energy? 

(Density of water = 1.0gcm~? = 1.0 x 10°kgm~*) 

1 

(J.M.B.) 

11. Sketch a graph of the relationship between the kinetic 

energy E (plotted on the vertical axis) and the distance travelled 

x (plotted on the horizontal axis) for a body of mass m sliding 

from rest with negligible friction down a uniform slope which 

makes an angle of 30° with the horizontal. What is the gradient 

of the graph equal to? (S.) 

12. Define linear momentum and state the principle of conser- 

vation of linear momentum. Explain briefly how you would 

attempt to verify this principle by experiment. 

Sand is deposited at a uniform rate of 20 kilograms per 

second and with negligible kinetic energy on to an empty con- 

veyor belt moving horizontally at a constant speed of 10 metres 

per minute. Find (a) the force required to maintain constant 
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velocity, (b) the power required to maintain constant velocity 

and (c) the rate of change of kinetic energy of the moving 

sand. Why are the latter two quantities unequal? (O.andC.) 

13. Write down an expression for the kinetic energy of a body. 

(a) A car of mass 1.00 x 10°kg travelling at 20ms~! on a 
horizontal road is brought to rest by the action of its brakes 

in a distance of 25 m. Find the average retarding force. 

(b) If the same car travels up an incline of 1 in 20 at a 
constant speed of 20 ms~', what power does the engine develop 

if the frictional resistance is 100 N? 

14. State the principle of conservation of linear momentum 

and show how it follows from Newton’s laws of motion. 

A stationary radioactive nucleus of mass 210 units disinte- 

grates into an alpha particle of mass 4 units and a residual 

nucleus of mass 206 units. If the kinetic energy of the alpha 

particle is E, calculate the kinetic energy of the residual nuc- 

leus. (J.M.B.) 

15. A multiflash photograph of a moving puck colliding with 

a stationary one of equal mass is represented in Fig. 7.37. 

Make measurements which will enable you to say, either 

by a scale drawing or by calculation, if (a) momentum, (b) 

kinetic energy, is conserved. 

See also Volume II, chapter 25, question 10. 

+e ee © ef 

Fig. 7.37 

16. What is the vertical upward force acting on the axle of the 

fixed, smooth, weightless pulley in Fig. 7.38 when the masses 

move under gravity? 

Axle 

1.0kg 3.0kg 

Fig. 7.38 

17. What is the average force exerted on a vertical steel wall 

by steel ball bearings, each of mass m, fired:at the rate of n per 

second with a horizontal velocity u, assuming they rebound 

with the same speed? 

18. A ball P moving with velocity v on a smooth horizontal 

surface has a head-on, perfectly elastic collision with another 

ball Q of the same mass which is at rest. What happens in this 

collision to (a) kinetic energy, (b) linear momentum and (c) 

the velocities of P and O? 

19. A gas atom of mass m moving with a uniform speed v 

makes an elastic collision with the wall of the container as 

shown in Fig. 7.39. What is the magnitude of the change in the 

momentum of the gas atom? 

C mv cos 6 

E 2mv cos 6 

A 2mv B mv sin 6 

D 2my sin 0 

(H.K.A.L.E., 1991) 

Fig. 7.39 



8 Circular motion and gravitation 
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Motion in a circle 

In everyday life, in atomic physics and in astronomy 

and space travel there are many examples of bodies 

moving in paths which if not exactly circular are nearly 

so. In this chapter we will see how ideas developed for 

dealing with straight-line motion enable us to tackle cir- 
cular motion. 

A body which travels equal distances in equal times 
along a circular path has constant speed but not constant 

velocity. This is due to the way we have defined speed 

and velocity; speed is a scalar quantity, velocity is a 

vector quantity. Fig. 8.1 shows a ball attached to a string 

being whirled round in a horizontal circle. The velocity 

of the ball at P is directed along the tangent at P; when 

it reaches Q its velocity is directed along the tangent 

at Q. If the speed is constant the magnitudes of the 
velocities at P and Q are the same but their directions 
are different and so the velocity of the ball has changed. 

A change of velocity is an acceleration and a body mov- 

ing uniformly in a circular path or arc is therefore accel- 

erating. 

Ball oa 

/ String 
a 

Fig. 8.1 

In everyday language acceleration usually means 

going faster and faster, i.e. involves a change of speed. 
However, in physics it means a change of velocity and 

since the velocity changes not only when the speed 

changes, but also when the direction of motion changes, 

Gravity and the moon 
Law of universal gravitation 
Testing gravitation 
Masses of the sun and planets 
Newton’s work 

Earth’s gravitational field 
Acceleration due to gravity 
Artificial satellites 
Weightlessness 
Speed of escape 

then, for example, a car rounding a bend (even at con- 
stant speed) is accelerating. 

Two useful expressions 

We will use these from time to time when dealing with 
circular motion. 

(a) Angles in radians: s = ré. Angles can be measured 
in radians as well as degrees. In Fig. 8.2 the angle 6, 

in radians, is defined by the equation 

S 
@=— 

<i, 
Ss 

Fig. 8.2 

If s=r then 6=1 radian (rad). Therefore 1 radian is 

the angle subtended at the centre of a circle by an arc 

equal in length to the radius. When s = 2zr (the circ- 
umference of a circle of radius r) then 0=27 

radians = 360°. 

1 radian = 360°/27a ~ 57° 

From the definition of a radian it follows that the 

length s of an arc which subtends an angle @ at the centre 
of a circle of radius r, is given by 

s=rd 

where @is in radians. 

165 
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(b) Angular velocity: v=rew. The speed of a body 

moving in a circle can be specified either by its speed 

along the tangent at any instant, i.e. by its linear speed, 

or by its angular velocity. This is the angle swept out in 

unit time by the radius joining the body to the centre of 

the circle. It is measured in radians per second (rad s~'). 

We can derive an expression connecting angular vel- 

ocity and linear speed. Consider a body moving 

uniformly from A to B in time fso that radius OA rotates 

through an angle @, Fig. 8.2. The angular velocity w 

of the body about O is 

If arc AB has length s and if v is the constant speed 

of the body then 

But from (a), s = r@ where r is the radius of the circle, 

r@ 
vyr— 

t 

But w= 6/t, “ V=ro 

If r=3m and w= 1 revolution per second = 27 rad s~! 

then the linear speed v = 67 ms_!. 

Deriving a = v?/r 

To obtain an expression for the acceleration of a small 

body (i.e. a particle) describing circular motion, con- 

sider such a body moving with constant speed v in a 

circle of radius r, Fig. 8.3a. If it travels from A to B 

in a short interval of time 8¢ then, since distance = 
speed X time, 

rsd=vodt 

aie (1) 
ig 

The vectors v, and vg drawn tangentially at A and 

B represent the velocities at these points. The change 

of velocity between A and B is obtained by subtracting 

v, from vg. That is 

change of velocity = vg — Va 

But Vp — Va = Vp + (—Va) 

Hence, to subtract vector v, from vector vg we add 

vectors Vp and (—v,) by the parallelogram law. 

In Fig. 8.35, XY represents vg in magnitude (v) and 

direction (BD); YZ represents (—v,) in magnitude (v) 

and direction (CA). The resultant, which gives the 

change of velocity, is then seen from the figure to be, 

in effect, vector XZ. 

Since one vector (—v,) is perpendicular to OA and 

the other (vg) is perpendicular to OB, ZXYZ= 

ZLAOB = 86. If 8¢ is very small, 56 will also be small 

and XZ in Fig. 8.3b will have almost the same length 

as arc XZ in Fig. 8.3c which subtends angle 8@ at the 

centre of a circle of radius v. Arc XZ = v 86 (from defi- 

nition of radian) and so 

XZ = VOe 

Ot 
But from (1) 36=-— ; 

SOF eae 

The magnitude of the acceleration a between A and 
Bis 

change of velocity XZ 
a= a 

arc AB=vé8r time interval ot 

Also, by the definition of an angle in radians oF 

arcAB=r86 (86=Z AOB) oe 

ra Vas 

ae N Av.) 
Fe ya: Z Y 
ete 7 

7a wy, Y 

Vv 

Xx 

x 

(b) (c) 
Fig. 8.3 
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If w is the angular velocity of the body, v=rw and 
we can also write 

a=wr 

The direction of the acceleration is towards the centre 

O of the circle as can be seen if 8¢ is made so small 

that A and B all but coincide; vector XZ is then perpen- 
dicular to v, (or Vg), i.e. along AO (or BO). We say 

the body has a centripetal acceleration (i.e. centre-seek- 

ing). 

Does a body moving uniformly in a circle have con- 

stant acceleration? (Remember that acceleration is a 

vector.) 

Centripetal force 

Since a body moving in a circle (or a circular arc) is 

accelerating, it follows from Newton’s first law of motion 

that there must be a force acting on it to cause the accel- 

eration. This force, like the acceleration, will also be 

directed towards the centre and is called the centripetal 

force. It causes the body to deviate from the straight-line 

motion which it would naturally follow if the force were 

absent. The value F of the centripetal force is given 

by Newton’s second law, that is 

my2 
F=ma=— 5 

where ™m is the mass of the body and » is its speed in 

the circular path of radius r. If the angular velocity of 

the body is w we can also say, since v = ra, 

J 

F=mw‘r 

When a ball attached to a string is swung round in 

a horizontal circle, the centripetal force which keeps 

it in a circular orbit arises from the tension in the string. 

Variable low voltage unit 

Laboratory motor 

Reduction gear 

Belt drive 

Fig. 8.5 

We can think of the tension as tugging continually on 
the body and ‘turning it in’ so that it remains at a fixed 
distance from the centre. If the ball is swung round fas- 

ter, a larger force is needed and if this is greater than 

the tension the string can bear, the string breaks and 

the ball continues to travel along a tangent to the circle 

at the point of breaking, Fig. 8.4. 

Ball 
Tension in string tugging. 
ball into a circular path 

String breaks 

Ball flying off 
—>— —-e along tangent 

Fig. 8.4 

Other examples of circular motion will be discussed 

presently but in all cases it is important to appreciate 

that the forces acting on the body must provide a resul- 
tant force of magnitude mv?/r towards the centre. What 

is the nature of the centripetal force for (a) a car round- 

ing a bend, (6) a space capsule circling the earth? 
One arrangement for testing F = mv’/r experimen- 

tally is shown in Fig. 8.5. The turntable, driven by the 

electric motor, is gradually speeded up and the spring 

extends until the truck just reaches the stop at the end 

of the track. The speed v of the truck in orbit is found 

by measuring the time for one revolution of the turn- 

table and then, with the turntable at rest, the radius 

r of the circle described by the truck (i.e. the distance 

from the centre of the turntable to the centre of the 

truck). Knowing the mass m of the truck, mv?/r can 
be calculated. 

The tension in the stretched spring is the centripetal 

Truck attachment 

urntable 
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force and this can be found by measuring, with a spring 

balance, the tension required to extend the spring by 

the same amount as it is when the truck is at the end 

stop, Fig. 8.6. The value obtained should agree with 

the value of mv2/r to within a few per cent. 

The mass of the truck can be altered by loading it 

with lead plates and the experiment repeated for each 

mass. 

Spring balance 

(0-10 N) 

Truck 
attachment 

Turntable 

Fig. 8.6 

Rounding a bend 

If a car is travelling round a circular bend with uniform 

speed on a horizontal road, the resultant force acting 

on it must be directed to the centre of its circular path, 
i.e. it must be the centripetal force. This force arises 

from the interaction of the car with the air and the 

ground. The direction of the force exerted by the air 

on the car will be more or less opposite to the instan- 

taneous direction of motion. The other and more impor- 

tant horizontal force is the frictional force exerted 

inwards by the ground on the tyres of the car, Fig. 8.7. 

The resultant of these two forces is the centripetal force. 

Air. 
resistance 

eS 
ya Ss 

y Friction \ 
Resultant=centripetal force 

Pee 

— 

Centre of circular path 

Fig. 8.7 

The successful negotiation of a bend on a flat road 

therefore depends on the tyres and the road surface 

being in a condition that enables them to provide a suffi- 

ciently high frictional force—otherwise skidding occurs. 

Safe cornering that does not rely on friction is achieved 

by ‘banking’ the road. 

via 

js Bend of radius 
& 

\ Plan view 
\ 

Side view 

(a) (b) 

Fig. 8.8 

The problem is to find the angle @ at which a bend 

should be banked so that the centripetal force acting 

on the car arises entirely from a component of the nor- 

mal force N of the road, Fig. 8.8a. Treating the car 

as a particle and resolving N vertically and horizontally 

we have, since N sin @ is the centripetal force, 

ane 
N sin 6 =—— . 

where m and v are the mass and speed respectively of 

the car and r is the radius of the bend, Fig. 8.85. Also, 

the car is assumed to remain in the same horizontal 

plane and so has no vertical acceleration, thus 

N cos 6=mg 

Hence, by division, 

The equation shows that for a given radius of bend, 
the angle of banking is only correct for one speed. Race 

tracks used to be banked; the banking became steeper 

towards the outside and the driver could select a position 

according to his speed, Fig. 8.9. Banking was removed 

in order to reduce the speed on race tracks. Recent 

developments enable a car’s suspension to tilt the car 
automatically. 

A bend in a railway track is also banked, in this case 

so that at a certain speed no lateral thrust has to be 

exerted by the outer rail on the flanges of the wheels 

of the train, otherwise the rails are strained. The hori- 

zontal component of the normal force of the rails on 

the train then provides the centripetal force. 
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Fig. 8.9 

An aircraft in straight, level flight experiences a lifting 

force at right angles to the surface of its wings which 

balances its weight. To turn, the ailerons are operated 

so that the aircraft banks and the horizontal component 

of the lift supplies the necessary centripetal force, Fig. 
8.10. The aircraft’s weight is now opposed only by the 

vertical component of the lift and height will be lost 

unless the lift is increased by, for example, increasing 

the speed. 

Lift 

Weight of 

aircraft 
Fig. 8.10 

Other examples of circular motion 

(a) The rotor. This device is sometimes present in 

amusement parks. It consists of an upright drum of dia- 

meter about 4 metres inside which people stand with 

their backs against the wall. The drum is spun at increas- 

ing speed about its central vertical axis and at a certain 

speed the floor is pulled downwards. The occupants do 

not fall but remain ‘pinned’ against the wall of the rotor. 

The forces acting on a passenger of mass m are shown 

in Fig. 8.11. N is the normal force of the wall on the 

passenger and is the centripetal force needed to keep 

him moving in a circle. Hence if r is the radius of the 

rotor and v the speed of the passenger then 
“ 

mv~ 

Fig. 8.11 
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Fis the frictional force acting upwards between the pas- 
senger and rotor wall and since there is no vertical 

motion of the passenger 

F=mg 

If uw is the coefficient of limiting friction between pas- 

senger and wall, we have F = uN 

LN = mg 

mg mg 

mv?/r 

ee! 
M ae 

This equation gives the minimum coefficient of friction 
required to prevent the passenger slipping; it does not 

depend on the passenger’s weight. A typical value of 

» between clothing and a rotor wail (of canvas) is about 
0.40 and so if r = 2m, v must be about 7 ms7! (or more). 

What will be the angular velocity of the drum? How 

many revolutions will it make per minute? 

(b) Looping the loop. A pilot who is not strapped 

into his aircraft can loop the loop without falling out 

at the top of the loop. A bucket of water can be swung 

round in a vertical circle without spilling. A ball-bearing 

can loop the loop on a length of curtain rail in a vertical 

plane. All three effects have similar explanations. 

Consider the bucket of water when it is at the top 

of the loop, A in Fig. 8.12. If the weight mg of the 

water is less than mv?/r, the normal force N of the bot- 
tom of the bucket on the water provides the rest of 

the force required to maintain the water in its circular 

path. However, if the bucket is swung more slowly then 

mg will be greater than mv?/r and the ‘unused’ part 
of the weight causes the water to leave the bucket. What 

provides the centripetal force for the water when the 
bucket is at (7) B, (ii) C and (iii) D? 

Water stays in bucket 
af if mg < mv2/r ID 

Fig. 8.12 

(c) Centrifuges. These separate solids suspended in 

liquids or liquids of different densities. The mixture is 
in a tube, Fig. 8.13a, and when it is rotated at high 
speed in a horizontal circle the less dense matter moves 

towards the centre of rotation. On stopping the rotation, 

the tube returns to the vertical position with the less 

dense matter at the top. Cream is separated from milk 

in this way. 

mace fake! 

ft ‘Cx y 

Tube + mixture 

(a) 

Fig. 8.13 (b) 

The action uses the fact that if a horizontal tube of 

liquid is rotated, the force exerted by the closed end 

must be greater than when the tube was at rest so that 

it can provide the necessary centripetal force acting 

radially inwards. In Fig. 8.13b the liquid pressure at 

B is greater than at A and a pressure gradient exists 
along the tube. For any part of the liquid the force due 

to the pressure difference supplies exactly the centrip- 

etal force required. If this part of the liquid is replaced 
by matter of smaller density (and thus of smaller mass), 

the force is too large and the matter moves inwards. 

During the launching and re-entry of space vehicles 

accelerations of about 8g occur and the resulting large 

forces which act on the surface of the astronaut’s body 

cause blood to drain from some parts and congest 

others. If the brain is deprived, loss of vision and uncon- 

sciousness may follow. Tests with large man-carrying 

centrifuges in which passengers are subjected to high 

centripetal accelerations show that a person will tolerate 
15g for a few minutes when his body is perpendicular 

to the direction of the acceleration but only 6g when 

in the direction of acceleration. What will be the best 

position for an astronaut to adopt at lift-off and re-entry? 

Moment of inertia 

In most of the cases of circular motion considered so 

far we have treated the body as a ‘particle’ so that all 
of it, in effect, revolves in a circle of the same radius. 
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When this cannot be done we have to regard the rotating 
body as a system of connected ‘particles’ moving in cir- 
cles of different radii. The way in which the mass of 
the body is distributed then affects its behaviour. 

This may be shown by someone who is sitting on a 

freely rotating stool with a heavy weight in each hand. 

When he extends his arms, Fig. 8.14, the speed of 

rotation decreases but increases again when he brings 

them in. The angular velocity of the system clearly 

depends on how the mass is distributed about the axis 
of rotation. A concept is needed to express this prop- 

erty. 

Fig. 8.14 

The mass of a body is a measure of its in-built opposi- 

tion to any change of linear motion, i.e. mass measures 

inertia. The corresponding property for rotational 

motion is called the moment of inertia. The more difficult 

it is to change the angular velocity of a body rotating 

about a particular axis the greater is its moment of iner- 

tia about that axis. Experiment shows that a wheel with 
most of its mass in the rim is more difficult to start and 
stop than a uniform disc of equal mass rotating about 

the same axis; the former has a greater moment of iner- 

tia. Similarly the moment of inertia of the person on 

the rotating stool is greater when his arms are extended. 
It should be noted that moment of inertia is a property 

of a body rotating about a particular axis; if the axis 

changes so does the moment of inertia. 

We now require a measure of moment of inertia which 

takes into account the distribution of mass about the 
axis of rotation and which plays a role in rotational 

motion, similar to that played by mass in linear, 1.e. 

straight-line, motion. 

Kinetic energy of a rotating body 

Suppose the body of Fig. 8.15 is rotating about an axis 

through O with constant angular velocity w. A particle 

A, of mass m,, at a distance r, from O, describes its 

own circular path and if v, is its linear velocity along 

the tangent to the path at the instant shown, then 
Vv; =r, and 

kinetic energy of A = 3m,v/" 

1 Dae 
=s2N)T, (0) 

Fig. 8.15 

The kinetic energy of the whole body is the sum of 

the kinetic energies of its component particles. If these 
have masses m,, ™), m3, etc., and are at distances r,, 

ry, r3, etc., from O then, since all particles have the 

same angular velocity w (the body being rigid), we have 

kinetic energy of whole body 

= $myrrw? + dmyryar + 3m3rxwr +... 

= 4w*(2mr’) 

where {mr? represents the sum of the mr? values for 

all the particles of the body. The quantity {mr? depends 

on the mass and its distribution and is taken as a measure 

of the moment of inertia of the body about the axis 

in question. It is denoted by the symbol / and so 

l= mr* 

Therefore, 

kinetic energy of body = 3/a* 

Comparing this with the expression 3mv? for linear kin- 

etic energy we see that the mass m is replaced by the 

moment of inertia / and the velocity v is replaced by 

the angular velocity w. The unit of J is kg m?. 

Values of / for regular bodies can be calculated (using 

calculus); that for a uniform rod of mass m and length 
/ about an axis through its centre is m/?/12. About an 

axis through its end it is m/?/3. 
It must be emphasized that rotational kinetic energy 

(3/w*) is not a new type of energy but is simply the 

sum of the linear kinetic energies of all the particles 

of the body. It is a convenient way of stating the kinetic 

energy of a rotating rigid body. 

The mass of a flywheel is concentrated in the rim, 

thereby giving it a large moment of inertia. When rota- 
ting, its kinetic energy is therefore large and explains 

why it is able to keep an engine (e.g. in a car) running 

at a fairly steady speed even though energy is supplied 
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intermittently to it. Some toy cars have a small lead 

flywheel which is set into rapid rotation by a brief push 

across a solid surface. The kinetic energy of the flywheel 

will then keep the car in motion for some distance. 

Work done by a couple 

Rotation is changed by a couple, that is, by two equal 

and opposite parallel forces whose lines of action do 

not coincide. It is often necessary to find the work done 

by a couple so that the energy transfer occurring as a 

result of its action on a body is known. 

Consider the wheel in Fig. 8.16 of radius r on which 

the two equal and opposite forces P act tangentially 

and rotation through angle @ (in radians) occurs. 

Wheel 

Fig. 8.16 

Work done by each force = force X distance 

=PxarcAB=PxXré 

.. total work done by couple = Pré + Pré=2Pr@ 

But, torque (or moment) of couple = P x 2r=2Pr (p. 

144). Therefore 

work done by couple = torque X angle of rotation 

= T@ 

For example, if P=2.0N, r=0.50m and the wheel 

makes 10 revolutions then 6 = 10 X 2a rad and T = 

P X 2r = 2.0N X 2 X 0.50m = 2Nm. Hence, work 

done by couple = T@ = 2 x 20m7= 1.3 x 107J. 
In general, if a couple of torque T about a certain 

axis acts on a body of moment of inertia / through an 

angle 6 about the same axis and its angular velocity 
increases from 0 to w, then 

work done by couple = kinetic energy of rotation 

TO = 31a” 

Angular momentum 

(a) Definition. In linear motion it is often useful to 

consider the (linear) momentum of a body. In rotational 

motion, angular momentum is important. 

Consider a rigid body rotating about an axis O and 

having angular velocity w at some instant, Fig. 8.17. 

Let A be a particle of this body, distant r, from O and 
having linear velocity v, as shown, then the linear 

momentum of A = m,v, = mor, (since Vv, = wr). 

Fig. 8.17 

The angular momentum of A about O is defined as 

the moment of its momentum about O. Hence 

angular momentum of A =r, X mor; = omyr; 

total angular momentum of rigid body = 2wmr? 

=o mr? 

=Iw 

where / is the moment of inertia of the body about 

O. Angular momentum is thus the analogue of linear 

momentum (mv), with / replacing m and w replacing v. 

(b) Newton’s second law. A body rotates when it 
is acted on by acouple. The rotational form of Newton’s 

second law of motion may be written (by analogy with 

F=ma), 

ee Tox 

where T is the torque or moment of the couple causing 

rotational acceleration a. In terms of momentum, the 

second law can be stated, for linear motion, 

force = rate of change of linear momentum 

_ d(mv) — i.e. 

and for rotational motion, 

torque = rate of change of angular momentum 

T= d(Jw) 

dt 
i.e. 

(c) Conservation. A similar argument to that used 
to deduce the principle of conservation of linear momen- 
tum from Newton’s third law can be employed to derive 

the principle of conservation of angular momentum. It 
may be stated as follows. 

The total angular momentum of a system remains con- 
stant provided no external torque acts on the system. 
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Ice skaters, ballet dancers, acrobats and divers use 
the principle. The diver in Fig. 8.18 leaves the high- 

diving board with outstretched arms and legs and some 

initial angular velocity about his centre of gravity. His 

angular momentum (/w) remains constant since no 

external torques act on him (gravity exerts no torque 

about his centre of gravity). To make a somersault he 
must increase his angular velocity. He does this by pull- 
ing in his legs and arms so that J decreases and w there- 

fore increases. By extending his armis and legs again, 

his angular velocity falls to its original value. Similarly 

a skater can whirl faster on ice by folding his arms. 

(ms : 
\ 

Fig. 8.18 

The principle of conservation of angular momentum 

is useful for dealing with large rotating bodies such as 

the earth, as well as tiny, spinning particles such as elec- 

trons. 

(d) Worked example. A shaft rotating at 3.0 x 10° 
revolutions per minute is transmitting a power of 10 

kilowatts. Find the magnitude of the driving couple. 

Work done per second by driving couple 
= power transmitted by shaft 

Hence, since 1 W=1Js"!, 

T@= 10x 10°Js7! 

where T is the moment of the couple and @ is the angle 

through which the shaft rotates in 1 second. Now 

(see p. 172) 

3.0 x 10° revs per minute 
= 3.0 x 10°/60 revs per second 

= 50 revs per second 

6=50 x 2m7rad s~! (since 27 rad = 360° = | rev) 

_ 10x 10° 

~ 50X27 

=32Nm 

Kepler’s laws 

About 1542 the Polish monk Copernicus proposed that 

the earth, rather than being the centre of the universe 

as was generally thought, revolved round the sun, as 

did the other planets. This heliocentric (sun-centred) 

model was greatly developed by Kepler who, following 

on prolonged study of observations made by the Danish 

astronomer Tycho Brahé over a period of twenty years, 

arrived at a very complete description of planetary 

motion. He announced his first two laws in 1609 and 

the third in 1619. 

1. Each planet moves in an ellipse which has the sun 
at one focus. 

2. The line joining the sun to the moving planet sweeps 

out equal areas in equal times. 

3. The squares of the times of revolution of the planets 

(i.e. their periodic times T) about the sun are proportional 

to the cubes of their mean distances (r) from it (i.e. r3/T? 
is a constant). 

In Fig. 8.19, if planet P takes the same time to travel 

from A to B as from C to D then the shaded areas 

are equal. Strictly speaking the distances in law 3 should 
be the semi-major axes of the ellipses but all the orbits 

are sufficiently circular for the mean radius to be taken. 

The third column of Table 8.1 shows the constancy of 

Fig. 8.19 

Kepler’s three laws enabled planetary positions, both 

past and future, to be determined accurately without 
the complex array of geometrical constructions used 

previously which were due to the Greeks. His work was 

also important because by stating his empirical laws (i.e. 
laws based on observation, not on theory) in mathemati- 

cal terms he helped to establish the equation as a form 
of scientific shorthand. 
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Table 8.1 

Mean radius of orbit 
r 

(metres) 

Planet Period of revolution 
ie 

(seconds) 

5.79 x 101° 

Venus 1.08 x 10!! 
Earth 1.49 x 10!! 
Mars 2.28 x 10! 
Jupiter 7.78 x 10!! 
Saturn 1.43 x 10!2 
Uranus 287 S104 
Neptune 4.50 x 10!° 
Pluto 5.90 x 104 

Mercury 

Gravity and the moon 

Kepler’s laws summed up neatly how the planets of the 
solar system behaved without indicating why they did 

so. One of the problems was to find the centripetal force 
which kept a planet in its orbit round the sun, or the 

moon round the earth, in a way which agreed with 

Kepler’s laws. 

Newton reflected (perhaps in his garden when the 

apple fell) that the earth exerts an inward pull on nearby 

objects causing them to fall. He then speculated whether 

this same force of gravity might not extend out farther 

to pull on the moon and keep it in orbit. If it did, might 

not the sun also pull on the planets in the same way 

with the same kind of force? He decided to test the 
idea first on the moon’s motion—as we will do now. 

= 

aS 
a 

Earth \ 

Oo 
/ 

a 
SS 

Moon 

Fig. 8.20 

If r is the radius of the moon’s orbit round the earth 

and T is the time it takes to complete one orbit, 1.e. 

its period, Fig. 8.20, then using accepted values we have 

r= 3.84 x 10m 

T = 27.3 days 

= 27.3 x 24 x 3600s 

(The time between full moons is 29.5 days but this is 

due to the earth also moving round the sun. The moon 

has therefore to travel a little farther to reach the same 

position relative to the sun. Judged against the back- 

ground of the stars, the moon takes 27.3 days to make 

7.60 x 10° 
1.94 x 10’ 
3.16 x 10’ (1 year) 
5.94 x 107 (1.9 years) 
3.74 x 10° (11.9 years) 
9.30 x 10° (29.5 years) 
2.66 10° (84.0 years) 
5.20 x 10? (165 years) 
7.82 X 10° (248 years) 

one complete orbit of the earth, which is its true period 

i 
The speed v of the moon along its orbit (assumed 

circular) is 

circumference oforbit _ 27r 
'=----e-ooOroorror > oT 

period T 

_ 20X3.84x108 
~ 37.3 x 24 X 3600 

=1,02x10ms"! 

The moon’s centripetal acceleration a will be 

x vy? _ (1.02 x 10°ms7!)? 

r 3.84 x 108m 

=2.72 x 10-7ms~ 

The acceleration due to gravity at the earth’s surface 
is 9.81ms~* and so if gravity is the centripetal force 

for the moon it must weaken between the earth and 

the moon. The simplest assumption would be that grav- 

ity halves when the distance doubles and at the moon 

it would be 1/60 of 9.81 ms~* since the moon is 60 earth- 
radii from the centre of the earth and an object at the 

earth’s surface is 1 earth-radius from the centre. But 

9.81/60 = 1.64 x 107! ms~°, which is still too large. 
The next relation to try would be an inverse square 

law in which gravity is one-quarter when the distance 

doubles, one-ninth when it trebles and so on. At 

the moon it would be 1/60? of 9.81ms~*, ie. 
9.81/3600 = 2.72 x 10-3 ms~*—the value of the moon’s 
centripetal acceleration. 

Law of universal gravitation 

Having successfully tested the idea of inverse square 

law gravity for the motion of the moon round the earth, 
Newton turned his attention to the solar system. 
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His proposal, first published in 1687 in his great work 

the Principia (Mathematical principles of natural know- 

ledge), was that the centripetal force which keeps the 
planets in orbit round the sun is provided by the gravi- 

tational attraction of the sun for the planets. This, 

according to Newton, was the same kind of attraction 

as that of the earth for an apple. Gravity—the attraction 

of the earth for an object—was thus a particular case 

of gravitation. In fact, Newton asserted that every object 

in the universe attracted every other object with a gravi- 

tational force and that this force was responsible for 
the orbital motion of celestial (heavenly) bodies. 

Newton’s hypothesis, now established as a theory and 

known as the /aw of universal gravitation, may be stated 
quantitatively as follows. 

Every particle of matter in the universe attracts every 

other particle with a force which is directly proportional 

to the product of their masses and inversely proportional 

to the square of their distances apart. 

The gravitational attraction F between two particles 

of masses m, and mp, distance r apart is thus given by 

mm, mm) 
Fa—~ or =G— 

Pa i 

where G is a constant, called the universal gravitational 

constant, and assumed to have the same value every- 

where for all matter. 

Newton believed the force was directly proportional 

to the mass of each particle because the force on a falling 

body is proportional to its mass (F=ma=mg= 

m X constant, therefore F < m), i.e. to the mass of the 

attracted body. Hence, from the third law of motion, 

he argued that since the falling body also attracts the 

earth with an equal and opposite force that is pro- 

portional to the mass of the earth, then the gravitational 

force between the bodies must also be proportional to 

the mass of the attracting body. The moon test justified 

the use of an inverse square law relation between force 

and distance. 
The law applies to particles (i.e. bodies whose dimen- 

sions are very small compared with other distances 

involved), but Newton showed that the attraction 

exerted at an external point by a sphere of uniform den- 

sity (or a sphere composed of uniform concentric shells) 

was the same as if its whole mass were concentrated 

at its centre. We tacitly assumed this for the earth in 

the previous section and will use it in future. 

The gravitational force between two ordinary objects 

(say two 1 kg masses 1 metre apart) is extremely small 

and therefore difficult to detect. What does this indicate 

about the value of G in SI units? What will be the units 

of G in the SI system? 

Testing gravitation 

To test F= Gm m,/r? for the sun and planets the num- 
erical values of all quantities on both sides of the equa- 

tion need to be known. Newton neither had reliable 
information about the masses of the sun and planets 

nor did he know the value of G and so he could not 

adopt this procedure. There are alternatives however. 

(a) Deriving Kepler’s laws. The behaviour of the solar 

system is summarized by Kepler’s laws and any theory 

which predicts these would, for a start, be in agreement 

with the facts. 

Suppose a planet of mass m moves with speed v in 
a circle of radius r round the sun of mass M, Fig. 8.21. 

v 

Planet am SS 

/ & 
a A 

x oe 

Fig. 8.21 

Hence 

Mm 
gravitational attraction of sun for planet = G—— 

f 

If this is the centripetal force keeping the planet in orbit 

then 

eerie 
ig ie 

OI ag oe 
— = y~ 

_ 2ar 

oes; 

GM 4n7?r? 

r 1 fe 

4q?r3 
GM= 72 

Fr nm GM 
ence Pr? 4g 

Since GM is constant for any planet, r°/T”? is constant, 
which is Kepler’s third law. We have considered a circu- 
lar orbit but more advanced mathematics gives the same 

result for an elliptical one. 
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The first law can be derived by showing that if inverse 

square law gravitation holds, a planet moves in an orbit 

which is a conic section (i.e. a circle, ellipse, parabola 

or hyperbola) with the sun at one focus. Also, it may 

be shown that when a planet is acted on by any force, 

not just an inverse square law one, directed from the 

planet towards the sun, the radius covers equal areas 

in equal times—which is the second law. 

(b) Discovery of other planets. Theories can never 

be proved correct, they are only disproved by making 

predictions which conflict with observations. A good 

theory should lead to new discoveries. Newton’s theory 

of gravitation has not only enabled us to work out prob- 
lems connected with space travel, leading to new knowl- 
edge about the solar system, but it has also resulted 

in the discovery of planets not known in his day. 

The planets must exert gravitational pulls on one 

another, but except in the case of the larger planets 

like Jupiter and Saturn, the effect is only slight. The 

French scientist Laplace showed after Newton’s time 

how to predict the effect of these disturbances (called 
perturbations) on Kepler’s simple elliptical orbits. 

The planet Uranus, discovered in 1781, showed small 

deviations from its expected orbit even after allowance 
had been made for the effects of known neighbouring 

planets. Two astronomers, Adams in England and 
Leverrier in France, working quite independently, pre- 

dicted from the law of gravitation, the position, size 

and orbit of an unknown planet that could cause the 

observed perturbations. A search was made and the 

new planet located in 1846 in the predicted position 

by the Berlin Observatory. Thus Neptune was dis- 

covered. 

In 1930, history was repeated when American astron- 

omers discovered Pluto from perturbations of the orbit 

of Neptune. 

Masses of the sun and planets 

The theory of gravitation enables us to obtain informa- 

tion about the mass of any celestial body having a satel- 

lite. If the value of the gravitational constant G is 

known, the actual mass can be calculated. Otherwise 

only a comparison is possible. A determination of G 

was not made until after Newton’s death. 

The principle is simply to measure all the quantities 
in F = Gm,m,/r? except G which can then be calculated. 
The earliest determinations used a measured mountain 
as the ‘attracting’ mass and a pendulum as the ‘attracted’ 
one. The first laboratory experiment was performed by 

Cavendish in 1798. He measured the very small gravi- 

tational forces exerted on two small lead balls (m, and 

mp) by two larger ones (M, and M,) using a torsion 

balance, Fig. 8.22. In this, the force twists a calibrated 

wire. Modern measurements give the value 

G=6.7. 107! Nim? ke? (orm? s77kg 4) 

Torsion balance 

Fig. 8.22 

(a) Mass of the sun. Consider the earth of mass m, 
moving with speed v. round the sun of mass m, in a 

circular orbit of radius r,, Fig. 8.23a. The gravitational 

attraction of the sun for the earth is the centripetal force. 

Ao Earth 

: ae 
7 ~~. Moon 

[ Sun Te ii ‘ 

Ms | Ve ( Sk 
Ne if N Me Am 

ee 

(a) (b) 

Hence 

If T, is the time for the earth to make one orbit, then 

2ar. 4’? r2 
ve = and m,=——.— 

a Geeks 
Substituting for G, r. = 1.5 x 10"! m and T, = 3.0 x 107s 
(1 year), we get 

m, = 2.0 X 10°°kg 

(b) Mass of the earth. Considering the moon of mass 
m, Moving with speed v,, round the earth of mass m, 

in a circular orbit of radius r,,, Fig. 8.23b, we similarly 
obtain 
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a= 2 
Lee Tn 

vr, m mM. ll LD 
G 

Also if T,, is the period of the moon then v,, = 277 _/ Tn 
and so 

Substituting for G, r,, = 4.0 x 108m and T,, = 2.4 x 10°s 
(1 month) we find that 

m, = 6.0 x 10**kg 

The ratio of the mass of the sun to that of the earth 

is 2.0 x 10°°:6.0 x 104, i.e. 330000:1. Table 8.2 gives 
the relative masses and densities of various bodies. 

Table 8.2 

Mass Density 
(water = 1) (earth = 1) 

Sun 330 000 

Moon 

Mercury 
Venus 

Earth 

Mars 

0.012 
0.056 
0.82 
1.0 
0.11 

Jupiter 320 
Saturn 95 
Uranus 15 

Neptune LW 
Pluto 0.8(?) 

NRF Or LNMADWe WAN RR Ne Rw 

~~ 

Newton’s work 

(a) Scientific explanation. The charge is sometimes 

made that science does not get down to underlying 

causes and give the ‘true’ reasons. In many cases this 

is so. Newton’s work raises the question of what is meant 

by scientific explanation. 
Consider gravitation. Newton did not really explain 

why a body falls or why the planets move round the 

sun. He attributed these effects to something called 

‘gravitation’ and this, like other basic scientific ideas, 

seems by its very nature to defy explanation in any 

simpler terms. It appears that we must accept it as a 

fundamental concept of science which is very useful 

because it enables us to regard apparently different 

phenomena—the falling of an apple and the motion of 

the planets—as having the same ‘cause’. 
A scientific explanation is very often an idea or con- 

cept that provides a connecting link between effects and 

so simplifies our knowledge. Explanations in terms of 

such concepts as energy, momentum, molecules, atoms, 

electrons, fall into this category. Concepts which do not 

cast their net wide are of little value in science. 

(b) Influence of Newton’s work. Starting from the 

laws of motion and gravitation Newton created a model 

of the universe which explained known facts, led to new 

discoveries and produced a unified body of knowledge. 

He united the physics of ‘heaven and earth’ by the same 

set of laws and so brought to a grand climax the work 
begun by Copernicus, Kepler and Galileo. 

The success of Newtonian mechanics had a profound 

influence on both scientific and philosophical thought 

for 200 years. There arose a widespread belief that using 

scientific laws the future of the whole universe could 

be predicted if the positions, velocities and accelerations 

of all the particles in it were known at a certain time. 

This ‘mechanistic’ outlook regarded the universe as a 

giant piece of clockwork, wound up initially by the 

‘divine power’ and now ticking over according to strict 

mathematical laws. 

Today scientists are humbler and probability has re- 

placed certainty. Also, whilst Newtonian mechanics is 

still perfectly satisfactory for the world of ordinary 

experience, it has been supplemented by two other 

theories. The theory of relativity has joined it for situa- 

tions in which bodies are moving at very high speeds 

and quantum mechanics enables us to deal with the phy- 

sics of the atom. 

Earth’s gravitational field 

An action-at-a-distance effect in which one body A 

exerts a force on another body B not in contact with 

it, can be regarded as due to a ‘field of force’ in the 

region around A. The field may be considered to be 

the interpretation and the force on B the observation. 

(Body A will of course experience a force by being in 

the field due to B.) 

We can think of the sun and all other celestial and 

terrestrial bodies as each having a gravitational field 
which exerts a force on any other body in the field. 

The strength of a gravitational field is defined as the force 

acting on unit mass placed in the field. Thus if a body 
of mass m experiences a force F when in the earth’s 

field, the strength of the earth’s field is F/m (in newtons 

per kilogram). Measurement shows that if m=1kg, 

then F=9.8N (at the earth’s surface); the strength of 
the earth’s field is therefore 9.8 Nkg~'. However if a 

mass m falls freely under gravity its acceleration g would 
be F/m=9.8ms~? (since F = ma = mg). 
We thus have two ways of looking at g. When con- 

sidering bodies falling freely we can think of it as an 
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acceleration (of 9.8ms~), but when a body of known 

mass is at rest or is unaccelerated in the earth’s field 

and we wish to know the gravitational force (in newtons) 

acting on it we regard g as the earth’s gravitational field 

strength (of 9.8N kg~!). 
At our level of study the field concept tends to be 

more useful when dealing with electric and magnetic 

effects whilst the force concept is generally employed 

for gravitational effects. 

Acceleration due to gravity 

(a) Relation between g and G. A body of mass m 
at a place on the earth’s surface where the acceleration 

due to gravity is g, experiences a force F= mg (i.e. its 

weight) due to its attraction by the earth, Fig. 8.24. 

Fig. 8.24 

Assuming the earth behaves as if its whole mass M were 

concentrated at its centre O, then, by the law of gravi- 

tation, we can also say that F is the gravitational pull 
of the earth on the body. Hence 

Mm 
2 re 

F=G 

where r is the radius of the earth. 

Mm 
Tg = a 

GM 
Serres r- 

It is worth noting that the mass m in F=ma=meg_ is 

called the inertial mass of the body; it measures the 

opposition of the body to change of motion, i.e. its iner- 
tia. The mass of the same body when considering the 

law of gravitation is known as the gravitational mass. 
Experiments show that to a high degree of accuracy 

these two masses are equal for a given body and so 

we can, as we have done here, represent each by m. 

(b) Variation of g with height. If g' is the acceleration 
due to gravity at a distance a from the centre of the 
earth where a>r, r being the earth’s radius, then from 

(a), 

GM GM 
gf =— > ond 4 7 

Tae ; 
Dividing, ee => g @ 

| re 

or if me 

Above the earth’s surface, the acceleration due to grav- 

ity g’ thus varies inversely as the square of the distance 

a from the centre of the earth (since r and g are con- 

stant), i.e. it decreases with height as shown in Fig. 

8.25. 

Using computed values of density 

— g at surface of earth 

Outside earth 

oe 
Density assumed 
uniform 

r a 

(Radius of 

earth) 

(Distance from 

centre of earth) 
Fig. 8.25 

At height h above the surface,a=r+h 
4 

f 1 

orth A +h/n® 
bat de 

=(1+2) g 
\ F 

If h is very small compared with r (6400km) we can 

neglect powers of (/r) higher than the first. Hence 

(c) Variation of g with depth. At a point such as P 

below the surface of the earth, it can be shown that 
if the shaded spherical shell in Fig. 8.26 has uniform 
density, it produces no gravitational field inside itself. 

Fig. 8.26 
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The gravitational acceleration g, at P is then due entirely 

to the sphere of radius b and if this is assumed to be 
of uniform density, then from (a) 

A 1 d GM 
81 be and §& me 

where M, is the mass of the sphere of radius b. The 
mass of a uniform sphere is proportional to its radius 
cubed, hence 

M,_b 
M Pr 

8 M b 

gz Pr &1 7é 

Thus, assuming the earth has uniform density, the accel- 

eration due to gravity g, is directly proportional to the 

distance b from the centre, i.e. it decreases linearly with 

depth, Fig. 8.25. At depth 4 below the earth’s surface, 
b=r-h, 

-(—") ( i 
Slee ; Sie 7/® 

In fact, because the earth’s density is not constant, 

g, actually increases for all depths now obtainable as 
shown by part of the dotted curve in Fig. 8.25. 

(d) Variation of g with latitude. The observed vari- 

ation of g over the earth’s surface is largely due to (i) 

the equatorial radius of the earth exceeding its polar 

radius by about 21km and thereby making g greater 

at the poles than at the equator where a body is farther 

from the centre of the earth, and (ii) the effect of the 

earth’s rotation which we will now consider. 

A body of mass m at any point of the earth’s surface 

(except at the poles) must have a centripetal force acting 

on it. This force is supplied by part of the earth’s gravi- 

tational attraction for it. Ona stationary earth the gravi- 

tational pull of the earth on m would be mg where g 

is the acceleration due to gravity under such conditions. 

However, because of the earth’s rotation, the observed 

gravitational pull is less than this and equals mg, where 

g, is the observed acceleration due to gravity. Hence 

centripetal force on body = mg — mg, 

At the equator, the body is moving in a circle of radius 

rwhere r is the earth’s radius and it has the same angular 

velocity w as the earth. The centripetal force is then 

mw-r and so 

mg — mg, = mor 

8-8 = wr 
Substituting r= 6.4 x 10°m and w= 1 revolution in 24 
hours = 27/(24 x 3600) rads!, we get g—g,=3.4 
x 10-*ms~*. Assuming the earth is perfectly spherical 
this is also the difference between the polar and equa- 

torial values of the acceleration due to gravity. (At the 
poles w= 0 and so g=g,.) The observed difference is 

5.2 x 10-*ms~?, of which 1.8 x 10-2 ms~? arises from 
the non-sphericity of the earth. 

At latitude 6 on an assumed spherical earth, the body 

describes a circle of radius rcos6@, Fig. 8.27a. The 

magnitude of the centripetal force required is thus 
mw*r cos @ and is smaller than at the equator since 
has the same value. However its direction is along PQ 

whereas mg acts along PO towards the centre of the 

earth. The observed gravitational pull mg, is therefore 

less than mg by a force ma’r cos 6 along PQ and will 

be in a different direction from mg. The value and direc- 

tion of mg, must be such that when it is compounded 

by the parallelogram law with ma’r cos 6 along PQ, 

it gives mg along PO, Fig. 8.27b. The direction of g, 

as shown by a falling body or a plumb line is not exactly 

towards the centre of the earth except at the poles and 
the equator. 

rcosé 2 
Ee Mw ‘Tr cos @ 

ara hei AEN 
mg, 

O a R 

(a) (b) 

Fig. 8.27 

Artificial satellites 

(a) Satellite orbits. The centripetal force which keeps 
an artificial satellite in orbit round the earth is the gravi- 
tational attraction of the earth for it. For a satellite of 

mass m travelling with speed v in a circular orbit of 

radius R (measured from the centre of the earth), we 

have 

mv? GMm 

RoR 

where M is the mass of the earth. 

, GM 
pid =e 

R 
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GM 
But = 5 (see p. 178) : 

where ris the radius of the earth and g is the acceleration 

due to gravity at the earth’s surface. 

RN gy 
we 

Vv 

If the satellite is close to the earth, say at a height 

of 100-200 km, then R ~ r and 

yo= gr 

Substituting r = 6.4 x 10°m (6400 km) andg =9.8ms~°, 

v= Ver = V9.8ms~ X 6.4 x 10m 

=7 O10 ins: ! 

v~8kms7! 

The time for the satellite to make one complete orbit 

of the earth, i.e. its period T, is 

_ circumference ofearth _ 2ar fp aa SE eae, eat 
speed v 

_ 27x 6.4 x 10°m 

1.9 <A10ms = 

T ~ 5000s = 83 minutes 

We can regard a satellite in orbit as being continually 

pulled in by gravity from a straight-line tangent path 

to a circular path, Fig. 8.28. It ‘falls’ again and again 

from the tangents instead of continuing along them; its 

horizontal speed is such that it ‘falls’ by the correct dis- 

tance to keep it in a circle. Although the satellite has 

an acceleration towards the centre of the earth, i.e. in 

a vertical direction, it has no vertical velocity because 
it ‘falls’ at the same rate as the earth’s surface falls away 
underneath it. With respect to the earth’s surface its 

velocity in a vertical direction is zero since the distance 
between the satellite and the earth’s surface remains 

constant. In practice it is very difficult to achieve an 

exactly circular orbit. 

Satellite 
Tangent 

ae 

Fig. 8.28 

(b) Launching a satellite. To be placed in orbit a satel- 

lite must be raised to the desired height and given the 

correct speed and direction by the launching rocket. 
A typical launching sequence using a two-stage rocket 

might be as follows. 
At lift-off, the rocket, with a manned or unmanned 

space capsule on top, is held down by clamps on the 

launching pad for a few seconds until the exhaust gases 

have built up an upward thrust which exceeds the 

rocket’s weight. The clamps are then removed by 

remote control and the rocket accelerates upwards. Fig. 
8.29 shows the lift-off of an Ariane 3 rocket with a pay- 

load of a commercial and a scientific satellite. To pen- 

etrate the dense lower part of the atmosphere by the 

shortest possible route, the rocket rises vertically 

initially and after this is gradually tilted by the guidance 

system. The first-stage rocket, which may burn for about 

2 minutes producing a speed of 3kms ' or so, lifts the 

vehicle to a height of around 60 km, then separates and 

falls back to earth, landing many kilometres from the 

launching site. 
The vehicle now coasts in free flight (unpowered) to 

its orbital height, say 160km, where it is momentarily 

moving horizontally (i.e. parallel to earth’s surface 

immediately below). The second-stage rocket then fires 

and increases the speed to that required for a circular 

orbit at this height (about 8kms7'). By firing small 
rockets, the payload is separated from the second stage 
which follows behind, also in orbit. 

The equation v? = gr?/R for circular orbits shows that 
each orbit requires a certain speed and the greater the 
orbit radius R the smaller the speed v. 

Synchronous satellites have a period of 24 hours, 
exactly the same as that of the earth, and so remain 

in the same position above the earth, apparently station- 

ary. By acting as relay stations, they make continuous, 

worldwide communications (e.g. of television pro- 
grammes) possible. 

Some notable space flights are given in Table 8.3. 

Weightlessness 

An astronaut orbiting the earth in a space vehicle with 

its rocket motors off is said to be ‘weightless’. If weight 

means the pull of the earth on a body, then the state- 
ment, although commonly used, is misleading. A body 

is not truly weightless unless it is outside the earth’s 

(or any other) gravitational field, i.e. at a place where 

g = 0. In fact it is gravity which keeps an astronaut and 

his vehicle in orbit. To appreciate what ‘experiencing 
the sensation of weightlessness’ means we will consider 
similar situations on earth. 

We are made aware of our weight because the ground 
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Fig. 8.29 

Table 8.3 

Name Launch date Descent date Period Height Notes 
or lifetime (min) (km) 

Sputnik 1 4 Oct 1957 4 Jan 1968 (?) 215-939 Mass 83.6 kg. First artificial earth satellite 

31 Jan 1958 11 years 356-2548 | Mass 14.0kg. Discovered inner Van 
Allen belt 

First manned spaceflight. One orbit by 
Yuri Gagarin 

Explorer 1 

Vostok 1 12 Apr 1961 12 Apr 1961 169-315 

20 Feb 1962 20 Feb 1962 159-265 First U.S. manned spaceflight. Three 
orbits by John Glenn 

Mercury 6 

35 000- 
36 000 

10° years First commercial synchronous 
communications satellite: 
‘stationary’ between Africa and South 
America 

Early Bird 6 Apr 1965 

4207-4271 24 June 1966 Inflated sphere 30 metres in diameter. 
Visible to the naked eye 

Pageos A 50 years 

First men to land on the moon and 

return to earth with ‘moon samples’ 
24 July 1969 Apollo 11 16 July 1969 

14 April 1981 First re-usable U.S. space shuttle 12 April 1981 
to orbit and return to the earth 

Columbia 
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(or whatever supports us) exerts an upward push on 
us as a result of the downward push our feet exert on 

the ground. It is this upward push which makes us ‘feel’ 

the force of gravity. When a lift suddenly starts upwards 

the push of the floor on our feet increases and we feel 

heavier. On the other hand if the support is reduced 
we seem to be lighter. In fact we judge our weight from 

the upward push exerted on us by the floor. If our feet 
are completely unsupported we experience weightless- 

ness. Passengers in a lift which has a continuous down- 

ward acceleration equal to g would get no support from 

the floor since they, too, would be falling with the same 

acceleration as the lift. There is no upward push on 

them and so no sensation of weight is felt. The condition 

is experienced briefly when we jump off a wall or dive 

into a swimming pool. 

An astronaut in an orbiting space vehicle is not unlike 

a passenger in a freely falling lift. The astronaut is mov- 

ing with constant speed along the orbit, but since he 

is travelling in a circle he has a centripetal acceleration— 
of the same value as that of his space vehicle and equal 

to g at that height. The walls of the vehicle exert no 

force on him, he is unsupported, the physiological sensa- 

tion of weight disappears and he floats about ‘weight- 

less’. Similarly any object released in the vehicle does 
not ‘fall’; anything not in use must be firmly fixed and 

liquids will not pour. Summing up, to be strictly correct 

we should not use the term ‘weightless’ unless by weight 

we mean the force exerted on (or by) a body by (or 

on) its support and generally we do not. 

It is important to appreciate that although ‘weightless’ 

a body still has mass and it would be just as difficult 

to push it in space as on earth. An astronaut floating 

in his vehicle could still be injured by hitting a hard 

but weightless object. 

Speed of escape 

The faster a ball is thrown upwards the higher it rises 

before it is stopped and pulled back by gravity. To 

escape from the earth into outer space we will show 

that an object must have a speed of just over 11 km s~ !— 

called the escape speed. 

The escape speed is obtained from the fact that the 

potential energy gained by the body equals its loss of 

kinetic energy, if air resistance is neglected. The work 
done measures the energy change. Let m be the mass 

of the escaping body and M the mass of the earth. The 
force F exerted on the object by the earth when it is 

distance x from the centre of the earth is 

Therefore work done 6W by gravity when the body 

moves a further short distance 6x upwards is 

Mm 
6W=-Féx= oe 

(the negative sign shows the force acts in the opposite 
direction to the displacement, see p. 159). Therefore 

0 Ain 
total work done while body escapes = | = ag dx 

Tr 

(r = radius of earth) 

If the body leaves the earth with speed v and just escapes 

from its gravitational field, 

i. > GMa 
Sis — - 

_ |2GM 

r 

GM 
But g=— (p. 178) - 

v= V2gr 

Substituting r= 6.4 x 10°m and g=9.8ms~?, we get 
v=l1ikms"!. 

Possible paths for a body projected at different speeds 
from the earth are shown in Fig. 8.30. 

Point of projection 

: i 
ot a Part of ellipse 

Pa G7, VX v>for 
Hyperbola vs / f | 

vw/2gr 7 y | % / \ 

po for wae 
/ \ Circle } 

Parabola | \ v=/gr=8 km sy 
v=/2 gr=11 kms X * 

Sel Srey 

Ellipse 

V2gr>v D/gr 

Fig. 8.30 
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The multi-stage rockets in use at present burn their 

fuel in a comparatively short time to obtain the best 

performance. They behave rather like objects thrown 

upwards, i.e. like projectiles. For a journey to, say, 

the moon, they therefore have to attain the escape 

speed. In many cases this is done by first putting the 

final vehicle into a ‘parking’ orbit round the earth with 
a speed of 8kms7! and then firing the final rocket again 

to reach escape speed in the appropriate direction. 

The attainment of the escape speed is not a necessary 

condition however. The essential thing is that a certain 
amount of energy is required to escape from the earth 

and if rockets were available which could develop large 

power over a long time, escape would still be possible 

without ever achieving escape speed. In fact if we had 

a long enough ladder and the necessary time and energy 

we could walk to the moon! 

Air molecules at s.t.p. have an average speed of about 

0.5 km s~! which, being much less than the escape speed, 

ensures that the earth’s gravitational field is able to 

maintain an atmosphere of air round the earth. The 
average speed of hydrogen molecules at s.t.p. is more 

than three times that of air molecules and explains their 

rarity in the earth’s atmosphere. The moon has no 

atmosphere. Can you suggest a possible reason? 

QUESTIONS 

Assume g = 10ms~“ unless stated otherwise. 

Circular motion 

1. A particle moves in a semicircular path AB of radius 5.0m 

with constant speed 11 ms~!, Fig. 8.31. Calculate (a) the time 

taken to travel from A to B (take 7= 22/7), (b) the average 

velocity, (c) the average acceleration. 

tims’ 

as 5m 5m . 

Fig. 8.31 

2. The turntable of a record player makes 45 revolutions per 

minute. Calculate (a) its angular velocity in rad s~', (b) the 

linear velocity of a point 0.12 m from the centre. 

3. What is meant by a centripetal force? Why does such a force 

do no work in a circular orbit? 

(a) An object of mass 0.50 kg on the end ofa string is whirled 

round in a horizontal circle of radius 2.0m with a constant 

speed of 10ms~!. Find its angular velocity and the tension 

in the string. 

(b) If the same object is now whirled in a vertical circle 

of the same radius with the same speed, what are the maximum 

and minimum tensions in the string? 

4. Explain exactly how the centripetal acceleration is caused 

in the following cases: 

(a) atrain ona circular track; 

(b) aconical pendulum. 

A small bob of mass 0.1 kg is suspended by an inextensible 

string of length 0.5m and is caused to rotate in a horizontal 

circle of radius 0.4m which has its centre vertically below the 

point of suspension. Show on a sketch the two forces acting 

on the bob as seen by an outside observer. Find (7) the resultant 

of these forces, (ii) the period of rotation of the bob. 

(C. part qn.) 

5. Explain why a particle moving with uniform speed in a circle 

must be acted upon by a centripetal force. Derive from first 

principles an expression for the magnitude of this force. 

A pilot of mass 84.0 kg loops the loop (i.e. executes a vertical 
circle) in his aircraft at a steady speed of 300 kmhr~!. Account 

for the centripetal force acting on him at (a) the highest, (b) 

the lowest points of the circle and calculate its value. Also 

calculate the magnitude of the force with which the pilot is 

pressed into the seat at the highest and lowest points of the 

loop if the radius of the circle is 0.580 km. (J.M.B.) 

Moment of inertia 

6. A bicycle wheel has a diameter of 0.50 m, a mass of 0.80 kg 

and a moment of inertia about its axle of 4.0 x 107-*kg m?, 

Assuming 7 = 22/7 find the values of the following quantities 

when the wheel rolls, at 7 rotations per second without slipping, 

over a horizontal surface: 

(a) the angular velocity in radians per second, 

(6) the linear velocity of the centre of gravity, 

(c) the instantaneous linear velocity of the topmost point 

on the wheel, 

(d) the total kinetic energy of the wheel. (Hint: the wheel 

has both rotational and translational kinetic energy.) (J. M.B.) 

7. Explain, in non-mathematical terms, the physical signifi- 

cance of moment of inertia. Illustrate your answer by reference 

to two examples in which moments of inertia are involved. 

A flywheel of moment of inertia 6.0 x 10~* kg m’ is rotating 
with an angular velocity of 20 rads~!. Calculate the steady 

couple required to bring it to rest in 10 revolutions. (L. part qn.) 

8. Derive an expression for the kinetic energy of a rotating 

rigid body. 

An electric motor supplies a power of 5 x 10° W to drive 

an unloaded flywheel of moment of inertia 2kg m? at a steady 

speed of 6 x 10? revolutions per minute. How long will it be 

before the flywheel comes to rest after the power is switched 

off assuming the frictional couple remains constant? 

9. (a) Define angular momentum. State the principle of con- 

servation of angular momentum. 
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An ice dancer is spinning about a vertical axis with his arms 
extended vertically upwards. Will he spin faster or slower when 

he allows his arms to fall until they are horizontal? Has his 

kinetic energy been increased or decreased? How do you ac- 

count for the change? 

(b) A horizontal disc rotating freely about a vertical axis 

makes 90 revolutions per minute. A small piece of putty of 
mass 2.0 x 10~*kg falls vertically on to the disc and sticks to 

it at a distance of 5.0 x 10-?m from the axis. If the number 

of revolutions per minute is thereby reduced to 80, calculate 

the moment of inertia of the disc. 

Gravitation 

10. The mass of the earth is 5.98 x 10**kg and the gravitational 

constant is 6.67 x 107!!m3kg~!s~?. Assuming the earth is a 
uniform sphere of radius 6.37 x 10°m, find the gravitational 

force on a mass of 1.00 kg at the earth’s surface. 

11. Define moment of inertia and angular momentum. 

A small planet, mass m, moves in an elliptical orbit round 

a large sun, mass M, which is at the focus F, of the ellipse, 

Fig. 8.32. 

Fig. 8.32 

Write down an expression for the force acting on the planet 

when it is at a position A, at a distance r from the sun. Indicate 

the direction of this force on a copy of Fig. 8.33, and also 

mark on it the directions of the planet’s velocity and accel- 

eration when at A. What is the magnitude of this acceleration? 

According to Kepler’s second law, the planet is moving faster 

at B than at C. Account for this with reference to the principle 

of conservation of energy. 

What is the moment of inertia of the planet, when at B, 

about F,? The velocities at B and C are vg and vc. Use the 

principle of conservation of angular momentum to deduce the 

ratio vp/Vc. (S.) 

12. It is proposed to place a communications satellite in a circu- 

lar orbit round the equator at a height of 3.59 x 10’m above 
the earth’s surface. Find the period of revolution of the satellite 

in hours and comment on the result. (Use the values given 

in question 10 for the radius and mass of the earth and the 

constant of gravitation.) 

13. State Newton’s Law of Gravitation. If the acceleration due 

to gravity, g,,, at the moon’s surface is 1.70m s~* and its radius 

is 1.74 x 10° m, calculate the mass of the moon. 

To what height would a signal rocket rise on the moon, 

if an identical one fired on earth could reach 200m? (Ignore 

atmospheric resistance.) Explain your reasoning. 

Explain, using algebraic symbols and stating which quantity 

each represents, how you could calculate the distance D of 

the moon from the earth (mass M.,) if the moon takes ¢ seconds 

to move once round the earth. 

What is meant by ‘weightlessness’, experienced by an 

astronaut orbiting the earth, and how is it caused? Explain 

also whether he would have the same experience when falling 

freely back to earth in his capsule just prior to re-entry in 

the earth’s atmosphere. (Gravitational constant = 6.67 x 

10~!! m?kg~!s~?; acceleration due to gravity = 9.81 ms~?.) 

(S.) 

14. Explaining each step in your calculation and pointing out 

the assumptions you make, use the information below to esti- 

mate the mean distance of the moon from the earth. 

Period of rotation of the moon around the earth = 27.3 days 

Radius of earth = 6.37 x 10°km 
Acceleration due to gravity at earth’s surface, g =9.81ms~? 

(J.M.B. part qn.) 

15. The graph (Fig. 8.33) shows how the force of attraction 

on a 1 kg mass towards the earth varies with its distance from 

the centre of the earth. It shows that the force at a distance 

equal to the radius R of the earth is 10 newtons. 

R=6400 km 
5 

Force in newtons NS ONC 

R 2R 3R 4R 

Distance 

Fig. 8.33 

(a) Calculate the force on the mass at distances of (i) OR 
(ii) 1OR from the earth’s centre. 

(b) Shade in on (a copy of) the graph an area which gives 
the energy change in moving the mass from 3R to 2R. 

(c) Make a rough estimate of the increase in kinetic energy 
when the mass falls from 10R to 9R. (O. and C. Nuffield) 
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S.H.M.—a mathematical model 

Introduction 

In previous chapters linear and circular motion were 

considered. Another common type of motion is the to- 
and-fro repeating movement called a vibration or oscil- 

lation. 

Examples of oscillatory motion are provided by a 

swinging pendulum, a mass on the end of a vibrating 

spring, the strings and air columns of musical instru- 

ments when producing a note. Sound waves are trans- 

mitted by the oscillation of the particles of the medium 

in which the sound is travelling. We also believe that 

the atoms in a solid vibrate about fixed positions in their 

lattice. 
Engineers as well as scientists need to know about 

vibrations. They can occur in turbines, aircraft, cars, 

tall buildings and chimneys and were responsible for 

the collapse of the Tacoma Narrows suspension bridge 

in America in 1940 when a moderate gale set the bridge 

oscillating until the main span broke up, Fig. 9.la and 

b. In metal structures they can cause fatigue failure (p. 

36). 

In a mechanical oscillation there is a continual inter- 
change of potential and kinetic energy due to the system 

having (i) elasticity (or springiness) which allows it to 

store p.e. and (ii) mass (or inertia) which enables it 

to have k.e. Thus, when a body on the lower end of 

a spiral spring, Fig. 9.2, is pulled down and released, 

the elastic restoring force pulls the body up and it 
accelerates towards its equilibrium position O with 

---B 

Elastic ga 
restoring ay 

force a 

Fig. 9.2 

= 

Fig. 9.1 
(b) 
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increasing velocity. The accelerating force decreases 

as the body approaches O (since the spring is stretched 

less) and so the rate of change of velocity (i.e. the 

acceleration) decreases. 
At O the restoring force is zero but because the body 

has inertia it overshoots the equilibrium position and 
continues to move upwards. The spring is now com- 

pressed and the elastic restoring force acts again but 

downwards towards O this time. The body therefore 

slows down and at an increasing rate due to the restoring 
force increasing at greater distances from O. The body 

eventually comes to rest above O and repeats its motion 

in the opposite direction, p.e. stored as elastic energy 

of the spring being continually changed to k.e. of the 

moving body and vice versa. The motion would continue 

indefinitely if no energy loss occurred, but energy is 

lost. Why? 

The time for a complete oscillation from A to B and 

back to A, or from O to A to O to B and back to 

O again is the period T of the motion. The frequency 

f is the number of complete oscillations per unit time 

and a little thought (perhaps using numbers) will indi- 

cate that 

An oscillation (or cycle) per second is a hertz (Hz). 

The maximum displacement OA or OB is called the 

amplitude of the oscillation. 

Some other simple oscillatory systems are shown in 

Fig. 9.3. It is worth trying to discover experimentally 

(i) which have a constant period (compared with a 
watch), (ii) what factors determine the period (or fre- 

quency) of the oscillation and (iii) whether ‘time-traces’ 

of their motions can be obtained and what they look 

like. 

Simple harmonic motion 

In Fig. 9.4, N is a body oscillating in a straight line 

about O, between A and B; N could be a mass hanging 

from a spiral spring. Previously, in linear motion we 

considered accelerations that were constant in magni- 

tude and direction, and in circular motion the accelera- 

tions (centripetal) were constant in magnitude if not 

in direction. In oscillatory motion, the accelerations, 

like the displacements and velocities, change periodi- 

cally in both magnitude and direction. 
Consider first displacements and velocities. When N 

1 is below O, the displacement (measured from O) is 
if =F downwards; the velocity is directed downwards when 
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N is moving away from O but upwards when it moves 

towards O and is zero at A and B. When N is above 
O, the displacement is upwards and the velocity upwards 
or downwards according to whether N is moving away 
from or towards O. 

The variation of acceleration can be seen by consider- 

ing a body oscillating on a spiral spring. The magnitude 

of the elastic restoring force increases with displacement 

but always acts towards the equilibrium position (i.e. 

O); the resulting acceleration must therefore behave 

likewise, increasing with displacement but being direc- 

ted to O whatever the displacement. Thus if N is below 

O, the displacement is downwards and the acceleration 

upwards, but if the displacement is upwards the accele- 
ration is downwards. If we adopt the sign convention 

that quantities acting downwards are positive and those 
acting upwards are negative then acceleration and dis- 

placement always have opposite signs in an oscillation. 

Fig. 9.5 summarizes these facts and should be studied 

carefully. 
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Sign convention: downwards+ 

upwards — 

Fig. 9.5 

The simplest relationship between the magnitudes of 

the acceleration and the displacement would be one in 

which the acceleration a of the body is directly propor- 

tional to its displacement x. Such an oscillation is said 
to be a simple harmonic motion (s.h.m.) and is defined 

as follows. 

If the acceleration of a body is directly proportional 

to its distance from a fixed point and is always directed 
towards that point, the motion is simple harmonic. 

The equation relating acceleration and displacement 

can be written 
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ax —Xx 

or a= -—constant . x 

The negative sign indicates that although the accelera- 

tion is larger at larger displacements it is always in the 

opposite direction to the displacement, i.e. towards O. 

What kind of motion would be represented by the above 
equation if a positive sign replaced the negative sign? 

(It would not be an oscillation.) 

In practice many mechanical oscillations are nearly 

simple harmonic, especially at small amplitudes, or are 

combinations of such oscillations. In fact any system 

which obeys Hooke’s law will exhibit this type of motion 

when vibrating. The equation for s.h.m. turns up in 

many problems in sound, optics, electrical circuits and 

even in atomic physics. In calculus notation it is written 

dx 
—> = —constant . x 
dt 

where a= dv/dt = d°x/dt?. Using calculus this second- 
order differential equation can be solved to give expres- 
sions for displacement and velocity. However, in the 

next section we shall use a simple geometrical method 
which links circular motion and simple harmonic 

motion. 

Equations of s.h.m. 

Suppose a point P moves round a circle of radius r and 

centre O with uniform angular velocity w, its speed v 

round the circumference will be constant and equal to 

wr, Fig. 9.6a. As P revolves, N, the foot of the perpendi- 

cular from P on the diameter AOB, moves from A to 

O to B and returns through O to A as P completes 

each revolution. Let P and N be in the positions shown 

at time ¢ after leaving A, with radius OP making angle 

@ with OA and distance ON being x. We will now show 

that N describes s.h.m. about O. 

O wr cos 6 

B wr 2 
P 

(b) 

vsin@ 

K Vv 
V=or 

Ow 
: é P 

A (c) 

(a) 

Fig. 9.6 
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(a) Acceleration. The motion of N is due to that of 

P, therefore the acceleration of N is the component of 

the acceleration of P parallel to AB. The acceleration 

of P is wr (or v?/r) along PO and so the component 

of this parallel to AB is w*r cos 6, Fig. 9.6b. Hence 
the acceleration a of N is 

a=-—w’rcos 0 

The negative sign, as explained before, indicates mathe- 

matically that a is always directed towards O. Now x = 

rcos 6, 

a=—w°x 

Since w? is a positive constant, this equation states that 
the acceleration of N towards O is directly proportional 

to its distance from O. N thus describes s.h.m. about 

O as P moves round the circle—called the auxiliary circle 

—with constant speed. 
The table below gives values of a for different values 

of x and we see that a is zero at O and a maximum 

at the limits A and B of the oscillation where the direc- 

tion of motion changes. 

Using the arrangement of Fig. 9.7 the shadow of a 

ball moving steadily in a circle can be viewed on a screen. 

The shadow moves with s.h.m. and represents the pro- 
jection of the ball on the screen. 
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Fig. 9.7 

(b) Period. The period T of N is the time for N to 
make one complete oscillation from A to B and back 
again. In the same time P will travel once round the 
auxiliary circle and therefore 

T circumference of auxiliary circle 

speed of P 

(since v = ar) 

For a particular s.h.m. w is constant and so Tis constant 

and independent of the amplitude r of the oscillation. 
If the amplitude increases, the body travels faster and 

so T remains unchanged. A motion which has a constant 

period whatever the amplitude is said to be isochronous 

and this property is an important characteristic of s.h.m. 

(c) Velocity. The velocity of N is the component of 

P’s velocity parallel to AB which 

=—vsin 6 (see Fig. 9.6c) 

= —or sin 6 (since v = wr) 

Since sin 6 is positive when 0° < 6< 180°, i.e. N moving 

upwards, and negative when 180°<6< 360°, i.e. N 

moving downwards, the negative sign ensures that the 
velocity is negative when acting upwards and positive 

when acting downwards (see Fig. 9.5). The variation 

of the velocity of N with time ¢ (assuming P, and so 

N, start from A at zero time) 

= —or sin wt (since 6= af) 

The variation of the velocity of N with displacement x 

=—orsin 0 

= twrV1 — cos? 6 

Saveur 
= +oVr?— x 

Hence the velocity of N is 

(since sin? 6 + cos? @= 1) 

+qwr (a maximum) when x = 0 

zero when x = +r 

(d) Displacement. This is given by 

x =rcos 6 

=P cos wt 

The graph of the variation of the displacement of N 
with time (i.e. its ‘time-trace’) is shown in Fig. 9.84 
and like those for velocity and acceleration in Figs. 9.85 
and c it is sinusoidal. Note that when the velocity is 
zero the acceleration is a maximum and vice versa. We 
say there is a phase difference of a quarter of a period 
(i.e. T/4) between the velocity and the acceleration. 
What is the phase difference between the displacement 
and the acceleration? 
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Fig. 9.8 

(e) Summary 

acceleration = —w*x = —w’r cos wt 

velocity = twVr? — x? = ar sin wt 

displacement = r cos wt 

period = 27/w 

These equations are true for any s.h.m. 

Expression for w 

Consider the equation a = —w*x. We can write (ignoring 

signs) 

where m is the mass of the system. The force causing 

the acceleration a at displacement x is ma, therefore 

ma/x is the force per unit displacement. Hence 

___ |force per unit displacement 

any mass of oscillating system 

The period T of the s.h.m. is given by 

27 
T=— 

wW 

5 | mass of oscillating system 
— vin ———aaaEEEEy—————— a 

force per unit displacement 
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This expression shows that T increases if (i) the mass 

of the oscillating system increases and (ii) the force per 

unit displacement decreases, i.e. if the elasticity factor 
decreases. 

An oscillation is simple harmonic if its equation of 

motion can be written in the form 

a= — (positive constant) . x 

For convenience the ‘positive constant’ is usually repre- 

sented by w” since T=27/w. Hence w is the square 

root of the ‘positive constant’ in the acceleration— 

displacement equation. 

Mass on a spring 

(a) Period of oscillations. The extension of a spiral 
spring which obeys Hooke’s law is directly proportional 

to the extending tension. A mass m attached to the end 

of a spring exerts a downward tension mg on it and 

if it stretches it by an amount / as in Fig. 9.9a, then 

if k is the tension required to produce unit extension 
(called the spring constant and measured in N m7) the 

stretching tension is also k/ and so 

mg = kl 

(a) (b) 

k (a) 

| Equilibrium 
position 

mg 
Fig. 9.9 

Suppose the mass is now pulled down a further dis- 

tance x below its equilibrium position, the stretching 
tension action downwards is k(/ +x) which is also the 

tension in the spring acting upwards, Fig. 9.9b. Hence 

the resultant restoring force upwards on the mass 

= k(l+ x) —mg 

=kl+kx—kl (since mg = kl) 

= kx 

When the mass is released it oscillates up and down. 

If it has an acceleration a at extension x then by 
Newton’s second law 

—kx =ma 
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The negative sign indicates that at the instant shown 

a is upwards (negative on our sign convention) while 
the displacement x is downwards (i.e. positive). 

k 
a=—-—x=-wx 

m 

where w* = k/m =a positive constant since k and m are 
fixed. The motion is therefore simple harmonic about 

the equilibrium position so long as Hooke’s law is 

obeyed. The period T is given by 

It follows that T? = 47?m/k. If the mass m is varied 
and the corresponding periods T found, a graph of T? 

against m is a straight line but it does not pass through 

the origin as we might expect from the above equation. 

This is due to the mass of the spring itself being 

neglected in the above derivation. Its effective mass and 

a value of g can be found experimentally. 

(b) Measurement of g and effective mass of spring. 

Let m, be the effective mass of the spring, then 

T=2 [m+ m, 

But mg = kl 

Substituting for m in the first equation and squaring, 
we get 

By measuring (i) the static extension / and (ii) the cor- 

responding period 7, using several different masses in 

turn, a graph of / against T? can be drawn. It is a straight 
line of slope g/47? and intercept gm,/k on the / axis, 
Fig. 9.10. Thus g and m, can be found. Theory suggests 

( | Slope = CD/BD 
= 9/4n? Cc 

Intercept OA 

= gm,/ k 

Fig. 9.10 

that the effective mass of a spring is about one-third 

of its actual mass. 

Simple pendulum 

(a) Period of oscillations. The simple pendulum con- 
sists of a small bob (in theory a ‘particle’) of mass m 

suspended by a light inextensible thread of length / from 

a fixed point B, Fig. 9.11. If the bob is drawn aside 
slightly and released, it oscillates to and fro in a vertical 

plane along the arc of a circle. We shall show that it 

describes s.h.m. about its equilibrium position O. 

mg cos @ 

Fig. 9.11 

Suppose at some point the bob is at A where arc 

OA =x and OBA = @. The forces on the bob are P 

and the weight mg of the bob acting vertically down- 

wards. Resolving mg radially and tangentially at A we 

see that the tangential component mgsin @ is the un- 

balanced restoring force acting towards O. (The com- 

ponent mg cos @ balances P.) If a is the acceleration 

of the bob along the arc at A due to mgsin @ then the 
equation of motion of the bob is 

—mg sin 6= ma 

The negative sign indicates that the force is towards 

O while the displacement x is measured along the arc 
from O in the opposite direction. 

When @ is small, sin @= @ in radians (e.g. if @=5°, 

sin 6=0.0872 and 6=0.0873 rad) and x =/@ (see p. 

165). Hence 

x 
—mg 0= Se =ma 

a= -=x =-w*x (where w? = g/I) 

The motion of the bob is thus simple harmonic if the 

oscillations are of small amplitude, i.e. @ does not exceed 
10°. The period T is given by 



Tis therefore independent of the amplitude of the oscil- 

lations and at a given place on the earth’s surface where 

g is constant, it depends only on the length / of the 
pendulum. 

A multiflash photograph of a single swing of a simple 
pendulum is shown in Fig. 9.12. 

Fig. 9.12 

(6) Measurement of g. A fairly accurate determina- 

tion of g can be made by measuring 7 for different values 

of / and plotting a graph of / against T*. A straight 

line AB is then drawn so that the points are evenly 

distributed about it, Fig. 9.13. It should pass through 

the origin and its slope BC/CA gives an average value 

of //T? from which g can be calculated since 

Fig. 9.13 
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The experiment requires (i) 100 oscillations to be 

timed, (ii) an angle of swing less than 10°, (iii) the length 

/to be measured to the centre of the bob, (iv) the oscilla- 

tions to be counted as the bob passes the equilibrium 
position O. Why? 

S.H.M. calculations 

1. A particle moving with s.h.m. has velocities of 

4cms!and3cms~ at distances of 3 cm and 4m respec- 

tively from its equilibrium position. Find (a) the ampli- 

tude of the oscillation, (b) the period, (c) the velocity 

of the particle as it passes through the equilibrium posi- 

tion. 

(a) Using the previous notation and taking the case 

shown in Fig. 9.14, the equation for the velocity is 

velocity = —wV r? — x? (p. 188) 

if we take velocities and displacements to the left as 

being negative and those to the right positive. 

3cm s-! 

O 3cm 4cm 
| ——anEEEEEE=EEEEEEEEeeeee an 

4cm s7! 

Fig. 9.14 

When x = +3cm, velocity = —4cms7!; therefore 

—4 = —qw\ /y?2 =) 

When x = +4cm, velocity = —3cms7!; therefore 

—3=—-wVr?- 16 

Squaring and dividing these equations we get 

16 _ r?—9 

9 2-16 

Hence f= cm 

(b) Substituting for vin one of the velocity equations 

we find 

(c) At the equilibrium position x = 0 

velocity = twV r? — x? 

= tor 

=+5cems 
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2. A light spiral spring is loaded with a mass of 50g 

and it extends by 10cm. Calculate the period of small 

vertical oscillations. (g = 10 ms~*) 

The period T of the oscillations is given by 

r=2n|™ =e k 

where m=50 x 10-*kg 

and k = force per unit displacement 

_ 50x 10-3 x 10N 

~ 10x 10-2m 

505210 
e247 nares Fact 10725 

=O lms 

=)()63's 

=5,0Nm~ 

3. Asimple pendulum has a period of 2.0 and an ampli- 

tude of swing 5.0cm. Calculate the maximum magnitudes 
of (a) the velocity of the bob, (b) the acceleration of 

the bob. 

(a) T=27/w, therefore w=227/T=2n/2=7s"1. 
Velocity is a maximum at the equilibrium position where 

x=0. 

v=toVr?—x?* 

=+7V 25 

= te SC sa 

(since r= +5cm) 

1 

=t+16cems™! 

(b) Acceleration is a maximum at the limits of the 

swing where x =r= £5.0cm. 

C= Osi 

= —q7*x5cems 2 

=—50cms~ 

Energy of s.h.m. 

In an oscillation there is a constant interchange of 

energy between the kinetic and potential forms and if 

the system does no work against resistive forces 
(i.e. is undamped) its total energy is constant, as we 

shall now show. 

(a) Kinetic energy. The velocity of a particle N of 
mass m at a distance x from its centre of oscillation 

Orig 915,18 

v=+oVr?—x? 

k.e. at displacement x = 3mw?(r? — x’) 

vel=wr vel=w /r?-ac2 

N 
B 5 r= A 

T x 

Fig. 9.15 

(b) Potential energy. As N moves out from O towards 
A (or B) work is done against the force (e.g. the tension 

in a stretched spring) trying to restore it to O. Thus 

N loses k.e. and gains p.e. When x = 0, the restoring 

force is zero; at displacement x, the force is mw7x (since 

the acceleration has magnitude wx). Hence 

average force on N while moving to displacement x 

= 3mwx 

work done =average force X 

displacement in direction of force 

4.2 
= imw2x X x = 4mw2x? 

p.e. at displacement x = 3mw7x? 

(c) Total energy. At displacement x we have 

total energy =k.e. + p.e. 

= 4mw?(r? — x?) + 4mw?x? 

2 22 
= 3mw-r- 

This is constant, does not depend on x and is directly 

proportional to the product of (i) the mass, (ii) the 
square of the frequency and (iii) the square of the ampli- 

tude. Fig. 9.16a shows the variation of k.e., p.e. and 
total energy with displacement. 

In a simple pendulum all the energy is kinetic as the 

bob passes through the centre of oscillation and at the 
top of the swing it is all potential. 

(d) Variation of k.e. and p.e. with time. These vary 

with time as shown by the graphs in Fig. 9.165 since 
4 

k.e. =3mv?=3me’r’ sin? wt (v= —ar sin af) 

p.e. = 3mw2x? = 3mw’r* cos? wt (x = rcos af) 

Damped oscillations 

The amplitude of the oscillations of, for example, a pen- 

dulum gradually decreases to zero due to the resistive 

force that arises from the air. The motion is therefore 

not a perfect s.h.m. and is said to be damped by air 



Energy 

Total energy 

Displacement 

Fig. 9.16 

resistance; its energy becomes internal energy of the 
surrounding air. 

The behaviour of a mechanical system depends on 
the extent of the damping. The damping of the mass 

on the spring in Fig. 9.17 is greater than when it is in 

air. Undamped oscillations are said to be free, Fig. 

9.18a. If a system is slightly damped, oscillations of de- 

creasing amplitude occur, Fig. 9.18b. When heavily 

damped no oscillations occur and the system returns 

very slowly to its equilibrium position, Fig. 9.18c. When 

the time taken for the displacement to become zero 

is a minimum, the system is said to be critically damped, 
Fig. 9.18d. 

The motion of many devices is critically damped on 

purpose. Thus the shock absorbers on a car critically 

damp the suspension of the vehicle and so resist the 
setting up of vibrations which could make control diffi- 

Displacement 

Fig. 9.17 

Displacement 

(c) heavily damped 

Fig. 9.18 

(a) free oscillation 
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Energy 

ita energy 

0 T/4 T/2 37/4 if 

(b) 

cult or cause damage. In the shock absorber of Fig. 
9.19 the motion of the suspension up or down is opposed 

by viscous forces when the liquid passes through the 

transfer tube from one side of the piston to the other. 

Fig. 9.19 
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The damping of a car can be tested by applying your 

weight to the suspension momentarily; the car should 
rapidly return to its original position without vibrating. 

Instruments such as balances and electrical meters 

are critically damped (i.e. dead-beat) so that the pointer 

moves quickly to the correct position without oscillating. 

The damping is often produced by electromagnetic 

forces. 

Forced oscillation and resonance 

(a) Barton’s pendulums. The assembly consists of a 

number of paper cone pendulums (made by folding 

paper circles of about 5 cm diameter) of lengths varying 

from }m to {m, each loaded with a plastic curtain ring. 
All are suspended from the same string as a ‘driver’ 

pendulum which has a heavy bob and a length of 3m, 

Fig. 9.20. 

String 

Driver pendulum 

Paper cone—__ a 

pendulum Heavy bob 

Plastic curtain ring 

Fig. 9.20 

The driver pendulum is pulled well aside and released 
so that it oscillates in a plane perpendicular to that of 

the diagram. The motion settles down after a short time 

and all the pendulums oscillate with very nearly the same 

frequency as the driver but with different amplitudes. 

This is a case of forced oscillation. 

The pendulum whose length equals that of the driver 

has the greatest amplitude; its natural frequency of oscil- 

lation is the same as the frequency of the driving pendu- 

lum. This is an example of resonance and the driving 
oscillator then transfers its energy most easily to the 

other system, i.e. the paper cone pendulum of the same 
length. 

The amplitudes of oscillations also depend on the 
extent to which the system is damped. Thus removing 
the rings from the paper cone pendulums reduces their 

mass and so increases the damping. All amplitudes are 

then found to be reduced and that of the resonant fre- 
quency is less pronounced. These results are summar- 

ized by the graphs in Fig. 9.21 which indicate that the 
sharpest resonance is given by a lightly damped system. 

ae) 
o 

2 

S Light d i - ight damping 
io) 6 vy) 
oe 
nom) 
fe 
= Heavy damping 

E 
x 

Natural Driving 
frequency frequency 

Fig. 9.21 

Fig. 9.22a and b are time-exposure photographs taken 

with the camera looking along the line of swinging pen- 

dulums towards and at the same level as the bob of 

the driver. Is (a) more or less damped than (5)? 

Careful observation shows that the resonant pendu- 

lum is always a quarter of an oscillation behind the driver 

pendulum, i.e. there is a phase difference of a quarter 

of a period. The shorter pendulums are nearly in phase 
with the driver, while those that are longer than the 

driver are almost half a period behind it. This is evident 

from the instantaneous photograph of Fig. 9.22c, taken 

when the driver is at maximum displacement to the left. 

(b) Hacksaw blade oscillator. The arrangement, 

shown in Fig. 9.23, provides another way of finding out 

what happens when one oscillator (a loaded hacksaw 

blade) is driven by another (a heavy pendulum), as often 
occurs in practice. The positions of the mass on the 

blade and the pendulum bob can both be adjusted to 
alter the natural frequencies. By using different rubber 

bands the degree of coupling may be varied, as can the 
damping, by turning the postcard. The motion of the 

driver is maintained by gentle, timely taps just below 

its support. 

There is scope for investigating (i) the transient oscil- 

lations that occur as the motion starts and before the 

onset of steady conditions, (ii) resonance, (iii) phase 
relationships, (iv) damping and (v) coupling. 

(c) Examples of resonance. These are common 
throughout science and are generally useful. Thus in 

the production of musical sounds from air columns in 

wind instruments resonance occurs, in many cases, 

between the vibrations of air columns and of small 

vibrating reeds. Electrical resonance occurs when a 

radio circuit is tuned by making its natural frequency 
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Fig. 9.22 
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Fig. 9.23 

for electrical oscillations equal to that of the incoming 

radio signal. 

Information about the strength of chemical bonds 

between ions can be obtained by a resonance effect. 
If we regard electromagnetic radiation (€.g. light, 

infrared, etc.) as a kind of oscillating electrical distur- 

bance which, when incident on a crystal, subjects the 

ions to an oscillating electrical force, then, with radia- 

tion of the correct frequency, the ions could be set into 
oscillation by resonance, Fig. 9.24. Energy would be 

absorbed from the radiation and the absorbed frequency 

could be found using a suitable spectrometer. With 

sodium chloride absorption of infrared radiation occurs. 

Direction of electrical force on ions 

Lual soloed eae 8] solo 
SeFEP Ogg 

. + 
lons oscillate when force reverses 

oe ene ee 

COOOo 
Row of ions in 

a crystal 

Fig. 9.24 

Resonance in mechanical systems is a source of 

trouble to engineers. The Tacoma Narrows Bridge dis- 

aster (p. 185) was really caused by the wind producing 

an oscillating resultant force in resonance with a natural 

frequency of the bridge. An oscillation of large ampli- 

tude built up and destroyed the structure. Fig. 9.25 
shows the tail of a wind tunnel model of an aircraft 

being tested for resonance, i.e. shaken at different fre- 

quencies. It is important that the natural frequencies 
of vibration of an aircraft do not equal any that may 
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be produced by the forces experienced in flight. Other- 

wise resonance might occur and undue stress result. 

(d) Quality factor Q. This is approximately equal to 
the number of natural (free) oscillations which occur 

before the oscillator loses allits energy. Lightly damped 

oscillations that resonate sharply and die away slowly 

have high Q values. Heavily damped ones have low 

values. Q for a car suspension is 1, for a simple pendu- 

lum and a guitar string 10° and for the quartz crystal 

of a watch 10°. If middle C (256Hz) is sounded on a 
guitar string it should last for 1000/256 ~ 4s. 

S.H.M.—a mathematical model 

Real oscillators such as a motor cycle on its suspension, 

a tall chimney swaying in the wind, atoms (or ions) 
vibrating in a crystal, only approximate to the ideal type 

of motion we call s.h.m. 

S.H.M. describes in mathematical terms a kind of 

motion which is not fully realized in practice. It is a 

mathematical model and is useful because it represents 

well enough many real oscillations. This is due to its 

simplicity; complications such as damping, variable 

mass and variable stiffness (elastic modulus) are omitted 

and the only conditions imposed on the system are that 

the restoring force should be directed towards the centre 

of the motion and be proportional to the displacement. 

A more complex model might, for example, take 

damping into account and as a result be a better descrip- 

tion of a particular oscillator, but it would probably not 

be so widely applicable. On the other hand if a model 

is too simple it may be of little use for dealing with 

real systems. A model must have just the correct degree 

of complexity. The mathematical s.h.m. model has this 
and so is useful in practice. 

QUESTIONS 

1. Write a short account of simple harmonic motion explaining 

the terms amplitude, time period and frequency. 

A particle of mass m moves such that its displacement from 

the equilibrium position is given by y =a sin wt where a and 



w are constants. Derive an expression for the kinetic energy 

of the particle at a time ¢ and show that its value is a maximum 

as the particle passes through the equilibrium position. 

A steel strip clamped at one end vibrates with a frequency 

of 30Hz, and an amplitude of 4.0mm at the free end. Find 

(a) the velocity of the free end as it passes through the equili- 

brium position and (b) the acceleration at the maximum dis- 

placement. (A.E.B.) 

2. A simple pendulum of length 80cm is oscillating with an 

amplitude of 4.0cm. Calculate the velocity of the bob as it 

passes through the mid-point of its oscillation. Explain why 

the tension in the string as it passes through this point is differ- 

ent from that in the string when the pendulum hangs vertically 

at rest and state which tension has the greater value. 

(L. part qn.) 

3. Define simple harmonic motion. 

Describe an experiment to measure the acceleration due to 

gravity at the earth’s surface, using a simple pendulum. Derive 

the equation used. 

A pendulum of length 130cm has a periodic time of 7). 

The bob is now pulled aside and made to move as a conical 

pendulum in a horizontal circle of radius 50.0cm. The period 

of rotation is 7,. Find the ratio T,: 7). (3) 

4. Define simple harmonic motion and explain the meaning 

of the terms amplitude, period, and frequency. 

A body of mass 0.10kg hangs from a long spiral spring. 

When pulled down 10 cm below its equilibrium position A and 

released, it vibrates with simple harmonic motion with a period 

of 2.0s. 

(a) What is its velocity as it passes through A? 

(b) What is its acceleration when it is 5.0cm above A? 

(c) When it is moving upwards, how long a time is taken 

for it to move from a point 5.0cm below A to a point 5.0cm 

above? 

(d) What are the maximum and minimum values of its 

kinetic energy, and at what points of the motion do they occur? 

(e) What is the value of the total energy of the system and 

does it vary with time? (W.) 

5. Describe an experiment to demonstrate the effects of damp- 

ing on the oscillatory motion of a vibrating system undergoing 

(a) free and (b) forced harmonic oscillations. Draw labelled 

diagrams to illustrate the results you would expect to obtain. 

What is the physical origin of the damping mechanisms in 

the case of (a) the oscillations of a simple pendulum in air, 

(b) the vibrations of a bell sounding in air and (c) oscillatory 

currents in an electrical circuit? 

A spring is supported at its upper end. When a mass of 

1.0kg is hung on the lower end the new equilibrium position 

is 5.0cm lower. The mass is then raised 5.0cm to its original 

position and released. Discuss as fully as you can the subse- 

quent motion of the system. (O. and C.) 

6. A mass of 2.0kg is hung from the lower end of a spiral 

spring and extends it by 0.40m. When the mass is displaced 
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a further short distance x and released, it oscillates with accel- 

eration a towards the rest position. If a = —kx and if the tension 

in the spring is always directly proportional to its extension, 

what is the value of the constant k? (Earth’s gravitational! field 

strength is 9.8 N kg~!.) 

7. Define simple harmonic motion and state where the magni- 

tude of the acceleration is (a) greatest, (b) least. 

Some sand is sprinkled on a horizontal membrane which 

can be made to vibrate vertically with simple harmonic motion. 

When the amplitude is 0.10cm the sand just fails to make 

continuous contact with the membrane. Explain why this 

phenomenon occurs and calculate the frequency of vibration. 

(g=10ms’) (J.M.B.) 

8. If a mass hanging on a vertical spring which obeys Hooke’s 

Law is given a small vertical displacement it will oscillate verti- 

cally, above and below its equilibrium position. Why is the 

motion of the mass simple harmonic motion? 

Explain why the oscillations of a simple pendulum, consisting 

of a mass m hanging from a thread of length /, are almost 

perfectly simple harmonic, and why the deviations from perfect 

simple harmonic motion become greater if the amplitude of 

the swing is increased. 

A metre ruler is clamped to the top of a table so that most 

of its length overhangs and is free to vibrate with vertical simple 

harmonic motion. Calculate the maximum velocity of the tip 

of the ruler if the amplitude of the vibration is 5.0cm and 

the frequency is 4.0 Hz. What is the maximum possible ampli- 

tude if a small object placed on the ruler at the vibrating end 

is to maintain contact with it throughout the vibration? If this 

amplitude were very slightly exceeded, at what stage in the 

vibration would contact between the object and the ruler be 

broken? Explain clearly why it would happen at this point. 

(g=10ms~?) (S.) 

9. By reference to a particular system explain what is meant 

by (a) forced vibrations, (b) resonance. What are the effects 

of damping? (J.M.B.) 

10. Because of the effect on the comfort of the ride and the 

noise experienced by drivers, a manufacturer wishes to investi- 

gate the various vibrations (of the body, wheels, springs, door 

panels and so on) which can arise in motor cars. The manufac- 

turer has two cars, one of which is reported to be much more 

uncomfortable and noisy than the other. 

Draft an outline plan of a programme of tests to: 

(a) identify and compare vibrations in the cars, 

(b) investigate the reasons for discomfort and noise, 

(c) provide guidance for designers of new models. 

You may assume that any test equipment needed can be 

made available but you have to say for what the equipment 

is needed. Your plan should include an explanation of why 

the various tests are proposed. 

You are asked to plan the tests and not to predict their results 

nor to explain how the car design might be improved. 

(O. and C. Nuffield) 
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About energy 

(a) Conservation. One of the basic laws of physics 

is the principle of conservation of energy, i.e. energy 
cannot be destroyed (p. 160). However, energy is con- 

tinually being transferred from one form to another. 

Some forms of energy are more useful than others; they 

are more suitable for doing work and changing into 

other forms of energy. Electrical and chemical energy 

are in this category and are called ‘high-grade’ forms 
of energy; internal energy (i.e. kinetic energy of the 

molecules due to their random motion and potential 

energy due to the forces between molecules, p. 76) is 

a ‘low-grade’ form that is not easily converted to any- 

thing else. 

(b) Degradation. In the end, all energy changes result 

in the surroundings being heated (e.g. as a result of 

doing work against friction), that is, low-grade internal 
energy is produced. This appears to be the fate of all 

the energy in the universe. The process is called the 

‘degradation’ of energy and is the reason why there is 

a need for new sources of high-grade energy. 

Internal energy is the least ordered form of energy 

possible. The gradual ‘deterioration’ of all forms of 

energy into this state of maximum disorder is described 

by saying that the entropy of the universe is increasing. 

Decreasing the entropy is considered to be impossible; 

it would be like a hot drink that had gone cold warming 

itself up again from the colder surroundings. 

(c) Units. In physics all forms of energy are measured 
in joules (J: p. 60). In the energy industry, the kilowatt- 
hour (kWh: p. 60), the therm and the British thermal 
unit (Btu) are also used. Table 10.1 shows how they 
are related. 

The megatonne of coal equivalent (Mtce) is also in 
common use. It is defined as the energy obtained by 

burning completely 1 million tonnes of coal (1 tonne 
= 1000kg), but since the energy content of coal varies 
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from about 20 x 10°J to 30 x 10°J per tonne it is not 
an exact unit like the others. 

Table 10.1 

950 x 107° 
3.4 x 103 
100 x 10° 

Three matters of great practical importance to the 

future of the energy industry are: 

(i) energy sources 

(ii) energy conversion, and 
(iii) energy consumption. 

Energy sources 

Sources of energy that are used in the form in which 
they occur naturally are called primary energy sources. 

They fall into two groups. 

(a) Finite sources. These include the fossil fuels coal, 

oil and natural gas which are the fossilized remains of 

plants (and the tiny organisms that fed on them) buried 
600 million years ago and are not renewable. They are 

complex hydrocarbon compounds containing stores of 

chemical energy (derived originally by the action of solar 

energy on plants), which is released when they are 
burnt. 

Predictions about how long coal, oil and gas will last 

are full of uncertainties. First, because the exact size 

of the reserves is unknown and ‘recoverable’ reserves 

are always less than ‘proved’ reserves. But as the price 

of fuel rises, deposits previously considered to be uneco- 

nomic to extract, become economic. In the case of oil, 

in the past, estimates have been too low. Second, future 



demand is very difficult to forecast and depends, among 
other things, on the growth of the world’s population 

(over 4000 million at present and expected to reach 
about 6000 million by the year 2000), the standard of 
living and the way industry develops in different coun- 

tries. However, it is clear that even at present rates 
of consumption, the world’s recoverable deposits of oil 

and gas will be running low early in the 21st century; 

coal should last perhaps for about 200 years or so (see 

question 3, p. 215). 

Nuclear fuels such as uranium are also finite resources. 
At present we have enough of these to last at least 100 
years. 

(b) Renewable sources. These cannot be exhausted. 

Solar energy, biomass, wind, wave and water power are 
solar in origin; tidal and geothermal energy are not 

(although the sun does have some influence on the 

tides). Each will be discussed later. 

(c) Energy density. In an energy source such as coal, 
which has a high energy density, the energy is concen- 

trated and the converter needed to release it (i.e. a fur- 

nace) is relatively small. By contrast, the energy density 

of solar energy is low (despite the huge amounts of 

energy falling on the earth) and as a result a solar con- 

verter must be larger for the same power. 

(d) Availability. An energy source should be avail- 

able when it is needed and capable of meeting increased 

demand. In the case of, for example, solar and wind 

sources, this may not be possible. 

Energy conversion 

Engines, machines and many other appliances invented 

by the human race are used to do work in industry, 

agriculture, the home and for transport. Such devices 

are energy converters which accept energy in one form, 

not necessarily a primary energy form, and change it 

into one or more other forms as a result of doing the 

job required. 
A car engine is designed to change the chemical 

energy of petrol into mechanical energy (k.e. of the 

car) but it also produces unwanted internal (low-grade) 

energy which heats the exhaust gases, the car and the 

surrounding air. The conversion process is represented 

by the energy-flow diagram in Fig. 10.1. 
An electric motor converts electrical energy into 

mechanical energy (k.e. of its moving parts) but again 

internal energy is also produced. 
The efficiency of an energy conversion process is 

defined by 
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; useful energy output 
efficiency = —————_—__—_ 

total energy input 

and is expressed as a fraction or as a percentage. The 

useful energy is energy produced for the job in hand, 

for example, mechanical energy (not internal energy) 
in the case of a car engine. 

INTERNAL ‘Lost’ 
ENERGY energy 

CHEMICAL of exhaust 
ENERGY | Changed by | gas, car and 

of car engine to surroundings 
petrol 

KINETIC 
ENERGY Useful 

of car energy 

Fig. 10.1 

Table 10.2 lists the percentage efficiencies of some 
devices and the energy changes involved. 

Table 10.2 

Device % Energy change 
efficiency 

Large electric motor 90 Electrical to mechanical 
Large electric 

generator 
Domestic gas boiler 

90 
75 

Mechanical to electrical 
Chemical to internal 

energy 
Internal energy to 

mechanical 

Chemical to mechanical 

Steam turbine 

Car engine 

One of the guiding principles of energy-efficient 

design is that, whenever possible, the grade of the 

energy supplied for a job should match the end-use 

need. Only in that way can the energy conversion losses 

be reduced to a minimum and efficiency increased. 

Energy consumption 

(a) Patterns of consumption. The percentage contri- 

bution of the various forms of primary energy to the 

world’s consumption at the present time are given (in 

rounded figures) in Table 10.3. 

Table 10.3 

N 

= ae 
(In 1982 the total consumption was about 3.0 x 10°°J.) 
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The pattern for the U.K. is very similar (see Fig. 
10.3). The great dependence on fossil fuels is evident, 

and in view of the predictions about how soon these 

are likely to be used up, it is clear that the world has 

an energy problem. The need to find alternative and 
preferably renewable primary sources is urgent. 

Consumption varies from one country to another; 

North America and Western Europe are responsible 
for about half of the world’s energy consumption each 

year. Table 10.4 shows recent values for the consump- 

tion per head of population per year (in J x 10°) for 
various areas. For the world as a whole the average 

figure is 63 x 10°J per head per year. 

Table 10.4 

The U.K. figure is the equivalent of about 100 kWh per 

day but includes the primary energy used by industry 
and transport and the conversion losses that occur 
before the energy reaches the consumer. 

(b) Growth of demand. The demand for primary 
energy has escalated dramatically in the last half-cen- 

tury. The consumption of oil doubled every 8 or 9 years 

during the 1950s and 60s, while as much coal was burnt 

in the 30 years following World War II as had been 

used since it was first mined hundreds of years ago. 

The growth of demand is shown by the graph in Fig. 

10.2. It levelled off in 1973 when the price of oil quadru- 
pled and conservation was taken more seriously. In 

recent years the world economic depression has caused 
a fall but the demand is still enormous. 

3.0 
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Fig. 10.2 

Energy use in the U.K. 

The flow diagram in Fig. 10.3 shows, in round numbers, 

how the various forms of energy are currently used in 

the U.K. It brings out the following points: 
(i) About one-third of the primary energy used is lost 

as internal energy (i.e. heating of the surroundings) dur- 
ing conversion (and distribution) to delivered (second- 
ary) energy forms such as petrol, diesel oil, electricity 

and coke. (Boxes I and 2) 
(ii) Approaching one-half of the oil used as delivered 

energy is consumed by cars, lorries, aircraft, etc. (Box 

3) 
(iii) Industrial and domestic users each take about 

one-third of the delivered energy, with transport 

accounting for one-quarter and others (e.g. agriculture 

and commerce) consuming the rest. (Box 4) 

(iv) Three-quarters of the energy supplied to homes 
is used for space heating, the rest is required for water 

heating, electrical appliances and cooking. (Box 5) 

(v) Over two-thirds of the delivered energy is used 

for space, water and industrial process heating and is 

mostly low-grade energy. One-fifth or so is required 

as liquid fuel for transport and the remainder for light- 

ing, electrical devices and processes, and in telecom- 
munications. (Box 6) 

(vi) About one-third of the total primary energy con- 
sumption is again lost when delivered energy is con- 

verted to useful energy (end-use energy), giving an 

overall efficiency for the complete conversion process 

of roughly 40%. (Box 7) 

Thermal power stations 

The electrical energy produced at a power station 

(80% from coal in the UK) is a very convenient form 
of high-grade secondary (delivered) energy. It has the 

added advantage of being easily distributed by cables 
and for many uses there is no alternative to it. 

A thermal power station uses coal, oil or uranium 
as the primary energy source. The layout of a fossil- 

fuel/nuclear station and the energy-flow diagram are 
given in Fig. 10.4a, b. 

(a) Action. In a fossil-fuel station, the coal or oil is 

burnt in a furnace and produces hot gases; in a nuclear 

station, carbon dioxide gas is heated by the fission of 

uranium in a reactor (see Volume II, chapter 25). In 

the first case, the hot gases convert water into high- 

pressure steam, with a temperature of 560°C, ina boiler; 
in the second case it occurs in a heat exchanger. 

The steam passes through pipes to the high-pressure 
cylinder of a steam turbine consisting of a ring of station- 
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ary blades fixed to the cylinder wall. These direct the 

steam on to a second ring of blades, secured to the 

turbine shaft, which turn under the force of the steam. 

Some of the internal energy of the steam is thus changed 
into mechanical (kinetic) energy by the turbine. When 

it leaves the high-pressure cylinder, the steam returns 

to the boiler or heat exchanger for reheating before 

it enters the intermediate and low-pressure cylinders. 
In its passage through the turbine, the temperature 

and pressure of the steam fall and it expands. Because 

of this expansion, the blades are much larger towards 

the low-pressure end of the turbine. 
In the condenser below the turbine the steam is con- 

densed back to water for re-use in the boiler or heat 
exchanger. A partial vacuum is created in the condenser 

(due to the greater density of water) and this increases 

the efficiency of the process and allows more energy 

to be extracted from the steam. Large amounts of cool- 
ing water are needed for the condenser; after use this 

water is cooled in large cooling towers and re-used. 
The turbine drives a generator which converts the 

mechanical (kinetic) energy of the turbine into electrical 

supplied 
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energy in the form of alternating current (of frequency 
50 Hz and voltage 25 000 V in the U.K.). 

(b) Efficiency. The efficiency of a thermal power 

station in converting primary energy into electrical 

energy is about 30%, i.e. 70% of the energy input is 

‘lost’, about half of the loss being to the surroundings 

via the cooling towers. The conversion of internal 

energy to mechanical energy is a very inefficient process 

and has a theoretical upper limit. It can be shown that 

when it occurs in for example a steam turbine, some 

of the internal energy of the high-temperature fuel (i.e. 

steam) must be transferred to the low-temperature sur- 

roundings, the amount depending on the two tempera- 

tures (see Volume II, chapter 21). 
The maximum efficiency E is given by 

T, or T; 

qT 

where 7, and 7, are the high and low temperatures 

respectively, in K. In a modern power station steam 

enters the turbines at about 830K (560°C) and if it is 

E= 
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rejected at say 300 K (27°C) then E = (830 — 300)/830 
= 530/830 ~ 64%. Practical factors reduce this further. 

(c) Combined heat and power (C.H.P.). In this sys- 
tem the internal energy that would otherwise be lost 

from the cooling towers is used to provide space heating 
and hot water to homes and factories near power 

Stations. It requires the steam turbines to be adapted 
to supply internal energy at temperatures around 90°C 
(instead of 25 to 30°C), which are suitable for heating. 

The generation of electrical energy has to be reduced 

by 15 to 20% but this is more than compensated for 

INTERNAL 
ENERGY 

of 
steam 

KINETIC 
ENERGY 
of rotating 
turbine 

changed by 

ENERGY turbine to generator to 

INTERNAL ENERGY lost from cooling towers and 
by friction in turbine and generator, to 

surroundings 

by the increase in overall efficiency of the power station 
to around 75% or so. 

Fuels and pollution 

The use of fuels, fossil or nuclear, causes pollution, i.e. 

has an effect on the environment which is generally con- 
sidered to be adverse. 

(a) Fossil-fuel power stations discharge smoke and 

gases (e.g. sulphur oxides, carbon dioxide) into the 

atmosphere. Sulphur oxides cause ‘acid rain’ when they 
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combine with water in the atmosphere. Any increase 

in the carbon dioxide content of the atmosphere reduces 

the rate at which energy is radiated from the earth due 

to carbon dioxide absorbing it (in the same way as the 

glass ofa greenhouse does). The resulting rise in tempera- 

ture of the earth could have dramatic climatic effects. 
‘Thermal’ pollution is further aggravated by the produc- 

tion of waste internal energy. The use of electrostatic 

precipitators (see Volume II, chapter 13) removes about 
99% of the dust from the furnace flue-gases before they 
reach the chimney. A large amount of ash is also pro- 

duced when coal is used but this is useful in road-making 

and building construction. 

(b) Nuclear power stations discharge radioactive 
materials in the form of gases into the atmosphere and 
liquids into the sea, but these are limited to what are 

thought to be safe levels. Problems also arise from the 

need to store safely, sometimes for many years, other 

radioactive waste products. These fall into three cate- 
gories, high-, intermediate- and low-level types. 

High-level tvpes pose the greatest danger since the 

treatment they receive must be effective for about one 

million years. The plan is to incorporate them in a very 
stable solid, which would be buried deep in the earth. 

This immobilizing solid must do two things. 
First, it must withstand contact with water without 

disintegrating and allowing the radioactive material to 

escape, even at high temperatures (due to the increase 

of temperature with depth in the earth, about 20-30°C 

per km, and also to the radioactive heating effect). 

Second, its structure must survive the bombardment it 
would receive from the alpha particles emitted by the 

radioactive material within it, for the necessary length 

of time. 
The solid most generally considered to be suitable 

is a borosilicate glass. Another material under investiga- 

tion is a synthetic ceramic called ‘Synroc’, containing 

titanium compounds, and which resembles a natural 
rock that has safely contained radioactive material for 

up to 2000 million years. 
Intermediate-level waste, which is active for up to 

300 years, may be incorporated in concrete in steel 

changed by 

of moving | water turbine 

INTERNAL ENERGY and SOUND ENERGY 
lost to surroundings 
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drums and buried in the ground or at sea, but this is 

still under investigation. 

Low-level waste is large in volume but its radioactivity 

is weak, and it can be stored safely in steel drums. 

Hydroelectric power stations 

(a) Action. In hydroelectric power stations the tur- 

bines are driven by fast-flowing water, obtained when 

water stored behind a dam in a high-level reservoir falls 

to a lower level. The energy-flow diagram is given in 
Fig. 10.5. 

The power available depends on the head of water 

(i.e. the vertical height through which it falls) and the 
rate of flow. Doubling either roughly doubles the power, 

doubling both gives approximately four times the 
power. ~ 

(b) Efficiency. The efficiency of a large installation 

can be as high as 85 to 90% since many of the causes 

of energy losses in thermal power stations are absent. 

In some cases the electrical energy is produced at less 

than half the cost per unit compared with a coal-fired 
plant. 

(c) Pumped storage. Electrical energy cannot be 
stored, it must be used as it is generated, but the demand 

for it varies with the time of day and season, as the 
typical graphs in Fig. 10.6 show. 
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Fig. 10.7 

In a hydroelectric station with pumped storage, like 
that at Ffestiniog in North Wales, Fig. 10.7, electricity 

generated at ‘off-peak’ periods is used to pump water 

back up from the low-level reservoir to the high-level 

reservoir (just visible behind the power station in the 

photograph). It is easier to do this than to reduce the 

output of the generators. At ‘peak’ demand times, the 

potential energy of the water in the high-level reservoir 

is converted back into electrical energy, three-quarters 

of a unit being produced for every unit used to pump 

the water. 

(d) Further points. In the U.K., hydroelectric power 

stations generate about 2% of the electricity supply. 

Most are located in Scotland and Wales where the aver- 
age rainfall is higher than in other areas. In some coun- 
tries there are very large hydroelectric undertakings, 

for example, the Snowy Mountains scheme in Australia, 

the Kariba Dam project in Zimbabwe, and in Norway 
where mountain reservoirs abound. 

Hydroelectric power is a renewable source which is 
reliable and easily maintained. There are risks con- 
nected with the construction of dams but these and the 

impact on the environment are minimal with good plan- 

ning and management. 

Solar energy 

(a) Nature. The sun’s energy is produced by thermo- 
nuclear fusion (see Volume II, chapter 25). It consists 

of electromagnetic radiation ranging from short-wave- 

length X-rays to long-wavelength radio waves, with 

about 99% of it in the form of light, infrared and ultra- 

violet radiation. 

Not all of the solar radiation arriving at the edge of 

the earth’s atmosphere reaches the earth’s surface; 

about 30% is reflected back into space by atmospheric 
dust and by the polar ice caps. Another 47% is absorbed 

during the day by land and sea and becomes internal 

energy, i.e. it heats the earth. At night this is radiated 

back into space (as infrared) by the earth as it cools 

down. 

A further 23% causes evaporation from the oceans 

to form water vapour that is carried upwards by convec- 

tion currents as clouds. When it rains some of this energy 

becomes gravitational potential energy of the water 

stored in mountain lakes and reservoirs, i.e. the source 

of hydroelectric power. 

About 0.2% causes convection currents in the air, 

creating wind power which in turn causes wave power. 

Finally, 0.02% is absorbed by plants during photosyn- 



thesis and is stored in them as chemical energy (e.g. 

of sugar). As we shall see later, plants are a source 
of biofuels. 

(b) Solar constant. This is defined as the solar energy 

falling per second on a square metre placed normal to 
the sun’s rays at the edge of the earth’s atmopshere, 

when the earth is at its mean distance from the sun. 

Its value is 1.35 X 10° Js~'m~? or 1.35kWm~?. 
The amount of solar radiation received at any point 

on the earth’s surface depends on: 

(i) the geographical location; for example, the 

amount falling annually on each square metre of the 

U.K. is about half that in sunny regions like California 
which is nearer the equator; 

(ii) the season, especially in northern latitudes where 

the variations from summer to winter can be consider- 

able; 

(iii) the time of day; the lower the sun is in the sky 
the greater is the atmospheric absorption; and 

(iv) the altitude; the greater the height above sea level 

the less is the absorption by the atmosphere, clouds 

and pollution. 

In the U.K. solar energy is received at an average 

rate of about 200 Wm~?. 

Solar devices 

The solar energy falling on the earth in an hour equals 
the total energy used by the world in a year. Its greatest 

potential use is as a source for low-temperature space 
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and water heating, but it can also produce high-tempera- 
ture heating at temperatures of over 3000°C or be con- 

verted directly into electricity. Unfortunately its low 

energy density requires large collecting devices and its 

availability is variable. 

(a) Passive solar heating. This is achieved by captur- 
ing the sun’s rays directly through large south-facing 

(in the northern hemisphere) windows. The internal 

energy so acquired is distributed through the building 

naturally by conduction, convection and radiation. The 

use of building materials with a high specific heat capa- 

city, which warm up during the day and gradually release 

their energy as the outside temperature falls, helps to 

smooth out variations. Double-glazed windows (and 
small north-facing ones) and well-insulated walls and 

roofs are also essential. 

(b) Active solar heating. Solar collectors are used, 

their shape and size depending on the temperature range 

they cover. Two of the many types will be considered. 
Flat plate collectors (solar panels) are low-tempera- 

ture devices used to heat swimming-pools and to pro- 

duce domestic hot water up to about 70 °C. One is shown 
on the roof of a house in Fig. 10.8a; its construction 
is given in Fig. 10.8). 

Thin copper tubes containing the water to be heated 

are partly embedded in a copper collector plate (both 

blackened) which is mounted on a good thermal insu- 

lator in a metal frame. Solar radiation falls on the tubes 
and plate through a glass cover where it is trapped, as 

Fig. 10.8(a) 
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in a greenhouse. The warmed water is pumped to a 
heat-exchange coil in an insulated hot-water tank con- 

nected to the house hot-water system. In the U.K. the 

panel should face south roughly and be tilted at an angle 

of between 30° and 40° for maximum annual output. 

Parabolic dish collectors (solar furnaces) capable of 

creating very high temperatures use mirrors to concen- 

trate the sun’s rays on to a small area at their focus. 

A boiler housed in a tower at the focus can produce 

steam to drive a turbine coupled to an electrical gener- 

ator. Several prototype solar power stations are working 

or are under construction in the U.S.A. and in various 

Mediterranean countries. 

The solar furnace at Odeillo in the French Pyrenees, 

Fig. 10.9, generates 1 MW of internal energy and tem- 

peratures greater than 3000°C. The 45m diameter re- 

flector consists of about 20000 small plane mirrors in 

a parabolic shape and receives the solar radiation re- 

flected from over 60 large mirrors which, under com- 

puter control, follow the sun. 
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(c) Photovoltaic devices (solar cells). These convert 

sunlight into electricity directly and are made from semi- 

conducting p- and n-type silicon (see Volume II, chapter 

23). One is shown in Fig. 10.10. 
When light falls on the surface it frees loosely held 

electrons in the material and an e.m.f. of about 0.5 V 

Sunlight 

fi sch aston it Glass cover 

Metal grid 
contact 

Metal contact 
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Fig. 10.10 

Fig. 10.9 
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(a) 

is generated between two metal contacts on its top and 

bottom surfaces, the former being a grid. Protection 

is given by a glass or clear plastic cover. A standard 

9cm diameter cell develops a peak power of around 

0.75 W in bright sunlight at a typical conversion effi- 

ciency of 10% or so. 

Panels of connected cells have greater power outputs 

and are used in artificial satellites to supply the elec- 

tronic equipment. Solar Challenger, Fig. 10.11a, was 
the first solar aircraft to cross the English Channel, mak- 

ing the 180 mile trip from Kent to Paris on 7 July 1981 

in 5 hours 20 minutes. It was powered by 16000 solar 

cells glued to the upper surfaces of its wings, Fig. 10.115, 

which generated a maximum of 2.7 kW, enough to drive 

a small electric motor and propeller and produce a top 

speed of 48kmh~! (30mph). The plane, less pilot, 
weighed only 93 kg. 

The use of solar energy as a major source of electrical 

energy depends on the development of reliable systems 

at low cost. A novel idea is for a solar power station 

to be assembled in space, in a geostationary orbit above 
an earth-receiving station to which the solar energy, 

collected by the satellite’s panels, would be beamed 

down as microwaves. 

Wind energy 

Winds are due to convection currents in the air caused 

by uneven heating of the earth’s surface by the sun. 
The main winds over the earth arise from cold air from 

the polar regions forcing the warm air over the tropics 

to rise, the path they follow being affected by the earth’s 

rotation. Fig. 10.11 

(b) 
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Wind speeds and directions change with the seasons 

but at any given place the pattern is fairly constant over 

the years. Speed increases with height, being greatest 

in hilly and coastal areas; it is also greater over the 

sea where there is less surface drag. 

(a) Power of the wind. Wind has kinetic energy due 

to its motion. Any device, such as a wind turbine (the 

modern version of a windmill), which is able to slow 

it down, can extract part of the energy and convert it 

into another form. Not all the energy can be extracted, 

otherwise the wind would stop and no more air could 

pass. In practice, a well-designed turbine will convert 

into mechanical energy about 35% of the available 

energy in the wind. 

It can be shown (see question 12, p. 216) that the 

power P developed by a wind turbine (with a horizontal 

shaft) is directly proportional to 

(i) the cube of the wind speed v, i.e. if the wind speed 
doubles, eight times more power is available, and 

(ii) the area A swept out by the turbine blades, so 
that doubling the diamater d of the blades quadruples 

the power (since A « d’). 

In symbols 

P«<Aw or P=kAv> 

where k is a constant. Therefore for maximum power 

a wind turbine should have long blades and be sited 
where there are high wind speeds. 

(b) Wind turbines. In most machines the shaft carry- 

ing the blades is horizontal like that in Fig. 10.12, and 

for electricity generation it is connected to a generator. 

The whole assembly is mounted well above the ground 

on a tower. There may be any number of blades, made 

from wood, metal or composites such as GRP (p. 37), 
sweeping an area of diameter up to 100m or so. 

Wind turbines are designed to work between certain 
wind speeds. The ‘cut-in’ speed at which the generator 

starts to produce electricity is typically 4ms~! (about 

10 mph). The ‘cut-out’ wind speed at which the machine 

is shut down to prevent damage is around 25ms7! 
(about 60 mph). 

Vertical-axis machines are less common but they have 
the advantage of responding to wind from any direction 

and requiring less support since the generator can be 

on the ground, Fig. 10.13. 

Conditions in the U.K. favour the use of wind energy. 
The prevailing winds are strong, especially in winter 

when the energy demand is greatest, and the coastline 
is long. Two schemes are planned to construct large 

machines with outputs of several megawatts. Some 
smaller prototypes are already working. 

Fig. 10.12 

Fig. 10.13 

The main environmental objection to wind generators 
arises from the best sites often being in areas of great 
natural beauty. 



Water power 

(a) Wave energy. Waves form when the wind blows 

over the sea. The stronger the wind the greater the 

waves and in a gale they can be 20 to 25m from crest 

to trough. Measurements show that the average power 

over a year of waves well out in the Atlantic is about 

100 kW per metre of wave front, falling to around half 

this value nearer the coast of the U.K. The energy 

increases with the square of the wave height and varies 
with time, its peak coinciding with the peak energy 

demand in winter. The best wave-energy sites in the 
U.K. are shown in Fig. 10. 14a. 

Many ingenious wave-energy converters have been 
proposed. The best can extract about half of the wave 

energy available and convert around half of that into 
electrical energy for delivery by cable to the shore. For 

example, if the power level is S0kW per metre, the 
output would be about 15 kW per metre of wave front 

intercepted. In practice, the slow oscillations of the 

waves have to be converted by some form of turbine 

(e.g. air) into the rotary motion required to drive a 

generator. The principle of the rocking-boom converter 
is shown in Fig. 10.146. 

The building and maintenance costs of wave con- 

verters would be high and they must be strong enough 

to survive in a very hostile environment. 

(b) Tidal energy. This can be harnessed by building 

a barrage (barrier), containing water turbines and sluice 

gates, across the mouth of a river. Large gates are 

motion 

Fig. 10.14 
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opened during the incoming (flood) tide, allowing the 
water to pass until high tide, when they are closed. On 

the outgoing (ebb) tide, when a sufficient head of water 
has built up, small gates are opened letting the potential 

energy of the trapped water drive the turbines and 
. generate electricity. 

The largest of the six or so tidal schemes in the world 

is in France, at the estuary of the River Rance. It has 

24 turbines and a peak output of 240 MW. In the U.K. 

proposals have been made from time to time for a bar- 

rage across the Bristol Channel where the tide can rise 

and fall by 11m. However the cost would be great and 
there are important environmental implications for 

nearby mudflats, water supply, sewage disposal, ship- 

ping, fishing and wildlife. 

Tides are caused by the gravitational pull of the moon, 
and to a lesser extent the sun, on the oceans. There 

is a high tide at places nearest the moon and also oppo- 

site on the far side, Fig. 10.15a. As the earth rotates 
on its axis the positions of high tide move over its sur- 

face, giving two high and two low tides daily or, more 

exactly, every 24 hours 50 minutes. The extra 50 minutes 

is due to the moon travelling round the earth in the 

same direction as the earth’s daily spin, so the earth 

has to make just over one revolution before a given 

place is again opposite the moon. 

The tidal range is a maximum when there is a new 

or full moon. The sun, moon and earth are then in line, 

Fig. 10.155, with the lunar and solar pulls reinforcing 

to produce extra high (spring) tides. The lowest (neap) 
tides occur when there is a half moon and the sun and 
moon are pulling at right angles to each other, Fig. 

10.15c. 

(b) 
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Biofuels 

(a) Biomass. This is the name for organic (and other) 
material from which biofuels (e.g. methane gas and al- 

cohol) can be obtained by processing. Much of it, like 
fossil fuel, is stored solar energy, in the form of starch 

and cellulose made under the sun’s action in green plants 

by photosynthesis (with a conversion efficiency of about 

2%). It includes the following. ' 
(i) Cultivated (energy) crops, e.g. oil-seed rape, 

sugar beet, red clover, artichokes, rye grass, maize. 

(ii) Crop residues, e.g. cereal straw, vegetable stems 

and leaves, pea vines. 
(iii) Waste from food crops, e.g. animal manure. 
(iv) Natural vegetation, e.g. gorse, reeds, bracken. 

(v) Trees grown for their wood, e.g. pine, spruce. 

(vi) Domestic and industrial refuse, e.g. paper, card- 
board, plastics, glass, metal, clothing. 

Biomass, especially wood and animal dung, is the 

main source of fuel in the Third World. Industrialized 

countries are now recognizing and investigating its 

potential. Its widespread adoption requires thought to 
be given to land use, to ensure that energy crops grown 
for commercial reasons do not replace essential food 

crops. Uncontrolled deforestation to obtain wood could 
lead to soil erosion and flash-flood damage. Transport, 
storage and conversion costs also need to be considered. 

(b) Biofuel production. Each type of biomass may 

be treated in many different ways to give a range of 

useful biofuels. The latter may be a gas, e.g. methane, 

a liquid, e.g. alcohol (ethanol), or a solid, e.g. wood, 
straw. 

(b) 

(c) 

In anaerobic digestion green plants, sewage sludge 

or animal dung decompose by bacterial action in the 

absence of air to produce biogas—a mixture of methane 
and carbon dioxide. The process occurs naturally but 

is speeded up if it happens in a thermally insulated, 
air-tight tank, heated to 35°C, which can be stirred. 

The gas forms in a week or two and can be piped off 

to a storage tank. If wood shavings, straw or treated 

refuse are used, the conversion is much slower. When 
digestion is complete what remains in the tank is rich 

in nitrogen and makes a good fertilizer. A digester tank 

on a livestock farm is shown in Fig. 10.16. 

In fermentation crushed biomass containing starch 

(e.g. maize, potatoes) or sugar (e.g. sugar cane or beet) 

is broken down by the action of enzymes in yeast to 

give ethanol. After about 30 hours, the ‘brew’ contains 

around 10% ethanol which is removed by distillation. 

(c) Biofuels and their uses. Solid biofuels such as 

wood and straw are burnt for domestic, industrial and 

agricultural heating. Refuse, if dried, sorted to recover 

metals and glass, shredded and pressed into pellets can 
also be used, alone or with other fuels, e.g. coal. 

Liquid biofuels like the alcohols methanol and etha- 
nol are now replacing petrol for vehicles. They contain 

up to 50% less energy per litre than petrol but they 

are free of lead and sulphur and so cleaner, and burn 

more efficiently at lower temperatures. They can be 

blended with unleaded petrol and engine modifications 

are needed only if the alcohol content exceeds 20%. 

Vegetable oils from crushed seeds and nuts (e.g. rape 
seed, peanuts) can be a direct replacement for diesel 
fuel or blended with it. 



Fig. 10.16 

Biogas is a mixture of methane (50-70%) and carbon 

dioxide with an energy content about two-thirds that 

of natural gas. It can be burnt in stationary engines to 

produce mechanical energy or used for heating and 

cooking. Removing the carbon dioxide improves its 

quality. 

Methane is a clean gas with a high heating value which 

can be fed straight into the gas mains (natural gas is 

95% methane). It can also be converted into methanol. 

The heating value of some fuels is given in Table 10.5 
inky o~*. 

Table 10.5 

Se 
F wood | 17 | Ethanot | 30 | Biogss | 34 

[25-38 [crude | 30 [Methane | 55 
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Geothermal energy 

The rocky crust enclosing the earth’s core is around 

3km thick and its temperature increases rapidly with 

depth. In volcanic and earthquake regions it rises by 
over 80°C per km, in other areas it is about 30°C per 

km. Steam geysers and hot-water springs are evidence 

of geothermal energy. 

Strictly speaking, geothermal energy is not renewable 

in quite the way that solar, wind and water power are. 

As internal energy is taken from the rocks, their 
temperature falls and eventually the available energy 

is exhausted (in perhaps several decades). However, 

after a few thousands of years they would have been 

warmed again by the surrounding hot rocks, albeit very 

slowly since rock is a poor thermal conductor. So in 
the very long term geothermal energy can be thought 

of as ‘renewable’. 
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Two methods of extraction are used depending on 

the nature of the rocks. 

(a) Hot aquifers. These are layers of permeable (por- 

ous) rock such as sandstone or limestone at a depth 
of 2 or 3km which contain hot water at temperatures 

of 60 to 100°C. A shaft is drilled to the aquifer and 
the hot water pumped up it to the surface where it is 
used for district space- and water-heating schemes (e.g. 

as in Southampton and Paris) or to generate electricity. 

Sometimes a second shaft is drilled and the cool spent 

geothermal water returned by it to rocks at least 1 km 

from the bottom of the aquifer shaft (why?), Fig. 10.17. 
This is the method used by most of the countries that 

have exploited geothermal energy to date. 

omy hhearcs ose tar aed aN eget +> Aquifer tA SES teat ecole ne ~~ apr ene ine X 5 i > 

Fig. 10.17 

(b) Hot dry rocks. These are non-porous (imperme- 

able) rocks found throughout the world, which at depths 

of 5 or 6km have temperatures of 200°C or higher. 

In this case two shafts are drilled so that they terminate 

at different levels in the hot rock (e.g. 300m apart), 

Fig. 10.18. A small charge is exploded at the foot of 

q 

Fig. 10.18 

the deeper (injection) shaft to create a large number 

of cracks in the rock. This reduces the resistance to 
the flow of cold water which is pumped, under very 
high pressure (300 atmospheres), down the injection 

shaft and emerges as steam from the top of the shallower 

(production) shaft. 
The method has been used successfully in the U.S.A. 

—electricity has been produced from a small turbo- 
generator driven by geothermal steam, but very ineffi- 

ciently. A similar project is under way in Cornwall 

where radioactivity in the granite causes twice the aver- 

age heating, Fig. 10.19. 

Energy losses 

The inside of a building can only be kept at a steady 
temperature above that outside by heating it at a rate 

which equals the rate it is losing energy. The loss occurs 

mainly by conduction through the walls, roof, floors 

and windows. For a typical house in the U.K. where 

no special precautions have been taken, the contribution 

each of these makes to the total loss is shown in Table 
10.6a. The substantial reduction of this loss which can 

be achieved, especially by wall and roof insulation, is 

shown in Table 10.65. These factors need to be fully 

quantified in designing buildings. 

Table 10.6 

(a) 
Percentage of total energy loss due to 

(0) 

Percentage of each loss saved by 

carpets double draught walls roof 

on floors glazing excluders 

Percentage of total loss saved = 60 

(a) U-value. In practice, heating engineers find the 
U-value of a material to be a more convenient quantity 
to use than thermal conductivity & (p. 86). It is defined 
as follows. 

The U-value of a specified thermal conductor (e.g. 
a single-glazed window) is the rate of flow of energy 
through it per square metre for a temperature difference 
of 1 K between its two surfaces. 
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It is measured in Wm~* K~! and given by the equation 

rate of loss of energy 
U-value = J? 

surface area X temperature difference 

The rate of flow of energy through a thermal conductor 

can therefore be calculated, knowing its U-value, from 

rate of loss of energy 
= U-value X surface area X temp. diff. 

Some U-values in Wm~*K™! are given in Table 10.7; 

note that good insulators have low U-values. 

Table 10.7 

Thermal conductor 

Brick wall with air cavity 

Brick wall with 75 mm thick cavity insulation 

U-value 

Tiled roof without insulation 

Tiled roof with 75 mm thick roof insulation 

Single-glazed 6 mm thick glass window 

Double-glazed window with 20 mm air gap 

(b) Thermal resistance coefficient. This term can be 

used instead of U-value and arises from the analogy 

between energy flow and electric charge flow. From the 

energy-flow equation (p. 241), we have 

temperature difference 
energy flow rate = : 

resistance to flow 

In symbols 

Aé@ 
aie or A@=@¢R, (cf. V=JR) (1) 

where A@ is the temperature difference in K, ¢ is the 

energy flow rate in W and R, is the thermal resistance 

of the sample in K W~!. It is also given by 

peu iA (see p. 241) (2) 

where x is the thickness of the sample in m, k is its 

thermal conductivity in Wm7'K™! and A its cross- 
sectional area in m?. 

From equation (1) we see that if R, is doubled, ¢ 
is halved, i.e. 6« 1/R,., and from equation (2) it follows 
that if A is doubled, R, is halved, i.e. R,~«1/A. 

The thermal resistance coefficient X of a material is 

the thermal resistance of unit area and is related to the 
thermal resistance R, by the equation 

X=R.A (3) 

It is measured in m? K W~' and is a constant for a given 

sample (since doubling A halves R,). From equations 
(2) and (3) it follows that the relation between X and 

the thermal conductivity k is 

x a 
X=R,A=—:A=- 4 

e kA k 4) 

If you use X in thermal conductivity calculations rather 

than U-values, the above four equations will be 

required. 

Note. The relation between X and U-value can be 

derived from the thermal conductivity equation (p. 87) 

Q_kA(- 6) 
t x 

We have 

rate of loss of energy 
U-value = JN 

surface area X temperature difference 

Q _k 

~ tA(@—6;) x 

But from equation (4) 

vos 
k 

Saget 

U-value 

Ventilation 

While it is important to reduce the energy loss from 

a building, ventilation is also necessary for the comfort 

of its occupants. A typical recommendation is that the 

air should be changed at a rate of 0.015 m3s~! per person 

in the room. For ten people the rate would be 
0.15m?s~!. If they were in a room measuring 10m x 

6m X 3m, i.e. of volume 180m*, a complete change 

of air would be needed in 180m°/0.15m?s~! = 1200s 
= 20 minutes. 

In winter, the heating system for the room would have 

to supply energy to raise the temperature of the air 

drawn in to a comfortable temperature. Suppose a rise 

of 10°C was necessary, then, since the energy required 

to raise the temperature of 1 m? of air by 1K is 1.3kJ, 

an air change every 1200s would need a heater of power 
P for this rate of ventilation, where 

_1.3kJm3K~! x 180m3 x 10K 
1200s 

P 



kJIm?K7!mK ~ e x 180 x 0) 
S 1200 

= 2.0kW (kJs~') 

If the energy produced by each person’s ‘body heat’ 

is roughly equivalent to that from a 100 W heater (see 
question Sa), Pis halved (10 x 100 W = 1kW). 

QUESTIONS 

1. (a) If energy is conserved why is there an energy ‘crisis’? 

(b) Explain the terms ‘high-grade’ and ‘low-grade’ energy 

and give an example of each. 

(c) What is meant by the statement ‘the entropy of the 

universe is increasing’? 

2. How much energy in J is supplied by the following? 

(a) A3kW immersion heater in 2 hours. 

(b) Acar which uses 5 litres of petrol while travelling 80 km 

if 1 litre of petrol produces 10 kWh of energy when burnt. 

(c) A 200 MW power station in a day. 

(d) Stopping a 1 tonne car travelling at (7) 40 kmh“, 

(ii) 80kmh7! (1 tonne = 1000 kg). 
(e) The world’s annual energy consumption of about 

10000 Mtce (megatonne of coal equivalent) if 1Mtce =~ 

30°< 10°53. 

(f) One therm if 1 therm = 100000Btu (British thermal 

unit) and | Btu is the energy needed to raise the temperature 

of 1 Ib (0.45 kg) of water by 1 °F (5/9 K). (Specific heat capacity 

of water = 4.2 x 10° Jkg~!K~') 

3. If the world’s recoverable reserves of coal, oil and gas and 

their annual consumption in J are as in the table below, work 

out the approximate life-time of each resource. 

Recoverable reserves Annual consumption 

Coal 84 x 108 
Oil 120 x 10!8 

Gas 55 x 10!8 

4. Use the data given below to make quantitative predictions, 

estimates or comparisons concerning man’s use of the fuel 

resources (coal, oil, etc.) stored in the earth. 

In particular, you should consider the following problems: 

(a) The possibility of using up these fuel resources, and any 

need there may be to find alternative sources of energy. 

(b) Any differences between groups of people in the amount 

of energy they use. 
Energy reaching earth from the sun: 5 x 10*4 joules per year. 

Maximum energy likely to be available from hydroelectric 

power if all such sources were used: 5 Xx 10'° joules per year. 

Total energy stored in all known reserves of fuels écoal, oil, 

etc.): 107 joules. 
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Total energy stored in all known reserves of fuels (coal, oil, 

etc.) that can be extracted economically at present: 10” joules. 

Total energy stored in known oil deposits that can be 

extracted economically at present: 107! joules. 

Time taken to produce the earth’s store of coal, oil and 

other fuels: 10° years. Energy used by one car ina year: 3 x 10!° 

joules. 

Work energy one labourer can produce in one year: 10!° 
joules. 

Total energy used in 1964 Population 

3000 x 10° 
200 x 10° 
300 x 10° 
300 x 10° 

1700 x 10° 

World 

North America 4 x 10! joules 
Western Europe 2 x 10!° joules 
Middle East and Africa 0.3 x 10!° joules 
Asia 2 x 10!° joules 

107° joules 

(O. and C. Nuffield) 

5. (a) Assuming the human body is a machine which converts 

into internal energy all the chemical energy it receives from 

food (about 10MJ per day in the U.K.), what is its power 

as a heater? 

(b) The human body is about 25% efficient at converting 

chemical energy into mechanical energy (most of the rest is 

used to heat it). If someone develops a power output of 500 W 

when running up a flight of stairs, what is the power input 

to the body? 

6. Draw an energy-flow diagram for a thermal power station. 

State its approximate efficiency and say how it is affected by 

the temperatures at which the high-pressure turbine and the 

condenser operate. What are the advantages of a ‘combined 

heat and power (C.H.P.)’ system? 

7. Draw an energy-flow diagram for a hydroelectric power 

station. Why does such a station have a much greater efficiency 
than a thermal power station? What is meant by ‘pumped stor- 

age’? 

8. (a) Water flows in a waterfall at a rate of 1000kgs~! and 

takes 2s to reach the stream vertically below. Caiculate the 

power of the falling water just as it hits the stream. 

(b) The reservoir for a hydroelectric power station is 40m 

above the turbines. If the overall efficiency of the station is 

50%, what mass of water must flow through the turbines per 

second to generate | MW of electrical power? 

9. Taking the solar constant as 1.4kW m ~* and assuming that 
on average this is reduced due to absorption in the atmosphere 

by 50%, calculate the total solar energy arriving at the earth’s 

surface in an hour. Radius of earth ~ 6400 km. (Note. Account 

must be taken of day and night and the fact that not all the 
earth’s surface is normal to the radiation. ) 

How does your answer compare with the world’s total annual 

consumption of energy of about 3.0 x 10°J at the present 

time? 
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10. In the solar panel shown in Fig. 10.85 explain 

(a) why the collector plates and tubes are made of copper 

and why they are thin-walled, 

(b) why the collector plate and tubes have a blackened sur- 

face, and 

(c) how the narrow air space between the glass cover reduces 

energy loss by convection and radiation. 

11. List the advantages and disadvantages of two primary 

energy sources which are (a) finite, (b) renewable. 

12. If p is the density of air, A is the area swept out by the 

blades of a wind turbine with a horizontal shaft and v is the 

wind speed, prove that the maximum power P which can be 

developed by the turbine is given by 

P=}pAv? 

Why cannot all this power be harnessed? 

13. What are the main environmental implications of using 

as an energy source (a) fossil fuels, (6) nuclear fuels, (c) active 

solar devices, (d) wind energy, (e) hydroelectric power, (f) 

tidal energy? 

14. Calculate the rate of loss of energy through a window mea- 

suring 2.0 m by 2.5 m when the inside and outside temperatures 

are 18°C and —2.0°C respectively, 

(a) if the window is single-glazed, 6.0 mm thick, and 

(b) if the window is double-glazed with a 20 mm air gap. 

Use the U-values given in Table 10.7. 

15. What is the overall U-value of a room measuring 

4.0m X 3.0m X 2.5m which is kept at a steady temperature 

of 20°C by a 2.0 kW electric heater when the temperature out- 

side is 0°C? 

16. (a) Calculate the thermal resistance of a brick wall measur- 

ing 5.0m by 4.0m if the thickness of the brick is 0.20m and 

Kprick 18 0.60 Wm! K7!. 
(b) If the temperatures on either side of the brick wall in 

(a) are 25°C and 5°C respectively, what is the power loss 

through it? 

17. A single-glazed window 6.0mm thick measures 2.0m by 

1.0m and has thermal conductivity 1.0 W m7! K~!. Calculate 

(a) its thermal resistance coefficient, 

(b) its thermal resistance, and 

(c) the power loss through it when the inside and outside 

temperatures are 18°C and —3.0°C. 
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Introduction 

Liquids and gases can flow and are called fluids. Before 
considering their behaviour at rest, certain basic terms 

will be defined, by way of revision. 

The density p of a sample of a substance of mass m 

and volume V is defined by the equation 

m 

V 

In words, density is the mass per unit volume. The den- 

sity of water (at 4°C) is 1.00gcm™ or, in SI units, 
1.00 x 10° kg m~°; the density of mercury (at room tem- 
perature) is about 13.6 gcm~° or 13.6 x 10°kgm~?. 

The term relative density is sometimes used and is 

given by 

; density of material 
relative density = ———_—_—_—_—_ 

density of water 

It is a ratio and has no unit. The relative density of 

mercury is thus 13.6. 

If a force acts on a surface (like the weight of a brick 
on the ground) it is often more useful to consider the 

pressure exerted rather than the force. The pressure 

p caused by a force F acting normally on a surface of 

area A is defined by 

Pray 
Pressure is therefore force per unit area; the SI unit 

is the pascal (Pa) which equals a pressure of 1 newton 
per square metre. 

Pressure in a liquid 

In designing a dam like that in Fig. 11.1 the engineer 

has to know, among other things, about the size and 

point of action of the resultant force exerted on the 

PN) 
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dam by the water behind it. This involves making calcu- 

lations based on the expression for liquid pressure. 

(a) Expression for liquid pressure. The pressure 
exerted by a liquid is experienced by any surface in con- 

tact with it. It increases with depth because the liquid 

has weight and we define the pressure at a point in a 
liquid as the force per unit area on a very small area 
round the point. Thus if the force is 8F and the small 

area 5A then the pressure p at the point is given by 

force 6F 

More exactly, in calculus terms, the defining equation 

is 

= limit — 
P sA>0 6A 

Fig. 11.2 

An expression for the pressure p at a depth h in a 

liquid of density p can be found by considering an 

extremely small horizontal area 6A, Fig. 11.2. The force 

oF acting vertically downwards on 6A equals the weight 

of the liquid column of height / and uniform cross- 
section area 5A above it. We can say 

volume of liquid column = hdA 

mass of liquid column = h8A p 

weight of liquid column = h8A pg 

where g is the acceleration due to gravity (or the strength 

of the earth’s gravitational field). Hence 

8F =hdA pg 

oF ne pee ae 

5A 6A 

p=hpg 

Thus the pressure at a point in a liquid depends only 

on the depth and the density of the liquid. If h is in 
m, p in kgm~? and g in ms? (or Nkg“!) then p is in 
Pa. 

Notes. (i) Inthe above derivation, 5A was considered 

to be horizontal but it can be shown that the same result 

is obtained for any other orientation of 5A, i.e. the pres- 

sure ata point in a liquid acts equally in all directions—as 

experiment confirms. 
(ii) The force exerted on a surface in contact with 

a liquid at rest is perpendicular to the surface at all 

points. Otherwise, the equal and opposite force exerted 
by the containing surface on the liquid would have a 

component parallel to the surface which would cause 

the liquid to flow. 

(b) Transmission of pressure. A liquid can transmit 

any external pressure applied to it to all its parts. Use 

is made of this property in the hydraulic press to produce 

a large force from a small one. In its simplest form it 

consists of a narrow cylinder connected to a wide 

cylinder, both containing liquid (usually oil) and fitted 

with pistons A and B as in Fig. 11.3a. If, for example, 

A has a cross-sectional area of 1 x 10-*m? (i.e. 1 cm?) 
and a downwards force of 1 N is applied to it, a pressure 

of 1 x 10-*Pa (i.e. 1 Ncm~’) in excess of atmospheric 
pressure is transmitted through the liquid. If B has a 

cross-sectional area of 100 x 107*m? (i.e. 100cm7?), it 
experiences an upwards force of 100N. Piston B acts 

against a fixed plate and can be used, for example, to 

forge metal. Fig. 11.3b shows a large press which was 

used to forge motor-car parts from steel until more 
advanced manufacturing technology took over. 

The same principle operates in hydraulic jacks for 

lifting cars in a garage and also in the hydraulic braking 

system of a car. In the latter, the force applied to the 

brake pedal causes a piston to produce an increase of 
pressure in an oil-filled cylinder and this is transmitted 

through oil-filled pipes to four other pistons which apply 

the brake-shoes or discs to the car wheels. This results 

in the same pressure being applied to all wheels and 

minimizes the risk of the car pulling to one side or skid- 
ding. 

(c) High-pressure water-jet cutting. This is a new cut- 

ting technique which is entirely dust-free. It can be used 
with a wide range of materials such as slate, stone, 

brake-lining material, Formica, rubber, foams and is 

especially advantageous for materials like asbestos, the 

dust from which can cause respiratory disease. In the 

equipment shown, Fig. 11.4, the cutting jet is guarded 

by a Perspex cover, the jet pressure is about 3.5 x 108 

Pa (3500 times normal atmospheric pressure), the water 
flow is 3.0 litres per minute and the width of cut can 

be varied from about 0.3 mm to 0.9mm. 

Liquid columns 

(a) U-tube manometer. An open U-tube containing 
a suitable liquid can be used to measure pressures, for 

example, the pressure of the gas supply, and is called 
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Fig. 11.3 (b) 

Fig. 11.4 
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a U-tube manometer. It uses the fact that the pressure 

in a column of liquid is directly proportional to the 

height of the column. In the U-tube manometer of Fig. 

11.5a the pressure p to be measured acts on the surface 
of the liquid at A and balances the pressure of the liquid 

column BC of height h, plus atmospheric pressure P, 

acting on B. Hence 

p=P+ hog 

where p is the density of the liquid in the manometer. 

Vacuum 

Mercury 

Pressur of the air 

(a) (b) (c) 

Fig. 11.5 

For small pressures, water or a light oil is used, for 

medium pressures mercury is suitable. The amount by 

which p exceeds atmospheric pressure, i.e. (p—P), 
equals the pressure due to the column of liquid BC, 
i.e. hpg. Consequently it is often convenient to state 

a pressure as a number of mm of water or mercury 
rather than in Pa. 
When the absolute pressure is required and not the 

excess Over atmospheric, the limb of the tube open to 

the atmosphere is replaced by a closed, evacuated one, 

Fig. 11.55. The height h of the liquid column then gives 

the absolute pressure directly. The principle is used in 

the measurement of atmospheric pressure by a mercury 

barometer, the short limb being replaced by a reservoir 

of mercury, Fig. 11.5c. The column of mercury is sup- 

ported by the pressure of the air on the surface of the 

mercury in the reservoir and any change in this causes 
the length of the column to vary. 

(b) Balancing liquid columns. If a U-tube contains 
two immiscible liquids of different densities the surfaces 
of the liquids are not level. In Fig. 11.6a the column 
of water AB is balanced by the column of paraffin CD. 

Hence 

pressure at B = pressure at D 

hipig = hypo 

where h,, p; and h, p, are the heights and densities 

of the water and paraffin respectively. It follows that 

Measurement of h, and h, thus gives a simple way of 

finding the relative density of paraffin. The limbs of the 

U-tube need not have the same diameter (if not too 

small). Why not? 

Methylated 
spirit 

Water 

Fig. 11.6 

Miscible liquids can be separated by mercury as in 

Fig. 11.6b. In this case the heights of the columns are 

adjusted by adding liquid until the mercury surfaces are 

exactly level. Measurements of h, and h, are then made 

from this level. 

Archimedes’ principle 

When a body is immersed in a liquid it is buoyed up 

and appears to lose weight. The upward force is called 
the upthrust of the liquid on the body and is due to 

the pressure exerted by the liquid on the lower surface 

of the body being greater than that on the top surface 

since pressure increases with depth. The law summariz- 

ing such effects was discovered over 2000 years ago by 

Archimedes. It also applies to bodies in gases and is 
stated as follows. 

When a body is completely or partly immersed in a 
fluid it experiences an upthrust, or apparent loss in 

weight, which is equal to the weight of fluid displaced. 

A numerical case is illustrated in Fig. 11.7a; more 

briefly we can say: upthrust = weight of fluid displaced. 

The principle can be verified experimentally, or 

deduced theoretically by considering the pressures 

exerted by a liquid on the top and bottom surfaces of 

a rectangular-shaped solid, Fig. 11.7/—as you can con- 
firm for yourself. 

(a) Floating bodies. If a body floats partly immersed 

in a liquid (e.g. a ship), completely immersed in a liquid 

(e.g. a submarine) or a gas (e.g. a balloon), it appears 
to have zero weight and we can say 

upthrust on body = weight of floating body 



Spring balance 
oe ~ 

H H Upthrust 4N 
6N HH =2N 

Body 

Weight of Weight of liquid 

body=6N displaced = 2 N 

(a) 

Fig. 11.7 

By Archimedes’ principle 

upthrust on body = weight of fluid displaced 

Hence 

weight of floating body = weight of fluid displaced 

This result, sometimes called the ‘principle of flotation’, 
is a special case of Archimedes’ principle and can be 

stated thus. 

A floating body displaces its own weight of fluid. 

If the body cannot do this, even when completely 

immersed, it sinks. 
The stability of a floating body such as a ship when 

it heels over depends on the relative positions of the 
ship’s centre of gravity G, through which its weight W 

acts, and the centre of gravity of the displaced water, 

called the centre of buoyancy B, through which the up- 

thrust U acts. In Fig. 11.8a the ship is on an even keel 

and B and G are on the same vertical line. If it heels 
over the shape of the displaced water changes, causing 

B to move and thereby setting up a couple which tends 

Fig. 11.8 
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Solid 

(b) 

either to return the ship to its original position or to 

make it heel over more. The point of intersection of 
the vertical line from B with the central line of the ship 

is called the metacentre M. If M is above G as in Fig. 

11.86, the couple has an anticlockwise moment which 

acts to decrease the ship’s heel and the equilibrium is 
stable. If M is below G as in Fig. 11.8c, equilibrium 
is unstable since the couple has a clockwise moment 

which causes further listing. For maximum stability G 

should be low and M high. 

(b) Hydrometer. This is an instrument which uses the 

principle of flotation to give a rapid measurement of 

the relative density of a liquid, e.g. the acid in a lead 

accumulator. It consists of a narrow glass stem, a large 

buoyancy bulb and a smaller bulb loaded with lead shot 

to keep it upright when floating, Fig. 11.9. The relative 

density is found by floating the hydrometer in the liquid 

and taking the reading on the scale inside the stem at 

the level of the liquid surface. The instrument shown 
is for use in the range 1.30 to 1.00, the numbers increase 
downwards (why?) and the scale is uneven. 

| Buoyancy bulb 

Lead shot 

Fig. 11.9 
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Atmospheric pressure 

The pressure due to a gas arises from the bombardment 

of the walls of the containing vessel by its molecules. 

In a small volume of gas the pressure is uniform through- 

out but in a large volume such as the atmosphere, 

gravity causes the density of the gas and therefore its 
pressure to be greater in the lower regions than in 

the upper regions. In fact atmospheric pressure at a 

height of about 6km is half its sea-level value even 

though the atmosphere extends to a height of 150km 
Or so. 

The statement that atmospheric pressure is “760mm 
of mercury’ means that it equals the pressure at the 

bottom of a column of mercury 760 mm high. Sometimes 

pressure is expressed in torrs (after Torricelli who made 

the first mercury barometer), 1 torr = 1 mmHg. To find 

the value of atmospheric pressure in SI units we use 

p=hpg where h=0.760m, p=13.6x10°kgm™, 
g=9.81Nkg™!. Thus 

p = 0.760 x 13.6 x 10° x 9.81m x kgm~? x Nkg™! 

=1:01'« 10° Pa 

Standard pressure or 1 atmosphere is defined as the 
pressure at the foot of a column of mercury 760mm 

high of specified density and subject to a particular value 

of g; it equals 1.01325 x 10° Pa. 

Pressure gauges and vacuum pumps 

The U-tube manometer can be used to measure moder- 

ate pressures, i.e. those in the region of atmospheric. 

High and low pressures require special gauges. 

(a) Bourdon gauge. This measures pressures up to 

about 2000 atmospheres. It consists of a curved metal 

tube, sealed at one end, to which the pressure to be 

measured is applied, Fig. 11.10. As the pressure 

increases the tube uncurls and causes a rack and pinion 
to move a pointer over a scale. 

Curved metal 
tube 

To unknown pressure 

Fig. 11.10 

(b) Rotary vacuum pump. One rotary pump can pro- 
duce pressures of about 10-? mmHg; with two in series 
10-4mmHgis attainable. The pump comprises an eccen- 

trically mounted cylindrical rotor inside and in contact 
at one point with a cylindrical stator, Fig. 11.11. Two 
spring-loaded vanes attached to the rotor press against 

the wall of the stator. The whole is immersed in a special 
low vapour-pressure oil which both seals and lubricates 
the pump. As the rotor revolves, driven by an electric 

motor, each vane in turn draws gas into the increasing 

volume of space A on the intake side and then com- 
presses it in space B where it is ejected from the outlet 

valve. 

To apparatus to be evacuated 

Outlet tube and 

5 - valve 

Spring+loaded 

Vale Rotor 

SK 
Stator I Oil Ss Si? 

Sao { 
Fig. 11.11 

Lower pressures, down to 10-'*mmHg, require the 
use of a diffusion pump. 

Surface tension 

(a) Some effects. Various effects suggest that the sur- 

face of a liquid behaves like a stretched elastic skin, 

i.e. it is in a state of tension. For example, a steel needle 
will float if it is placed gently on the surface of a bowl 

of water, despite its greater density. (What else helps 

to support its weight?) The effect, called surface tension, 

enables certain insects to run over the surface of a pond 

without getting wet, Fig. 11.12. 

Fig. 11.12 



Fig. 11.13 

Small liquid drops are nearly spherical, as can be seen 
when water drips from a tap, Fig. 11.13; a sphere has 

the minimum surface area for a given volume. (What 

distorts larger drops?) This tendency of a liquid surface 

to shrink and have a minimum area can also be shown 

by the arrangement of Fig. 11.14a. When the soap film 

inside the loop of thread is punctured, the thread is 

pulled into the shape of a circle, Fig. 11.14b. Since a 

circle has the maximum area for a given perimeter, the 

area of the film outside the thread is a minimum. 

Loop of thread 

Fig. 11.14 
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(b) Definition and unit. We can conclude from the 

circular shape of the thread in the previous demonstra- 

tion that the liquid (soap solution) is pulling on the 
thread at right angles all along its circumference, Fig. 

11.15. This suggests that we might define the surface 
tension of a liquid in the following way. 

Loop of thread 

Forces on thread due 

Soap film to surface tension 

Fig. 11.15 

Liquid surface 

aN 
Fig. 11.16 

Imagine a straight line of length / in the surface of 

a liquid. If the force at right angles to this line and 

in the surface is F, Fig. 11.16, then the surface tension 

y of the liquid is defined by 

i 

In words, y is the force per unit length acting in the surface 

perpendicular to one side of a line in the surface. The 

unit of y is newton metre’! (Nm). Its value depends 
on, among other things, the temperature of the liquid. 

At 20°C, for water y= 72.6 x 10-*>Nm7! and for mer- 
cury y= 465 x 10°3Nm“™!. 

It must be emphasized that normally surface tension 

acts equally on both sides of any line in the surface 

of a liquid; it creates a state of tension in the surface. 
The effects of surface tension are evident only when 

liquid is absent from one side of the line. For example 

in Fig. 11.17, to keep wire AB at rest an external force 

Soap film 

Fixed F=2xypl 
frame ! 

Fig. 11.17 Sliding wire 
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F has to be applied to the right to counteract the un- 

balanced surface tension forces acting to the left. A film 

has two surfaces and so for a frame of width /, the surface 

tension force is 2y/ where y is the surface tension of 

the liquid. 
Or again, when a drop of methylated spirit or soap 

solution is dropped into the centre of a dish of water 
whose surface has been sprinkled with lycopodium 

powder, the powder rushes out to the sides leaving a 

clear patch. The effect is due to the surface tension of 

water being greater than that of meths or soap solution 

so that there is imbalance between the surface tension 
forces round the boundary of the two liquids. The 

powder is thus carried away from the centre by the 

water. 

(c) Molecular explanation. Molecules in the surface 

of a liquid are farther apart than those in the body of 

the liquid, i.e. the surface layer has a lower density than 

the liquid in bulk. This follows because the increased 
separation of molecules which accompanies a change 

from liquid to vapour is not a sudden transition. The 
density of the liquid must therefore decrease through 

the surface. 

The intermolecular forces in a liquid, like those in 
a solid, are both attractive and repelling and these 

balance when the spacing between molecules has its 

equilibrium value. However, from the intermolecular 

force-separation curve (Fig. 5.1la, p. 84) we see that 

when the separation is greater than the equilibrium 
value (ro), the attractive force between molecules 

exceeds the repelling force. This is the situation with 

the more widely spaced surface layer molecules of a 

liquid. They experience attractive forces on either side 

due to their neighbours which puts them in a state of 
tension, Fig. 11.18. The liquid surface thus behaves like 
a stretched elastic skin. If the tension-creating bonds 

between molecules are severed on one side by parting 
the liquid surface, then there is a resultant attractive 

force on the molecules due to the molecules on their 

other side. The effect of surface tension is then apparent. 

Molecules in surface layer more widely 
spaced and in state of tension 

©@% o% o0° ©, 2 Oe® 
© 00°00 Ce © 00° 0% ee e ©2o°e — —Inner molecules 
@ ® C) in liquid 

Fig. 11.18 

The value of y for a liquid does not increase when 
its surface area increases because more molecules enter 

the surface layer thereby keeping the molecular separa- 

tion constant. Otherwise, any increase of separation 

would increase the attractive force between molecules 

and so also the surface tension. 

Liquid surfaces 

(a) Shape of liquid surfaces. The surface of a liquid 
must be at right angles to the resultant force acting on 

it, otherwise there would be a component of this force 

parallel to the surface which would cause motion. Nor- 

mally a liquid surface is horizontal, i.e. at right angles 

to the force of gravity, but where it is in contact with 

a solid it is usually curved. 
To explain the shape of the surface in Fig. 11.19 con- 

sider the liquid at B adjoining a vertical solid wall. It 

experiences an attractive force BC due to neighbouring 

liquid molecules; this is the cohesive force studied pre- 
viously which binds liquid molecules together and makes 

them behave as a liquid. An attractive force BA is also 
exerted by neighbouring molecules of the solid; this is 

called the adhesive force and if it is greater than the 

cohesive force then the resultant force BR on the liquid 
at B will act to the left of the wall in the direction shown. 

Fig. 11.19 

The liquid surface at B has to be at right angles to this 
direction and so curves upwards. Since there is then 

equilibrium the resultant force must be balanced by 
appropriate intermolecular repulsive forces. At points 

on the liquid surface farther from the wall, the adhesive 

forces are smaller, the resultant force more nearly verti- 

cal and so the surface more nearly horizontal. 

By contrast, when the cohesive force between mole- 

cules of the liquid is greater than the adhesive force 

between molecules of the liquid and molecules of the 

solid, the resultant force BR acts as in Fig. 11.20 and 
the surface curves downwards at the wall. This is the 
case with mercury against glass. 

Fig. 11.20 



(b) 

Fig. 11.21 

The angle of contact 6 is defined as the angle between 

the solid surface and the tangent plane to the liquid 

surface, measured through the liquid. The liquid in Fig. 

11.21a@ has an acute angle of contact with this particular 
solid (6< 90°), while that in Fig. 11.21b has an obtuse 
angle of contact (@>90°). Water, like many organic 

liquids, has zero angle of contact with a clean glass sur- 

face, i.e. the adhesive force is so much greater than 

the cohesive force that the water surface is parallel to 

the glass where it meets it, Fig. 11.21c. On a horizontal 

clean glass surface water tends to spread indefinitely 

and form a very thin film. Contamination of a surface 

affects the angle of contact appreciably; the value for 

water on greasy glass may be 10° and causes it to form 

drops rather than spread. Mercury in contact with clean 

glass has an angle of contact of about 140° and tends 
to form drops instead of spreading over glass. 

Liquids with acute angles of contact are said to ‘wet’ 
the surface, those with obtuse angles of contact do not 

‘wet’ it. Fig. 11.22a shows a drop of a liquid which ‘wets’ 
the surface and b shows a drop on a surface which it 

does not ‘wet’. 

= : 6 si 

4 

(a) (b) 

Fig. 11.22 

(b) Practical applications of spreading. The behav- 

iour of liquids in contact with solids is important practi- 

cally. In soldering a good joint is formed only if the 

molten solder (a tin—lead alloy) ‘wets’ and spreads over 

the metal involved. Spreading occurs most readily if 

the liquid solder has a small surface tension. The use 

of a flux (e.g. resin) with the solder cleans the metal 

surface and acts as a ‘wetting agent’ which assists spread- 

ing. Metals like aluminium have an almost permanent 

oxide skin that resists the action of a flux and makes 
good soldered joints by normal methods very difficult. 

‘Wetting agents’ play a key role in painting and spray- 

ing where the paint must not form drops but remain 

in a layer once spread out. The use of spreading agents 
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(e.g. stearic acid) also assists lubricating oils to adhere 
to axles, bearings, etc. 

If detergents are to remove the dirt particles that are 

held to fabrics usually by grease, they must be able to 
spread over the fabric before they can dislodge the 

grease. Detergent solutions should therefore, on this 

account, have low surface tensions and small angles of 

contact. By contrast, fabrics are weatherproofed by 

treatment with a silicone preparation which causes water 
to collect in drops and not to spread. 

Capillarity 

Surface tension causes a liquid with an angle of contact 
less than 90° to rise in a fine bore (capillary) tube above 

the level outside. The narrower the tube the greater 

the elevation, Fig. 11.23. The effect is called capillarity 

and is of practical importance. 

Fig. 11.23 

Why does the rise occur? In Fig. 11.24a, round the 

boundary where the liquid surface meets the tube, sur- 

face tension forces exert a downwards pull on the tube 

since they are not balanced by any other surface tension 

forces. The tube therefore exerts an equal but upwards 
force on the liquid, Fig. 11.24b, and causes it to rise 

(Newton’s third law of motion). The liquid stops rising 
when the weight of the raised column acting vertically 

downwards equals the vertical component of the 
upwards forces exerted by the tube on the liquid, Fig. 

11.24c. 

py cos 0x2ar 

FN fale 

W = xr-hpg 

(d) 

Fig. 11.24 
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If the liquid has density p, surface tension y and angle 

of contact 6 and if the rise is / in a tube of radius r 
then neglecting the small amount of liquid in the 
meniscus, 

weight W of liquid column = mr7hpg 

vertical component of supporting forces 

= ycos 6 X 2ar 

since these forces act round a circumference of 27r, 

Fig. 11.24d. Hence 

ar’hpg = 2mr ycos 0 

2ycos 6 hs Y COS 

rpg 

A more rigorous treatment shows that this equation 
only holds for very fine bore tubes in which the curvature 

of the meniscus is everywhere spherical; it also brings 

out the fact that ris the radius of the tube at the meniscus 
(p. 228). 
An estimate of the rise / can be obtained by substi- 

tuting values for y, 7, p and g in this expression. For 

example, for water in a very clean glass tube 6=0°, 

i.e. the water surface meets the tube vertically, and so 
cos @=1. Also p=1.0gcm-7=1.0 x 10°?kgm™? and 
y=7.3x10-*Nm7!. If the capillary tube has radius 
0.50 x 1077 m then 

ia 2TS 107 31 Nm! 

0.50 x 1073 x 1.0 x 10° x 9.8 mkgm=?Nkg™! 

=3,0>«1074m 

= 30mm 

If 6 is greater than 90°, the meniscus is convex 
upwards, cos @ is negative and the expression shows 
that h will also be negative. This means the liquid falls 
in the capillary tube below the level of the surrounding 

liquid. Mercury in a glass capillary tube usually behaves 

in this way, Fig. 11.25. What happens when 6 = 0°? 

Fig. 11.25 

The drying action of blotting paper is due to the ink 

rising up the pores of the paper by capillarity. It also 

helps in soldering by causing the molten solder to pene- 

trate any cracks. However, for this to happen the above 

expression for h indicates that the solder should have 

a high surface tension, a property which does not 
encourage spreading (see p. 225). Compromise is clearly 

necessary here as in the dyeing of fabrics where success 

depends largely on the dye penetrating into the fabric 

by capillarity. 

Bubbles and drops 

A study of bubbles and drops not only helps with the 

determination of the surface tension of liquids, as we 

shall see in a later section, but it also has practical rele- 

vance. Thus, the formation of gas bubbles plays an 

important part in the manufacture of expanded plastics 

such as polystyrene. In oil-fired boilers pressure burners 

depend on droplet formation for fast and efficient burn- 

ing of the vapour. In steam heating systems the effi- 

ciency of heat transfer from the steam would be higher 

if instead of condensing as a film, which it does, it con- 

densed in drops, and attempts are at present being made 

to achieve drop condensation. 

A soap bubble blown on the end of a tube and then 

left open to the atmosphere gradually gets smaller, 

showing that the air is being forced out. Surface tension 

tries to make the film contract and thereby causes the 

pressure inside the bubble to exceed that outside. An 

expression can be obtained for the excess pressure inside 
a spherical soap bubble. 

Consider a bubble of radius r, blown from a soap 

solution of surface tension y. Let atmospheric pressure 

be P and suppose the pressure inside the bubble exceeds 
P by p, i.e. is (P + p), Fig. 11.26a. Consider the equili- 
brium of one half of the bubble; there are two sets of 
opposing forces. 

Atmospheric 
(a) pressure 

Surface tension 

Pressure 
in soap 
bubble 

Fig. 11.26 (b) 



(i) Atmospheric pressure acts in different directions 

over the surface of the hemisphere but the resultant 

force in Fig. 11.26b acts horizontally to the right since 

the vertical components cancel (if any vertical variation 

of atmospheric pressure is neglected). It can be shown 

(see later, Note) that the force exerted by a fluid in 

a certain direction on a curved surface equals the force 

on the projection of the surface on to a plane whose 
direction is perpendicular to the required direction. 

Here the projection of the hemisphere in a horizontal 

direction is a circle and so the horizontal force due to 

atmospheric pressure equals the product of the pressure 

and the area of projection i.e. P X mr?. Also, surface 

tension forces are exerted by the right-hand hemisphere 

(not shown in Fig. 11.26b) on the circular rim of the 
left-hand hemisphere along both its inside and outside 

surfaces. (Similar surface tension forces are exerted on 

the right-hand hemisphere by the left-hand one.) This 

force equals 2y X 2ar and so the total horizontal force 
to the right is Par? + 4yzr. 

(ii) The pressure (P +p) acts on the curved inside 
surface of the left-hand hemisphere and produces a 
horizontal force to the left equal to (P + p)mr?. 

Hence, if the horizontal forces balance, we have 

Par? + 4yar=(P+p)ar* 

4yar = ptr? 

The excess pressure p inside the bubble is then 

ny 
Pp ——— 

= 

Taking y for a soap solution as 2.5 x 10-*Nm_“!, the 
excess pressure inside a bubble of radius 1.0cm or 

1.0 x 10°? mis 

_4xX2.5x 10"? Nm“! 
BS AOMIO mm 

=10Pa 

If two soap bubbles of different radii are blown separ- 

ately using the apparatus of Fig. 11.27, and then con- 

nected by opening taps T, and T, (T; being closed), 

Fig. 11.27 
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the smaller bubble A gradually collapses while the larger 

bubble B expands. Why? Equilibrium is attained when 
A has become a small curved film of radius equal to 
that of bubble B. 

A spherical drop of liquid in air or a bubble of gas 

in a liquid has only one surface and the excess pressure 
inside it is 2y/r, the proof being similar to that given 
above for a soap bubble. 

Note. Force on a curved surface in a fluid exerting 

a uniform pressure. Consider a volume of fluid with end 

A hemispherical and end B plane, as in Fig. 11.28. The 

force on surface B is horizontal and must equal the hori- 

zontal component of the resultant force on surface A 

(the vertical components at end A cancel) if the volume 

of fluid is in equilibrium. But surface B is the projection 

of surface A on a vertical plane, i.e. in a direction at 

right angles to the horizontal. Hence the force in, say, 

a horizontal direction on a curved surface equals the 

force on its projection on to a vertical plane. 

Fig. 11.28 

Pressure difference across a spherical surface 

It can be shown (in more advanced books) that due 

to surface tension, the pressure on the concave side of 

any spherical liquid surface of radius r exceeds that on 
the convex side by 2y/r where y is the surface tension 

of the liquid, Fig. 11.29. Bubbles and drops are special 

cases of this more general result which is useful when 

considering certain effects such as capillarity. Earlier 

we treated capillarity in terms of forces; the excess pres- 

sure method is more informative. 

PS Py=2p/r 
Spherical 
liquid surface D 

Py- P= 2p/r 

Fig. 11.29 

(a) Capillary rise formula. Consider a liquid of sur- 

face tension y in a capillary tube. If the meniscus is 

everywhere spherical (as it will be in a very narrow tube) 
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and if the angle of contact is zero, then the radius of 

the meniscus will equal the radius of the tube. 
When the tube is first placed in the liquid, the curva- 

ture of the surface makes the pressure at D just below 

the meniscus less than that at E, which is atmospheric, 

Fig. 11.30a. Liquid will flow into the tube because of 

this pressure difference and capillary rise occurs. 

(a) (b) 

Fig. 11.30 

Let pa, Pp, Pc, Pp and pg be the pressures at A, 

B, C, D and E respectively, Fig. 11.30b. We have, once 

equilibrium is established, 

PA PB 

(no pressure difference across a flat surface) 

UG 

= Pp + hpg 

where p is the density of the liquid and / the capillary 

rise. Also, 

2y 
PE PDs 

where r is the radius of the tube. 
But pe =pa (both are atmospheric pressure which 

is constant if we ignore the pressure due to the column 

AE of air) 

If the angle of contact @ is zero this expression is the 
same as that obtained previously by the force method 

(pp. 225-6). However, this derivation shows that the 

expression only holds strictly for tubes in which the 

meniscus is everywhere spherical, i.e. for fine bore 
tubes. The fact that r is the radius of the tube at the 
meniscus is also made clear. 

(b) Worked example. A U-tube with limbs of dia- 

meters 5.0mm and 2.0mm contains water of surface ten- 

sion 7.0 X 10-7N m“|, angle of contact zero and density 
1.0 x 10°? kg m~*. Find the difference in levels, Fig. 11.31 
(¢=10ms"). 

20mm 50mm 

Fig. 11.31 

If the menisci are spherical they will be hemispheres 
since the angle of contact is zero; their radii will then 

equal the radii of the limbs. The pressure on the concave 

side of each surface exceeds that on the convex side 

by 2y/r where y is the surface tension and r is the radius 

of the limb concerned. 

Now r,=2.5mm=2.5x10-3m and r,=1.0mm 
= 1.0 x 10-m. Hence 

2270x107 sage 
_ ae a 

dati edie eS Ui 
Pa=P-—56 

where pg = P = atmospheric pressure. Also 

2x70 10+ 
— pc = ——————— = 140P emiealiea His Sic. : 
Pc=P-—140 (since pp = P) 

Pa Pe= (P — Se) =F — 140) 

= 84Pa 

But Pa=Pc*hpg 

hpg = 84Pa 

84 
= ———_m 

10° x 10 

= 8.4mm 

Methods of measuring -y 

(a) Capillary rise method. The expression y= 

hrpg/(2cos 6) is used (see p. 226) and so 6 must be 

known. In the case of a liquid for which 6=0° the 
expression becomes 



_ rpg 
ae. 

Knowing the density p of the liquid and g, only h and 
rremain to be determined. 

The apparatus is shown in Fig. 11.32, the capillary 
tube is previously cleaned thoroughly by immersing in 

caustic soda, dilute nitric acid and distilled water in turn. 

Travelling 
microscope 

Fig. 11.32 

A travelling microscope is focused first on the bottom 

of the meniscus in the tube and then, with the beaker 
removed, on the tip of the pin which previously just 

touched the surface of the liquid in the beaker. Hence 
his obtained. 

To find 7 the tube is broken at the meniscus level 

and the average reading of two diameters at right angles 

taken with the travelling microscope. 

Surface tension decreases rapidly with temperature 

and so the temperature of the liquid should be stated. 

(b) Jaeger’s method. This method measures the 

excess pressure required to blow an air bubble in the 
liquid under investigation and then yis calculated using 

p=2y/r. 
The pressure inside the apparatus, Fig. 11.334, is gra- 

dually increased by allowing water to enter the flask 

from the dropping funnel and the increase is recorded 

on the manometer (containing a low-density liquid such 

as xylol). An air bubble grows at the end of the capillary 

tube in the beaker of test liquid and as it does so the 
pressure rises to a maximum and then falls as the bubble 

Dropping funnel 

Manometer 

Fig. 11.33 (a) 
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breaks away. The maximum pressure will occur when 

the radius of the bubble is a minimum. Assuming that 

the bubble is then hemispherical with radius equal to 

that of the bore of the tube, Fig. 11.335, 

pressure inside bubble = P + hpg 

where P is the atmospheric pressure, h is the maximum 

manometer reading and p is the density of the liquid 

in the manometer. Also 

pressure in liquid outside bubble = P + h,pig 

where h, is the depth of the end of the capillary tube 

in the test liquid of density p,. Hence 

excess pressure in bubble = (P + hpg) — (P + h,p,g) 

= hpg — hipig 

But, excess pressure = ay 

where y is the surface tension of the liquid and r is 

the radius of the tube at the end. 

2y 
ie = (hp — hypi)g 

r 
MS = (hp — hyp) 

It is essential to measure h, h, and r carefully. One 

way of obtaining h/ is to arrange two pins so that their 

points mark the liquid levels in the manometer at the 
instant of maximum pressure and then to measure the 

distance between them afterwards with a travelling 

microscope. The same instrument should be used to 

find h, and r. Best results are achieved when a bubble 

is formed every few seconds. 

Every bubble has a fresh surface and so the risk of 

contamination is small if the tube is clean. Also, meas- 
urements at different temperatures are easily made by 

changing and maintaining at any required value the tem- 
perature of the liquid in the beaker. The method is most 

Capillary tube 

ee 

iquid 
S 

Hemispherical 
air bubble 

(b) 
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suitable for accurate comparisons between different 

liquids and for one liquid at different temperatures. Ab- 
solute measurements are not reliable because the 

assumption that the minimum bubble radius equals the 
radius of the tube is not quite true. 

Surface energy 

(a) Definition. Molecules in the surface of a liquid 

are farther apart than those inside the liquid (p. 224). 
The p.e.—separation curve for two molecules (Fig. 2.6), 

p. 17) shows that if this is so, then the mutual inter- 
molecular p.e. of surface molecules is greater, i.e. less 

negative, than that of molecules in the interior. 

When a new surface is formed, energy must therefore 

be supplied by an external agent to increase the sepa- 
ration of the new surface molecules. This energy 

becomes the molecular p.e. of these molecules and is 

called the (free) surface energy of the liquid. It is 

denoted by o and defined by the equation 

where W is the energy required to create a new area 

A of surface, i.e. it is the energy needed to create unit 

area of new surface. Its unit is Jm~?. Included in W 

is any energy taken in from the surroundings to keep 

the surface temperature constant, i.e. the new surface 

is formed under isothermal conditions. 

(b) Bonding energy and surface energy. An expres- 
sion relating these two quantities can be derived from 

theoretical considerations. 
We have seen (p. 16) that the bonding energy Ep for 

two molecules is the energy needed to break the bonds 
between them. If each molecule in a liquid has n near 
neighbours, nE, is the energy required to break the 

bonds between one molecule and its neighbours. 
When a molecule is pulled from the interior of a liquid 

to form a new surface, bonds are broken and remade 

during the process. At the surface only about half its 
bonds have been remade and so the energy supplied 

to pull away the other half is roughly 3n£p. If the new 

surface contains N molecules per unit area, there are 

N/2 pairs of molecules (see p. 82) and so the total energy 

needed to create unit area of new surface, i.e. a, is 

given by 

o=4Nx 3nE,=4nNE) 

Substitution of numerical values for a particular liquid 

gives an answer for o of the right rough order of magni- 
tude. 

(c) Surface tension and surface energy. We will show 

that these two quantities are equivalent. 

Film of liquid Sliding wire 

Force applied 
by external 
agent 

Fixed frame Ox 

Fig. 11.34 

In Fig. 11.34 a film of liquid, of surface tension y, 

is shown stretched across a horizontal frame PORS. The 

force on the sliding wire PQ of length / is y x 2/, since 

the film has two surfaces. If PQ is moved by an external 

force to P’Q’ through a distance 6x against the surface 

tension, the new area of surface A = 2/ X 8x (the film 

has two sides), and 

work done W to enlarge surface = 2y/ x 8x 

This equals the increase in the surface energy a, and 

we then have 

_W_2ylx dx | 

AL G2T XK ox 

Thus, o and y are numerically equal; the latter is the 
more useful idea in practice, as we have seen. 

QUESTIONS 

Pressure: Archimedes 

1. Define pressure at a point in a fluid. In what unit is it 
measured? 

State an expression for the pressure at a point at depth h 
in a liquid of density p. Does it also hold for a gas? 

What force is exerted on the bottom of a tank of uniform 

cross-section area 2.0m? by water which fills it to a depth of 

0.50 m? (Density of water = 1.0 x 10°kgm~*; g= 10Nkg~!.) 
Find the extra force on the bottom of the tank when a block 

of wood of volume 1.0 x 107! m? and relative density 0.50 floats 
on the surface. 

2. (a) State Archimedes’ principle. 
(b) A string supports a solid copper block of mass 1 kg (den- 

sity 9 x 10°kgm~*) which is completely immersed in water 
(density 1 x 10°kgm~°). Calculate the tension in the string. 



3. A specimen of an alloy of silver and gold, whose densities 

are 10.50 and 18.90 gcm™? respectively, weighs 35.20 in air 

and 33.13g in water. Find the composition, by mass, of the 

alloy, assuming that there has been no volume change in the 

process of producing the alloy. (W. part qn.) 

4. Asimple hydrometer, consisting of a loaded glass bulb fixed 

at the bottom of a glass stem of uniform section, sinks in water 

of density 1.0gcm~> so that a certain mark X on the stem 

is 4.0cm below the surface. It sinks in a liquid of density 

0.90 gcm~ until X is 6.0.cm below the surface. It is then placed 

in a liquid of density 1.1gcm~*. How far below the surface 

will X be? (Neglect surface tension effects.) (S.) 

5. A simple reciprocating exhaust pump has a piston area 

0.002 m’ and a stroke length 0.2m. It is directly connected 

to a vessel of volume 0.01 m*, containing air at atmospheric 

pressure. 

Calculate the minimum number of strokes needed to reduce 

the pressure in the vessel to 0.01 atmosphere, assuming isother- 

mal conditions. 

Discuss briefly the validity of this assumption and state any 

further assumptions made. (J.M.B. Eng. Sc.) 

Surface tension 

6. Explain (a) in terms of molecular forces why the water is 

drawn up above the horizontal liquid level round a steel needle 

which is held vertically and partly immersed in water, (b) why, 

in certain circumstances, a steel needle will rest on a water 

surface. In each case show the relevant forces on a diagram. 

(J.M.B.) 

7. Explain, using a simple molecular theory, why the surface 

of a liquid behaves in a different manner from the bulk of 

the liquid. 

Giving the necessary theory, explain how the rise of water 

in a capillary tube may be used to determine the surface tension 

of water. 
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A microscope slide measures 6.0cm X 1.5cm x 0.20cm. It 

is suspended with its face vertical and with its longest side 

horizontal and is lowered into water until it is half immersed. 

Its apparent weight is then found to be the same as its weight 

in air. Calculate the surface tension of water assuming the angle 

of contact to be zero. 

8. A clean glass capillary tube of internal diameter 0.60 mm 

is held vertically with its lower end in water and with 80mm 

of the tube above the surface. How high does the water rise 

in the tube? 

If the tube is now lowered until only 30mm of its length 

is above the surface, what happens? Surface tension of water 

is7.2x10-7Nm“!. 

9. Describe and explain two experiments of a different nature 

to illustrate the phenomenon of surface tension. ' 

Give a quantitative definition of surface tension and explain 

what is meant by angle of contact. 

The internal diameter of the tube of a mercury barometer 

is 3.00mm. Find the corrected reading of the barometer after 

allowing for the error due to surface tension, if the observed 

reading is 76.56cm. (Surface tension of mercury = 

4.80x10-'Nm7!; angle of contact of mercury with 
glass = 140°; density of mercury = 13.6 x 10°?kgm~°*.) (3 

10. What is the work done in increasing the radius of a soap 

bubble from r to 3r if the surface tension of the soap solution is 
y? 

11. Two spherical soap bubbles of radii 30mm and 10mm 

coalesce so that they have a common surface. If they are made 

from the same solution and if the radii of the bubbles stay the 

same after they join together, calculate the radius of curvature 

of their common surface. 



12 Fluids in motion 

Introduction 
Viscosity 
Coefficient of viscosity 
Poiseuille’s formula: steady and turbulent flow 
Motion in a fluid: Stokes’ law 
Methods of measuring 77 

Bernoulli’s equation 
Applications of Bernoulli 
Flowmeters 
Fluid flow calculations 
Flow of mass, energy and charge 

Introduction 

The study of moving fluids is important in engineering. 

A large quantity of liquid may have to flow rapidly 

through a pipe from one location to another, or air 

entering the inlet of a machine, e.g. a jet engine, may 

have to be transported to the outlet, undergoing changes 

of pressure, temperature and speed as it passes. In all 

such cases of mass transport a knowledge of the condi- 

tions existing at various points in the system is essential 

for efficient design. 
Fluid dynamics is a complex subject which we shall 

only touch upon in this chapter. 

Viscosity 

If adjacent layers of a material are displaced laterally 

over each other as in Fig. 12.la, the deformation of 

the material is called a shear. Basically the simplest type 

of fluid flow involves shear as we shall now see. 

All liquids and gases (except very low density gases) 

stick to a solid surface so that when they flow the velocity 

must gradually decrease to zero as the wall of the pipe 

or containing vessel is approached. (The existence of 

a stationary layer may be inferred from the fact that 

whilst large particles of dust can be blown off a shelf, 

small particles remain which can be wiped off subse- 

quently with the finger.) A fluid is therefore sheared 

when it flows past a solid surface and the opposition 

set up by the fluid to shear is called its viscosity. Liquids 

such as syrup and engine oil which pour slowly are more 
viscous than water. 

Fig. 12.1 (a) 

Doe 

f 

Viscosity is a kind of internal friction exhibited to 

some degree by all fluids. It arises in liquids because 

the forced movement of a molecule relative to its neigh- 

bours is opposed by the intermolecular forces between 

them. 

When the fluid particles passing successively through 

a given point in a fluid always follow the same path 

afterwards, the flow is said to be steady. ‘Streamlines’ 

can be drawn to show the direction of motion of the 
particles and are shown in Fig. 12.1b for steady flow 

of the water at various depths near the centre of a wide 

river. The layer of water in contact with the bottom 

of the river must be at rest (or the river bed would 

be rapidly eroded) and the velocities of higher layers 

increase the nearer the layer is to the surface. The length 

of the streamlines represents the magnitude of the vel- 

ocities. The water suffers shear, a cube becoming a 

rhombus, Fig. 12.1c, as if acted on by tangential forces 

at its upper and lower faces. Steady flow thus involves 
parallel layers of fluid sliding over each other with differ- 

ent velocities thereby creating viscous forces acting tan- 

gentially (as shear forces do) between the layers and 
impeding their motion. 

Coefficient of viscosity 

To obtain a definition of viscosity we consider two plane 

parallel layers of liquid separated by a very small dis- 

tance $y and having velocities v + $v and v, Fig. 12.2. 

The velocity gradient (i.e. change of velocity/distance) 

in a direction perpendicular to the velocities is 8v/8y. 



dy Retarding force 

(exaggerated) f ie F cy Vv 
_t_ £Accelerating force 

Fig. 12.2 

The slower, lower layer exerts a tangential retarding 

force F on the faster upper layer and experiences itself 

an equal and opposite tangential force F due to the 
upper layer (Newton’s third law). The tangential stress 

between the layers is therefore F/A where A is their 

area of contact. The coefficient of viscosity n is defined 
by the equation 

_ tangentialstress _ F/A 

oat velocity gradient 8v/8y 

In words, 7 is the tangential force per unit area of fluid 

which resists the motion of one layer over another when 

the velocity gradient between the layers is unity. If 8v/8y 

is small and F/A large, 7 is larger and the fluid very 

viscous. For many pure liquids (e.g. water) and gases 

7 is independent of the velocity gradient at a particular 
temperature, i.e. 7 is constant and so the tangential stress 

is directly proportional to the velocity gradient. Fluids 

for which this is true are called Newtonian fluids since 

Newton first suggested this relationship might hold. For 

some liquids such as paints, glues and liquid cements, 
n decreases as the tangential stress increases and these 

are said to be thixotropic. 
The equation defining 7 shows that it can be measured 

in newton second metre * (Ns m_~°)i.e. in pascal second 

(Pas). Check this. At 20°C, n for water is 1.0 x 107? Pas 
and for glycerine 8.3 x 107! Pas. Experiment shows that 

the coefficient of viscosity of a liquid usually decreases 

rapidly with temperature rise. 
Viscosity is an essential property of a lubricating oil 

if it is to keep apart two solid surfaces in relative motion. 

Too high viscosity on the other hand causes unnecessary 

resistance to motion. ‘Viscostatic’ oils have about the 

same value of 7 whether cold or hot. 

It should be noted that viscous forces are called into 

play as soon as fluid flow starts. If the external forces 
causing the flow are constant, the rate of flow becomes 

constant and a steady state is attained with the resisting 

viscous forces equal to the applied force. The viscous 

forces stop the flow when the applied force is removed. 
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Poiseuille’s formula: steady and turbulent flow 

The streamlines for steady flow in a circular pipe are 

shown in Fig. 12.3. Everywhere they are parallel to the 

axis of the pipe and represent velocities varying from 

zero at the wall of the pipe to a maximum at its axis. 
The surfaces of equal velocity are the surfaces of concen- 
tric cylinders. 

Fig. 12.3 

An expression for the volume of liquid passing per 

second, V, through a pipe when the flow is steady, can 
be obtained by the method of dimensions (Appendix 

1). It is reasonable to assume that V depends on (i) 

the coefficient of viscosity 7 of the liquid, (i) the radius 

r of the pipe and (iii) the pressure gradient p// causing 

the flow, where p is the pressure difference between 

the ends of the pipe and / is its length, Fig. 12.4. We 

have 

V = kyr'(p/D 
where x, y and z are the indices to be found and k 

is a dimensionless constant. The dimensions of V are 

[(L2T=?} of) (Mie ie Mote [Lote ML re ik 
i.e. [ML~!T~’] (since pressure = force/area), and of 
I[L]. Hence the dimensions of p// are [ML~?T~°]. 

Liquid flow 

P=atmospheric pressure 

Fig. 12.4 

Equating dimensions, 

er = (MET epiML el 

Equating indices of M, L and T on both sides, 

O=x+z 

J = =k Vie 

=x 2z 

Solving, we get x = —1, y=4 and z = 1. Hence 

kpr* 

al 
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The value of k cannot be obtained by the method of 
dimensions but a fuller analysis shows that it equals 77/8 

and so the complete expression is 

This is known as Poiseuille’s formula since he made the 

first thorough experimental investigation of the steady 

flow of liquid through a pipe in 1844. 

So far we have considered only steady flow. When 

the velocity of flow exceeds a certain critical value the 

motion becomes turbulent, the liquid is churned up and 

the streamlines are no longer parallel and straight. The 

change from steady to turbulent flow can be studied 

with the apparatus of Fig. 12.5. The flow of water along 

the tube T is controlled by the clip C. Potassium perman- 

ganate solution from the reservoir R 1s fed into the water 

flowing through T by a fine jet J. At low flow velocities 

a fine coloured stream is observed along the centre of 

T, but as the rate of flow increases it starts to break 
up and the colour rapidly spreads throughout T indicat- 

ing the onset of turbulence. 

SSASSSSSSSY 

Glass tank kept full of water Cc 
to overflowing 

i 
Fig. 12.5 ii 

Reynold’s number (Re) is useful in the study of the 
stability of fluid flow. 

It is defined by the equation 

Re= Le 
n 

where 7 and p are the viscosity and density respectively 

of the fluid, v is the speed of the bulk of the fluid and 

/ is a characteristic dimension of the solid body con- 
cerned. For a cylindrical pipe / is usually the diameter 

(2r) of the pipe. Experiment shows that for cylindrical 
pipes, when 

Re < 2200, flow is steady 

Re ~ 2200, flow is unstable (critical velocity v,) 

Re > 2200, flow is usually turbulent 

Hence large 7 and small v, rand p promote steady flow. 

Poiseuille’s formula holds for velocities of flow less 

than v,. 

Motion in a fluid: Stokes’ law 

The streamlines for a fluid flowing slowly past a station- 

ary solid sphere are shown in Fig. 12.6. When the sphere 

moves slowly rather than the fluid, the pattern is similar 

but the streamlines then show the apparent motion of 
the fluid particles as seen by someone on the moving 

sphere. In this latter case it is known that the layer 

of fluid in contact with the sphere moves with it, thus 

creating a velocity gradient between this layer and other 

layers of the fluid. Viscous forces are thereby brought 

into play and constitute the resistance experienced by 

the moving sphere. 

Viscous fluid 

Fig. 12.6 

If we make the plausible assumption that the viscous 

retarding force F depends on (i) the viscosity 7 of the 

fluid, (ii) the velocity v and radius r of the sphere, then 

an expression can be derived for F by the method of 

dimensions. Thus 

F=ky*v’r? 

where x, y and z are the indices to be found and k 

is a dimensionless constant. The dimensional equation 
is 

[MLT~?] =[ML-?T-*P{CT-'pILF 

Equating indices of M, L and T on both sides, 

l=x 

l=-x+y+z 

—2=-x-y 

Solving, we get x = 1, y = 1 and z=1. Hence 

F=knvr 

A detailed treatment, first done by Stokes, gives k = 67 
and so 

F=67nvr 

This expression, called Stokes’ law, only holds for steady 



motion in a fluid of infinite extent (otherwise the walls 

and bottom of the vessel affect the resisting force). 

Now consider the sphere falling vertically under grav- 

ity in a viscous fluid. Three forces act on it, Fig. 12.7, 

(7) its weight W, acting downwards, 
(ii) the upthrust U due to the weight of fluid displaced, 

acting upwards, and 
(iii) the viscous drag F, acting upwards. 

F (Viscous drag) 

W (Weight 

Fig. 12.7 

The resultant downward force is (W — U — F) and causes 

the sphere to accelerate until its velocity, and so the 

viscous drag, reach values such that 

W-—U-—F=0 

The sphere then continues to fall with a constant vel- 

ocity, known as its terminal velocity, of say v,. Now 

W = 3mr°pg where pis the density of the sphere 

U = 3nrsog where cis the density of the fluid 

Also, if steady conditions still hold when velocity v, is 

reached then by Stokes’ law 

F=677rv, 

Hence 

Sar pg — 4mrog — 67nrv, =0 

_2r(p— og 

on 
t 

All that has been said so far applies to steady flow. 

As the velocity of the sphere increases, a critical velocity 

v, is reached when the flow breaks up, eddies are formed 

as in Fig. 12.8a and the motion becomes turbulent. At 

velocities greater than v, the resistance to motion, called 

the drag, increases sharply and is roughly proportional 

to the square of the velocity. (Below v, Stokes’ law indi- 

cates that the resistance is proportional to the velocity.) 
For highly turbulent flow resistance is dependent on 

density, not viscosity; this is the ordinary case of air 

resistance to vehicles. 
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(b) 

Fig. 12.8 

By modifying the shape of a body the critical velocity 

can be raised and the drag thereby reduced at a particu- 

lar speed if steady flow replaces turbulent flow. This 

is called streamlining the body and Fig. 12.8b shows 

how it is done for a sphere. The pointed tail cat be 

regarded as filling the region where eddies occur in tur- 

bulent motion, thus ensuring that the streamlines merge 

again behind the sphere. Streamlining is particularly 

important in the design of high-speed aircraft. 

The air flow past a model ‘Mini’ car in a wind tunnel 
is Shown in Fig. 12.9. The flow is visualized by streams 
of finely condensed paraffin vapour giving the appear- 

ance of smoke trails. Features illustrated are flow separ- 

ation part-way along the bonnet, vortex (‘whirlwind’) 

flow across the foot of the windscreen, flow separation 

just off the top of the windscreen roof joint and unsteady 

flow behind the car (as shown by the dispersion of the 

smoke trails). 

Methods of measuring 1) 

(a) Using Poiseuille’s formula. The method is suitable 
for a liquid obtainable in iarge quantities and which 
flows easily, e.g. water. The liquid passes s/owly from 
a constant-head apparatus through a capillary tube and 

the volume collected in a certain time is found, Fig. 

12.10a. 
By altering the position of tube T, the rates of flow 

for different pressure differences can be measured. If 

a graph of volume delivered per second V against pres- 

sure difference p is plotted, the onset of turbulence, 

to which Poiseuille’s formula does not apply, will be 

shown by non-linearity, Fig. 12.10b. The slope of the 
linear part of the graph gives an average value for V/p 

where p=hpg, p being the density of the liquid and 

h the pressure head. Knowing the length / of the 
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Fig. 12.9 

)_ Thermometer 

Liquid Capillary tube 

Constant—_ 
head 
apparatus _ 

(a) 
Fig. 12.10 

capillary tube and its radius r, the viscosity 7 of the 

liquid at the particular temperature is calculated from 

_ apr’ 

Damrey 
To measure r with the care required (since it is small 

and appears to the fourth power) a long thread of mer- 

cury is introduced into the tube and its length and mass 
found. A narrow bore capillary tube is used so that 

steady flow is obtained with pressure differences that 

are not so small as to be difficult to measure accurately. 

(b) Ostwald’s viscometer. Viscosities can be easily 
and rapidly compared using this instrument, Fig. 12.11. 
A certain volume of liquid is introduced via E and 
sucked up into bulb B until its upper level is above 

mark A. It is then allowed to flow under its own weight 

through capillary CD and the time f, found for the upper 

level to fall between marks A and C. This is also the 

TEs 
Turbulence 

Starts 

(b) 

time for a volume of liquid equal to the volume V of 
the viscometer between A and C to flow through CD. 

The experiment is repeated and ¢, found with the same 

Constant 
temperature 

bath 

Fig. 12.11 



volume of another liquid (or with the same liquid at 
a different temperature if the variation of 7 with 
temperature of a given liquid is being studied). 

The pressure difference causing the flow decreases 
during the flow but since the viscometer always contains 

the same volume of liquid, the average difference of 
level, say h, is always the same. Hence for liquids of 
densities p,; and p, the average pressure differences are 
hp,g and hp,g respectively. Thus for steady flow of the 

first liquid of viscosity 7; 

V_ ahpygr* 

ty 8n,/ 

and for the second of viscosity 7; 

V_ ahp.gr4 

b 8n)l 

where r and / are the radius and length of the capillary 

respectively. Therefore 

3 Pats 

M2 = Prt2 

The method is widely used in practice because of its 

simplicity and accuracy. 

(c) Using Stokes’ law. The viscosity of a liquid such 
as glycerine or a heavy oil, whose high viscosity makes 

the previous methods unsuitable, may be found by tim- 

ing a small ball-bearing falling with its terminal velocity 

through the liquid. So long as the terminal velocity does 

not exceed the critical velocity, i.e. the flow is steady, 

Stokes’ law applies and we can therefore say 

_ 2p - ong 
Vv Se 255 ' a (p. 235) 

where vy, is the terminal velocity, r and p the radius 

and density of the ball-bearing and a the density of the 

liquid. The viscosity 7 can then be calculated. 

To satisfy as far as possible the assumption in Stokes’ 
law that the liquid is infinite in extent, the vessel of 

liquid must be wide compared with the diameter of the 

ball-bearing (the latter should be less than 2mm for 

Fig. 12.13 
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a wide measuring cylinder); it should also be deep, Fig. 

12.12. The terminal velocity v, is obtained by finding 

the average time ¢ taken by balls of the same size to 
fall from mark A (which is far enough below the surface 

for the ball to have reached its terminal velocity at A) 
to mark B (which is not too near the bottom of the 

vessel). Then v, = AB/t. 

Small ball-bearing 

Viscous liquid 

Fig. 12.12 

To reduce the chance of air bubbles adhering to the 

falling ball it should be dipped in some of the liquid 
and thereby coated, before dropping. The temperature 

of the liquid should also be kept constant. 

Bernoulli’s equation 

The pressure is the same at all points on the same hori- 

zontal level in a fluid at rest; this is not so when the 
fluid is in motion. The pressure at different points in 

a liquid flowing through (a) a uniform tube and (b) a 

tube with a narrow part, is shown by the height of liquid 

in the vertical manometers in Figs 12.13a and b. In (a) 

the pressure drop along the tube is steady and maintains 

the flow against the viscosity of the liquid. In (b) the 
pressure falls in the narrow part B but rises again in 

the wider part C. If the liquid can be assumed to be 

incompressible, the same volume of liquid passes 

through B in a given time as enters A and so the velocity 
of the liquid must be greater in B than in A or C. There- 
fore a decrease of pressure accompanies an increase 

of velocity. This may be shown by blowing into a ‘tunnel’ 

made from a sheet of paper, Fig. 12.13c. The faster 

one blows the more the tunnel collapses. 

es Paper tunnel. 

Blow 
(c) 
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A useful relation can be obtained between the pres- 

sure and the velocity at different parts of a fluid in 

motion. 
Suppose a fluid flows through a non-uniform tube 

from X to Y, Fig. 12.14, and its velocity changes from 

v, at X where the cross-section area is A; to vz at Y 

where the cross-section is A,. The flow of fluid between 

X and Y is caused by the forces acting on its ends which 

arise from the pressure exerted on it by the fluid on 
either side of it. At X, if the fluid pressure is p,, there 

is a force p,A, acting in the direction of flow, and at 
Y, if the fluid pressure is p,, a force p,A, opposes the 

flow. 

Fig. 12.14 

Consider a small time interval 5¢ in which the fluid 

at X has moved to X’ and that at Y to Y’. 

At X, work done during 6¢ on the fluid XY by p,A, 

pushing it into the tube 

= force X distance moved = force X velocity X time 

= p\A, Xv, X &t 

At Y, work done during df by the fluid XY emerging 
from the tube against p,A, = prA> X v2 X dt. Therefore 

net work W done on the fluid = (p,A,v, — p»Azv2)8t 

If the fluid is incompressible, volume between X and 

X’ equals volume between Y and Y’, i.e. 

A, Xv, 8t= A), X v2 8t 

W = (Pp, — p2)Ayv, 5t 

As a result of work done on it, the fluid gains p.e. 
and k.e. when XY moves to X’Y’. 

Gain of p.e. = p.e. of X'Y' — p.e. of XY 

= p.gnOLN \ +p. 0f YY’ = 
Picsci XX — pie. OF. XY 

=p.e. of YY — pre. of XX’ 

= (Ajv2 8t p)ghy — (Aqv, St p)gh, 
(since p.e. = mgh) 

= A,Vv, dt pg(hy — hy) 
(since A,v, 8t = Ajv, 82) 

where h, and h, are the heights of XX’ and YY’ above 

an arbitrary horizontal reference level and p is the den- 

sity of the fluid. Similarly, 

gainofk.e. =k.e. of YY’ — k.e. of XX’ 

= }(Azv2 St p)vy? — 3(Ayv; dtp)v,7 
(since k.e. = $mv’) 

= $A,v, dt p(v2? — v,’) 

If the fluid is non-viscous (i.e. inviscid) no work is 

done against viscous forces to maintain the flow, no 

change of internal energy of the fluid occurs and by 

the principle of conservation of energy we have 

net work done on fluid = gain of p.e. + gain of k.e. 

(DP, — P2)A,V1 8t = A,v, St pg(hz — hy) 

+ $A,v; 8t p(v* — v;") 

Pi — P2 = pathy — hy) + 3p( v2" — v4’) 

or Pi t+ hipg + 2pv,? = p2 + hy pg + tpvy 

This is Bernoulli's equation and it is usually stated by 
saying that along a streamline in an incompressible, invis- 

cid fluid 

p +hpg + pv? = constant 

In deriving the equation we have in effect assumed that 
the pressure and velocity are uniform over any cross- 

section of the tube. This is not so for a real (viscous) 

fluid and so it only applies strictly to a single streamline 

in the fluid. In addition, actual fluids, especially gases, 

are compressible. The equation has therefore to be 
applied with care or the results will be misleading. 

Applications of Bernoulli 

(a) Jets and nozzles. Bernoulli’s equation suggests 

that for fluid flow where the potential energy change 

hpg is very small or zero, as in a horizontal pipe, the 

pressure falls when the velocity rises. The velocity 

increases at a constriction—a slow stream of water from 

a tap can be converted into a fast jet by narrowing the 

exit with a finger—and the greater the change in cross- 
sectional area, the greater is the increase of velocity 
and so the greater is the pressure drop. Several devices 

with jets and nozzles use this effect; Fig. 12.15 shows 

the action of a Bunsen burner, a filter pump and a paint 
spray. 

(b) Spinning ball. If a tennis ball is ‘cut’ or a golf 

ball ‘sliced’ it spins as it travels through the air and 

experiences a sideways force which causes it to curve 

in flight. This is due to air being dragged round by the 

spinning ball, thereby increasing the air flow on one 
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Water from tap 

| 
| 

Jet 4 

Bunsen burner 

Fig. 12.15 

side and decreasing it on the other. A pressure differ- 

ence is thus created, Fig. 12.16. The swing of a spinning 

cricket ball is complicated by its raised seam. 

Speed of air flow increases 

.. pressure reduced Force on ball =o 

Speed of air flow decreases 
.. Pressure increased 

Fig. 12.16 

(c) Aerofoil. This is a device which is shaped so that 

the relative motion between it and a fluid produces a 

force perpendicular to the flow. Examples of aerofoils 

are aircraft wings, turbine blades and propellors. 

High speed,reduced pressure 

Low speed, increased pressure 

Fig. 12.17 

The shape of the aerofoil section in Fig. 12.17 is such 

that fluid flows faster over the top surface than over 

the bottom, i.e. the streamlines are closer above than 

below the aerofoil. By Bernoulli, it follows that the pres- 

sure underneath is increased and that above reduced. 

A resultant upwards force is thus created, normal to 

Air from 

vessel to be 
evacuated 

Filter pump 

Paint spray 

the flow, and it is this force which provides most of 

the ‘lift’ for an aircraft. Its value increases with the angle 

between the wing and the air flow (called the ‘angle 
of attack’) until at a certain angle the flow separates 

from the upper surface, lift is lost almost completely, 

drag increases sharply, the flow downstream becomes 
very turbulent and the aircraft stalls. 

The sail of a yacht ‘tacking’ into the wind is another 
example of an aerofoil. The air flow over the sai! pro- 

duces a pressure increase on the windward side and a 

decrease on the leeward side. The resultant force is 

roughly normal to the sail and can be resolved into a 

component F producing forward motion and a greater 

component S acting sideways, Fig. 12.18. The keel pro- 

duces a lateral force to balance S. 

Wind 

\ 
ee Yacht 

Force on sail 

Ss 

Sail \ 
— Fast moving air 

Fig. 12.18 

Flowmeters 

These measure the rate of flow of a fluid through a 
pipe. Two types will be considered. 

(a) Venturi meter. This consists of a horizontal tube 
with a constriction and replaces part of the piping of 

a system, Fig. 12.19. The two vertical tubes record the 

pressures (above atmospheric) in the fluid flowing in 

the normal part of the tube and in the constriction. 
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Fig. 12.19 

If p,; and p, are the pressures and v, and v, the vel- 

ocities of the fluid (density p) at L and M on the same 

horizontal level, then assuming Bernoulli’s equation 

holds 

Pi + 3pvy = py + 2pv7 

Pi — P2 = 3(¥2" — 1’) 

If A, and A, are the cross-sectional areas at L and M 

and if the fluid is incompressible, the same volume 

passes each section of the tube per second. 

Av, = Any, 

(since h, = hy) 

Hence 

Knowing A,, A>, p and (p,; — pz), v; can be found and 

so also the rate of flow A,v,. Why is the above equation 

not valid for (i) a gas, (ii) a heavy oil, (iii) very rapid 
flow? 

(b) Pitot tube. The pressure exerted by a moving 

fluid, called the total pressure, can be regarded as having 

two components: the static component which it would 

have if it were at rest and the dynamic component which 
is the pressure equivalent of its velocity. The Pitot tube 

measures total pressure and in essence is a manometer 

with one limb parallel to the flow and open to the oncom- 
ing fluid, Fig. 12.20. The fluid at the open end is at 

rest and a ‘stagnant’ region exists there. The total pres- 

sure is also called the stagnation pressure. The static 
component is measured by a manometer connected at 
right angles to the pipe or surface over which the fluid 
is passing. 

Pitot tube 
(gives total 
pressure) 

Statics 

pressure 

tube 

Fig. 12.20 

In Bernoulli’s equation 

p+ hpg + pv? = constant 

the static component is given by p + hpg or by p if the 

flow is horizontal, the dynamic component by 4pv? and 
the total pressure by p + pv. Hence 

total pressure — static component = p + tpv? — p= Sov? 

2 
v= a (total pressure — static component) 

p 

This expression enables a value for the velocity of flow 
v of an incompressible, inviscid fluid to be calculated 
from the readings of Pitot-static tubes. In real cases v 

varies across the diameter of the pipe carrying the fluid 

(because of its viscosity) but it can be shown that if 

the open end of the Pitot tube is offset from the axis 
of the pipe by 0.7 X radius of the pipe, then v is the 

average flow velocity. 

Fluid flow calculations 

1. A garden sprinkler has 150 small holes each 

2.0mm‘* in area, Fig. 12.21. If water is supplied at the 
rate of 3.0 x 10-3 m*s~!, what is the average velocity of 
the spray? 

Fig. 12.21 

Volume of water per second from sprinkler 

= volume supplied per second 

= 30010 arse 

= total area of sprinkler holes <x average velocity 

of spray 

= 300 x 10-° m? x average velocity of spray 

Therefore average velocity of spray 

ek KOs eng sa 

300 <10-* ae 

1 =10ms” 

2. Obtain an estimate for the velocity of emergence 
of a liquid from a hole in the side of a wide vessel 10cm 
below the liquid surface. 

Consider the general case in which the hole is at depth 

h below the surface of the liquid of density p, Fig. 12.22. 

If the liquid is incompressible and inviscid and the 
motion is steady we can apply Bernoulli’s equation to 

points A and B on the streamline AB. 

AtA Pp, = atmospheric pressure = P 

h,=h 

v,=0 



Fig. 12.22 

(assuming the rate of fall of the surface can be neglected 

compared with the speed of emergence since the vessel 

is wide). 

AtB P2 = pressure of air into which 

the liquid emerges = P 

hy — 0 

V,=Vv 

Substituting in Bernoulli’s equation, 

P+hpg + 0= P+0 + 3pv? 

hpg = 3pv" 
from which we see that the potential energy lost by unit 

volume of liquid (mass p) in falling from the surface 

to depth h is changed to kinetic energy. The velocity 

of emergence is given by 

v? = 2gh 

and is the same as the vertical velocity which would 

be acquired in free fall—a statement known as Torri- 

celli’s theorem. In fact, v is always less than V2gh due 

to the viscosity of the liquid. 
Ifh=10cm=0.1mandg=9.8ms ° then 

v=V2x9.8x0.1ms7! 

= Ams 

Flow of mass, energy and charge 

The transfer of mass, energy or electric charge from 

one place to another is an important engineering prob- 

lem. For example, the transportation of all three occurs 
in the generation and distribution of electricity. The 

flow of each quantity is expressed by the same general 

expression 

‘pressure’ causing flow 
flow rate *« ————_—____—— 

resistance to flow 

(a) Mass. Mass transport in the form of steady fluid 

flow along a pipe is given by Poiseuille’s formula (p. 

234) 
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_ apr’ 

87 

where V is the volume of fluid passing per second, p 

the pressure difference between the ends of the pipe 

of length /and radius r and 7 is the coefficient of viscosity 
of the fluid. 

If-p,, is the density of the fluid then the mass passing 
per second is p,,V and we can say 

ee 
8nl Rm 

where R,, is a constant which incorporates the resistance 
to flow, i.e. 7, and equals 8y//(p,,7r*). Hence 

mass flow rate = p 

fluid pressure difference 
fluid mass flow rate « ; 

resistance to flow 

(b) Energy (heat). The transport of heat by conduc- 

tion is expressed by Fourier’s law (p. 87) 

Q_kA(6,—- 4) 
ious Hawt 

where Q is the quantity of heat passing in time t down 

a lagged bar of cross-sectional area A, length x and ther- 

mal conductivity k when its opposite ends are at steady 

temperatures 6, and 6,. Hence 

t te = (0, — 6,)—= eat flow rate = (0, — 9, . R. 

where R, is a constant incorporating the resistance to 

flow, i.e. 1/k, and equals x/(kA). Hence 

temperature difference 
heat flow rate « - 

resistance to flow 

(c) Charge. The rate of electric charge flow, i.e. cur- 
rent, in metallic conductors obeys Ohm’s law (p. 47) 

where / is the current and V the potential difference 

across the ends of a conductor of resistance R. Since 

R=pl/A where p is the resistivity of the material of 

the conductor of length / and cross-sectional area A we 

can also write 

A 
[=V— 

pl 

Hence 

potential difference 
electric charge flow rate ~ 

resistance to flow 
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Further comparison of these transport effect expres- 

sions shows that for all three we can also say 

driving physical ,. conductivity 

eae factor “factor factor 

In particular, 

mass flow rate = P X ue x Pa 

A 
heat flow rate = (2 — 9) x rae k 

Apel 
electric charge flow rate = V X 7% ; 

In each case the physical factor equals (cross-sectional 
area of flow path)/(length of flow path). 

QUESTIONS 

1. What do you understand by the dimensions of a physical 

quantity? Derive the dimensions of coefficient of viscosity. 

Explain the value, and the limitations, of the method of 

dimensions as a means of checking, and sometimes deriving, 

the form of equations involving physical quantities. 

Confirm the dimensional consistency of the following state- 

ments in which 7 represents the coefficient of viscosity of a 

liquid, a and / are lengths, p a density, p a pressure-difference 

and v a speed: 

(a) The product /vp/n, known as Reynolds’s number, is 

dimensionless. 

(b) According to Poiseuille, the volume of liquid flowing 

per second steadily through a capillary tube is zpa*/8/7. 

(c) For a sphere of density p falling steadily under gravity 

through an expanse of liquid of density p’ 
4 

6rnav = 37a*(p— p')g (OUGPE.) 

2. An aluminium sphere is suspended by a thread below the 

surface of a liquid. Show on a sketch the forces acting on the 

sphere, and explain its equilibrium. (No formal proof is 
required.) 

The thread is now cut. Show on a second sketch, or explain 

in words, the forces which act on the sphere when it is in 

motion. 

The following figures for x, the total distance travelled by 
the sphere in the liquid at time ¢, were obtained: 

is)  f0eeee0 3.0. 40° 5.0 
x(cm) 3.60 10.3 18.6 27.9 37.4 

Draw a graph to display the relation between x and ¢, and 
explain its form. Find the terminal velocity of the sphere. Give 

a qualitative account of how you would expect the graph to 

be modified if the temperature of the liquid were increased. 

(C.) 

3. Define coefficient of viscosity n and obtain its dimensions 

in terms of M, L and T. 

Stokes’s law for the viscous force F acting on a sphere of 

radius a falling with velocity.v through a large expanse of fluid 

of coefficient of viscosity 7 is expressed by the equation 

F=67anv 

Show that this equation is correct dimensionally and state why 

it is true only for sufficiently low velocities. 

Explain why a sphere released in a fluid will fall with dimin- 

ishing acceleration until it attains a constant terminal velocity. 

Calculate this velocity for an oil drop of radius 3.0 x 10-°m 

falling through air of coefficient of viscosity 1.8 x 10~° Pas, 

given that the density of the oil is 8.0 x 10°kgm~> and that 

the density of air may be neglected. CES) 

4. In the simplified petrol engine carburettor shown in Fig. 

12.23, air is drawn into the carburettor by the action of the 

engine piston, and the petrol enters at the point of minimum 

cross-sectional area. If the throat of the venturi section has 

an area of 78mm‘, calculate the area of the fuel jet required 

to produce an air—fuel mass ratio of 12:1. 

The density of air is 1.2kgm~* and that of petrol is 
7.8 x 10°?kgm~?. (J.M.B. Eng. Sc.) 

Area = 78 mm2 

Petrol 

J 
Open to 

4 oo alan 

1 
Air from atmosphere 

Fig. 12.23 

5. A toy designer has submitted a design for a water pistol 

with a barrel area 75 mm? and jet area 1.0 mm?. The manufac- 
turer required that when the pistol was fired horizontally, the 

jet should be able to hit a target 3.5m away not more than 

1.0m below the firing line. Given that the average child is 

able to exert a force of 10N on the plunger, has the designer 

satisfied the requirements? You may neglect barrel friction 
and energy loss at the exit jet. 

Atmospheric pressure = 1.0 x 10° Pa, density of water = 

1.0 x 10°kgm-3, g=9.8ms~?. (J.M.B. Eng. Sc.) 

6. (a) (i) Using a practical example, demonstrate what is 
meant by ‘the conservation of mechanical energy’. 

(ii) By means of a further practical example, show that 
in ‘real-life’ situations mechanical energy is often not con- 
served. 

(b) Derive Bernoulli’s equation for fluid flow: 

p + hpg + $pv? = aconstant 



(c) Explain why Bernoulli’s equation is not strictly applic- 

able to 

(‘) a gas, and 

(ii) a viscous liquid flowing through a narrow tube. 

(d) With the aid of diagrams and Bernoulli’s equation, 

explain the observed effect of 

(i) the motion of a spinning ball, and 

(ii) the mixing of coal gas and air in a bunsen burner. 

(H.K.A.L.E., 1984) 

7. (a) From a consideration of the flow of a liquid through a 

narrow tube, define the coefficient of viscosity in terms of the 

internal frictional force and determine its unit. 

(b) Explain how you would compare the viscosities of two 

liquids, deriving any mathematical relations required (Stokes’ 

Law may be assumed). Briefly indicate any necessary precau- 

tions or procedures for improving the accuracy of your 

measurements. 

(c) Explain the physical effects on your experimental 
measurements as the size of the ball-bearings were increased 

until their diameter became similar to that of the liquid 

container. 

(d) Distinguish between Newtonian and non-Newtonian 

liquids, regarding their viscous behaviour, and give one exam- 

ple of each. 

(H.K.A.L.E., 1986) 

8. (a) (i) Fig. 12.24a shows the streamlines around a tennis 

ball when it is projected in a straight line through still air. 

Copy Fig. 12.24b, sketch the streamlines in the vicinity of the 

ball if, apart from the forward motion, it is also spinning about 

an axis, through its centre, perpendicular to the plane of paper 

in an anticlockwise direction. 

Direction of ball 

Forward motion 

(a) (b) 

Fig. 12.24 
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(ii) Describe, with reasons, the subsequent motion of the 

ball. 
(b) (i) One end of an open tube is put vertically into water. 

By blowing strongly across the open end, water can be drawn 

up the tube. Suppose a few centimetres of the tube is above 

the water surface. What should be the air velocity at the open 

end for water in the tube to rise up by 1 cm? Explain your 

working. (Surface tension effects may be ignored.) (Density of 

air=1.29kgm~*; — density of water = 1000kgm-°; 
e—10mse). 

(ii) Mention one daily application making use of the 
principle described in (b) (i). 

(H.K.A.L.E., 1988) 



Objective-type revision questions 

The first figure of a question number gives the relevant chapter, 

e.g. 7.3 is the third question for chapter 7. 

Multiple choice 

Select the response which you think is correct. 

7.1. A pendulum bob suspended by a string from the point P, 

Fig. 16, is in equilibrium under the action of three forces: W, 

the weight of the bob; T, the tension in the string; and F, a 

horizontally applied force. Which one of the following state- 

ments is untrue? 

A F’+W?=T* — B Fand Ware the components of T 
C W=Tcosé D F=Wtané 

(J.M.B Eng. Sc.) 

P 

7 
6 

is 

WwW 

Fig. 16 

7.2. Forces of 3N, 4N and 12N act as a point in mutually 

perpendicular directions. The magnitude of the resultant force 

in newtons is 

A 5 B 11 (Ole! D 19 
E indeterminate from information given 

7.3. Which graph in Fig. 17 best represents the variation of 

velocity with time of a ball which bounces vertically on a hard 

surface, from the moment when it rebounds from the surface? 

Fig. 17 

244 

7.4. A ball is projected horizontally at 15ms~! from a point 

20 m above a horizontal surface (g = 10ms~*). The magnitude 

of its velocity in ms~! when it hits the surface is 

A 10 B 15 C220 D 25 E, 35 

7.5. A trolley of mass 60 kg moves on a frictionless horizontal 

surface and has kinetic energy 120J. A mass of 40 kg is lowered 

vertically on to the trolley. The total kinetic energy of the 

system is now 

A 60J Boaz 

E another answer 

C 120J D 144J 

7.6. A man weighs an object with a spring balance in a lift. 

Before the lift moves the scale reads SO N. The list goes down 

and then stops. The reading on the scale is 

A SON throughout the journey 

B more than SON when the lift starts, and remains steady 

until it comes to rest 

C less than 50N when the lift starts, and remains steady 

until it comes to rest 

D more than 50 N as the lift starts, and less than 50 N as it 

comes to rest 

E less than 50N as the lift starts, and more than 50 N as it 

comes to rest. 

(H.K.A.L.E., 1989) 

7.7. When a man is running due north, he feels that the 

wind is blowing towards him from the east. What is the 

actual direction of the wind? 

B from north-east 

D from south-west 

A from the east 

C from south-east 

E from north-west 

(H.K.A.L.E., 1990) 
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8.1. A mass of 2.0kg describes a circle of radius 1.0m on 

a smooth horizontal table at a uniform speed. It is joined to 

the centre of the circle by a string which can just withstand 

32 N. The greatest number of revolutions per minute the mass 
can make is 

A 38 B4 C 76 D 240 E 16 

8.2. In order to turn in a horizontal circle an aircraft banks 

so that 

A there is a resultant force on the wings from the centre 
of the circle 

B the weight of the aircraft has a component towards the 

centre of the circle 

C the drag on the plane is reduced 

D the lifting force on the wings has a component towards 

the centre of the circle. 

(J.M.B. Eng. Sc.) 

8.3. Ifa small body of mass 7m is moving with angular velocity 

w ina circle of radius r, what is its kinetic energy? 

D mw?r?/2 

(J.M.B. Eng. Sc.) 

A mor/2 B mo*r/2 C moar*/2 

8.4. Planet X is twice the radius of planet Y and is of material 

of the same density. The ratio of the acceleration due to gravity 

at the surface of X to that at the surface of Y is 

A 1:4 Bi:2 G2a D 4:1 i Dhow l 

8.5. A smooth conical container rotates about the axis AB as 

shown in Fig. 18. A marble remains at rest relative to the 

container at a radial distance r from the axis. If the velocity of 

the marble is v, then v? is equal to 

A ersin30° — BB gr tan 30° 
C gritan 30° ~—dD- gr cos 30° 
E gr/cos 30° 

(H.K.A.L.E., 1989) 

ae 
fects =) 

| 
| 

Fig. 18 

8.6. A satellite S moves around a planet P in an elliptical orbit, 

Fig. 19. The ratio of the speed of the satellite at point a to that 

at point b is 

Ay 129 

E 9:1 

B 1:3 CO ate | D 3:1 

(H.K.A.L.E., 1986) 

pies 

8.7. A satellite moving round the Earth in a circular orbit of 
radius R has a period T. What would the period be if the orbit 

were of radius R/4? 

A 7/8 B 7/4 

Fig. 19 

Coli D2 Beal 
(H.K.A.L.E., 1988) 

9.1. The frequency of oscillation of a mass m suspended at 

the end of a vertical spring having a spring constant k is directly 

proportional to 

A mk Bm/k Cmk  D1/(mk)'/? — E (k/m)!/? 

9.2. The graph of Fig. 20 shows how the displacement of a 

particle describing s.h.m. varies with time. Which one of the 

following statements is, from the graph, false? 

A The restoring force is zero at time 7/4. 

B The velocity is amaximum at time 7/2. 

C The acceleration is a maximum at time T. 

D The displacement is a maximum at time T. 

E The kinetic energy is zero at time 7/2. 

Displacement 

Fig. 20 

9.3. A block of mass m is attached to two identical springs S, 

and S, as shown in Fig. 21. The force constant of the springs is 
k. If the block is made to execute simple harmonic motion, the 

period will be 

m m m 
Ae 2a aa B22) == (CE Se 

4k 2k k 

2m 4m 
D275 Bears ae 

k 

(H.K.A.L.E., 1988) 

m 
S$} S2 

Fig. 21 
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9.4. An object moves vertically with simple harmonic motion 

just behind a wall. From the other side of the wall the object is 

visible in each cycle for 2.0s and hidden behind the wall for 

6.0s. The maximum height reached by the object relative to 

the top of the wall is 0.30 m. The amplitude of the motion is 

B 0.51m C 0.60 m 

E 1.20m 

A 0.18m 

D 1.02m 

CEL AN IE Es L990) 

11.1. When a capillary tube of uniform bore is dipped in water 

the water level in the tube rises 10 cm higher than in the vessel. 

If the tube is lowered until its open end is 5.0 cm above the 

level in the vessel, the water in the tube appears as in (Fig. 

22): A B C D E 

Fig. 22 

12.1. Spheres X and Y of the same material fall at their termi- 

nal velocities through a liquid without causing turbulence. If 
Y has twice the radius of X, the ratio of the terminal velocity 

of Y to that of X is 

A 1:4 B 1:2 (Ome D 2:1 E 4:1 

12.2. A piston of radius r and length / is pushed through a 

cylinder covered with a thin layer of oil of viscosity 7. The 

effective thickness of the oil layer is d. When the speed of the 

piston is u, the resistive force it experiences is: 

A 2arlnu/d B 2arlnud 

C arlyu/ld D arlnud 
E 2arlnu 

(H.K.A.L.E., 1990) 

Multiple selection 

In each question one or more of the responses may be correct. 

Choose one letter from the answer code given. 

Answer A if ({), (ii) and (iii) are correct 

Answer B if only (i) and (ii) are correct 
Answer C if only (ii) and (tii) are correct 

Answer D if (i) only is correct 

Answer £ if (iii) only is correct 

7.8. A ball rolls down an inclined plane, Fig. 23. The ball is 

first released from rest from P and then later from Q. Which of 

the following statements is/are correct? 

(i) The ball takes twice as much time to roll from Q to O 

as it does to roll from P to O. 
(ii) The acceleration of the ball at QO is twice as large as the 

acceleration at P. 
(iii) The ball has twice as much K.E. at O when rolling 

from Q as it does when rolling from P. 

(HK APE 1959) 

Fig. 23 

7.9. In the question Ft = mv— mu 

(i) the dimensions of F are MLT? 
(ii) the dimensions of mv are MLT~! 
(iii) the dimensions of all three terms are the same. 

7.10. An object of mass m slides with constant acceleration a 

down a plane making an angle @ with the horizontal. The 

frictional force acting on the object is 

A mg—ma B mg—ma sin 6 

D (mg—~ma) sin 0 
C mg sin @—ma 

E (mg+ma) sin @ 

(H.K.A.L.E., 1991) 

9.5. The period of a simple pendulum oscillating in a vacuum 
depends on 

(7) the mass of the pendulum bob 

(ii) the length of the pendulum 

(iii) the acceleration due to gravity. 



Appendix 1 

Physical quantities, homogeneity and dimensions 

(a) Physical quantities. These can be classified as basic quan- 

tities and derived quantities. Seven basic quantities are chosen 
for their convenience and are: mass, length, time, electric cur- 

rent, temperature, luminous intensity and amount of substance. 

All other quantities are derived from one or more of the basic 

quantities. 

(b) Homogeneity of equations. The magnitude of a physical 

quantity is written as the product of a number and a unit abbre- 
viation, e.g. 5m for a length. The unit abbreviation can, like 

the number, be treated algebraically, so enabling the unit of 

the quantity required to be found as well as the number. If 

this is done but an incorrect equation is used, it shows up 

by the unit for the required quantity being wrong. 

In a correct equation, both number and units can be equated 

for each term, i.e. the equation is homogeneous with respect 

to the units (although it may still be wrong by a factor that 

has no units). For example, considering only units in the expres- 

sion mgh for potential energy, we have: 

unitofm =kg, 

unitofg =Nkg~!,and 

unitofh =m, 

unit of mgh = kgNkg"'m=Nm=J 

which is the unit of potential energy. 

(c) Dimensions. The dimensions of a quantity show how 

it is related to the basic quantities. For example, the derived 
quantity volume has three dimensions in length; it is measured 

basically by multiplying three lengths together and this is shown 

by writing [V] =[L*]. The square brackets round V indicate 

that we are dealing with the dimensions of V. Density is mea- 

sured by dividing a mass by a volume and has dimensions 

[ML~]. The dimensions of velocity are [LT~'] and of accele- 
ration [LT~2]. Fundamentally force is measured by multiplying 

a mass by an acceleration (F=ma) and so has dimensions 

[MLT~?]. Every derived quantity has dimensions. What are. 

they for pressure? 

Some quantities are partly dimensional. For example, fre- 

quency is a number of oscillations per unit time and has 

dimensions [T~'] since the number of oscillations part is 
dimensionless. Some quantities such as refractive index are 

dimensionless. 

(d) Dimensional analysis. If an equation is correct the 

dimensions of the quantities on either side must be identical. 

This fact is used in the method of dimensional analysis which 

enables predictions to be made about how quantities may be 

related. The method is particularly helpful when dealing with 

viscosity problems and is used to derive Poiseuille’s formula 

on p. 233 and Stokes’ law on p. 234. 

Assumptions based on experiment or intuition have first to 

be made about what quantities could be involved and in general 

no more than three such dependent quantities can be consi- 

dered. Neither does the method yield the value of any dimen- 

sionless constants, e.g. 7. 

App 1 



Appendix 2 

SI units 

SI units (standing for Systéme International d’Unités) were 

adopted internationally in 1960. 

(a) Basic units. The system has seven basic units, one for 

each of the basic quantities. 

Basic quantity 

mass kilogram 

length metre 

time second 

electric current ampere 

temperature kelvin 

luminous intensity candela 

amount of substance _ mole 

Units must be easily reproducible and unvarying with time 

and so are often based on the properties of atoms. Thus the 

metre is now the length which equals 1 650 763.73 wavelengths 

in a vacuum of a specified radiation from a krypton-86 atom. 

Definitions of some of the other units are given when the quan- 
tity arises in the text. 

(b) Derived units. These are obtained from the basic units 

by multiplication or division; no numerical factors are involved. 

Some derived units with complex names: 

cubic metre 

kilogram per cubic metre 

metre per second 

metre per second squared 
kilogram metre per second 

volume 

density 

velocity 

acceleration 

momentum 

App 2 

Some derived units are given special names due to their com- 

plexity when expressed in terms of the basic units. 

Derived quantity 

newton 

pressure pascal 

energy, work joule 

power watt 

frequency hertz 

electric charge coulomb 

electric resistance ohm 

electromotive force volt 

force 

When the unit is named after a person the symbol has a capital 

letter. 

(c) Standard prefixes. Decimal multiples and submultiples 

are attached to units when appropriate. In general, prefixes 

involving powers which are multiples of three are preferred 

but others are used, e.g. 10-7 (centi). 

Hee 

(d) Coherence. SI units are coherent. This means that there 

is only one unit for each quantity (ignoring multiples and sub- 

multiples) and if these are used for the quantities in an expres- 

sion, the answer is obtained in the correct SI unit. For example 

if in F= ma, m is expressed in kg and a in ms~ then F will 

be automatically in newtons. 



Appendix 3 

Measurement of length 

(a) Vernier scale. The simplest type enables a length to be 

measured to 0.01cm. It comprises a small sliding scale which 
is 9mm long and is divided into 10 equal divisions, Fig. A3. 1a. 

Vernier scale 

ymm scale 

mm 1 2 

Fig. A3.1 

Hence 

1 vernier division = 9/10 mm = 0.9mm = 0.09 cm 

One end of the length to be measured is made to coincide 

with the zero of the millimetre scale and the other end with 

the zero of the vernier scale. The length of the object in Fig. 

A3.1b is between 1.3cm and 1.4cm. The reading to the second 

place of decimals is obtained by finding the vernier mark which 

is exactly opposite (or nearest to) a mark on the millimetre 

scale. In this case it is the 6th mark and the length is 1.36cm 

since 

OA = OB —- AB 

“. OA = (1.90. cm) — (6 vernier divisions) 

= 1.90 — 6(0.09) = 1.90 — 0.54cm 

= 1.36cm 

Vernier scales are often used on calipers, barometers, 

travelling microscopes and spectrometers. 

(b) Micrometer screw gauge. This measures very small 

objects to 0.001cm. One revolution of the drum opens the 

accurately plane, parallel jaws by 1 division on the scale on 

the shaft of the gauge; this is usually 3mm, i.e. 0.05cm. If 

the drum has a scale of 50 divisions round it, then rotation 

of the drum by 1 division opens the jaws by 0.05/50 = 0.001 cm, 

Fig. A3.2. A friction clutch ensures that the jaws exert the 

same force when the object is gripped. The object shown has 

a length 

= 2.5mm on the shaft scale + 33 divisions on the drum scale 

= 0.25 cm + 33(0.001) cm 

= 0.283 cm. 

Jaws Shaft Drum 

35 

30 

Friction clutch 

Fig. A3.2 

App 3 



Appendix 4 

Graphs 

When plotting a graph from experimental results, as much of 

the paper as possible should be used, points should be marked 

O or X and a smooth curve or straight line drawn so that 

the points are distributed equally on either side of it. 

(a) Straight-line graph. If a straight line is obtained its equa- 

tion is of the form 

y=mxtc 

where mm is the slope of the line (QR/PQ in Fig. A4.1a) and 
cis the intercept (OS) on the y-axis. 

In the magnification method for finding the focal length of 

a converging lens (p. 116), if a graph is plotted of magnification 

m against image distance v, a straight line should be obtained 

of equation m=v/f—1. The slope of the graph is 1/f and 
the intercept on the m-axis is —1. 

If a graph passes through the origin O then c = 0 and y = mx, 

i.e. yx and to y is directly proportional to x. A straight-line 

graph not passing through the origin only indicates that y is 

directly proportional to x plus a constant, rather than solely 

dependent on x. 

(origin) 

Fig. A4.1 (a) 

App 4 

If it is not possible to include on the graph the origins for 

one or both axes, c can be calculated by substituting the co- 

ordinates of a point on the graph, say (x,, y,) and the value 

of m, in the equation y= mx +c and solving for c. Thus if 

x=2,y=3andm=+1then3=1 X2+c, therefore c = 1 and 

the graph does not pass through the origin of the y-axis. 

When possible, quantities are usually plotted which give a 

straight-line graph since this is easier to interpret. Thus if quan- 

tities T and / are related by the equation aT = bP +c, (i) what 

would you plot to obtain a straight line and (ii) what would 

be the slope? 

(b) Log graph. Sometimes we wish to find experimentally 

the relationship between two quantities x and y. If we assume 

that 

y=kx" 

where k and 7 are constants, then taking logs 

logy = logk + nlogx 

This is of the form y =c + mx and so a graph of log y against 

log x should be a straight line of slope n and intercept log 

k on the log y axis, Fig. A4.1b. Hence k and n can be found. 

log y 



Appendix 5 

Treatment of errors 

(a) Types of error. Experimental errors cause a measure- 

ment to differ from its true value and are of two main types. 

(i) Asystematic error may be due to an incorrectly calibrated 

scale on, for example, a ruler or ammeter. Repeating the obser- 

vation does not help and the existence of the error may not 
be suspected until the final result is calculated and checked, 

say by a different experimental method. If the systematic error 

is small a measurement is accurate. 

(ii) Arandom error arises in any measurement, usually when 

the observer has to estimate the last figure, possibly in an instru- 

ment which lacks sensitivity. Random errors are small for a 

good experimenter and taking the mean of a number of separ- 

ate measurements reduces them in all cases. A measurement 

with a small random error is precise but it may not be accurate. 

Fig. A5.la shows random errors only in a meter reading, 

whilst in Fig. AS.15 there is a systematic error as well. 

Repeated readings 

/ 
Meter scale True value 

Pointer — 

(a) Random error (b) Systematic error 
+ 

random error 

Fig. AS.1 

(b) Estimating errors in single measurements. In more 

advanced work, if systematic errors are not eliminated they 

can be corrected from the observations made. Here we shall 

assume they do not exist and then make a reasonable estimate 

of the likely random error. Two examples follow. 

Using a metre rule the length of an object is measured as 

2.3cm. At very worst the answer might be 2.2 or 2.4cm, i.e. 

the maximum error it is possible to make using a ruler marked 

in mm is +0.1cm. The possible error (p.e.), is said to be 

+0.1cm and the length is written (2.3 + 0.1) cm. The percen- 

tage possible error (p.p.e.) is (+0.1 x 100)/2.3 + +4%. 

Using vernier calipers capable of measuring to 0.01 cm, the 

length of the same object might be read as (2.36 + 0.01) cm. 

In this case the p.e. is +0.01cm and the p.p.e. is (+0.01 x 

100)/2.36 = +0.4%. 
If a large number of readings of one quantity are taken the 

mean value is likely to be close to the true value and statistical 

methods enable a probable error to be estimated. Here, we 

True value 

adopt the simpler procedure of estimating the maximum error 
likely, i.e. the possible error. 

(c) Combining errors. The result of an experiment is usually 

calculated from an expression containing the different quanti- 

ties measured. The combined effect of the errors in the various 

measurements has to be estimated. Three simple cases will 
be considered. 

(i) Sum. Suppose the quantity Q we require, is related to 

quantities a and b which we have measured, by the equation 

Q=a+b 

Then total p.e. in Q = p.e. in a+p.e. in b. Thus if a = 

5.1+0.1cm and b = 3.2 +0.1cm then Q = 8.3+0.2cm. That 

is, in the worst cases, if both a and b are read 0.1cm too 

high Q = (5.2 + 3.3) = 8.5cm, but if both are 0.1cm too low 

then Q = (5.0+ 3.1) = 8.1cm. 

(ii) Difference. If Q=a-—b, the same rule applies, i.e. the 

total p.e.inQ=p.e.ina+p.e. inb. 

(iii) Product and quotient. If the individual measurements 

have to be multiplied or divided it can be shown that the total 
percentage possible error equals the sum of the separate percen- 

tage possible errors. For example, if a, b and c are measure- 

ments made and 

then if the p.p.e. in a is +2%, that in b is +1% and that 

in c is +2%, then the p.p.e. in b? is 2(+1)% = +2% and in 

cl/? js $(+2)% = +1%. hence 

total p.p.e. in Q = +(p.p.e. ina + p.p.e. in b? 
+ p.p.e. in c!/2) 

=+(2+2+1)=+5% 

The answer for Q will therefore be accurate to 1 part in 20 
and if the numerical result for Q is 1.8 then it is written 

Q=1.8+4x18=1.8+0.1 

It would not be justifiable to write Q = 1.852 since this would 

be claiming an accuracy of four figures. According to our esti- 

mate this accuracy is not possible with the apparatus used. 

It is instructive to estimate whenever possible the total p.p.e. 

for an experiment; it indicates (7) the number of significant 

figures that can be given in the result, (di) the limits within 

which the result lies and (iii) the measurements requiring parti- 

cular care. There is little point in making one measurement 

to a very high degree of accuracy if it is not possible with 
the others; a chain is only as strong as the weakest link. 

App 5 



Appendix 6 

Construction of model crystal for microwave analogue 

demonstration (p. 22) 

The model has a face-centred cubic structure and is made from 

190 5cm diameter polystyrene balls glued together with Duro- 

fix in seven hexagonal close-packed layers, Fig. A6.1. 

Start with layer 4 which has 37 balls, Fig. A6.2a (the black 

dots represent the centres of the balls). 

The black dots in Fig. A6.2b show the 36 balls in /ayer 3 

and their positions in the hollows of layer 4 which is shown 

by circles. Each ball should be glued to all those it touches. 

The 27 balls of /ayer 2 are the black dots in Fig. A6.2c (the 

circles are layer 3) and the layer 2 balls should be placed over 

Fig. A6.1 

App 6 

the hollows in layer 4 (not over the balls in layer 4) to give 

the ABCABC stacking of an FCC crystal. 
Fig. A6.2d shows the 19 balls of layer J as black dots and 

layer 2 as circles. 

Half the model is now made and when set it can be turned 

over to build the other half. 
In Fig. A6.2e the circles are layer 4 (now uppermost), the 

crosses represent layer 3. Layer 5 is shown by 36 black dots. 

The 23 black dots in Fig. A6.2f show layer 6 and the circles 

layer 5. Care should again be taken to ensure that the balls 

in layer 6 are over hollows in layer 4. 

Fig. A6.2g gives the position of the 12 balls in layer 7. 
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Appendix 7 

Speed of an electrical pulse along a cable (p. 46) 

The drift speed of the electrons forming the current in a conduc- 

tor is about 1 mms! but the electric and magnetic fields which 

constitute the signal that sets them in motion almost simulta- 

neously round the circuit, travel at very great speeds. Basically 

these fields are the same as those of an electromagnetic wave 

in free space. 

Using a double-beam CRO on a fast time-base speed 
(1pscm™!), the time taken by an electrical pulse from a 

200 kHz pulse generator to travel along a 200 m length of coax- 

ial cable can be found, Fig. A7.1. The in-going pulse is applied 

to the Y, input (set at 0.2 Vcm~!) as well as to the near end 

of the cable and the outcoming pulse from the far end of the 

cable is applied to the Y, input (also on 0.2 Vcm~!). The dis- 

tance between the pulses is measured and the time it represents 

calculated. The speed is roughly 2x 10°ms~!. If air or a 

Double-beam CRO 

To 9V battery 

Pulse generator ——— 

Fig. A7.1 

Drum of coaxial 
cable (200 m) 

vacuum replaced the polythene insulation between the central 

and outer conductors of the cable and through which the fields 

travel, the speed would be that of light (3 x 10°ms~'). Fig. 
A7.2 shows the shapes of the electric and magnetic fields tra- 

velling along the cable; they are at right angles to each other 

and to the direction of the current. 
Coaxial cable is used because it does not pick up unwanted 

interference if the outer conductor is connected to E on the 

CRO at both ends. The 680 resistors should be connected 

to the CRO terminals directly. A full explanation of their 
action requires a more advanced treatment but without them 

the pulse would be reflected backwards and forwards along 

the cable, setting up a standing wave system on it. Instead, 

the resistors ‘absorb’ the pulses and ensure they are applied 

to the CRO. 

Electric field (radial) Magnetic field 
(circular) 

Cross section of 
coaxial cable 

Fig. A7.2 
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Answers 

Chapter 1. Materials and their uses 

2. 

3. 

6. 

A (ES 

(a) AB, since it is in tension. 

(b) (i) AC and AB 

(b) The bottom of the bridge-deck is in tension and steel 

(ii) AB 

is strong in tension. 

It uses the ‘arch principle’ and is made of material 
which is strong in compression. 

— 

(b) It is strong in compression. 
- (a) AB is a tie: it is in tension due to the load pulling 

it at B and the wall pulling it at A; both pulls tend 

to stretch it. 

(b) BC is a strut: it is in compression due to the load push- 

ing it down at B and the wall resisting it at C; both 

pushes tend to squeeze it. 

(a) AD and BD 

(b) AB, AE and BC 

Chapter 2. Structure of materials 

1. (a) 4:3 (b) 16 (c) 16g 
2. (a) 14g (b) 70g 
2. (a) 1.5% 10 (b) 18x 10" (c) 3.0 x 107 
ANay 4.03105 () 1.2% 10-7! 2 (ce) 3.0x10-? 
5. (a) 6.0107 (b) 2.0¢ 

fey 222 10%cm™ (d)'2.75¢10!" 

6. 6.1 x 107? mol"! 
7. (a) 3.0 10° ¢ (b) 3.9x 107" m (0.39 nm) 
8. (a) 5.0x10°Jg~! (b) 5.3.x 107'? J/atom 
9. (a) (i) 4 (ii) 6. Closest in hexagonal packing 

(b) (i) hexagonal (ii) square 

. (a) 2V2rem (b) 16V2r2cm? (c) 1/(16V2r°) 

. (a) 8 (b) 8 (c) 8/8=1 (6 (e)2 (f) 6/2=3 
(g) 1+3=4 (h) 1/(4V2r°) 

eax 107 
. 1.3 x 107!’ m (0.13 nm) 
. If a is the separation between adjacent Na and Cl ions, 

a cube of side a and volume a® will contain 4 Na ions 

and 4 Cl ions, i.e- 4 NaCl molecules. But each corner 

(ion) of the cube is shared by 8 neighbouring cubes and 

so each volume a’ contains 4 of 4 molecules of NaCl, i.e. 

+ molecule of NaCl. 

1M 
Volume occupied by $ molecule = a* = iss 

where M = formula weight (molecular mass) and p = den- 

sity of NaCl and L = the Avogadro constant. 

a= 2.82 x 10-8 cm (0.282 nm) 

Chapter 3. Mechanical properties 

1. (b) 4.0 x 10’ Pa 
(c) Yes 

Ahn 

(d) (i) 2 (ii) 50% 

(e) 2.002 m 

. (c) 1.0 x 10!'! Pa; 0.040%; 4.0 x 10? N: no; smaller 

. (a) 1.1 (1.06) mm 

. (a) 1.86 x 10-3 m 
8. 

(b) 1.0 x 102 (101) N 

(b) 7.75 x 10-2J 
(a) 1.910! Pa (d) 63N 

Chapter 4. Electrical properties 

ie 
. (a) 8.5 x 107 nm 

. (a) 8.0V;2.5A 

. (a) 4.0 V 

- (a) 2A 

- (a) J=1,+1, 

. (a) 4V;2V 

. 150 kO, 25 ko 

. (a) 10V 

. (i) 95 O in series 

eon. 

YE Gill ia 
. (a) 1.00% 10° S's! 
. (a) 12J 

- (a) 6V_(b) (i) 25 

Ab) 3° 1079 
. Internal resistance 5 () 

- 2.0(4) 2; 0.50 A; 0.75 W 

» 4.90;8.90 

. 0.0020°C-!; 50.2 cm 

FO PAY 

- 996 0; 0.2 cm 

26. 

DT. 

28. 

2A x 1071C 1-5 102) 
(b) 8.510% (c) 1.4x 10°C 

(d) 6.8x 103s (e) 0.15mms~! 
8.0A 

(b) 240 V 
(b) 240 J 

(b) 2A (c) 6V (dad) 10V 
(b) 6V (c) 3A,2A,1A 

(b) 4.8V;1.2V 

(e) 5 
(d) 20 

(b) 40 V 

(ii) 0.050 2 in parallel 

(b) 798°C 

(c) 240 J 

(ii) 6J 
(c) 960.2 

(b) 36J 
(c) 0.030 (d) 3A 

(ii) 2.7 Q in parallel 

2.00 2 

3.0 V 

0.30A 

Chapter 5. Thermal properties 

10. 

11. 

CS RNAMHSRwWHY 

. (a) 63.16°C (b) 47.7°C 
16.0V 

. 1.703 g-'K-! 
AANipe Kees 8 (io) zo 

. 0.050 K s~!; 6.8 revolutions per second 

. 26.0% 
sead 6 107°C 
. True height is 76.46 divisions of scale. A division marked 

as 1cm is only lcm at 0°C. At 15°C 1 division has length 

1(1+1.9x 10~> x 15)cm, therefore 76.46 divisions at 
15°C have a true length of 76.46(1 + 1.9 x 10~° x 15), ie. 
76.48 cm 

1.2N 

(a) 1:15(14.5) (b) 66.7°C 



II ANSWERS 

. 1.9107 W 

. Copper 3.0(2.98) °C cm~!; aluminium 5.5°C cm! 

. 4.4x 1073 Wem 
5 dtc 

Chapter 6. Optical properties 

aAanhk Wn = 

. 15cm; 5.0 cm 

. 20cm; 10 cm behind mirror 

. Virtual, 13 (12.9) cm behind convex mirror 

. (a) 2.4m (b) 1.3 10-2m 

. (a) 40(.5)° (b) 40(.5)° (ce) 35 (.4)° 

. (i) Ray refracted in water at an angle of 34 (.2)° 

(ii) Critical angle for glass-water boundary = 63 (62.7)°, 

therefore ray not totally internally reflected 

. Angle in liquid must exceed 67.9° 
8. (a) 37(.4)° 

(b) 28 (27.9)? 
9. (a) 55.6°; 39.6° to 90.0° (b) 60.3° 

10. 48.8° 

11. (a) 20cm; +15cm (b) +4.0cm 

13. 20cm from first position of screen 

14. (a) +60cm (b) +2.4m 

15. +20cm, +20 cm, —20 cm, —60 cm 

16. Virtual, 39 cm from lens on same side as object 

17. f= —500 cm gives far point at infinity. 

The nearest distance an object can now be brought up 

to his eye is that object distance which has its virtual image 

at 60.0cm, i.e. we have to find u when v = —60.0cm and 

f=-—500cm. Using 1/f=1/u+1/v we get u=68.2cm. 
His range of vision is now infinity to 68.2cm, i.e. when 

wearing concave spectacle lenses of f= —500cm objects 

within this range can be seen. 

18. f= 66.7cm gives near point at 25.0 cm. 
The new far point will be the object distance which gives 

a virtual image 200cm from the spectacle lens, i.e. we 

have to find u when v = —200cm and f = 200/3cm. From 

1/f=1/v+1/u we get u=50.0cm. The new range of 
vision is therefore 25.0 to 50.0cm. 

19. magnifying power = 5.0; magnification = 6.0 

20. (b) 58 (.3) 

21. Separation of lenses 25cm; f= 6.0 cm 

Drees rom l4e7, 
23. 80cm; 16;5.3cm; 13 (12.8) cm 

24. Reduced 4; 5 times larger 

25. (a) 15(14.5)cm (b) 0.051 (ce) 26cm (d) 24cm 
D 

PHAC 
28. (a) Farther away 

(b) Closer to slide 

ILIAC 

30. D 

Chapter 7. Statics and dynamics 

2. (a) 1.2x103N (b) 1.1 x 103 N; 74° to horizontal 
3. 4.3 x 10? N; 69° to horizontal 

4. AB V3 x 10°N; BC2 x 10°N:; AC 10°N; 
CD V3 x 10°N. Minimum cross-section area for 
BE@=2(.5) x10 m2 

5. (i) 0.245s (ii) 12.2ms' (iii) 2 5ms ~ 

6. 2.17 x 104 m; 3.13 x 10° m; 25.0s 
7. V3/3; V3 2/3 ms~2; 2V3 mg/3(m = mass of body) 
9. P/(5m); P/5;2 P/5 

10. 3.6 x 10°N; 5.4 x 107 W 

11. mg/2 
12. (a) 10/3N (b) 5/9W  (c) 5/18 W 
13. 8.00 x 10° N; 1.20 x 104 W 

14. 2E/103 
15. (a) Conserved 
16. 30N 

17. 2mnu 

18. (a) Conserved (b) Conserved 

(c) P: zero, Q: v 

19. D 

(b) Conserved, collision is elastic 

Chapter 8. Circular motion and gravitation 

arcABy «7 <om,. 22 3s 210s 
1. (a) tine = ——. = —___ = __. = __- 

sp llms FRM a 

displacement 10m 
(b) average velocity = T0765 

S time 

=7.0ms_! to the right 

The displacement is diameter AB to the right. 

} change of velocity 
(c) average acceleration = ———————_—_ 

time 

_22ms ~! downward 

~ 10/7s 

= 154/10 ms~? downward 

2. (a) 1.57rads~! (b) 0.187ms7! 

3. (a) 5.0 rads~!;25N 

(b) 30N; 20 N 

4. (i) 4/3N_ (ii) V32/Ss 
5. 1.01 x 10°. N; 1.70 x 102 N; 1.85 x 103N 

6. (a) 44rads7! 
7 

8 

(b) 11ms =! (c) 22ms~! (d) 87J 
. 1.9xX10-2Nm 

= NES 

9. (b) 4.0 x 10-*kg m2 
10. 9.83 N 

11. v¥,/vc= y/x 
12. 24 hours 

13. 7.71 x 10” kg; 1.15 x 10° m 

14. 3.83 x 10° km 

1S. (a) (i) 0.12N (ii) O.10N (ce) 7.0x 10°J 

Chapter 9. Mechanical oscillations 

1. (a) 75cms! (b) 1.4.x 104 cms? 
2514 cmiss 
3. 1.04 

4. (a) 3lcms~! (b) 50cms~? (c) 0.335 
(d) 5.0 x 10~7J at A; zero at limits of motion 
(c) 5.01073) 



5. An s.h.m. of period 7/V50s; maximum velocity = 
0.71 ms~!; maximum acceleration = 10 ms~ 

9 

6. 24(.5) Nkg~! m=! 
te 

8. 

16 Hz 

1.3 x 102 cms7!; 1.6 cm 

Chapter 10. Energy and its uses 

2. 

Cem Ww 

14. 

15. 

16. 

17. 

(a) About 22 MJ (b) 180MJ (ce) About 17x 10 J 
(d) (i) About 67kJ (ii) About 250 kJ 

(e) 3.01077 (@& 110 10°F 

- Coal 240 years; oil 58 years; gas 54 years 

. (a) 120W (b) 2kW 

. (a) 200kKW (b) 5000 kgs~! 

. 3.1 x 10°°J (Regard the earth as a flat circular disc which 
always has the sun’s rays falling on it.) 

. Maximum power P is obtained if the air approaching the 

turbine is brought to rest, i.e. loses all its k.e. 

If m = mass of air stopped per second then 

k.e. converted per second = P = $mv? 

If V = volume of air stopped per second then 

V = area swept out by blades X speed of wind = Av. 

But m= pV, -. m= pAv, hence 

P=4(pAv)v? =4pAv> 

(a) S60 W(Js~') (b) 290 W 
EF 
(a) 17X10-3K W-! (b) 1.2kW 
(a) 6.0 10->m7KW! (b) 3.010 7K WwW! 

(c) 7.0kW 

Chapter 11. Fluids at rest 

1. 1.0x 10*N;5.0 x 107N 

2.5 (D) FIN 

B. 
4 

5 

Silver 4.90g Gold 30.3 g 

. 2.4cm 

. 118 (The general expression is p,, = p[V/(V + v)]" where 

p is the initial pressure of the air in the vessel, V is the 

volume of the vessel, v is the volume swept out by the 

piston of the pump per stroke and n is the number of 

strokes to achieve pressure p,,. The expression is obtained 

I 

sf 

10. 

11. 

ANSWERS III 

by repeated application of Boyle’s law to the mass of air 

in the vessel at the start of each stroke. ) 

< WLR A0 Nin 
- 49mm; the water does not overflow (and violate conserva- 

tion of energy) but it remains at the top of the tube (i.e. 

h = 30mm) with an angle of contact of 52.5°. The weight 

of the raised column of water is then supported by the 

vertical components of the surface tension forces. 

76.93 cm 

64ar? y 

60 mm 

Chapter 12. Fluids in motion 

ah 

4. 

bh 

8. 

8:7 x 1077? ms! 
0.26 mm? (Air and petrol do not have the same velocities; 
Bernoulli’s equation must be used.) 

Yes. (Hint: apply Bernoulli’s equation using 

velocity of water in barrel area of jet 

velocity of water from jet ~ area of barrel 

to find velocity of water from jet. Find the time taken 

by a drop of water to travel 3.5 m (assuming its horizontal 

velocity is constant) and then calculate how far it falls in 

this time. 

(b) (i) 12.5ms_! 

Objective-type questions 

2.1°)B) 2:2; Ay 2:38 
317 C 3.256 73.3..B83.4..A0 EE Die 352 
A410 A 4.2. D> 4:3.. C9 4:45E) (4:5..D) 94.6..5 
4.7. C (this is a balanced Wheatstone bridge) 

4.8.C 4.9. D 4.10.C 4.11. E 4.12. E 4.13. B 
SupB arose ue. 5.35 Eero ae aS .D ae 
6.1. B 6.2. A 63. D 64.C 6.5. D 
6.6. A 
Hels 3 Th RES AS ID YR 18s Zi 18) 
UA US AE RRO Wb AG 
8.1. A 8.2.D 83. D 84.C 85.C 8.6. D 
S72 A 
9:1 9:2: BY 935. DSi4S Dio SG 
ILC 

12.1. E 12.2. A 



Index 

aberration 
chromatic, 118 
spherical, 117 

absolute zero, 76 
acceleration 

angular, 172 
centripetal, 167 
definition of, 148 
due to gravity, 150, 153, 178, 190-1 

uniform, 149 
accommodation, 119 
accumulator, lead, 68 
achromatic doublet, 118 
adhesion, 224 
aerofoil, 239 
air changes, 214 
aluminium, 4 
ammeter 

calibration of, 64 
use of, 50 

amorphous solid, 19 
ampere, 45 
ampere-hour, 68 
amplitude, 186 

anaerobic digestion, 210 
analogue, microwave, of crystal, 22 
angle 

critical, 104 
of attack, 239 
of contact, 225 
visual, 120 

angular 
magnification, 121 
momentum, 172 
velocity, 166 

annealing, 33 
anomalous expansion of water, 86 
apparent 

depth, 103 
expansion, 86 

Archimedes’ principle, 220 
astigmatism, 120 
astronomical telescope 

reflecting, 126 
refracting, 124-6 

atmospheric pressure, 222 
atom, 11, 15 
atomic 

bonds, 15 
mass, 13 
number, 14 
structure, 15 
theory, 11 

Avogadro, A., 11 
Avogadro constant, 13 

back e.m.f., 67 
balconies, 10 

banking of track, 168 
Barton’s pendulums, 194 

IV 

beams, 7 
Bernoulli’s equation, 237 
bifocals, 120 
binoculars, prism, 128 
biofuels, 210 
biomass, 210 

body-centred cubic, 20 

bonding energy 
and latent heat, 82 
and surface energy, 230 
definition of, 16 

boundaries, grain, 17, 21, 33 
Bourdon gauge, 222 
Boys’ method for r of a lens, 116 
Bragg, W. L., 22 
Brahé, Tycho, 173 
breaking stress, 30 
bricks, 5 
bridges, 7-9 
brightness of image, 125 
brittle fracture, 34 
Brown, R., 12 

Brownian motion, 11 
bubble 

excess pressure in, 226 
-raft model of crystal, 21, 32 

bulk modulus, 42 
buoyancy, centre of, 221 

calorimeter, 78 

camera, 130 
capillarity, 225 
carbon fibres, 38 
carburettor, 242 
caustic curve, 117 

Cavendish, H., 176 
cell 

alkaline—manganese, 68 
carbon-zinc, 68 

lead-acid, 68 
mercury, 68 
nife, 68 

silver oxide, 68 
unit, of crystal, 20 
Weston standard, 68 

Celsius degree, 73 
centrifuges, 170 
centripetal 

acceleration, 166 
force, 167 

ceramics, 6, 11 
charge, electric, 44 
circle of least confusion, 117 
circular motion, 165-8 
coal, 198 
coherent units, App 2 
cohesion, 224 

collisions, 161 ‘ 
columns of liquid, 218-20 
combined heat and power (C.H.P.), 202 
components of a force, 144 

composite materials, 36-9 
composite slab problem, 87 
composition of forces, 144 
compound microscope. 121-4 
compression, 3, 7 
concave (diverging) 

lens, 109-11 
mirror, 95-9 

concrete, 5, 35 
conductance, 47 
conduction, electrical 

in electrolytes, 65 
in solids, 44 
mechanism of, 44—5 

conduction, thermal 
in a good conductor, 86 
in a poor conductor, 89 
mechanism of, 88 * 

conductivity, thermal, 86 
conservation of 

angular momentum, 172 
energy, 160, 198 
kinetic energy, 161 
linear momentum, 155 

conservative system, 160 
constant-volume thermometer, 74 
contact lenses, 120 
continuous-flow calorimeter, 79 
convection, 80 
convex (converging) 

lens, 109-11 
mirror, 95-9 

cooling 
corrections, 79 
five-fourths power law of, 80 
Newton’s law of, 80 

copper 
mechanical properties of, 29 
structure of, 19 

cosmology, 133 
coulomb, 45 
couple, 144 
covalent bond, 15 
cracks, 34-S 
creep, 36 
critical 

angle, 104 
damping, 193 
velocity, 234 

cross-linking, 25 
crystalline solids, 17, 19 
crystal structures, 19 
cubic expansivity, 86 
‘cup and cone’ fracture, 35 
current arid charge, 44 

current density, 46 

current—p.d. relationships, 47 

Dalton, J. 11 
damped oscillations, 192 
defects 

in crystals, 20 



of eye, 119-20 
in images, 117 

deformation 
elastic, 28 
plastic, 28 

degradation of energy, 198 
density 

current, 46 

definition of, 217 
relative, 217, 220 
and temperature, 86 

depth of field, 131 
deviation 

by a prism, 106 
minimum, 106 

diamond, structure of, 20 
dimensional analysis, 233, 234, App | 
disagreement between temperature 

scales, 76 
dislocations, 31-3 
dispersion, 107 
displacement, 103 
dissociation, electrolytic, 66 
distance of most distinct vision, 119 
drift velocity of electrons, 45 
drops, and bubbles, 226 
dry cell, 68 
ductile fracture, 35 
ductility, 27 
Dulong and Petit’s law, 77 
duralumin, 4 
dynamics, 143 

earth 

gravitational field of, 177 
mass of, 176 

efficiency, 199 
elastic 

collisions, 161 
deformation, 28 

limit, 28, 31, 39 
moduli, 41 
stiffness, 29 

strain, 31 
electric 

cables, 54 

cells, 67-8 
field, 44, 57 

electrical 
energy, 46, 54, 57-8, 67, 200-4 
method for specific heat, 77 

electromotive force, 57, 63 

electron microscope, 11, 32, 133 
energy 

bonding, 16, 82, 230 
conservation of, 160, 198 

consumption of, 199 
conversion of, 199 
definition of, 158 
degradation of, 198 
density of, 199 
geothermal, 211-12 
high-grade, 198 
internal, 16, 44, 76, 198 
kinetic, 159 
low-grade, 198 
potential, 159 
primary, 198 
secondary, 198 
strain, 39 
tidal, 209 

transfer of, 57, 76, 159 
wave, 209 

wind, 207-8 

uses of , 200 
entropy, 198 
equilibrium, 143, 145 
errors 

combining, App 5 
random, App 5 
systematic, App 5 

escape velocity, 182 
excess pressure in bubble, 226 
expanding universe, 132 
expansion of 

solids, 83-5 
liquids, 86 
water, 86 

expansivity 
area, 84 
cubic, 85 
linear, 83 

eye 
defects of, 119-20 
ring, 122, 125 
structure of, 119 

face-centred cubic structures, 19 
Faraday constant, 67 
Faraday’s law of electrolysis, 66 
far point of eye, 119 
fatigue, metal, 36 
fermentation, 210 
fibre 

optics, 105 
-reinforced materials, 5, 37 

fibreglass, 37 
fibres, 37 
field ion microscope, 11, 17 
five-fourths power law of cooling, 80 
fixed points on temperature scales, 73 
flotation, principle of, 220 
flow 

-meters, 239-40 
of mass, energy, charge, 241 
steady, 232 
turbulent, 234-5 

fluid 
pressure in moving, 237-9 
pressure in static, 217-20 

flywheel, 171 
f-number, 130 
focal length of 

lens, 109, 115 
lenses in contact, 114 
spherical mirror, 96, 100 

focal plane, 109 
focus, principal, 96, 109 
force(s) 

centripetal, 167 
composition of, 143 
frictional, 146-7 
gravitational, 174 
impulsive, 154 
intermolecular, 16-17 
moment of, 144 
resolution of, 144 

forced 
convection, 80 
oscillation, 194 

‘foreign’ atoms, 32 

INDEX 

fossil fuels, 198 
Fourier’s law, 87 

‘free’ electron theory, 44, 47, 56, 88 
free 

fall, 150 
oscillation, 193 

frequency, 186 
friction 

coefficients of, 146 
laws of, 146 
limiting, 146 
nature of, 148 
sliding, (kinetic, dynamic), 146 

fuels, 198 

fundamental interval on temperature 
scales, 76 

fuses, 60 

Galilean telescope, 128 
Galileo, G., 152,177 

gas thermometer, 74 
gaseous state, 17 
geothermal energy, 211-12 
girders, 7 
glass 

cutting of, 34 
fibres, 35, 37 
mechanical properties of, 30 
prestressed, 35 
structure of, 19 

glassy solids, 19 
gradient 

of a graph, App 4 
temperature, 87 

grains, 17, 21, 33 
graphite, 20, 56 
graphs 

log, App 4 
straight-line, App 4 

gravitation, law of, 174 
gravitational 

constant G, 175 
field strength g, 177 
mass, 178 
potential energy, 159 

gravity 
acceleration due to, 150, 153, 178, 190, 

191 
and the moon, 174 

effect of earth’s rotation on, 179 

variation with depth, 178 
variation with height, 178 
variation with latitude, 179 

hacksaw-blade oscillator, 194 
heat 

and internal energy, 76, 198 
capacity, 77 
latent, 81-2 
loss, 79 

of sublimation, 26 
heating 

effect of current, 59 
elements, 60 
solar, 205-6 

hertz, 186 

hexagonal close-packing, 19 



VI INDEX 

homogeneity, App 1 
Hooke’s law, 29, 31, 39 
hot 

aquifers, 212 
dry rocks, 212 

hydraulic press, 218 
hydroelectric power, 203 
hydrometer, 221 
hypermetropia, 119 
hysteresis, elastic, 41 

images 
in spherical mirrors, 96 
in thin lenses, 109 
in plane mirrors, 93 
real, 93 

virtual, 93 

impulse, 154 
impulsive forces, 157 
inclined mirrors, 95 

inelastic collisions, 161 
inertia, 152 

moment of, 170-1 
inertial mass, 178 

interatomic bonds, 15 
intermolecular forces, 16 
internal 

energy, 16, 44, 76, 160, 198 

reflection, 104 
resistance, 58, 65 

inverse square law, 175 
ionic 

bond, 15 
theory, 66 

ionization, 66 

ions, 46, 66 

isochronous motion, 188 

Jaeger’s method, 229 
jet propulsion, 156 
jets and nozzles, 238 
joule, 60, 158 

kelvin, 76 

Kepler's laws, 173, 175 
kilogram, 152 
kilowatt-hour, 60, 198 

kinetic energy 
and collisions, 161 

rotational, 171 
translational, 159 

kinetic theory of gases, 14 
Kirchoff’s laws 

first, 59 

second, 59 

lagged bar, 86-7 
lamp filament, 60 
latent heat 

and bonding energy, 82 
of fusion, 81 

of vaporization, 81 
lateral inversion, 94 
launching a satellite, 180 
lead-acid accumulator, 68 
Lees’ disc, 89 
lens(es) 

achromatic, 118 
combinations of, 114 
contact, 120 
full formula for, 113 
power of. 114 
sign convention for, 111 

simple formulae for, 110 
lift. aerodynamic, 239 
linear 

air track, 155, 161 
expansivity, 86 
magnification, 99, 111, 120 

liquid state, 17 
long sight, 119 
looping the loop, 170 
lost volts, 58 

magnification 
angular, 120 

linear, 99, 111 
magnifying glass, 121 
magnifying power of 

microscope, 122 
telescope, 124 

manometer, U-tube, 218 
mass 

definition of, 152 
gravitational, 178 
inertial, 178 

materials science, 11 
matrix, 37 
maximum power theorem, 60 
mechanical energy, 53, 159 
megatonne, 198 
mercury thermometer, 73 
metacentre, 221 
metallic bond, 16 
method of mixtures, 78 
metre bridge, 61 
microammeter, 51 
micrometer screw gauge, App 3 
microscope 
compound, 121-4 
electron, 11, 32, 133 
fieldion, 11, 17 

microwave analogue of crystal, 22 
minimum deviation of prism, 106 
mirages, 104 

mirrors 
aberrations in, 117 
curved, 95-9 
inclined, 95 
plane, 92-5 

modulus of elasticity, 41 
molar heat capacity, 77 
mole, 13, 77 

molecule, size of, 13 
moment of 

a couple, 144 
a force, 144 
inertia, 170-1 

momentum 
angular, 172 
conservation of, 155, 172 

linear, 152, 154 
monolayers, 13 
monomers, 24 
moon, motion of. 174 
motion 

circular, 165-8 
Newton's laws of, 152-4 
of projectiles, 150 
simple harmonic, 185-9 
under gravity, 150 

multimeters, 52 
multiple images, 103 
multipliers, 51 
myopia, 119 

natural frequency, 194 

near point of eye, 119 

Neptune, discovery of, 176 

neutral temperature, 69 

Newton. influence of, 177 

newton, 153 
newtonian fluids, 233 

Newton's 
first law of motion, 152 

law of cooling. 80 
law of gravitation, 174 
second law of motion, 152-3 
third law of motion, 153 

no parallax, 94 
normal adjustment of optical 

instruments, 122, 124 

nuclear power station, 200-3 

object. virtual, 94 
ohm, 47 

ohmic conductors, 47 

Ohm’s law for 

metals, 47 

electrolytes. 67 
oil, 198 

optical 
centre, 109 

lever, 93 

orbits, satellite, 179 

oscillations 

damped, 192 
examples of. 186 
forced, 194 

free, 193 
simple harmonic, 185-9 

Ostwald’s viscometer, 236 

parabolic mirror, 117 
parallelogram law, 143 
paraxial ray, 96,110,111 
parking orbit, 183 
particle-wave duality. 134 
pascal, 28, 29, 217, 233 
passive resistor, 60 
pendulum 

Barton's, 194 
simple, 190 

period, 186 
Periodic Table. 14 
phase difference. 188, 194 
phonon, 88 



photoelasticity, 34 
photovoltaic devices, 206 
pipe, flow through, 233 
Pitot tube, 240 
planetary motion, 173 
plastic deformation, 31 
plastics 

thermo-, 5, 25 
thermosetting, 5, 25 

platinum resistance thermometer, 74 
Poiseuille’s formula, 233, 235, 241 
polarized light, 34 
Polaroid, 34 
pollution, 202 
polycrystalline solids, 17, 22 
polygon of forces, 147 
polymers, 5, 24 
polystyrene ball ‘crystal’, 22, App 6 
polythene 

mechanical properties of, 5, 30 
structure of, 24 

potential 
at a point, 46 
difference, 46 
divider, 49 
energy, 159 
energy—separation curve, 17 

potentiometer, 62-5 
power 

cables, 54 
definition of, 59 
electric, 59 
magnifying, 120 
of alens, 114 

power station 
efficiency of, 201 
hydroelectric, 203 
thermal, 200-3 

presbyopia, 120 
pressure 

across liquid surface, 227 
atmospheric, 222 
dynamic, 240 
in a liquid, 217 
stagnation (total), 240 

static, 240 
transmission of, 218 

primary cells, 68 
principal 

axis, 96, 109 
focus, 96, 109 
plane, 109 

prism 
binoculars, 128 
small-angle, 107 
totally reflecting, 104 

projectiles, 150 
projector, 131 
pulsars, 133 
pump, vacuum, 222 
pumped storage, 203 

quality factor, 196 
quantity, physical, App 1, App 2 
quantum mechanics, 177 
quasars, 133 

radian, 165 

radio telescope, 132-3 
radius of curvature of 

lens, 116 
mirror, 96 

random error, App 5 
ray diagrams for 

thin lens, 110 
curved mirror, 96 

real 
expansivity, 86 
image, 93 

reflecting telescope, 126 
reflection 

at curved mirror, 95 
at plane surface, 92 
diffuse, 92 
laws of, 92 
regular, 92 
total internal, 104 

refracting telescope, 124-6 
refraction 

at plane surface, 101-5 
laws of, 101 
through prisms, 106-8 

refractive index 
absolute, 101 
by apparent depth, 108 
by minimum deviation, 107 
relationships, 102 
using concave mirror, 108 

relative density, 217, 220 
relativity, 177 
resistance 

and Ohm’s law, 47 
codes, 48 
comparison of, 65 
internal, 58, 65 
temperature coefficient of, 56, 62 
thermometer, 74 

resistances 
in parallel, 50 
in series, 49 

resistivity, 54, 62 
resistor, types of, 47 
resolution of forces, 144 
resolving power of 

microscope, 122, i34 
telescope, 125 

resonance, 194-6 
retina, 119 
Reynolds’ number, 234 
rheostat, 49 
rocket propulsion, 156 
rotary pump, 222 
rotation of a 

mirror, 93 
rigid body, 171 

rotor, 169 
rounding a bend, 168 
rubber 

hysteresis of, 41 
mechanical properties of, 30 
resilience of, 41 
structure of, 41 
vulcanized, 25, 41 

satellites, artificial, 179-80 
scalar quantity, 143 
scale of temperature, 73 
scanning electron microscope, 11, 39 

INDEX VII 

scientific explanation, 177 
scratches, 34, 39 

screw gauge, App 3 
Searle’s bar, 89 

secondary cells, 68 
Seebeck effect, 69 
self-conjugate point, 97 
semiconductor, 44, 47, 54, 69 
semiconductor diode, 47 
shear, 42 
short sight, 119 

shunt, 51 

ST units, App 1, App 2 
siemens, 47 

sign convention in optics, 98, 111, 113 
simple harmonic motion 

definition of, 187 
energy of, 192 
equations of, 187-9 
model of, 196 

simple pendulum, 190-1 
small-angle prism, 107 
Snell’s law, 101 
solar 

cells, 206 
devices, 205-7 
energy, 204 
furnace, 206 
heating, 205 

solid state, 16 
specific charge of an ion, 66 
specific energy, 39 
specific heat capacity, 77-9 
specific latent heat, 81 
spectrometer, 129-30 
spectrum, 107 
speed, 148 
spherical aberration, 117 
spinning ball, 238 
spiral spring, 189-90 
spreading, applications of, 225 
spring constant, 189 
standard cell, 64, 68 
states of matter, 16 
statics, 143 
steady motion of fluids, 232 
steel 

mechanical properties of, 30 
mild, 3 
stainless, 4 
structure of, 32 

stiffness, 27, 29 
Stokes’ law, 234, 237 
stone, 5 
strain 

definition of, 28 
energy, 39 
gauge, 54 
-harden, 28 

streamlines, 232, 235 
strength, 27 
strengthening metals, 32 
stress 

breaking, 30 
definition of, 28 

structures, 7-10 . 
sublimation, heat of, 26 
sun, mass of, 176 
surface energy, 230 
surface tension 

and excess pressure, 226 
and surface energy, 230 
definition of, 223 



VII INDEX 

surface tension (contd.) 
effects of, 222 
explanation of, 224 
measurement of, 228-30 

Tacoma Narrows Bridge, 185, 195 
Tay Bridge, 29 
telephoto lens, 131 
telescope 

Galilean, 128 
radio, 132 
reflecting, 126 
refracting, 124 
terrestrial, 126 

temperature 
absolute zero of, 76 
Celsius, 73 
coefficient of resistance, 56, 62 
gradient, 87 
measurement of, 73-6 
neutral, 69 
thermodynamic scale of, 76 

tensile strain and stress, 28, 42 
tensile strength, 28 
tension, 3,7 
terminal 

p.d., 58 
velocity, 235 

tetrahedral structure, 20 
thermal 

conductivity, 86-90, 212, 214 
power station, 200-3 
stress, 85 
resistance, 214 

thermistors, 56 
thermocouples, 64, 69 
thermoelectric effect, 69 
thermometers, comparison of, 75 
thixotropic liquid, 233 
ticker-tape timer, 153 
tidal power, 209 
timber, 4 
torque, 144, 172 
Torricelli’s theorem, 241 
total internal reflection, 104 
toughness, 27 

tribology, 146 
trolley, dynamics of, 153 
triangle of forces, 147 
trussed beams, 7 

turbines 

steam, 200 

water, 203 
wind, 207-8 

turbulent flow, 234-5 

ultimate tensile strength, 28 
uniform 

acceleration, 149 
circular motion, 165-6 

unit cell of crystal, 20 
units 

basic, App 1, App 2 
derived, App 2 
SI, App 1, App 2 

universal gravitation, 174 
unlagged bar, 87 
upthrust, fluid, 220 
U-tube manometer, 218 
U-values, 212, 214 

van der Waals bond, 16 

vectors, 143 

velocity 
angular, 166 
critical, 234 

definition of, 148 

drift, 45 
escape, i82 
gradient, 232 
terminal, 235 

—time graphs, 149 
uniform, 148 

ventilation, 214 
Venturi meter, 239 
vernier scale, App 3 
vibration, 185 

virtual 

image, 93 

} 
object, 94 

viscosity, 232-3 
visual angle, 120 
volt, 46 

voltmeter 
calibration of, 53, 64 
use of, 50 

volume expansion, 85 

water-jet cutting, 218 
water power, 209 
watt, 60 
wave-particle duality, 134 
wave power, 209 
weight, 153 
weightlessness, 180 
Weston cell, 68 
wetting, 225 
Wheatstone bridge, 60-2 
whiskers, 34 
wind turbines, 208 
wires, stretching of, 29-31, 39 
work done 

and energy transfer, 76 
by a couple, 172 
by a force, 158 
in stretching a wire, 39 

work-harden, 28 

X-ray crystallography, 22 

yacht, 239 

yield point, 28 
Young modulus 

definition of, 29, 41 
measurement of, 30 

zero, absolute, 76 
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